1
|
Lin Z, Rong B, Lyu R, Zheng Y, Chen Y, Yan J, Wu M, Gao X, Tang F, Lan F, Tong MH. SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development. Cell Res 2025; 35:345-361. [PMID: 40033033 PMCID: PMC12012180 DOI: 10.1038/s41422-025-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Chen
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyi Yan
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Meixia Wu
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Gao
- Department of Organ Transplantation, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, State International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming-Han Tong
- Key Laboratory of Multi-Cell System, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Zhong J, Shi S, Peng W, Cui H, Sun X. HMGN2 accelerates the proliferation and cell cycle progression of glioblastoma by regulating CDC20 expression. Genes Dis 2025; 12:101433. [PMID: 40092489 PMCID: PMC11907455 DOI: 10.1016/j.gendis.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 03/19/2025] Open
Abstract
Gliomas represent the most common primary malignant intracranial tumors in adults. Despite recent advances in treatment, the prognosis of patients with glioblastoma remains poor. Epigenetic abnormalities, the hallmarks of various types of cancer, contribute to the dysregulated expression of cancer-related genes. Post-translational modification of histones plays a pivotal role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear structure. Therefore, further exploration of the molecular mechanisms of epigenetic regulation in gliomas and the identification of superior therapeutic targets are required. High-mobility group nucleosomal-binding domain 2 (HMGN2) participates in the epigenetic regulation of genes through histone modification and exhibits significant differential expression between glioma and normal tissues. However, the effect of HMGN2 on gliomas and its underlying mechanisms remain unclear. This study aimed to elucidate these uncertainties by demonstrating that HMGN2 significantly promotes the proliferation of glioma cells. HMGN2 binds to histones and promotes the stability of H3K27ac acetylation in the cell division cycle 20 (CDC20) promoter region, enhancing the transcriptional activity of CDC20 and increasing the proliferation of glioma cells. Moreover, we found that CDC20 expression was negatively correlated with the survival time of patients with glioma. These results suggest that targeting epigenetic regulation, such as the HMGN2/CDC20 axis, may provide a novel direction for the treatment of gliomas.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen Peng
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
4
|
Weng SH, Liao WL, Chen L. The Enhancer-Promoter-Mediated Wnt8a Transcription During Neurite Regrowth of Injured Cortical Neurons. Cells 2025; 14:319. [PMID: 40072048 PMCID: PMC11898497 DOI: 10.3390/cells14050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons. Among them, the expression of the Wnt8a gene increased most significantly during neurite regrowth, indicating its potential to promote neuronal regeneration. In this study, we investigated the regulatory mechanism of Wnt8a transcription. An algorithm was developed to predict the novel enhancer regions of candidate genes. By combining active enhancer marks, histone H3 lysine 27 acetylation (H3K27ac), and histone H3 lysine 4 mono-methylation (H3K4me1), we identified a candidate enhancer region for Wnt8a located 1.7 Mb upstream and 0.1 Mb downstream of the Wnt8a gene. This region was organized into enhancers (Ens) 1-15. Enhancer RNA expression from the predicted En1-15 regions, DNA topological dynamics, and the activity of predicted enhancers were analyzed to validate the candidate active enhancers. Our findings showed that the En8, 9, 10, 14, and 15 regions expressed higher eRNAs during neurite regrowth. Notably, the En8-2 and En14-2 subregions showed significantly up-regulated H3K4me1 modification during neurite regrowth. Using chromatin conformation capture assays and enhancer-reporter assays, we delineated that the molecular regulation of Wnt8a transcription during neurite regrowth occurs through looped En8-promoter interplay.
Collapse
Affiliation(s)
- Shr-Han Weng
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan; (S.-H.W.); (W.-L.L.)
| | - Wen-Ling Liao
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan; (S.-H.W.); (W.-L.L.)
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan; (S.-H.W.); (W.-L.L.)
- Department of Medical Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Wang H, Helin K. Roles of H3K4 methylation in biology and disease. Trends Cell Biol 2025; 35:115-128. [PMID: 38909006 DOI: 10.1016/j.tcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Epigenetic modifications, including posttranslational modifications of histones, are closely linked to transcriptional regulation. Trimethylated H3 lysine 4 (H3K4me3) is one of the most studied histone modifications owing to its enrichment at the start sites of transcription and its association with gene expression and processes determining cell fate, development, and disease. In this review, we focus on recent studies that have yielded insights into how levels and patterns of H3K4me3 are regulated, how H3K4me3 contributes to the regulation of specific phases of transcription such as RNA polymerase II initiation, pause-release, heterogeneity, and consistency. The conclusion from these studies is that H3K4me3 by itself regulates gene expression and its precise regulation is essential for normal development and preventing disease.
Collapse
Affiliation(s)
- Hua Wang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | |
Collapse
|
6
|
Cookis T, Lydecker A, Sauer P, Kasinath V, Nogales E. Structural basis for the inhibition of PRC2 by active transcription histone posttranslational modifications. Nat Struct Mol Biol 2025; 32:393-404. [PMID: 39774834 PMCID: PMC11832421 DOI: 10.1038/s41594-024-01452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Polycomb repressive complex 2 (PRC2) trimethylates histone H3 on K27 (H3K27me3) leading to gene silencing that is essential for embryonic development and maintenance of cell identity. PRC2 is regulated by protein cofactors and their crosstalk with histone modifications. Trimethylated histone H3 on K4 (H3K4me3) and K36 (H3K36me3) localize to sites of active transcription and inhibit PRC2 activity through unknown mechanisms. Using cryo-electron microscopy, we reveal that histone H3 tails containing H3K36me3 engage poorly with PRC2 and preclude its effective interaction with chromatin, while H3K4me3 binds to the allosteric site in the EED subunit, acting as an antagonist that competes with activators required for spreading of the H3K27me3 repressive mark. Thus, the location of the H3K4me3 and H3K36me3 modifications along the H3 tail allows them to target two requirements for efficient trimethylation of H3K27 by PRC2. We further show that the JARID2 cofactor modulates PRC2 activity in the presence of these histone modifications.
Collapse
Affiliation(s)
- Trinity Cookis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Alexandria Lydecker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Paul Sauer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Hölzenspies JJ, Sengupta D, Bickmore WA, Brickman JM, Illingworth RS. PRC2 promotes canalisation during endodermal differentiation. PLoS Genet 2025; 21:e1011584. [PMID: 39883738 PMCID: PMC11813121 DOI: 10.1371/journal.pgen.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models. Embryonic stem cells have provided key insights into the molecular function of polycomb proteins, but it is impossible to fully appreciate the role of these epigenetic factors in development, or how development is perturbed due to their deficiency, in the steady-state. To address this, we have employed a tractable embryonic stem cell differentiation system to model primitive streak formation and early gastrulation. Using this approach, we find that loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation, indicating a subordinate rather than instructive role in gene repression. Despite this, chemical inhibition of polycomb enhanced endodermal differentiation efficiency, but did so at the cost of lineage fidelity. These findings highlight the importance of the polycomb system in stabilising the developmental transcriptional response and, in so doing, in shoring up cellular specification.
Collapse
Affiliation(s)
- Jurriaan Jochem Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Anne Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Scott Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Pavlu S, Nikumbh S, Kovacik M, An T, Lenhard B, Simkova H, Navratilova P. Core promoterome of barley embryo. Comput Struct Biotechnol J 2024; 23:264-277. [PMID: 38173877 PMCID: PMC10762323 DOI: 10.1016/j.csbj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.
Collapse
Affiliation(s)
- Simon Pavlu
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sarvesh Nikumbh
- Merck Sharp & Dohme (UK) Limited, 120 Moorgate, London EC2M 6UR, UK
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, 230–0046 Yokohama, Kanagawa, Japan
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hana Simkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| | - Pavla Navratilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| |
Collapse
|
9
|
Hegazi E, Muir TW. The spread of chemical biology into chromatin. J Biol Chem 2024; 300:107776. [PMID: 39276931 PMCID: PMC11555340 DOI: 10.1016/j.jbc.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Understanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C. David (Dave) Allis. Among Dave's many talents was a remarkable ability to "brand" a nascent area (or concept) such that it was immediately relatable to the broader field. This also had the entirely intentional effect of drawing more people into the area, something that as this brief review attempts to convey has certainly happened when it comes to getting chemists involved in chromatin research.
Collapse
Affiliation(s)
- Esmat Hegazi
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
10
|
Rong M, Gao SX, Huang PC, Guo YW, Wen D, Jiang JM, Xu YH, Wei JH. Genome-wide identification of the histone modification gene family in Aquilaria sinensis and functional analysis of several HMs in response to MeJA and NaCl stress. Int J Biol Macromol 2024; 281:135871. [PMID: 39357718 DOI: 10.1016/j.ijbiomac.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jie-Mei Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
11
|
Sato C, Sugiyama M, Mori T, Nishino S, Tao K, Ogawa C, Yoshida A. Pediatric Mesenchymal Tumor With MN1::TAF3 Fusion. Genes Chromosomes Cancer 2024; 63:e70009. [PMID: 39545712 DOI: 10.1002/gcc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
MN1 fusion is emerging as oncogenic in soft-tissue tumors. Here, we provided detailed clinicopathological documentation of a tumor with MN1::TAF3 fusion. The tumor developed on the face of an 8-year-old boy and did not recur or metastasize for 5 years after surgery without adjuvant therapy. Histologically, the tumor predominantly comprised sheets and nests of atypical, mildly pleomorphic epithelioid cells. Mallory body-like eosinophilic cytoplasmic inclusions, small round cells, and fascicles of spindle cells were focally observed. Mitotic activity was high, and focal necrosis was present. Immunohistochemically, the tumor was positive for cytokeratin AE1/AE3 in the epithelioid cell component but otherwise showed nonspecific phenotypes. Targeted RNA sequencing identified an in-frame MN1 (exon 1)::TAF3 (exon 3) fusion transcript. We validated the transcript with reverse transcription-polymerase chain reaction, Sanger sequencing, and MN1 break-apart fluorescence in situ hybridization. MN1::TAF3 was previously listed without details in a large-scale sequencing study involving a pediatric round cell sarcoma in the orbit, raising the possibility that these tumors might form a coherent group.
Collapse
Affiliation(s)
- Chikako Sato
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Department of Laboratory Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Masanaka Sugiyama
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kayoko Tao
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Hisler V, Bardot P, Detilleux D, Bernardini A, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Le Gras S, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription initiation in holo-TFIID-depleted mouse embryonic stem cells. Cell Rep 2024; 43:114791. [PMID: 39352809 PMCID: PMC11551524 DOI: 10.1016/j.celrep.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear. Inducible TAF7 or TAF10 depletion, followed by comprehensive analysis of TFIID subcomplex formation, chromatin binding, and nascent transcription in mouse embryonic stem cells, result in the formation of a TAF7-lacking TFIID or a minimal core-TFIID complex, respectively. These partial complexes support TBP recruitment at promoters and nascent Pol II transcription at most genes early after depletion, but importantly, TAF10 is necessary for efficient Pol II pausing. We show that partially assembled TFIID complexes can sustain Pol II transcription initiation but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Dylane Detilleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Claire Richard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Lynda Hadj Arab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Cynthia Ehrhard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Luc Négroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
13
|
Jeong SJ, Oh JH, Cho JY. ALYREF enhances breast cancer progression by regulating EZH2. Heliyon 2024; 10:e37749. [PMID: 39386827 PMCID: PMC11462240 DOI: 10.1016/j.heliyon.2024.e37749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Similarly, Canine mammary tumors (CMTs) are mostly diagnosed as spontaneous diseases in female dogs. Many studies have suggested that CMTs serve as good models for human breast cancer. However, comparative approaches to histone modifications are still lacking. This study aimed to compare the canine mammary tumor Histone H3 lysine 4 trimethylation (H3K4me3) landscape with that in human breast cancer. Our H3K4me3 ChIP-seq data from CMTs revealed a significant enrichment of H3K4me3 in the ALYREF gene promoter in tumor tissues compared to normal tissues. Furthermore, our study and publicly available RNA-sequencing data revealed that ALYREF expression was elevated in malignant tissues and breast cancer cell lines, and its upregulation was associated with poor prognosis in humans. Depletion of ALYREF resulted in changes in cellular phenotypes, including increased proliferation and colony formation, as well as decreased apoptosis. ALYREF increased cell viability and anchorage-independent growth while decreasing apoptosis by regulating the mRNA expression and protein levels of enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), which promotes hormone receptor-positive breast cancer and CMTs via epigenetic modifications. This suggests that ALYREF may function as a contributing factor to malignant transformation in both CMT and human breast cancer.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Chen C, Chen C, Wang A, Jiang Z, Zhao F, Li Y, Han Y, Niu Z, Tian S, Bai X, Zhang K, Zhai G. ENL reads histone β-hydroxybutyrylation to modulate gene transcription. Nucleic Acids Res 2024; 52:10029-10039. [PMID: 38880495 PMCID: PMC11417371 DOI: 10.1093/nar/gkae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Histone modifications are typically recognized by chromatin-binding protein modules (referred to as 'readers') to mediate fundamental processes such as transcription. Lysine β-hydroxybutyrylation (Kbhb) is a new type of histone mark that couples metabolism to gene expression. However, the readers that prefer histone Kbhb remain elusive. This knowledge gap should be filled in order to reveal the molecular mechanism of this epigenetic regulation. Herein, we developed a chemical proteomic approach, relying upon multivalent photoaffinity probes to capture binders of the mark, and identified ENL as a novel target of H3K9bhb. Biochemical studies and CUT&Tag analysis further suggested that ENL favorably binds to H3K9bhb, and co-localizes with it on promoter regions to modulate gene expression. Notably, disrupting the interaction between H3K9bhb and ENL via structure-based mutation led to the suppressed expression of genes such MYC that drive cell proliferation. Together, our work offered a chemoproteomics approach and identified ENL as a novel histone β-hydroxybutyrylation effector that regulates gene transcription, providing new insight into the regulation mechanism and function of histone Kbhb.
Collapse
Affiliation(s)
- Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Cong Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
15
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
16
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyltransferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. Development 2024; 151:dev202729. [PMID: 39007366 PMCID: PMC11369688 DOI: 10.1242/dev.202729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wai Lim Ku
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Li TW, Park Y, Watters EG, Wang X, Zhou D, Fiches GN, Wu Z, Badley AD, Sacha JB, Ho WZ, Santoso NG, Qi J, Zhu J. KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells. Antiviral Res 2024; 228:105947. [PMID: 38925368 PMCID: PMC11927087 DOI: 10.1016/j.antiviral.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily G Watters
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guillaume N Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Netty G Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Fisher MJ, Luse DS. Defining a chromatin architecture that supports transcription at RNA polymerase II promoters. J Biol Chem 2024; 300:107515. [PMID: 38945447 PMCID: PMC11298586 DOI: 10.1016/j.jbc.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Mammalian RNA polymerase II preinitiation complexes assemble adjacent to a nucleosome whose proximal edge (NPE) is typically 40 to 50 bp downstream of the transcription start site. At active promoters, that +1 nucleosome is universally modified by trimethylation on lysine 4 of histone H3 (H3K4me3). The Pol II preinitiation complex only extends 35 bp beyond the transcription start site, but nucleosomal templates with an NPE at +51 are nearly inactive in vitro with promoters that lack a TATA element and thus depend on TFIID for promoter recognition. Significantly, this inhibition is relieved when the +1 nucleosome contains H3K4me3, which can interact with TFIID subunits. Here, we show that H3K4me3 templates with both TATA and TATA-less promoters are active with +35 NPEs when transcription is driven by TFIID. Templates with +20 NPE are also active but at reduced levels compared to +35 and +51 NPEs, consistent with a general inhibition of promoter function when the proximal nucleosome encroaches on the preinitiation complex. Remarkably, dinucleosome templates support transcription when H3K4me3 is only present in the distal nucleosome, suggesting that TFIID-H3K4me3 interaction does not require modification of the +1 nucleosome. Transcription reactions performed with an alternative protocol retaining most nuclear factors results primarily in early termination, with a minority of complexes successfully traversing the first nucleosome. In such reactions, the +1 nucleosome does not substantially affect the level of termination even with an NPE of +20, indicating that a nucleosome barrier is not a major driver of early termination by Pol II.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
20
|
Duong P, Rodriguez-Parks A, Kang J, Murphy PJ. CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration. Epigenetics Chromatin 2024; 17:22. [PMID: 39033118 PMCID: PMC11264793 DOI: 10.1186/s13072-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains only partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of changes in chromatin modifications during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-h old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.
Collapse
Affiliation(s)
- Phu Duong
- Department of Biomedical Genetics, University of Rochester, Rochester, USA
| | | | - Junsu Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, USA.
| | - Patrick J Murphy
- Department of Biomedical Genetics, University of Rochester, Rochester, USA.
| |
Collapse
|
21
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
22
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
23
|
Kang J, Kang Y, Kim A. Histone H3K4ac, as a marker of active transcription start sites and enhancers, plays roles in histone eviction and RNA transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195021. [PMID: 38417480 DOI: 10.1016/j.bbagrm.2024.195021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
The lysine 4 of histone H3 (H3K4) can be methylated or acetylated into four states: H3K4me1, H3K4me2, H3K4me3, or H3K4ac. Unlike H3K4 methylation, the genome-wide distribution and functional roles of H3K4ac remain unclear. To understand the relationship of acetylation with methylation at H3K4 and to explore the roles of H3K4ac in the context of chromatin, we analyzed H3K4ac across the human genome and compared it with H3K4 methylation in K562 cells. H3K4ac was positively correlated with H3K4me1/2/3 in reciprocal analysis. A decrease in H3K4ac through the mutation of the histone acetyltransferase p300 reduced H3K4me1 and H3K4me3 at the H3K4ac peaks. H3K4ac was also impaired by H3K4me depletion in the histone methyltransferase MLL3/4-mutated cells. H3K4ac peaks were enriched at enhancers in addition to the transcription start sites (TSSs) of genes. H3K4ac of TSSs and enhancers was positively correlated with mRNA and eRNA transcription. A decrease in H3K4ac reduced H3K4me3 and H3K4me1 in TSSs and enhancers, respectively, and inhibited the eviction of histone H3 from them. The mRNA transcription of highly transcribed genes was affected by the reduced H3K4ac. Interestingly, H3K4ac played a redundant role with regard to H3K27ac in eRNA transcription. These results indicate that H3K4ac serves as a marker of both active TSSs and enhancers and plays a role in histone eviction and RNA transcription by leading to H3K4me1/3.
Collapse
Affiliation(s)
- Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
24
|
Chen YZ, Zhu XM, Lv P, Hou XK, Pan Y, Li A, Du Z, Xuan JF, Guo X, Xing JX, Liu K, Yao J. Association of histone modification with the development of schizophrenia. Biomed Pharmacother 2024; 175:116747. [PMID: 38744217 DOI: 10.1016/j.biopha.2024.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.
Collapse
Affiliation(s)
- Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Ang Li
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, PR China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| | - Kun Liu
- Key Laboratory of Health Ministry in Congenital Malformation, Shengjing Hospital of China Medical University, PR China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, PR China.
| |
Collapse
|
25
|
Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024; 56:1168-1180. [PMID: 38724747 PMCID: PMC11176084 DOI: 10.1038/s41588-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Chromatin modifications are linked with regulating patterns of gene expression, but their causal role and context-dependent impact on transcription remains unresolved. Here we develop a modular epigenome editing platform that programs nine key chromatin modifications, or combinations thereof, to precise loci in living cells. We couple this with single-cell readouts to systematically quantitate the magnitude and heterogeneity of transcriptional responses elicited by each specific chromatin modification. Among these, we show that installing histone H3 lysine 4 trimethylation (H3K4me3) at promoters can causally instruct transcription by hierarchically remodeling the chromatin landscape. We further dissect how DNA sequence motifs influence the transcriptional impact of chromatin marks, identifying switch-like and attenuative effects within distinct cis contexts. Finally, we examine the interplay of combinatorial modifications, revealing that co-targeted H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination (H2AK119ub) maximizes silencing penetrance across single cells. Our precision-perturbation strategy unveils the causal principles of how chromatin modification(s) influence transcription and dissects how quantitative responses are calibrated by contextual interactions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Marzia Munafò
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Stylianos Tsagkris
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Valentina Carlini
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.
- Genome Biology Unit, EMBL, Heidelberg, Germany.
| |
Collapse
|
26
|
Duong P, Rodriguez-Parks A, Kang J, Murphy PJ. CUT&Tag Applied to Zebrafish Adult Tail Fins Reveals a Return of Embryonic H3K4me3 Patterns During Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4189493. [PMID: 38645155 PMCID: PMC11030498 DOI: 10.21203/rs.3.rs-4189493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of epigenetic changes during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these epigenetic reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-hour old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.
Collapse
|
27
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
28
|
Lukauskas S, Tvardovskiy A, Nguyen NV, Stadler M, Faull P, Ravnsborg T, Özdemir Aygenli B, Dornauer S, Flynn H, Lindeboom RGH, Barth TK, Brockers K, Hauck SM, Vermeulen M, Snijders AP, Müller CL, DiMaggio PA, Jensen ON, Schneider R, Bartke T. Decoding chromatin states by proteomic profiling of nucleosome readers. Nature 2024; 627:671-679. [PMID: 38448585 PMCID: PMC10954555 DOI: 10.1038/s41586-024-07141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.
Collapse
Affiliation(s)
- Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nhuong V Nguyen
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mara Stadler
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
| | - Peter Faull
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
- Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL, USA
| | - Tina Ravnsborg
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Scarlett Dornauer
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helen Flynn
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teresa K Barth
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
- Clinical Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Kevin Brockers
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Christian L Müller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ole N Jensen
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
29
|
Vidaurre V, Song A, Li T, Ku WL, Zhao K, Qian J, Chen X. The Drosophila histone methyl-transferase SET1 coordinates multiple signaling pathways in regulating male germline stem cell maintenance and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580277. [PMID: 38405894 PMCID: PMC10888844 DOI: 10.1101/2024.02.14.580277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Annabelle Song
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Taibo Li
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Chen
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
30
|
Cookis T, Lydecker A, Sauer P, Kasinath V, Nogales E. Structural basis for the inhibition of PRC2 by active transcription histone posttranslational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579730. [PMID: 38370759 PMCID: PMC10871338 DOI: 10.1101/2024.02.09.579730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is an epigenetic regulator essential for embryonic development and maintenance of cell identity that trimethylates histone H3 at lysine 27 (H3K27me3) leading to gene silencing. PRC2 is regulated by association with protein cofactors and crosstalk with histone posttranslational modifications. Trimethylated histone H3 K4 (H3K4me3) and K36 (H3K36me3) localize to sites of active transcription where H3K27me3 is absent and inhibit PRC2 activity through unknown mechanisms. Using cryo-electron microscopy we reveal that histone H3 tails modified with H3K36me3 engage poorly with the PRC2 active site and preclude its effective interaction with chromatin, while the H3K4me3 modification binds to the allosteric site in the EED subunit, acting as an antagonist that competes with allosteric activators required for the spreading of the H3K27me3 repressive mark. Thus, the location along the H3 tail of the H3K4me3 and H3K36me3 modifications allow them to target two essential requirements for efficient trimethylation of histone H3K27. We further show that the JARID2 cofactor modulates PRC2 activity in the presence of these histone modifications.
Collapse
Affiliation(s)
- Trinity Cookis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Alexandria Lydecker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Paul Sauer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
31
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
32
|
Wang Y, Wang P, Wang Q, Chen S, Wang X, Zhong X, Hu W, Thorne RF, Han S, Wu M, Zhang L. The long noncoding RNA HNF1A-AS1 with dual functions in the regulation of cytochrome P450 3A4. Biochem Pharmacol 2024; 220:116016. [PMID: 38176619 DOI: 10.1016/j.bcp.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China; Department of Clinical Pharmacology, School of Medicine, Henan University of Chinese Medicine, 450046 Zhengzhou, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Qi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Shitong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaofei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China
| | - Xiaobo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 06269 Storrs, CT, USA
| | - Wanglai Hu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Rick F Thorne
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| | - Mian Wu
- Translational Research Institute, Zhengzhou University People's Hospital, Academy of Medical Science, Zhengzhou University, 450003 Zhengzhou, China.
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001 Zhengzhou, China.
| |
Collapse
|
33
|
Czerczak-Kwiatkowska K, Kaminska M, Fraczyk J, Majsterek I, Kolesinska B. Searching for EGF Fragments Recreating the Outer Sphere of the Growth Factor Involved in Receptor Interactions. Int J Mol Sci 2024; 25:1470. [PMID: 38338748 PMCID: PMC10855902 DOI: 10.3390/ijms25031470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.
Collapse
Affiliation(s)
- Katarzyna Czerczak-Kwiatkowska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Justyna Fraczyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland;
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| |
Collapse
|
34
|
Kim SH, Haynes KA. Reader-Effectors as Actuators of Epigenome Editing. Methods Mol Biol 2024; 2842:103-127. [PMID: 39012592 DOI: 10.1007/978-1-0716-4051-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.
Collapse
Affiliation(s)
- Seong Hu Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
35
|
Feng R, Tong C, Lin T, Liu H, Shao C, Li Y, Sticht C, Kan K, Li X, Liu R, Wang S, Wang S, Munker S, Niess H, Meyer C, Liebe R, Ebert MP, Dooley S, Wang H, Ding H, Weng HL. Insulin Determines Transforming Growth Factor β Effects on Hepatocyte Nuclear Factor 4α Transcription in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:52-70. [PMID: 37820926 DOI: 10.1016/j.ajpath.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-β. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-β did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-β incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.
Collapse
Affiliation(s)
- Rilu Feng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chenhao Tong
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yujia Li
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaofeng Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sai Wang
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Stefan Munker
- Department of Medicine II, Liver Centre Munich, University Hospital, Campus Großhadern, Ludwig-Maximilians-University Munich, Munich, Germany; Liver Centre Munich, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Biobank of the Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph Meyer
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hong-Lei Weng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
36
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
37
|
Cho US. The Core Complex of Yeast COMPASS and Human Mixed-Lineage Leukemia (MLL), Structure, Function, and Recognition of the Nucleosome. Subcell Biochem 2024; 104:101-117. [PMID: 38963485 DOI: 10.1007/978-3-031-58843-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.
Collapse
Affiliation(s)
- Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Barsoum M, Sayadi-Boroujeni R, Stenzel AT, Bussmann P, Lüscher-Firzlaff J, Lüscher B. Sequential deregulation of histone marks, chromatin accessibility and gene expression in response to PROTAC-induced degradation of ASH2L. Sci Rep 2023; 13:22565. [PMID: 38114530 PMCID: PMC10730889 DOI: 10.1038/s41598-023-49284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
The trithorax protein ASH2L is essential for organismal and tissue development. As a subunit of COMPASS/KMT2 complexes, ASH2L is necessary for methylation of histone H3 lysine 4 (H3K4). Mono- and tri-methylation at this site mark active enhancers and promoters, respectively, although the functional relevance of H3K4 methylation is only partially understood. ASH2L has a long half-life, which results in a slow decrease upon knockout. This has made it difficult to define direct consequences. To overcome this limitation, we employed a PROTAC system to rapidly degrade ASH2L and address direct effects. ASH2L loss resulted in inhibition of proliferation of mouse embryo fibroblasts. Shortly after ASH2L degradation H3K4me3 decreased with its half-life varying between promoters. Subsequently, H3K4me1 increased at promoters and decreased at some enhancers. H3K27ac and H3K27me3, histone marks closely linked to H3K4 methylation, were affected with considerable delay. In parallel, chromatin compaction increased at promoters. Of note, nascent gene transcription was not affected early but overall RNA expression was deregulated late after ASH2L loss. Together, these findings suggest that downstream effects are ordered but relatively slow, despite the rapid loss of ASH2L and inactivation of KMT2 complexes. It appears that the systems that control gene transcription are well buffered and strong effects are only beginning to unfold after considerable delay.
Collapse
Affiliation(s)
- Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Roksaneh Sayadi-Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789, Monheim am Rhein, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Human Genetics, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
39
|
Han MH, Issagulova D, Park M. Interplay between epigenome and 3D chromatin structure. BMB Rep 2023; 56:633-644. [PMID: 38052424 PMCID: PMC10761748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic mechanisms, primarily mediated through histone and DNA modifications, play a pivotal role in orchestrating the functional identity of a cell and its response to environmental cues. Similarly, the spatial arrangement of chromatin within the threedimensional (3D) nucleus has been recognized as a significant factor influencing genomic function. Investigating the relationship between epigenetic regulation and 3D chromatin structure has revealed correlation and causality between these processes, from the global alignment of average chromatin structure with chromatin marks to the nuanced correlations at smaller scales. This review aims to dissect the biological significance and the interplay between the epigenome and 3D chromatin structure, while also exploring the underlying molecular mechanisms. By synthesizing insights from both experimental and modeling perspectives, we seek to provide a comprehensive understanding of cellular functions. [BMB Reports 2023; 56(12): 633-644].
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dariya Issagulova
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
40
|
Hisler V, Bardot P, Detilleux D, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Gras SL, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription with partially assembled TFIID complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567046. [PMID: 38076793 PMCID: PMC10705246 DOI: 10.1101/2023.11.27.567046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Paul Bardot
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Dylane Detilleux
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Matthieu Stierle
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claire Richard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Lynda Hadj Arab
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Cynthia Ehrhard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Bastien Morlet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Matthieu Jung
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Stéphanie Le Gras
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Luc Négroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - László Tora
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Stéphane D. Vincent
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| |
Collapse
|
41
|
Harris RJ, Heer M, Levasseur MD, Cartwright TN, Weston B, Mitchell JL, Coxhead JM, Gaughan L, Prendergast L, Rico D, Higgins JMG. Release of Histone H3K4-reading transcription factors from chromosomes in mitosis is independent of adjacent H3 phosphorylation. Nat Commun 2023; 14:7243. [PMID: 37945563 PMCID: PMC10636195 DOI: 10.1038/s41467-023-43115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Histone modifications influence the recruitment of reader proteins to chromosomes to regulate events including transcription and cell division. The idea of a histone code, where combinations of modifications specify unique downstream functions, is widely accepted and can be demonstrated in vitro. For example, on synthetic peptides, phosphorylation of Histone H3 at threonine-3 (H3T3ph) prevents the binding of reader proteins that recognize trimethylation of the adjacent lysine-4 (H3K4me3), including the TAF3 component of TFIID. To study these combinatorial effects in cells, we analyzed the genome-wide distribution of H3T3ph and H3K4me2/3 during mitosis. We find that H3T3ph anti-correlates with adjacent H3K4me2/3 in cells, and that the PHD domain of TAF3 can bind H3K4me2/3 in isolated mitotic chromatin despite the presence of H3T3ph. Unlike in vitro, H3K4 readers are still displaced from chromosomes in mitosis in Haspin-depleted cells lacking H3T3ph. H3T3ph is therefore unlikely to be responsible for transcriptional downregulation during cell division.
Collapse
Affiliation(s)
- Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Maninder Heer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Bethany Weston
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jennifer L Mitchell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Luke Gaughan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Lisa Prendergast
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, 41092, Seville, Spain.
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Framlington Place, Newcastle Upon Tyne, NE2 1HH, UK.
| |
Collapse
|
42
|
Malik S, Roeder RG. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Nat Rev Genet 2023; 24:767-782. [PMID: 37532915 PMCID: PMC11088444 DOI: 10.1038/s41576-023-00630-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
The RNA polymerase II (Pol II) pre-initiation complex (PIC) is a critical node in eukaryotic transcription regulation, and its formation is the major rate-limiting step in transcriptional activation. Diverse cellular signals borne by transcriptional activators converge on this large, multiprotein assembly and are transduced via intermediary factors termed coactivators. Cryogenic electron microscopy, multi-omics and single-molecule approaches have recently offered unprecedented insights into both the structure and cellular functions of the PIC and two key PIC-associated coactivators, Mediator and TFIID. Here, we review advances in our understanding of how Mediator and TFIID interact with activators and affect PIC formation and function. We also discuss how their functions are influenced by their chromatin environment and selected cofactors. We consider how, through its multifarious interactions and functionalities, a Mediator-containing and TFIID-containing PIC can yield an integrated signal processing system with the flexibility to determine the unique temporal and spatial expression pattern of a given gene.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry & Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
43
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
44
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
45
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
46
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
47
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
48
|
Fisher MJ, Luse DS. Promoter-proximal nucleosomes attenuate RNA polymerase II transcription through TFIID. J Biol Chem 2023; 299:104928. [PMID: 37330174 PMCID: PMC10404688 DOI: 10.1016/j.jbc.2023.104928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Abstract
A nucleosome is typically positioned with its proximal edge (NPE) ∼50 bp downstream from the transcription start site of metazoan RNA polymerase II promoters. This +1 nucleosome has distinctive characteristics, including the presence of variant histone types and trimethylation of histone H3 at lysine 4. To address the role of these features in transcription complex assembly, we generated templates with four different promoters and nucleosomes located at a variety of downstream positions, which were transcribed in vitro using HeLa nuclear extracts. Two promoters lacked TATA elements, but all supported strong initiation from a single transcription start site. In contrast to results with minimal in vitro systems based on the TATA-binding protein (TBP), TATA promoter templates with a +51 NPE were transcriptionally inhibited in extracts; activity continuously increased as the nucleosome was moved downstream to +100. Inhibition was much more pronounced for the TATA-less promoters: +51 NPE templates were inactive, and substantial activity was only seen with the +100 NPE templates. Substituting the histone variants H2A.Z, H3.3, or both did not eliminate the inhibition. However, addition of excess TBP restored activity on nucleosomal templates with TATA promoters, even with an NPE at +20. Remarkably, nucleosomal templates with histone H3 trimethylated at lysine 4 are active with an NPE at +51 for both TATA and TATA-less promoters. Our results strongly suggest that the +1 nucleosome interferes with promoter recognition by TFIID. This inhibition can be overcome with TBP alone at TATA promoters or through positive interactions with histone modifications and TFIID.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
49
|
Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, Schübeler D. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol 2023:10.1038/s41594-023-01021-8. [PMID: 37386214 DOI: 10.1038/s41594-023-01021-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Eric Hietter-Pfeiffer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
50
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|