1
|
Chen J, Okimura K, Ren L, Nakane Y, Nakayama T, Chen Y, Fukawa K, Sugiyama S, Natsume T, Suda-Hashimoto N, Morimoto M, Miyabe-Nishiwaki T, Oishi T, Katada Y, Zhang M, Kobayashi K, Matsumoto S, Yamaguchi T, Guh YJ, Takahashi I, Nishiwaki-Ohkawa T, Sato DX, Murata Y, Sumiyama K, Nagano AJ, Imai H, Yoshimura T. Non-human primate seasonal transcriptome atlas reveals seasonal changes in physiology and diseases. Nat Commun 2025; 16:3906. [PMID: 40295482 PMCID: PMC12037758 DOI: 10.1038/s41467-025-57994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
The metabolic, immune, and endocrine systems show profound seasonal changes in animals, including humans. In addition, morbidity from cardiovascular and psychiatric diseases is more severe and mortality rate is higher in winter. However, their molecular mechanisms remain unknown. Here we report the seasonal transcriptome of 80 tissues collected over 1 year from male and female rhesus macaques kept in a semi-natural outdoor environment. We find seasonal changes in plasma metabolites and hormones. Transcriptome analysis identifies sex differences in seasonally oscillating genes (SOGs) in all tissues studied, and we generate the web database 'Non-Human Primate Seasonal Transcriptome Atlas (NHPSTA).' Transcriptional regulatory network analysis, siRNA knockdown, and mutant mouse analyses reveal regulation of SOGs by GA-binding protein (GABP). We also demonstrate seasonal oscillations in the expression of disease risk factor genes and drug interacting genes. NHPSTA provides a molecular resource for seasonally regulated physiology and targets for therapeutic interventions for seasonally regulated diseases.
Collapse
Affiliation(s)
- Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Liang Ren
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yang Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kai Fukawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Soutarou Sugiyama
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Takayoshi Natsume
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Naoko Suda-Hashimoto
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Mayumi Morimoto
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Takako Miyabe-Nishiwaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Takao Oishi
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Yuma Katada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Manhui Zhang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Kohei Kobayashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Shoko Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Taiki Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ying-Jey Guh
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan, 262002, Taiwan
| | - Issey Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Taeko Nishiwaki-Ohkawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Daiki X Sato
- Institute for Advanced Academic Research, Chiba University, Chiba, Chiba, 263-8522, Japan
| | | | - Kenta Sumiyama
- Laboratory of Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0871, Japan
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Hiroo Imai
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, 464-8601, Japan.
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
2
|
Saad S, Swigut T, Tabatabaee S, Lalgudi P, Jarosz DF, Wysocka J. DNA binding and mitotic phosphorylation protect polyglutamine proteins from assembly formation. Cell 2025:S0092-8674(25)00349-6. [PMID: 40239647 DOI: 10.1016/j.cell.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/20/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Polyglutamine (polyQ) expansion is associated with pathogenic protein aggregation in neurodegenerative disorders. However, long polyQ tracts are also found in many transcription factors (TFs), such as FOXP2, a TF implicated in human speech. Here, we explore how FOXP2 and other glutamine-rich TFs avoid unscheduled assembly. Throughout interphase, DNA binding, irrespective of sequence specificity, has a solubilizing effect. During mitosis, multiple phosphorylation events promote FOXP2's eviction from chromatin and supplant the solubilizing function of DNA. Further, human-specific amino acid substitutions linked to the evolution of speech map to a mitotic phospho-patch, the "EVO patch," and reduce the propensity of the human FOXP2 to assemble. Fusing the pathogenic form of Huntingtin to either a DNA-binding domain, a phosphomimetic variant of this EVO patch, or a negatively charged peptide is sufficient to diminish assembly formation, suggesting that hijacking mechanisms governing solubility of glutamine-rich TFs may offer new strategies for treatment of polyQ expansion diseases.
Collapse
Affiliation(s)
- Shady Saad
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pranav Lalgudi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Vissani M, Bush A, Lipski WJ, Bullock L, Fischer P, Neudorfer C, Holt LL, Fiez JA, Turner RS, Mark Richardson R. Spike-phase coupling of subthalamic neurons to posterior perisylvian cortex predicts speech sound accuracy. Nat Commun 2025; 16:3357. [PMID: 40204804 PMCID: PMC11982203 DOI: 10.1038/s41467-025-58781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Speech provides a rich context for understanding how cortical interactions with the basal ganglia contribute to unique human behaviors, but opportunities for direct human intracranial recordings across cortical-basal ganglia networks are rare. Here we have recorded electrocorticographic signals in the cortex synchronously with single units in the basal ganglia during awake neurosurgeries where participants spoke syllable repetitions. We have discovered that individual subthalamic nucleus (STN) neurons have transient (200 ms) spike-phase coupling (SPC) events with multiple cortical regions. The spike timing of STN neurons is locked to the phase of theta-alpha oscillations in the supramarginal and posterior superior temporal gyrus during speech planning and production. Speech sound errors occur when this STN-cortical interaction is delayed. Our results suggest that timely interactions between the STN and the posterior perisylvian cortex support auditory-motor coordinate transformation or phonological working memory during speech planning. These findings establish a framework for understanding cortical-basal ganglia interaction in other human behaviors, and additionally indicate that firing-rate based models are insufficient for explaining basal ganglia circuit behavior.
Collapse
Affiliation(s)
- Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Witold J Lipski
- Department of Neurobiology, Systems Neuroscience Center and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Latané Bullock
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Petra Fischer
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Clemens Neudorfer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lori L Holt
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Julie A Fiez
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S Turner
- Department of Neurobiology, Systems Neuroscience Center and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
5
|
Benítez-Burraco A. The cognitive science of language diversity: achievements and challenges. Cogn Process 2025:10.1007/s10339-025-01262-z. [PMID: 39998596 DOI: 10.1007/s10339-025-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Linguistics needs to embrace all the way down a key feature of language: its diversity. In this paper, we build on recent experimental findings and theoretical discussions about the neuroscience and the cognitive science of linguistic variation, but also on proposals by theoretical biology, to advance some future directions for a more solid neurocognitive approach to language diversity. We argue that the cognitive foundations and the neuroscience of human language will be better understood if we pursue a unitary explanation of four key dimensions of linguistic variation: the different functions performed by language, the diversity of sociolinguistic phenomena, the typological differences between human languages, and the diverse developmental paths to language. Succeeding in the cognitive and neurobiological examination and explanation of these four dimensions will not only result in a more comprehensive understanding of how our brain processes language, but also of how language evolved and the core properties of human language(s).
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004, Seville, Spain.
| |
Collapse
|
6
|
Tajima Y, Vargas CDM, Ito K, Wang W, Luo JD, Xing J, Kuru N, Machado LC, Siepel A, Carroll TS, Jarvis ED, Darnell RB. A humanized NOVA1 splicing factor alters mouse vocal communications. Nat Commun 2025; 16:1542. [PMID: 39966351 PMCID: PMC11836289 DOI: 10.1038/s41467-025-56579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
NOVA1, a neuronal RNA-binding protein expressed in the central nervous system, is essential for survival in mice and normal development in humans. A single amino acid change (I197V) in NOVA1's second RNA binding domain is unique to modern humans. To study its physiological effects, we generated mice carrying the human-specific I197V variant (Nova1hu/hu) and analyzed the molecular and behavioral consequences. While the I197V substitution had minimal impact on NOVA1's RNA binding capacity, it led to specific effects on alternative splicing, and CLIP revealed multiple binding peaks in mouse brain transcripts involved in vocalization. These molecular findings were associated with behavioral differences in vocalization patterns in Nova1hu/hu mice as pups and adults. Our findings suggest that this human-specific NOVA1 substitution may have been part of an ancient evolutionary selective sweep in a common ancestral population of Homo sapiens, possibly contributing to the development of spoken language through differential RNA regulation during brain development.
Collapse
Affiliation(s)
- Yoko Tajima
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
| | - César D M Vargas
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Keiichi Ito
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Jiawei Xing
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Nurdan Kuru
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Luiz Carlos Machado
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Robert B Darnell
- The Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Callaway E. A human gene makes mice squeak differently - did it contribute to language? Nature 2025:10.1038/d41586-025-00518-0. [PMID: 39966587 DOI: 10.1038/d41586-025-00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
8
|
Hecker N, Kempynck N, Mauduit D, Abaffyová D, Vandepoel R, Dieltiens S, Borm L, Sarropoulos I, González-Blas CB, De Man J, Davie K, Leysen E, Vandensteen J, Moors R, Hulselmans G, Lim L, De Wit J, Christiaens V, Poovathingal S, Aerts S. Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium. Science 2025; 387:eadp3957. [PMID: 39946451 DOI: 10.1126/science.adp3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/26/2024] [Indexed: 04/23/2025]
Abstract
Combinations of transcription factors govern the identity of cell types, which is reflected by genomic enhancer codes. We used deep learning to characterize these enhancer codes and devised three metrics to compare cell types in the telencephalon across amniotes. To this end, we generated single-cell multiome and spatially resolved transcriptomics data of the chicken telencephalon. Enhancer codes of orthologous nonneuronal and γ-aminobutyric acid-mediated (GABAergic) cell types show a high degree of similarity across amniotes, whereas excitatory neurons of the mammalian neocortex and avian pallium exhibit varying degrees of similarity. Enhancer codes of avian mesopallial neurons are most similar to those of mammalian deep-layer neurons. With this study, we present generally applicable deep learning approaches to characterize and compare cell types on the basis of genomic regulatory sequences.
Collapse
Affiliation(s)
- Nikolai Hecker
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niklas Kempynck
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Darina Abaffyová
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roel Vandepoel
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sam Dieltiens
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lars Borm
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Carmen Bravo González-Blas
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Julie De Man
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elke Leysen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jeroen Vandensteen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rani Moors
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lynette Lim
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joris De Wit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Christopoulou E, Charrier C. Molecular mechanisms of the specialization of human synapses in the neocortex. Curr Opin Genet Dev 2024; 89:102258. [PMID: 39255688 DOI: 10.1016/j.gde.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024]
Abstract
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Collapse
Affiliation(s)
- Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
10
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
11
|
Benítez-Burraco A, Progovac L. Syntax and the brain: language evolution as the missing link(ing theory)? Front Psychol 2024; 15:1445192. [PMID: 39526128 PMCID: PMC11543476 DOI: 10.3389/fpsyg.2024.1445192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This paper provides proof of concept that neurolinguistic research on human language syntax would benefit greatly by expanding its scope to include evolutionary considerations, as well as non-propositional functions of language, including naming/nicknaming and verbal aggression. In particular, an evolutionary approach can help circumvent the so-called granularity problem in studying the processing of syntax in the brain, that is, the apparent mismatch between the abstract postulates of syntax (e.g. Tense Phrase (TP), Determiner Phrase (DP), etc.) and the concrete units of neurobiology (neurons, axons, etc.). Methods First, we decompose syntax into its evolutionary primitives, identifying one of the earliest stages as a simple, flat combination of just one verb and one noun. Next, we identify proxies ("living fossils") of such a stage in present-day languages, including compounds and small clauses, lacking at least some layers of structure, e.g. TPs and DPs. These proxies of ancestral language have been subjected to fMRI neuroimaging experiments. Results We discuss the finding that less hierarchical small clauses, in contrast to full sentences with TPs and DPs, show reduced activation in the left Broca's area (BA) 44 and the right basal ganglia, consistent with the hypothesis that more recent, more elaborate syntax requires more connectivity in the Broca's-basal ganglia network, whose neuronal density has been significantly enhanced in recent evolution, implicating mutations in FOXP2 and other genes. We also discuss the finding that the processing of ancestral verb-noun compounds, which are typically used for (derogatory) naming and nicknaming, shows enhanced activation in the right fusiform gyrus area (BA 37), the area that is implicated in the processing of metaphoricity and imageability, but also in naming and face recognition, opening up an intriguing possibility that the enhanced face recognition in humans was facilitated by the early emergence of a simple syntactic strategy for naming. Discussion The considerations in this paper are consistent with the hypothesis of a gradual gene-culture co-evolution of syntax and the brain, targeting cortico-striatal brain networks. It is also of note that a sound grounding in neurobiology of language should in turn inform syntactic theories themselves.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Department of English, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
12
|
Soto DC, Uribe-Salazar JM, Kaya G, Valdarrago R, Sekar A, Haghani NK, Hino K, La GN, Mariano NAF, Ingamells C, Baraban AE, Turner TN, Green ED, Simó S, Quon G, Andrés AM, Dennis MY. Gene expansions contributing to human brain evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615256. [PMID: 39386494 PMCID: PMC11463660 DOI: 10.1101/2024.09.26.615256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.
Collapse
Affiliation(s)
- Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - José M. Uribe-Salazar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Gulhan Kaya
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Ricardo Valdarrago
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aarthi Sekar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Nicholas K. Haghani
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gabriana N. La
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Natasha Ann F. Mariano
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
- Postbaccalaureate Research Education Program, University of California, Davis, CA 95616, USA
| | - Cole Ingamells
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Aidan E. Baraban
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St Louis, MS, 63110, USA
| | - Eric D. Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,20892, USA
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Megan Y. Dennis
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Mottolese N, Coiffard O, Ferraguto C, Manolis A, Ciani E, Pietropaolo S. Autistic-relevant behavioral phenotypes of a mouse model of cyclin-dependent kinase-like 5 deficiency disorder. Autism Res 2024; 17:1742-1759. [PMID: 39234879 DOI: 10.1002/aur.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene and characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, the etiological mechanisms underlying CDD are largely unknown and no effective therapies are available. The Cdkl5 knock-out (KO) mouse has been broadly employed in preclinical studies on CDD; Cdkl5-KO mice display neurobehavioral abnormalities recapitulating most CDD symptoms, including alterations in motor, sensory, cognitive, and social abilities. However, most available preclinical studies have been carried out on adult Cdkl5-KO mice, so little is known about the phenotypic characteristics of this model earlier during development. Furthermore, major autistic-relevant phenotypes, for example, social and communication deficits, have been poorly investigated and mostly in male mutants. Here, we assessed the autistic-relevant behavioral phenotypes of Cdkl5-KO mice during the first three post-natal weeks and in adulthood. Males and females were tested, the latter including both heterozygous and homozygous mutants. Cdkl5 mutant pups showed qualitative and quantitative alterations in ultrasonic communication, detected first at 2 weeks of age and confirmed later in adulthood. Increased levels of anxiety-like behaviors were observed in mutants at 3 weeks and in adulthood, when stereotypies, reduced social interaction and memory deficits were also observed. These behavioral effects of the mutation were evident in both sexes, being more marked and varied in homozygous than heterozygous females. These findings provide novel evidence for the autistic-relevant behavioral profile of the Cdkl5 mouse model, thus supporting its use in future preclinical studies investigating CDD pathology and autism spectrum disorders.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- CNRS, EPHE, INCIA, Univ. Bordeaux, Bordeaux, France
| | | | | | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | |
Collapse
|
14
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of forkhead box P2-positive neurons is associated with tadpole begging behaviour. Biol Lett 2024; 20:20240395. [PMID: 39317327 PMCID: PMC11421926 DOI: 10.1098/rsbl.2024.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Motor function is a critical aspect of social behaviour in a wide range of taxa. The transcription factor forkhead box P2 (FoxP2) is well studied in the context of vocal communication in humans, mice and songbirds, but its role in regulating social behaviour in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behaviour beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | | |
Collapse
|
15
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542531. [PMID: 37292748 PMCID: PMC10246011 DOI: 10.1101/2023.05.26.542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor function is a critical aspect of social behavior in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social behavior in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behavior beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
16
|
Ahmed NI, Khandelwal N, Anderson AG, Oh E, Vollmer RM, Kulkarni A, Gibson JR, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. Cell Rep 2024; 43:114257. [PMID: 38761373 PMCID: PMC11234887 DOI: 10.1016/j.celrep.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN-specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type-specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral-mediated re-expression of Foxp1 into the double knockouts is sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Emily Oh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Rachael M Vollmer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
17
|
He BH, Yang YH, Hsiao BW, Lin WT, Chuang YF, Chen SY, Liu FC. Foxp2 Is Required for Nucleus Accumbens-mediated Multifaceted Limbic Function. Neuroscience 2024; 542:33-46. [PMID: 38354901 DOI: 10.1016/j.neuroscience.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The forkhead box protein P2 (Foxp2), initially identified for its role in speech and language development, plays an important role in neural development. Previous studies investigated the function of the Foxp2 gene by deleting or mutating Foxp2 from developmental stages. Little is known about its physiological function in adult brains. Although Foxp2 has been well studied in the dorsal striatum, its function in the nucleus accumbens (NAc) of the ventral striatum remains elusive. Here, we examine the physiological function of Foxp2 in NAc of mouse brains. We conditionally knocked out Foxp2 by microinjections of AAV-EGFP-Cre viruses into the medial shell of NAc of Foxp2 floxed (cKO) mice. Immunostaining showed increased c-Fos positive cells in cKO NAc at basal levels, suggesting an abnormality in Foxp2-deficient NAc cells. Unbiased behavioral profiling of Foxp2 cKO mice showed abnormalities in limbic-associated function. Foxp2 cKO mice exhibited abnormal social novelty without preference for interaction with strangers and familiar mice. In appetitive reward learning, Foxp2 cKO mice failed to learn the time expectancy of food delivery. In fear learning, Foxp2 cKO mice exhibited abnormal increases in freezing levels in response to tone paired with foot shock during fear conditioning. The extinction of the fear response was also altered in Foxp2 cKO mice. In contrast, conditional knockout of Foxp2 in NAc did not affect locomotion, motor coordination, thermal pain sensation, anxiety- and depression-like behaviors. Collectively, our study suggests that Foxp2 has a multifaceted physiological role in NAc in the regulation of limbic function in the adult brain.
Collapse
Affiliation(s)
- Bo-Han He
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ya-Hui Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Bo-Wen Hsiao
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
18
|
Kapustina M, Zhang AA, Tsai JYJ, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS. The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain. Cell Rep 2024; 43:113842. [PMID: 38427564 DOI: 10.1016/j.celrep.2024.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.
Collapse
Affiliation(s)
- Margarita Kapustina
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Angela A Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Y J Tsai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brianna N Bristow
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Larissa Kraus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sarah R Erwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lihua Wang
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tara R Stach
- School of Biomedical Engineering, Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jody Clements
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrew L Lemire
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
19
|
Zhang J, Zhao R, Lin S, Yang D, Lu S, Liu Z, Gao Y, Zhang Y, Hou B, Xi C, Liu J, Bing J, Pang E, Lin K, Zeng S. Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Sci Rep 2024; 14:6102. [PMID: 38480729 PMCID: PMC10937912 DOI: 10.1038/s41598-024-51964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.
Collapse
Affiliation(s)
- Jiangyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Shiying Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Genetic Engineering Drugs and Biological Technology, Beijing Normal University, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Zenan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yuanyuan Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yiyun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Bing Hou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
20
|
Sinigaglia B, Escudero J, Biagini SA, Garcia-Calleja J, Moreno J, Dobon B, Acosta S, Mondal M, Walsh S, Aguileta G, Vallès M, Forrow S, Martin-Caballero J, Migliano AB, Bertranpetit J, Muñoz FJ, Bosch E. Exploring Adaptive Phenotypes for the Human Calcium-Sensing Receptor Polymorphism R990G. Mol Biol Evol 2024; 41:msae015. [PMID: 38285634 PMCID: PMC10859840 DOI: 10.1093/molbev/msae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.
Collapse
Affiliation(s)
- Barbara Sinigaglia
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Escudero
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Garcia-Calleja
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Josep Moreno
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
- UB Institute of Neuroscience, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona 08007, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Gabriela Aguileta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Mònica Vallès
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Stephen Forrow
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB), Barcelona 08028, Spain
| | - Juan Martin-Caballero
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Department of Evolutionary Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| |
Collapse
|
21
|
Prakash N, Matos HY, Sebaoui S, Tsai L, Tran T, Aromolaran A, Atrachji I, Campbell N, Goodrich M, Hernandez-Pineda D, Jesus Herrero M, Hirata T, Lischinsky J, Martinez W, Torii S, Yamashita S, Hosseini H, Sokolowski K, Esumi S, Kawasawa YI, Hashimoto-Torii K, Jones KS, Corbin JG. Connectivity and molecular profiles of Foxp2- and Dbx1-lineage neurons in the accessory olfactory bulb and medial amygdala. J Comp Neurol 2024; 532:e25545. [PMID: 37849047 PMCID: PMC10922300 DOI: 10.1002/cne.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Heidi Y Matos
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Luke Tsai
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Adejimi Aromolaran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Isabella Atrachji
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Nya Campbell
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tsutomu Hirata
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Wendolin Martinez
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shisui Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Hassan Hosseini
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Katie Sokolowski
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Kevin S Jones
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| |
Collapse
|
22
|
Piszczek L, Kaczanowska J, Haubensak W. Towards correlative archaeology of the human mind. Biol Chem 2024; 405:5-12. [PMID: 37819768 PMCID: PMC10687516 DOI: 10.1515/hsz-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Retracing human cognitive origins started out at the systems level with the top-down interpretation of archaeological records spanning from man-made artifacts to endocasts of ancient skulls. With emerging evolutionary genetics and organoid technologies, it is now possible to deconstruct evolutionary processes on a molecular/cellular level from the bottom-up by functionally testing archaic alleles in experimental models. The current challenge is to complement these approaches with novel strategies that allow a holistic reconstruction of evolutionary patterns across human cognitive domains. We argue that computational neuroarcheology can provide such a critical mesoscale framework at the brain network-level, linking molecular/cellular (bottom-up) to systems (top-down) level data for the correlative archeology of the human mind.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, A-Vienna, Austria
| | | | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, A-Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030Vienna, Austria
| |
Collapse
|
23
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
25
|
Gómez-Robles A, Nicolaou C, Smaers JB, Sherwood CC. The evolution of human altriciality and brain development in comparative context. Nat Ecol Evol 2024; 8:133-146. [PMID: 38049480 PMCID: PMC10781642 DOI: 10.1038/s41559-023-02253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
Human newborns are considered altricial compared with other primates because they are relatively underdeveloped at birth. However, in a broader comparative context, other mammals are more altricial than humans. It has been proposed that altricial development evolved secondarily in humans due to obstetrical or metabolic constraints, and in association with increased brain plasticity. To explore this association, we used comparative data from 140 placental mammals to measure how altriciality evolved in humans and other species. We also estimated how changes in brain size and gestation length influenced the timing of neurodevelopment during hominin evolution. Based on our data, humans show the highest evolutionary rate to become more altricial (measured as the proportion of adult brain size at birth) across all placental mammals, but this results primarily from the pronounced postnatal enlargement of brain size rather than neonatal changes. In addition, we show that only a small number of neurodevelopmental events were shifted to the postnatal period during hominin evolution, and that they were primarily related to the myelination of certain brain pathways. These results indicate that the perception of human altriciality is mostly driven by postnatal changes, and they point to a possible association between the timing of myelination and human neuroplasticity.
Collapse
Affiliation(s)
- Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| |
Collapse
|
26
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
27
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
28
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Yoshimatsu S, Okahara J, Yoshie J, Igarashi Y, Nakajima R, Sanosaka T, Qian E, Sato T, Kobayashi H, Morimoto S, Kishi N, Pillis DM, Malik P, Noce T, Okano H. Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing. CELL REPORTS METHODS 2023; 3:100590. [PMID: 37714158 PMCID: PMC10545943 DOI: 10.1016/j.crmeth.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Central Institute for Experimental Animals, Kawasaki City, Kanagawa 210-0821, Japan.
| | - Junko Yoshie
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yoko Igarashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emi Qian
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hiroya Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Devin M Pillis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; Division of Hematology, CBDI, CCHMC, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
30
|
Zhu X, Chen C, Wei D, Xu Y, Liang S, Jia W, Li J, Qu Y, Zhai J, Zhang Y, Wu P, Hao Q, Zhang L, Zhang W, Yang X, Pan L, Qi R, Li Y, Wang F, Yi R, Yang Z, Wang J, Zhao Y. FOXP2 confers oncogenic effects in prostate cancer. eLife 2023; 12:e81258. [PMID: 37668356 PMCID: PMC10513481 DOI: 10.7554/elife.81258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2023] [Indexed: 09/06/2023] Open
Abstract
Identification oncogenes is fundamental to revealing the molecular basis of cancer. Here, we found that FOXP2 is overexpressed in human prostate cancer cells and prostate tumors, but its expression is absent in normal prostate epithelial cells and low in benign prostatic hyperplasia. FOXP2 is a FOX transcription factor family member and tightly associated with vocal development. To date, little is known regarding the link of FOXP2 to prostate cancer. We observed that high FOXP2 expression and frequent amplification are significantly associated with high Gleason score. Ectopic expression of FOXP2 induces malignant transformation of mouse NIH3T3 fibroblasts and human prostate epithelial cell RWPE-1. Conversely, FOXP2 knockdown suppresses the proliferation of prostate cancer cells. Transgenic overexpression of FOXP2 in the mouse prostate causes prostatic intraepithelial neoplasia. Overexpression of FOXP2 aberrantly activates oncogenic MET signaling and inhibition of MET signaling effectively reverts the FOXP2-induced oncogenic phenotype. CUT&Tag assay identified FOXP2-binding sites located in MET and its associated gene HGF. Additionally, the novel recurrent FOXP2-CPED1 fusion identified in prostate tumors results in high expression of truncated FOXP2, which exhibit a similar capacity for malignant transformation. Together, our data indicate that FOXP2 is involved in tumorigenicity of prostate.
Collapse
Affiliation(s)
- Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Chao Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking UniversityShenzhenChina
- The Hong Kong University of Science and Technology Medical CenterHong KongChina
| | - Dong Wei
- Department of Urology, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yong Xu
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical UniversityTianjingChina
- Department of Urology, Second Hospital of Tianjing Medical UniversityTianjingChina
| | - Siying Liang
- Genetic Testing Center, Qingdao Women and Children's HospitalQingdaoChina
| | - Wenlong Jia
- Department of Computer Science, City University of Hong KongHong KongChina
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yanchun Qu
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical UniversityTianjingChina
| | - Jianpo Zhai
- Department of Urology, Beijing Jishuitan HospitalBeijingChina
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Qiang Hao
- Department of Urology, Beijing Tian Tan Hospital, Capital Medical UniversityBeijingChina
| | - Linlin Zhang
- School of Nursing, Harbin Medical UniversityHarbinChina
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xinyu Yang
- Department of Urology, Peking University First Hospital, Institute of UrologyBeijingChina
| | - Lin Pan
- Clinical Institute of China-Japan Friendship HospitalBeijingChina
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yao Li
- Department of Surgery, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical ScienceBeijingChina
| | - Feiliang Wang
- The Department of Ultrasonography, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Rui Yi
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
31
|
Amariuta T, Siewert-Rocks K, Price AL. Modeling tissue co-regulation estimates tissue-specific contributions to disease. Nat Genet 2023; 55:1503-1511. [PMID: 37580597 PMCID: PMC10904330 DOI: 10.1038/s41588-023-01474-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Integrative analyses of genome-wide association studies and gene expression data have implicated many disease-critical tissues. However, co-regulation of genetic effects on gene expression across tissues impedes distinguishing biologically causal tissues from tagging tissues. In the present study, we introduce tissue co-regulation score regression (TCSC), which disentangles causal tissues from tagging tissues by regressing gene-disease association statistics (from transcriptome-wide association studies) on tissue co-regulation scores, reflecting correlations of predicted gene expression across genes and tissues. We applied TCSC to 78 diseases/traits (average n = 302,000) and gene expression prediction models for 48 GTEx tissues. TCSC identified 21 causal tissue-trait pairs at a 5% false discovery rate (FDR), including well-established findings, biologically plausible new findings (for example, aorta artery and glaucoma) and increased specificity of known tissue-trait associations (for example, subcutaneous adipose, but not visceral adipose, and high-density lipoprotein). TCSC also identified 17 causal tissue-trait covariance pairs at 5% FDR. In conclusion, TCSC is a precise method for distinguishing causal tissues from tagging tissues.
Collapse
Affiliation(s)
- Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Katherine Siewert-Rocks
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
32
|
Kuo HY, Chen SY, Huang RC, Takahashi H, Lee YH, Pang HY, Wu CH, Graybiel AM, Liu FC. Speech- and language-linked FOXP2 mutation targets protein motors in striatal neurons. Brain 2023; 146:3542-3557. [PMID: 37137515 PMCID: PMC10393416 DOI: 10.1093/brain/awad090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 05/05/2023] Open
Abstract
Human speech and language are among the most complex motor and cognitive abilities. The discovery of a mutation in the transcription factor FOXP2 in KE family members with speech disturbances has been a landmark example of the genetic control of vocal communication in humans. Cellular mechanisms underlying this control have remained unclear. By leveraging FOXP2 mutation/deletion mouse models, we found that the KE family FOXP2R553H mutation directly disables intracellular dynein-dynactin 'protein motors' in the striatum by induction of a disruptive high level of dynactin1 that impairs TrkB endosome trafficking, microtubule dynamics, dendritic outgrowth and electrophysiological activity in striatal neurons alongside vocalization deficits. Dynactin1 knockdown in mice carrying FOXP2R553H mutations rescued these cellular abnormalities and improved vocalization. We suggest that FOXP2 controls vocal circuit formation by regulating protein motor homeostasis in striatal neurons, and that its disruption could contribute to the pathophysiology of FOXP2 mutation/deletion-associated speech disorders.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Rui-Chi Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hiroshi Takahashi
- Department of Neurology, National Hospital Organization, Tottori Medical Center, Tottori 689-0203, Japan
| | - Yen-Hui Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Yu Pang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Cheng-Hsi Wu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
33
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|
35
|
Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, Patrick Pett J, Polanski K, Richardson L, Litvinukova M, Kumasaka N, Qin Y, Jablonska Z, Semprich CI, Mach L, Dabrowska M, Richoz N, Bolt L, Mamanova L, Kapuge R, Barnett SN, Perera S, Talavera-López C, Mulas I, Mahbubani KT, Tuck L, Wang L, Huang MM, Prete M, Pritchard S, Dark J, Saeb-Parsy K, Patel M, Clatworthy MR, Hübner N, Chowdhury RA, Noseda M, Teichmann SA. Spatially resolved multiomics of human cardiac niches. Nature 2023; 619:801-810. [PMID: 37438528 PMCID: PMC10371870 DOI: 10.1038/s41586-023-06311-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.
Collapse
Affiliation(s)
- Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Muraro
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Siew Yen Ho
- Cardiac Morphology Unit, Royal Brompton Hospital and Imperial College London, London, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jan Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Monika Litvinukova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yue Qin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zuzanna Jablonska
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia I Semprich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rakeshlal Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carlos Talavera-López
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Würzburg Institute for Systems Immunology, Max Planck Research Group, Julius-Maximilian-Universität, Würzburg, Germany
| | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lu Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret M Huang
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John Dark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Centre, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Ahmed NI, Khandelwal N, Anderson AG, Kulkarni A, Gibson J, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546567. [PMID: 37425820 PMCID: PMC10327074 DOI: 10.1101/2023.06.26.546567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral mediated re-expression of Foxp1 into the double knockouts was sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I. Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G. Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Lead Contact
| |
Collapse
|
37
|
de Sousa AA, Beaudet A, Calvey T, Bardo A, Benoit J, Charvet CJ, Dehay C, Gómez-Robles A, Gunz P, Heuer K, van den Heuvel MP, Hurst S, Lauters P, Reed D, Salagnon M, Sherwood CC, Ströckens F, Tawane M, Todorov OS, Toro R, Wei Y. From fossils to mind. Commun Biol 2023; 6:636. [PMID: 37311857 PMCID: PMC10262152 DOI: 10.1038/s42003-023-04803-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/04/2023] [Indexed: 06/15/2023] Open
Abstract
Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.
Collapse
Affiliation(s)
| | - Amélie Beaudet
- Laboratoire de Paléontologie, Évolution, Paléoécosystèmes et Paléoprimatologie (PALEVOPRIM), UMR 7262 CNRS & Université de Poitiers, Poitiers, France.
- University of Cambridge, Cambridge, UK.
| | - Tanya Calvey
- Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Ameline Bardo
- UMR 7194, CNRS-MNHN, Département Homme et Environnement, Musée de l'Homme, Paris, France
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Julien Benoit
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500, Bron, France
| | | | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | | | - Shawn Hurst
- University of Indianapolis, Indianapolis, IN, USA
| | - Pascaline Lauters
- Institut royal des Sciences naturelles, Direction Opérationnelle Terre et Histoire de la Vie, Brussels, Belgium
| | - Denné Reed
- Department of Anthropology, University of Texas at Austin, Austin, TX, USA
| | - Mathilde Salagnon
- CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
- PACEA UMR 5199, CNRS, Université Bordeaux, Pessac, France
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Felix Ströckens
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirriam Tawane
- Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Orlin S Todorov
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Yongbin Wei
- Beijing University of Posts and Telecommunications, Beijing, China
| |
Collapse
|
38
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
39
|
Oliveira-Stahl G, Farboud S, Sterling ML, Heckman JJ, van Raalte B, Lenferink D, van der Stam A, Smeets CJLM, Fisher SE, Englitz B. High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences. Sci Rep 2023; 13:5219. [PMID: 36997591 PMCID: PMC10063627 DOI: 10.1038/s41598-023-31554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Mice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, including sexually motivated dyadic interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential. The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 2-3-fold improvement in accuracy (13.1-14.3 mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset. We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals that vocalization behavior is dependent on the spatial relation between the interacting mice. Female mice vocalized more in close snout-to-snout interaction while male mice vocalized more when the male snout was in close proximity to the female's ano-genital region. Further, we find that the acoustic properties of the ultrasonic vocalizations (duration, Wiener Entropy, and sound level) are dependent on the spatial relation between the interacting mice as well as on the genotype. In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.
Collapse
Affiliation(s)
- Gabriel Oliveira-Stahl
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Soha Farboud
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Max L Sterling
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jesse J Heckman
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bram van Raalte
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dionne Lenferink
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Amber van der Stam
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Cleo J L M Smeets
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
40
|
Bornschein U, Zeberg H, Enard W, Hevers W, Pääbo S. Functional dissection of two amino acid substitutions unique to the human FOXP2 protein. Sci Rep 2023; 13:3747. [PMID: 36879029 PMCID: PMC9988825 DOI: 10.1038/s41598-023-30663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is involved in the development of language and speech in humans. Two amino acid substitutions (T303N, N325S) occurred in the human FOXP2 after the divergence from the chimpanzee lineage. It has previously been shown that when they are introduced into the FOXP2 protein of mice they alter striatal synaptic plasticity by increasing long-term depression in medium spiny neurons. Here we introduce each of these amino acid substitutions individually into mice and analyze their effects in the striatum. We find that long-term depression in medium spiny neurons is increased in mice carrying only the T303N substitution to the same extent as in mice carrying both amino acid substitutions. In contrast, the N325S substitution has no discernable effects.
Collapse
Affiliation(s)
- Ulrich Bornschein
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Department of Pharmacology and Physiology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Faculty of Biology, Ludwig Maximilian University, 82152, Martinsried, Germany
| | - Wulf Hevers
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.,Okinawa Institute of Science and Technology, Onna-Son, Japan
| |
Collapse
|
41
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
42
|
Rotaru DC, Wallaard I, de Vries M, van der Bie J, Elgersma Y. UBE3A expression during early postnatal brain development is required for proper dorsomedial striatal maturation. JCI Insight 2023; 8:e166073. [PMID: 36810252 PMCID: PMC9977510 DOI: 10.1172/jci.insight.166073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder (NDD) caused by loss of functional ubiquitin protein ligase E3A (UBE3A). Previous studies showed that UBE3A plays an important role in the first postnatal weeks of mouse brain development, but its precise role is unknown. Since impaired striatal maturation has been implicated in several mouse models for NDDs, we studied the importance of UBE3A in striatal maturation. We used inducible Ube3a mouse models to investigate the maturation of medium spiny neurons (MSNs) from dorsomedial striatum. MSNs of mutant mice matured properly till postnatal day 15 (P15) but remained hyperexcitable with fewer excitatory synaptic events at later ages, indicative of stalled striatal maturation in Ube3a mice. Reinstatement of UBE3A expression at P21 fully restored MSN excitability but only partially restored synaptic transmission and the operant conditioning behavioral phenotype. Gene reinstatement at P70 failed to rescue both electrophysiological and behavioral phenotypes. In contrast, deletion of Ube3a after normal brain development did not result in these electrophysiological and behavioral phenotypes. This study emphasizes the role of UBE3A in striatal maturation and the importance of early postnatal reinstatement of UBE3A expression to obtain a full rescue of behavioral phenotypes associated with striatal function in AS.
Collapse
Affiliation(s)
- Diana C. Rotaru
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Maud de Vries
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Julia van der Bie
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
43
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
44
|
Meyer GP, da Silva BS, Bandeira CE, Tavares MEA, Cupertino RB, Oliveira EP, Müller D, Kappel DB, Teche SP, Vitola ES, Rohde LA, Rovaris DL, Grevet EH, Bau CHD. Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 2023; 273:15-24. [PMID: 35279744 DOI: 10.1007/s00406-022-01388-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; PFDR = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; PFDR = 0.130) and antisocial personality disorder (P = 0.026; PFDR = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.
Collapse
Affiliation(s)
- Gabriela Pessin Meyer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Santos da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Edom Bandeira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Eduarda Araujo Tavares
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduarda Pereira Oliveira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales
| | - Stefania Pigatto Teche
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Schneider Vitola
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
45
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
46
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
47
|
Linker SB, Narvaiza I, Hsu JY, Wang M, Qiu F, Mendes APD, Oefner R, Kottilil K, Sharma A, Randolph-Moore L, Mejia E, Santos R, Marchetto MC, Gage FH. Human-specific regulation of neural maturation identified by cross-primate transcriptomics. Curr Biol 2022; 32:4797-4807.e5. [PMID: 36228612 DOI: 10.1016/j.cub.2022.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Unique aspects of human behavior are often attributed to differences in the relative size and organization of the human brain: these structural aspects originate during early development. Recent studies indicate that human neurodevelopment is considerably slower than that in other nonhuman primates, a finding that is termed neoteny. One aspect of neoteny is the slow onset of action potentials. However, which molecular mechanisms play a role in this process remain unclear. To examine the evolutionary constraints on the rate of neuronal maturation, we have generated transcriptional data tracking five time points, from the neural progenitor state to 8-week-old neurons, in primates spanning the catarrhine lineage, including Macaca mulatta, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens. Despite finding an overall similarity of many transcriptional signatures, species-specific and clade-specific distinctions were observed. Among the genes that exhibited human-specific regulation, we identified a key pioneer transcription factor, GATA3, that was uniquely upregulated in humans during the neuronal maturation process. We further examined the regulatory nature of GATA3 in human cells and observed that downregulation quickened the speed of developing spontaneous action potentials, thereby modulating the human neotenic phenotype. These results provide evidence for the divergence of gene regulation as a key molecular mechanism underlying human neoteny.
Collapse
Affiliation(s)
- Sara B Linker
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Jonathan Y Hsu
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Meiyan Wang
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Fan Qiu
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Ana P D Mendes
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Ruth Oefner
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Kalyani Kottilil
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Amandeep Sharma
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Lynne Randolph-Moore
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Eunice Mejia
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA
| | - Renata Santos
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, 102 rue de la Santé, 75014 Paris, France; Institut des Sciences Biologiques, CNRS, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Nordli SA, Todd PM. Embodied and embedded ecological rationality: A common vertebrate mechanism for action selection underlies cognition and heuristic decision-making in humans. Front Psychol 2022; 13:841972. [DOI: 10.3389/fpsyg.2022.841972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
The last common ancestor shared by humans and other vertebrates lived over half a billion years ago. In the time since that ancestral line diverged, evolution by natural selection has produced an impressive diversity—from fish to birds to elephants—of vertebrate morphology; yet despite the great species-level differences that otherwise exist across the brains of many animals, the neural circuitry that underlies motor control features a functional architecture that is virtually unchanged in every living species of vertebrate. In this article, we review how that circuitry facilitates motor control, trial-and-error-based procedural learning, and habit formation; we then develop a model that describes how this circuitry (embodied in an agent) works to build and refine sequences of goal-directed actions that are molded to fit the structure of the environment (in which the agent is embedded). We subsequently review evidence suggesting that this same functional circuitry became further adapted to regulate cognitive control in humans as well as motor control; then, using examples of heuristic decision-making from the ecological rationality tradition, we show how the model can be used to understand how that circuitry operates analogously in both cognitive and motor domains. We conclude with a discussion of how the model encourages a shift in perspective regarding ecological rationality’s “adaptive toolbox”—namely, to one that views heuristic processes and other forms of goal-directed cognition as likely being implemented by the same neural circuitry (and in the same fashion) as goal-directed action in the motor domain—and how this change of perspective can be useful.
Collapse
|
49
|
Rodríguez-Urgellés E, Rodríguez-Navarro I, Ballasch I, Del Toro D, Del Castillo I, Brito V, Alberch J, Giralt A. Postnatal Foxp2 regulates early psychiatric-like phenotypes and associated molecular alterations in the R6/1 transgenic mouse model of Huntington's disease. Neurobiol Dis 2022; 173:105854. [PMID: 36029989 DOI: 10.1016/j.nbd.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's Disease (HD) is a devastating disorder characterized by a triad of motor, psychiatric and cognitive manifestations. Psychiatric and emotional symptoms appear at early stages of the disease which are consistently described by patients and caregivers among the most disabling. Here, we show for the first time that Foxp2 is strongly associated with some psychiatric-like disturbances in the R6/1 mouse model of HD. First, 4-week-old (juvenile) R6/1 mice behavioral phenotype was characterized by an increased impulsive-like behavior and less aggressive-like behavior. In this line, we identified an early striatal downregulation of Foxp2 protein starting as soon as at postnatal day 15 that could explain such deficiencies. Interestingly, the rescue of striatal Foxp2 levels from postnatal stages completely reverted the impulsivity-phenotype and partially the social impairments concomitant with a rescue of dendritic spine pathology. A mass spectrometry study indicated that the rescue of spine loss was associated with an improvement of several altered proteins related with cytoskeleton dynamics. Finally, we reproduced and mimicked the impulsivity and social deficits in wild type mice by reducing their striatal Foxp2 expression from postnatal stages. Overall, these results imply that early postnatal reduction of Foxp2 might contribute to the appearance of some of the early psychiatric symptoms in HD.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Iván Ballasch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ignacio Del Castillo
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
50
|
Mora-Bermúdez F, Kanis P, Macak D, Peters J, Naumann R, Xing L, Sarov M, Winkler S, Oegema CE, Haffner C, Wimberger P, Riesenberg S, Maricic T, Huttner WB, Pääbo S. Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. SCIENCE ADVANCES 2022; 8:eabn7702. [PMID: 35905187 PMCID: PMC9337762 DOI: 10.1126/sciadv.abn7702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Since the ancestors of modern humans separated from those of Neanderthals, around 100 amino acid substitutions spread to essentially all modern humans. The biological significance of these changes is largely unknown. Here, we examine all six such amino acid substitutions in three proteins known to have key roles in kinetochore function and chromosome segregation and to be highly expressed in the stem cells of the developing neocortex. When we introduce these modern human-specific substitutions in mice, three substitutions in two of these proteins, KIF18a and KNL1, cause metaphase prolongation and fewer chromosome segregation errors in apical progenitors of the developing neocortex. Conversely, the ancestral substitutions cause shorter metaphase length and more chromosome segregation errors in human brain organoids, similar to what we find in chimpanzee organoids. These results imply that the fidelity of chromosome segregation during neocortex development improved in modern humans after their divergence from Neanderthals.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Kanis
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | | | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan
| |
Collapse
|