1
|
DePalma T, Rodriguez M, Kollin L, Hughes K, Jones K, Stagner E, Venere M, Skardal A. A Microfluidic Blood Brain Barrier Model to Study the Influence of Glioblastoma Tumor Cells on BBB Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411361. [PMID: 40183747 DOI: 10.1002/smll.202411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Indexed: 04/05/2025]
Abstract
The blood brain barrier (BBB) plays an essential role in regulating brain function by controlling the transport of nutrients and preventing toxins from moving from the rest of the body's circulation into the brain. Because it is more selective than most other endothelial barriers, many therapeutic candidates fail to cross the BBB, making it difficult to design novel drugs to treat many pathologies in the brain. In addition, BBB dysfunction is observed in many brain diseases including glioblastoma (GB), an aggressive, universally fatal primary brain tumor. Here, a novel 3D microfluidic model of the BBB is designed using human cells and a brain-mimetic hydrogel. The in vitro BBB model replicates several key functions of the human BBB. This system has low permeability to small molecules and responds to inflammatory cues. The addition of GB cells to the model reveals that BBB function changes in a tumor-cell-population-dependent manner. Some GB cell populations lead to increased diffusive permeability while others induce increased immune cell binding. Together, these results indicate that this model can be used to investigate disease progression and drug delivery in GB.
Collapse
Affiliation(s)
- Thomas DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Marco Rodriguez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Luke Kollin
- Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Katie Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Emerie Stagner
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica Venere
- Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Davila M, Lee SB, Kang YP, Boucher J, Mandula J, Roselli E, Chang D, Jimenez R, Kotani H, Reid K, Vazquez-Martinez J, Beatty N, Goala P, Sierra-Mondragon R, Liu M, Koomen J, Nguyen J, Hussaini M, Shaw T, Wang X, Faramand R, Jain M, Locke F, Rodriguez P, Sailer C, McSain S, Hamid S, Tariq M, Wang J, Abraham-Miranda J. CAR T cell-driven induction of iNOS in tumor-associated macrophages promotes CAR T cell resistance in B cell lymphoma. RESEARCH SQUARE 2025:rs.3.rs-3481746. [PMID: 40235478 PMCID: PMC11998770 DOI: 10.21203/rs.3.rs-3481746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have revolutionized B cell malignancy treatment, but subsets of patients with large B cell lymphoma (LBCL) experience primary resistance or relapse after CAR T cell treatment. To uncover tumor microenvironment (TME)-induced resistance mechanisms, we examined patients' intratumoral immune infiltrates and observed that elevated levels of immunoregulatory macrophages in pre-infusion tumor biopsies are correlated with poor clinical responses. CAR T cell-produced interferon-gamma (IFN-γ) promotes the expression of inducible nitric oxide synthase (iNOS, NOS2) in immunoregulatory macrophages, impairing CAR T cell function. Mechanistically, iNOS-expressing macrophages upregulated the p53 pathway, mediating apoptosis and cell cycle arrest in CAR T cells, while downregulating the MYC pathway involved in ribosome biogenesis and protein synthesis. Furthermore, CAR T cell metabolism is compromised by depletion of glycolytic intermediates and rewiring of the TCA cycle. Pharmacological inhibition of iNOS enhances the CAR T cell treatment efficacy in B cell tumor-bearing mice. Notably, elevated levels of iNOS+CD14+ monocytes were observed in leukaphereses of patients with non-durable response to CAR T cell therapy. These findings suggest that mitigating iNOS in tumor-associated macrophages (TAMs) by blocking IFN-γ secretion from CAR T cells will improve outcomes for LBCL patients.
Collapse
|
3
|
Huynh P, Yang Y, Tian H, Wu T, Huang M, Tang J, Dai A, Cooper ME, Chai Z. Induced Genetic Deletion of Cell Division Autoantigen 1 in Adulthood Attenuates Diabetes-Associated Renal Fibrosis. Int J Mol Sci 2025; 26:2022. [PMID: 40076647 PMCID: PMC11900456 DOI: 10.3390/ijms26052022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell Division Autoantigen 1 (CDA1) has been shown to play a role in enhancing transforming growth factor beta (TGFβ) signaling, leading to fibrosis in diabetic kidney disease (DKD) using mouse strains with global CDA1 gene deletion. In these models, diabetes has been induced, leading to DKD in the absence of CDA1. It is still unknown whether inhibition of CDA1 activity after onset of diabetes in the presence of CDA1 can attenuate renal fibrosis in vivo. Thus, we examined the effect of inducing genetic deletion of CDA1 in adulthood in mice using a tamoxifen-activated estrogen receptor fused cyclization recombinase (ERCre)-Locus of cross-over in P1 (LoxP) system. Male mice at 6-8 weeks of age were rendered diabetic with streptozotocin (STZ) or injected with buffer alone to serve as non-diabetic controls. Five weeks later, genetic deletion of CDA1 was induced by tamoxifen administration in CDA1Flox/ERCre mice, with mice injected with vehicle to serve as CDA1 wildtype controls. Kidney tissues were analyzed 5 weeks after deletion of CDA1. Tamoxifen administration reduced CDA1 gene expression by ~80% in CDA1Flox/ERCre mice. Renal levels of phosphorylated Smad3 and expression of profibrotic genes as well as accumulation of extracellular matrix proteins (ECMs) such as collagens III and IV were increased in diabetic mice, and induced deletion of CDA1 led to attenuation of these parameters. Therefore, targeting CDA1 after onset of diabetes in mice where CDA1 was initially expressed is able to attenuate diabetes-associated renal injury, providing the impetus to target this pathway in order to reduce diabetic kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; (P.H.); (Y.Y.); (H.T.); (T.W.); (M.H.); (J.T.); (A.D.); (M.E.C.)
| |
Collapse
|
4
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
5
|
del Moral-Martinez M, Sánchez-Uceta P, Clemente-Gonzalez R, Moreno-SanJuan S, Puentes-Pardo JD, Khaldy H, Lopez-Perez D, Arnedo J, Casado J, Martínez-Heredia L, Carazo A, León J. iNOS-Produced Nitric Oxide from Cancer Cells as an Intermediate of Stemness Regulation by PARP-1 in Colorectal Cancer. Biomolecules 2025; 15:125. [PMID: 39858519 PMCID: PMC11763104 DOI: 10.3390/biom15010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator. We evaluated the expression of iNOS in a cohort of patients previously used to analyze the effects of PARP-1 on CRC in relation to p53 status. We also developed an in vitro model in which PARP-1 was stably overexpressed. In CRC patients, iNOS expression correlated with the differentiation grade, and with a high expression of CSC markers, although only in wild-type p53 tumors, as previously found for PARP-1. In vitro, overexpression of PARP-1 induced increased growth and stemness in wild-type p53 cells, while exerting the opposite effect on mutated ones, as expected. Treatment with 1400 W, a selective inhibitor of iNOS, or gene silencing of the gene counteracted the effects of PARP-1 in both p53 wild-type and p53 mutated cells. Given that the development of resistance has been demonstrated after treatment with PARP-1 inhibitors, iNOS could be considered a new therapeutic target in CRC, although only in patients with wild-type p53 tumors.
Collapse
Affiliation(s)
- María del Moral-Martinez
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Paula Sánchez-Uceta
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | | | - Sara Moreno-SanJuan
- Servicio de Microscopía y Citometría, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Huda Khaldy
- Servicio de Biología Fundamental, Centro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain
| | - David Lopez-Perez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4258, USA
| | - Javier Arnedo
- Departamento de Estadística e Investigación Operativa, Universidad de Granada, 18071 Granada, Spain
| | - Jorge Casado
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Luis Martínez-Heredia
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Instituto de Salud Carlos III, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Angel Carazo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Unidad de Gestión de Microbiología, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Clínico Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
6
|
Kido T, Kong H, Lau YFC. The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma. Genes (Basel) 2025; 16:75. [PMID: 39858622 PMCID: PMC11764513 DOI: 10.3390/genes16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Background: TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes. Methods: RNA-seq transcriptome and pathway enrichment analyses were conducted on the TSPX-overexpressing NSCLC cell lines, A549 and SK-MES-1, originating from lung adenocarcinoma and squamous cell carcinoma subtypes, respectively. In addition, comparative analyses were performed using the data from clinical NSCLC specimens (515 lung adenocarcinomas and 502 lung squamous cell carcinomas) in the Cancer Genome Atlas (TCGA) database. Results: TCGA data analysis revealed significant downregulation of TSPX in NSCLC tumors compared to adjacent non-cancerous tissues (Wilcoxon matched pairs signed rank test p < 0.0001). Notably, the TSPX expression levels were inversely correlated with the cancer stage, and higher TSPX levels were associated with better clinical outcomes and improved survival in lung adenocarcinoma, a subtype of NSCLC (median survival extended by 510 days; log-rank test, p = 0.0025). RNA-seq analysis of the TSPX-overexpressing NSCLC cell lines revealed that TSPX regulates various genes involved in the cancer-related signaling pathways and cell viability, consistent with the suppression of cell proliferation in cell culture assays. Notably, various potential downstream targets of TSPX that correlated with patient survival (log-rank test, p = 0.016 to 4.3 × 10-10) were identified, including EGFR pathway-related genes AREG, EREG, FOSL1, and MYC, which were downregulated. Conclusions: Our results suggest that TSPX plays a critical role in suppressing NSCLC progression by downregulating pro-oncogenic genes, particularly those in the EGFR signaling pathway, and upregulating the tumor suppressors, especially in lung adenocarcinoma. These findings suggest that TSPX is a potential biomarker and therapeutic target for NSCLC management.
Collapse
Affiliation(s)
| | | | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA; (T.K.); (H.K.)
| |
Collapse
|
7
|
Ispirjan M, Marx S, Freund E, Fleck SK, Baldauf J, Roessler K, Schroeder HW, Bekeschus S. Markers of tumor-associated macrophages and microglia exhibit high intratumoral heterogeneity in human glioblastoma tissue. Oncoimmunology 2024; 13:2425124. [PMID: 39523551 PMCID: PMC11556281 DOI: 10.1080/2162402x.2024.2425124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Human glioblastoma multiforme (GBM) is a highly aggressive tumor with insufficient therapies available. Especially, novel concepts of immune therapies fail due to a complex immunosuppressive microenvironment, high mutational rates, and inter-patient variations. The intratumoral heterogeneity is currently not sufficiently investigated. METHODS Biopsies from six different locations were taken in a cohort of 16 GBM patients who underwent surgery. The tissue slides were analyzed utilizing high-content imaging microscopy and algorithm-based image quantification. Several immune markers for macrophage and microglia subpopulations were investigated. Flow cytometry was used to validate key results. Besides the surface marker, cytokines were measured and categorized based on their heterogenicity and overall expression. RESULTS M2-like antigens, including CD204, CD163, Arg1, and CSF1R, showed comparatively higher expression, with GFAP displaying the least intratumoral heterogeneity. In contrast, anti-tumor-macrophage-like antigens, such as PSGL-1, CD16, CD68, and MHC-II, exhibited low overall expression and concurrent high intratumoral heterogeneity. CD16 and PSGL-1 were the most heterogeneous antigens. High expression levels were observed for cytokines IL-6, VEGF, and CCL-2. VILIP-a was revealed to differentiate most in principle component analysis. Cytokines with the lowest overall expression, such as TGF-β1, β-NGF, TNF-α, and TREM1, showed low intratumoral heterogeneity, in contrast to βNGF, TNF-α, and IL-18, which displayed high heterogeneity despite low expression. CONCLUSION The study showed high intratumoral heterogeneity in GBM, emphasizing the need for a more detailed understanding of the tumor microenvironment. The described findings could be essential for future personalized treatment strategies and the implementation of reliable diagnostics in GBM.
Collapse
Affiliation(s)
- Mikael Ispirjan
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Steffen K. Fleck
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Joerg Baldauf
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Henry W.S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Burban A, Sharanek A, Hernandez-Corchado A, Najafabadi HS, Soleimani VD, Jahani-Asl A. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. Stem Cell Reports 2024; 19:1534-1547. [PMID: 39423824 PMCID: PMC11589194 DOI: 10.1016/j.stemcr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Brain tumor stem cells (BTSCs) are a population of self-renewing malignant stem cells that play an important role in glioblastoma tumor hierarchy and contribute to tumor growth, therapeutic resistance, and tumor relapse. Thus, targeting of BTSCs within the bulk of tumors represents a crucial therapeutic strategy. Here, we report that edaravone is a potent drug that impairs BTSCs in glioblastoma. We show that edaravone inhibits the self-renewal and growth of BTSCs harboring a diverse range of oncogenic mutations without affecting non-oncogenic neural stem cells. Global gene expression analysis revealed that edaravone significantly alters BTSC transcriptome and attenuates the expression of a large panel of genes involved in cell cycle progression, stemness, and DNA repair mechanisms. Mechanistically, we discovered that edaravone directly targets Notchless homolog 1 (NLE1) and impairs Notch signaling pathway, alters the expression of stem cell markers, and sensitizes BTSC response to ionizing radiation (IR)-induced cell death. Importantly, we show that edaravone treatment in preclinical models delays glioblastoma tumorigenesis, sensitizes their response to IR, and prolongs the lifespan of animals. Our data suggest that repurposing of edaravone is a promising therapeutic strategy for patients with glioblastoma.
Collapse
Affiliation(s)
- Audrey Burban
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Ahmad Sharanek
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Hamed S Najafabadi
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, 3640 Rue University, Montréal, QC H3A OC7, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Boulevard West, Montréal, QC H4A 3T2, Canada; Cancer Therapeutic and Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
10
|
Won C, Kim S, Kwak D, Kim T, Kim J, Lee E, Kim S, Velmurugan Adith R, Ringe S, Kim HI, Jin K. Spatiotemporal Nitric Oxide Modulation via Electrochemical Platform to Profile Tumor Cell Response. Angew Chem Int Ed Engl 2024:e202411260. [PMID: 39183147 DOI: 10.1002/anie.202411260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule intricately implicated in oncologic processes, encompassing the modulation of angiogenesis and instigating apoptosis. Investigation of the antitumor effects of NO is currently underway, necessitating a detailed understanding of its cellular-level reactions. Regulating the behavior of radical NO species has been a significant challenge, primarily due to its instability in aqueous environments by rapid O2-induced degradation. In this study, we devised an electrochemical platform to investigate the cellular responses to reactive gaseous molecules. Our designed platform precisely controlled the NO flux and diffusion rates of NO to tumor cells. COMSOL Multiphysics calculations based on diffusion and reaction kinetics were conducted to simulate the behavior of electrochemically generated NO. We discerned that the effective radius, NO flux, and electrolysis duration are pivotal factors governing cellular response by NO.
Collapse
Affiliation(s)
- Chanju Won
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Sojin Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Dongvin Kwak
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Taemin Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Jinhui Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Eunjun Lee
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Suyeon Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | | | - Stefan Ringe
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
| | - Hugh I Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| |
Collapse
|
11
|
Shrivastava R, Gandhi P, Sorte SK, Shrivastava A. Characterizing the Linkage of Systemic Hypoxia and Angiogenesis in High-Grade Glioma to Define the Changes in Tumor Microenvironment for Predicting Prognosis. J Mol Neurosci 2024; 74:63. [PMID: 38967861 DOI: 10.1007/s12031-024-02240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
High-grade gliomas (HGG) comprising WHO grades 3 and 4 have a poor overall survival (OS) that has not improved in the past decade. Herein, markers representing four components of the tumor microenvironment (TME) were identified to define their linked expression in TME and predict the prognosis in HGG, namely, interleukin6 (IL6, inflammation), inducible nitric oxide synthase(iNOS), heat shock protein-70 (HSP70, hypoxia), vascular endothelial growth receptor (VEGF), and endothelin1 (ET1) (angiogenesis) and matrix metalloprotease-14 (MMP14) and intercellular adhesion molecule1 (ICAM1, extracellular matrix). To establish a non-invasive panel of biomarkers for precise prognostication in HGG. Eighty-six therapy-naive HGG patients with 45 controls were analyzed for the defined panel. Systemic expression of extracellular/secretory biomarkers was screened dot-immune assay (DIA), quantified by ELISA, and validated by immunocytochemistry (ICC). Expression of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 was found to be positively associated with grade. Quantification of circulating levels of the markers by ELISA and ICC presented a similar result. The biomarkers were observed to negatively correlate with OS (p < 0.0001). Cox-regression analysis yielded all biomarkers as good prognostic indicators and independent of confounders. On applying combination statistics, the biomarker panel achieved higher sensitivity than single markers to define survival. The intra-association of all seven biomarkers was significant, hinting of a cross-talk between the TME components and a hypoxia driven systemic inflammation upregulating the expression of other components. This is a first ever experimental study of a marker panel that can distinguish between histopathological grades and also delineate differential survival using liquid biopsy, suggesting that markers of hypoxia can be a cornerstone for personalized therapy. The panel of biomarkers of iNOS, HSP70, IL-6, VEGF, ET1, MMP14, and ICAM1 holds promise for prognostication in HGG.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India
| | - Puneet Gandhi
- Department of Research and Training, ICMR-Bhopal Memorial Hospital and Research Centre, Bhopal, 462038, M.P, India.
| | - Sandeep K Sorte
- Department of Neurosurgery, ICMR-Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, 462038, M.P, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, 462024, M.P, India
| |
Collapse
|
12
|
Wang L, Wang Y, Wu X, Wang P, Luo X, Lv S. Advances in microneedles for transdermal diagnostics and sensing applications. Mikrochim Acta 2024; 191:406. [PMID: 38898359 DOI: 10.1007/s00604-024-06458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
13
|
Tan H, Miao MX, Luo RX, So J, Peng L, Zhu X, Leung EHW, Zhu L, Chan KM, Cheung M, Chan SY. TSPYL1 as a Critical Regulator of TGFβ Signaling through Repression of TGFBR1 and TSPYL2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306486. [PMID: 38588050 PMCID: PMC11151076 DOI: 10.1002/advs.202306486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFβ causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFβ signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFβ signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFβ to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFβ signaling is also unraveled.
Collapse
Affiliation(s)
- Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mia Xinfang Miao
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rylee Xu Luo
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lina Zhu
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Cao L, Han R, Zhao Y, Qin X, Li Q, Xiong H, Kong Y, Liu Z, Li Z, Dong F, Li T, Zhao X, Lei L, Zhao Q, Liu D, Wang B, Wu X. A LATS2 and ALKBH5 positive feedback loop supports their oncogenic roles. Cell Rep 2024; 43:114032. [PMID: 38568805 DOI: 10.1016/j.celrep.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Yingying Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Hui Xiong
- Department of Immunology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Yu Kong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ziyi Liu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Zexing Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Feng Dong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiujuan Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Lei Lei
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Zhao
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School and Hospital of Stomatology, Tianjin 300070, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
15
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
16
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
17
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Kruglyakov D, Ojha SK, Kartawy M, Tripathi MK, Hamoudi W, Bazbaz W, Khaliulin I, Amal H. Nitric Oxide Synthase Inhibition Prevents Cell Proliferation in Glioblastoma. J Mol Neurosci 2023; 73:875-883. [PMID: 37843719 DOI: 10.1007/s12031-023-02166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Glioblastoma multiforme (GBM) is a prevalent and aggressive primary brain tumor, presenting substantial treatment challenges and high relapse rates. GBM is characterized by alterations in molecular signaling and enzyme expression within malignant cells. This tumor exhibits elevated nitric oxide (NO.) levels. NO. is a crucial signaling molecule involved in the regulation of neuronal functions, synaptic transmission, and cell proliferation. It is primarily synthesized from L-arginine by nitric oxide synthase (NOS) enzymes. The increased levels of NO. in GBM stem from dysregulated activity and expression of clinically relevant NOS isoforms, particularly inducible NOS (iNOS) and neuronal NOS (nNOS). Based on this knowledge, we hypothesize that targeted pharmacological intervention with N6-(1-iminoethyl)-L-lysine (L-NIL), an iNOS inhibitor, and 7-Nitroindazole (7-NI), an nNOS inhibitor, may suggest a promising therapeutic strategy for the treatment of GBM. To test our hypothesis, we utilized the U87-MG cell line as an in vitro model of GBM. Our results showed that treatment with L-NIL and 7-NI led to a reduction in NO. levels, NOS activity, and clonogenic proliferation in U87-MG cells. These findings suggest that NO. and NOS enzymes might be prospective therapeutic targets for GBM.
Collapse
Affiliation(s)
- Daniel Kruglyakov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wisam Bazbaz
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
20
|
Merenzon MA, Hincapie Arias E, Bhatia S, Shah AH, Higgins DMO, Villaverde M, Belgorosky D, Eijan AM. Nitric oxide synthase inhibitors as potential therapeutic agents for gliomas: A systematic review. Nitric Oxide 2023; 138-139:10-16. [PMID: 37279819 DOI: 10.1016/j.niox.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Gliomas represent the most prevalent form of brain tumors, among which glioblastomas are the most malignant subtype. Despite advances in comprehending their biology and treatment strategies, median survival remains disappointingly low. Inflammatory processes involving nitric oxide (NO), critically contribute to glioma formation. The inducible isoform of NO synthase (iNOS) is highly overexpressed in gliomas and has been linked to resistance against temozolomide (TMZ) treatment, neoplastic transformation, and modulation of immune response. While both in vitro and in vivo studies showed the potential of iNOS inhibitors as effective treatments for gliomas, no clinical trials on gliomas have been published. This review aims to summarize the available evidence regarding iNOS as a target for glioma treatment, focusing on clinically relevant data. METHODS Following PRISMA guidelines, we conducted a systematic review by searching PubMed/Medline, and Embase databases in May 2023. We included studies that investigated the impact of NOS inhibitors on glioma cells using L-NMMA, CM544, PBN, 1400W or l-NAME either alone or combined with TMZ. We extracted data on the NOS inhibitor used, subtype, study setting, animal model or cell lines employed, obtained results, and safety profile. Our inclusion criteria encompassed original articles in English or Spanish, studies with an untreated control group, and a primary outcome focused on the biological effects on glioma cells. RESULTS Out of 871 articles screened from the aforementioned databases, 37 reports were assessed for eligibility. After excluding studies that did not utilize glioma cells or address the designated outcome, 11 original articles satisfied the inclusion and exclusion criteria. Although no NOS inhibitor has been tested in a published clinical trial, three inhibitors have been evaluated using in vivo models of intracranial gliomas. l-NAME, 1400W, and CM544 were tested in vitro. Co-administration of l-NAME, or CM544 with TMZ showed superior results in vitro compared to individual agent testing. CONCLUSION Glioblastomas remain a challenging therapeutic target. iNOS inhibitors exhibit substantial potential as treatment options for oncologic lesions, and they have demonstrated a safe toxicity profile in humans for other pathological conditions. Research endeavors should be focused on investigating their potential effects on brain tumors.
Collapse
Affiliation(s)
- Martin A Merenzon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33136, USA.
| | - Elsa Hincapie Arias
- Instituto de Oncología Ángel H. Roffo, Área de Investigación, Universidad de Buenos Aires, 5481 San Martín Av., C1417DTB, Buenos Aires, Argentina
| | - Shovan Bhatia
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33136, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (D4-6), Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, 33136, USA
| | - Dominique M O Higgins
- Department of Neurosurgery, University of North Carolina Medical Center, 101 Manning Dr, Chapel Hill, NC, 27514, USA
| | - Marcela Villaverde
- Instituto de Oncología Ángel H. Roffo, Área de Investigación, Universidad de Buenos Aires, 5481 San Martín Av., C1417DTB, Buenos Aires, Argentina
| | - Denise Belgorosky
- Instituto de Oncología Ángel H. Roffo, Área de Investigación, Universidad de Buenos Aires, 5481 San Martín Av., C1417DTB, Buenos Aires, Argentina
| | - Ana M Eijan
- Instituto de Oncología Ángel H. Roffo, Área de Investigación, Universidad de Buenos Aires, 5481 San Martín Av., C1417DTB, Buenos Aires, Argentina
| |
Collapse
|
21
|
Bhrdwaj A, Abdalla M, Pande A, Madhavi M, Chopra I, Soni L, Vijayakumar N, Panwar U, Khan MA, Prajapati L, Gujrati D, Belapurkar P, Albogami S, Hussain T, Selvaraj C, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation of EGFR for the Clinical Treatment of Glioblastoma. Appl Biochem Biotechnol 2023; 195:5094-5119. [PMID: 36976507 DOI: 10.1007/s12010-023-04430-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Glioblastoma (GBM) is a WHO Grade IV tumor with poor visibility, a high risk of comorbidity, and exhibit limited treatment options. Resurfacing from second-rate glioma was originally classified as either mandatory or optional. Recent interest in personalized medicine has motivated research toward biomarker stratification-based individualized illness therapy. GBM biomarkers have been investigated for their potential utility in prognostic stratification, driving the development of targeted therapy and customizing therapeutic treatment. Due to the availability of a specific EGFRvIII mutational variation with a clear function in glioma-genesis, recent research suggests that EGFR has the potential to be a prognostic factor in GBM, while others have shown no clinical link between EGFR and survival. The pre-existing pharmaceutical lapatinib (PubChem ID: 208,908) with a higher affinity score is used for virtual screening. As a result, the current study revealed a newly screened chemical (PubChem CID: 59,671,768) with a higher affinity than the previously known molecule. When the two compounds are compared, the former has the lowest re-rank score. The time-resolved features of a virtually screened chemical and an established compound were investigated using molecular dynamics simulation. Both compounds are equivalent, according to the ADMET study. This report implies that the virtual screened chemical could be a promising Glioblastoma therapy.
Collapse
Affiliation(s)
- Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Aditi Pande
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Natchimuthu Vijayakumar
- Department of Physics, M.Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Mohd Aqueel Khan
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Deepika Gujrati
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500016, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, 453771, Madhya Pradesh, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha College of Dental and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Data Sciences, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Rd, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
22
|
Salvatori L, Malatesta S, Illi B, Somma MP, Fionda C, Stabile H, Fontanella RA, Gaetano C. Nitric Oxide Prevents Glioblastoma Stem Cells' Expansion and Induces Temozolomide Sensitization. Int J Mol Sci 2023; 24:11286. [PMID: 37511047 PMCID: PMC10379318 DOI: 10.3390/ijms241411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Malatesta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
23
|
Zhang S, Tong X, Liu S, Huang J, Zhang L, Zhang T, Wang D, Fan H. AAV9-Tspyl2 gene therapy retards bleomycin-induced pulmonary fibrosis by modulating downstream TGF-β signaling in mice. Cell Death Dis 2023; 14:389. [PMID: 37391440 PMCID: PMC10313802 DOI: 10.1038/s41419-023-05889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease characterized by scarring and destruction of the lung architecture, with limited treatment options. Targeted gene therapy to restore cell division autoantigen-1 (CDA1) expression may be a potential treatment approach to delay the progression of pulmonary fibrosis (PF). Here, we focused on CDA1, which was significantly decreased in human IPF, in a mouse model of bleomycin (BLM)-induced PF, and in transforming growth factor (TGF-β)-challenged lung fibroblasts. In vitro, CDA1 overexpression by lentivirus infection in human embryonic lung fibroblasts (HFL1 cells) inhibited the production of pro-fibrotic and pro-inflammatory cytokines, lung fibroblast-to-myofibroblast transition, and extracellular matrix protein expression induced by exogenous TGF-β1 treatment, whereas CDA1 knockdown with small interfering RNA promoted this effect. CDA1 overexpression also inhibited cell proliferation and migration. In a mouse model of BLM-induced PF, we provided novel evidence that the intratracheal delivery of adeno-associated virus serotype 9 carrying the mouse Tspyl2 gene reduced lung tissue inflammation and fibrosis. Mechanistically, CDA1, as a transcription regulator, could repress the TGF-β signal transduction in vivo and in vitro. In conclusion, our results show that Tspyl2 gene therapy plays an antifibrotic role by inhibiting the lung fibroblast-to-myofibroblast transition and downstream TGF-β/Smad3 signaling transduction in BLM-induced PF in mice, suggesting that CDA1 is an appropriate and promising therapeutic target for PF.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Sitong Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Wu X, Shen Y, Tan S, Jiang X, Chen Z, Yu Q, Chen H, Zhuang Y, Zeng H, Fu X, Zhou H, Dou Z, Chen G, Li X. Multiscale imaging of peroxynitrite in gliomas with a blood-brain barrier permeable probe reveals its potential as a biomarker and target for glioma treatment. Biosens Bioelectron 2023; 236:115415. [PMID: 37245459 DOI: 10.1016/j.bios.2023.115415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Cancer development is driven by diverse processes, and metabolic alterations are among the primary characteristics. Multiscale imaging of aberrant metabolites in cancer is critical to understand the pathology and identify new targets for treatment. While peroxynitrite (ONOO-) is reported being enriched in some tumors and plays important tumorigenic roles, whether it is upregulated in gliomas remains unexplored. To determine the levels and roles of ONOO- in gliomas, efficient tools especially those with desirable blood-brain barrier (BBB) permeability and can realize the in situ imaging of ONOO- in multiscale glioma-related samples are indispensable. Herein, we proposed a strategy of physicochemical property-guided probe design, which resulted in the development of a fluorogenic probe NOSTracker for smartly tracking ONOO-. The probe showed sufficient BBB permeability. ONOO- triggered oxidation of its arylboronate group was automatically followed by a self-immolative cleavage of a fluorescence-masking group, liberating its fluorescence signal. The probe was not only highly sensitive and selective towards ONOO-, but its fluorescence favored desirable stability in various complex biological milieus. Guaranteed by these properties, multiscale imaging of ONOO- was realized in vitro in patient-derived primary glioma cells, ex vivo in clinical glioma slices, and in vivo in the glioma of live mice. The results showed the upregulation of ONOO- in gliomas. Furthermore, a specific ONOO- scavenger uric acid (UA) was pharmaceutically used to downregulate ONOO- in glioma cell lines, and an anti-proliferative effect was observed. These results taken together imply the potential of ONOO- as a biomarker and target for glioma treatment, and propose NOSTracker as a reliable tool to further explore the role of ONOO- in glioma development.
Collapse
Affiliation(s)
- Xinyan Wu
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yikai Shen
- Institute of Drug Discovery and Design, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuyu Tan
- Institute of Drug Discovery and Design, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuefeng Jiang
- Institute of Drug Discovery and Design, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zihang Chen
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qian Yu
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huaijun Chen
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yilian Zhuang
- Institute of Drug Discovery and Design, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanhai Zeng
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiongjie Fu
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hang Zhou
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhangqi Dou
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Gao Chen
- The Second Affiliated Hospital, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xin Li
- Institute of Drug Discovery and Design, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, China.
| |
Collapse
|
25
|
Reddy TP, Glynn SA, Billiar TR, Wink DA, Chang JC. Targeting Nitric Oxide: Say NO to Metastasis. Clin Cancer Res 2023; 29:1855-1868. [PMID: 36520504 PMCID: PMC10183809 DOI: 10.1158/1078-0432.ccr-22-2791] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University Health Science Center, Bryan, Texas
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Sharon A. Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Predarska I, Saoud M, Morgan I, Lönnecke P, Kaluđerović GN, Hey-Hawkins E. Triphenyltin(IV) Carboxylates with Exceptionally High Cytotoxicity against Different Breast Cancer Cell Lines. Biomolecules 2023; 13:biom13040595. [PMID: 37189343 DOI: 10.3390/biom13040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.
Collapse
|
27
|
Cardano M, Magni M, Alfieri R, Chan SY, Sabbioneda S, Buscemi G, Zannini L. Sex specific regulation of TSPY-Like 2 in the DNA damage response of cancer cells. Cell Death Dis 2023; 14:197. [PMID: 36918555 PMCID: PMC10015022 DOI: 10.1038/s41419-023-05722-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Females have a lower probability to develop somatic cancers and a better response to chemotherapy than males. However, the reasons for these differences are still not well understood. The X-linked gene TSPY-Like 2 (TSPYL2) encodes for a putative tumor suppressor protein involved in cell cycle regulation and DNA damage response (DDR) pathways. Here, we demonstrate that in unstressed conditions TSPYL2 is maintained at low levels by MDM2-dependent ubiquitination and proteasome degradation. Upon genotoxic stress, E2F1 promotes TSPYL2 expression and protein accumulation in non-transformed cell lines. Conversely, in cancer cells, TSPYL2 accumulates only in females or in those male cancer cells that lost the Y-chromosome during the oncogenic process. Hence, we demonstrate that while TSPYL2 mRNA is induced in all the tested tumor cell lines after DNA damage, TSPYL2 protein stability is increased only in female cancer cells. Indeed, we found that TSPYL2 accumulation, in male cancer cells, is prevented by the Y-encoded protein SRY, which modulates MDM2 protein levels. In addition, we demonstrated that TSPYL2 accumulation is required to sustain cell growth arrest after DNA damage, possibly contributing to protect normal and female cancer cells from tumor progression. Accordingly, TSPYL2 has been found more frequently mutated in female-specific cancers. These findings demonstrate for the first time a sex-specific regulation of TSPYL2 in the DDR of cancer cells and confirm the existence of sexual dimorphism in DNA surveillance pathways.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Martina Magni
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong-Kong, Hong-Kong SAR, China
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy.
| |
Collapse
|
28
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Glutamine-dependent effects of nitric oxide on cancer cells subjected to hypoxia-reoxygenation. Nitric Oxide 2023; 130:22-35. [PMID: 36414197 DOI: 10.1016/j.niox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.
Collapse
|
30
|
Sloan AE, Nock CJ, Ye X, Buerki R, Chang S, Lesser G, Norden A, Cloughesy T, Olson J, Kerstetter-Fogle A, Rich J, Fisher J, Desideri S, Takebe N, Timmer W, Grossman S, Prados M. ABTC-0904: targeting glioma stem cells in GBM: a phase 0/II study of hedgehog pathway inhibitor GDC-0449. J Neurooncol 2023; 161:33-43. [PMID: 36581779 PMCID: PMC11197851 DOI: 10.1007/s11060-022-04193-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Gliomagenesis and resistance of glioblastoma (GBM) are believed to be mediated by glioma stem cells (GSC). Evidence suggests that SHH signaling promotes GSC proliferation and self-renewal. METHODS ABTC-0904 was a two-arm, multicenter phase 0/II study of GDC-0449, an oral inhibitor of Smoothened (SMO) in patients undergoing resection for recurrent GBM. All patients (Arms I and II) had surgery and received drug post-operatively. Only patients in Arm I received drug prior to surgery. The primary objective was to determine 6-month progression free survival (PFS-6). Secondary endpoints include median PFS (mPFS) and overall survival (mOS), response rate, and toxicity. Correlative studies included bioanalysis of GDC-0449, and inhibition of SHH signaling, GSC proliferation and self-renewal. RESULTS Forty-one patients were enrolled. Pharmacokinetics of GDC-0449 in plasma demonstrated levels within expected therapeutic range in 75% of patients. The proportion of tumorcells producing CD133+ neurospheres, neurosphere proliferation, self-renewal, and expression of the SHh downstream signaling was significantly decreased in Arm I following GDC-0449 treatment (p < 0.005; p < 0.001 respectively) compared to Arm II (no drug pre-op). Treatment was well tolerated. There were no objective responders in either arm. Overall PFS-6 was 2.4% (95% CI 0.9-11.1%). Median PFS was 2.3 months (95% CI 1.9-2.6) and mOS was 7.8 months (95% CI 5.4-10.1). CONCLUSIONS GDC-0449 was well tolerated, reached tumor, and inhibited CD133+ neurosphere formation, but had little clinical efficacy as a single agent in rGBM. This suggests growth and maintenance of rGBM is not solely dependent on the SHH pathway thus targeting SMO may require combined approaches.
Collapse
Affiliation(s)
- Andrew E Sloan
- Chief of Neuroscience, Piedmont Healthcare, Atlanta, USA.
| | - Charles J Nock
- Department of Medicine, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Xiaobu Ye
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Buerki
- Department of Neurology, UH-Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Glenn Lesser
- Department of Radiation Oncology, Wake Forest University, Wake Forest, NC, USA
| | - Andrew Norden
- Department of Medicine, Dana Farber Cancer Institute, Boston, MA, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | | | - Jeremy Rich
- Department of Neurology and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joy Fisher
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Serena Desideri
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Naoko Takebe
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, Clinical Investigations Branch, National Institutes of Health, Bethesda, MD, USA
| | - Stuart Grossman
- Adult Brain Tumor Consortium, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Prados
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
32
|
GC S, Tuy K, Rickenbacker L, Jones R, Chakraborty A, Miller CR, Beierle EA, Hanumanthu VS, Tran AN, Mobley JA, Bellis SL, Hjelmeland AB. α2,6 Sialylation mediated by ST6GAL1 promotes glioblastoma growth. JCI Insight 2022; 7:e158799. [PMID: 36345944 PMCID: PMC9675560 DOI: 10.1172/jci.insight.158799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. β-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor β (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.
Collapse
Affiliation(s)
- Sajina GC
- Department of Cell, Developmental and Integrative Biology
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology
| | | | - Robert Jones
- Department of Cell, Developmental and Integrative Biology
| | | | | | | | | | | | - James A. Mobley
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
33
|
Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, Uddin S. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol 2022; 86:107-121. [PMID: 35931301 DOI: 10.1016/j.semcancer.2022.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/27/2023]
Abstract
Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
34
|
Girotti AW, Fahey JF, Korytowski W. Role of nitric oxide in hyper-aggressiveness of tumor cells that survive various anti-cancer therapies. Crit Rev Oncol Hematol 2022; 179:103805. [PMID: 36087851 DOI: 10.1016/j.critrevonc.2022.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Low level nitric oxide (NO) produced by inducible NO synthase (iNOS) in many malignant tumors is known to play a key role in the survival and proliferation of tumor cells. NO can also induce or augment resistance to anti-tumor treatments such as platinum-based chemotherapy (CT), ionizing radiotherapy (RT), and non-ionizing photodynamic therapy (PDT). In each of these treatments, tumor cells that survive the challenge may exhibit a striking increase in NO-dependent proliferative, migratory, and invasive aggressiveness compared with non-challenged controls. Moreover, NO from cells directly targeted by PDT can often stimulate aggressiveness in non- or poorly targeted bystander cells. Although NO-mediated resistance to many of these therapies is fairly-well recognized by now, the hyper-aggressiveness of surviving cells and bystander counterparts is not. We will focus on these negative aspects in this review, citing examples from the PDT, CT, and RT publications. Increased aggressiveness of cells that escape therapeutic elimination is a concern because it could enhance tumor progression and metastatic dissemination. Pharmacologic approaches for suppressing these negative responses will also be discussed, e.g., administering inhibitors of iNOS activity or iNOS expression as therapeutic adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Depatrment of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jonathan F Fahey
- Department of Pathology, University of Colorado, Aurora, CO, USA
| | | |
Collapse
|
35
|
Chen J, Liu G, Wang X, Hong H, Li T, Li L, Wang H, Xie J, Li B, Li T, Lu D, Zhang Y, Zhao H, Yao C, Wen K, Li T, Chen J, Wu S, He K, Zhang WN, Zhao J, Wang N, Han Q, Xia Q, Qi J, Chen J, Zhou T, Man J, Zhang XM, Li AL, Pan X. Glioblastoma stem cell-specific histamine secretion drives pro-angiogenic tumor microenvironment remodeling. Cell Stem Cell 2022; 29:1531-1546.e7. [DOI: 10.1016/j.stem.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
36
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
37
|
Wei Y, Chen Q, Huang S, Liu Y, Li Y, Xing Y, Shi D, Xu W, Liu W, Ji Z, Wu B, Chen X, Jiang J. The Interaction between DNMT1 and High-Mannose CD133 Maintains the Slow-Cycling State and Tumorigenic Potential of Glioma Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202216. [PMID: 35798319 PMCID: PMC9475542 DOI: 10.1002/advs.202202216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 05/24/2023]
Abstract
The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133. Furthermore, the high-mannose type N-glycan of CD133 is necessary for its interaction with DNMT1. Activation of p21 and p27 by the CD133-DNMT1 interaction maintains the slow-cycling state of GSC, and promotes chemotherapy resistance and tumorigenesis of GSCs. Elimination of the CD133-DNMT1 interaction by a cell-penetrating peptide or MAN1A1 overexpression inhibits the tumorigenesis of GSCs and increases the sensitivity of GSCs to temozolomide. Analysis of glioma samples reveals that the levels of high-mannose type N-glycan are correlated with glioma recurrence. Collectively, the high mannose CD133-DNMT1 interaction maintains the slow-cycling state and tumorigenic potential of GSC, providing a potential strategy to eliminate quiescent GSCs.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yingchao Liu
- Department of NeurosurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Yinan Li
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yang Xing
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Zhi Ji
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Bingrui Wu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
38
|
Wang H, Tan Y, Jia H, Liu D, Liu R. Posaconazole inhibits the stemness of cancer stem-like cells by inducing autophagy and suppressing the Wnt/β-catenin/survivin signaling pathway in glioblastoma. Front Pharmacol 2022; 13:905082. [PMID: 36034873 PMCID: PMC9403519 DOI: 10.3389/fphar.2022.905082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Posaconazole (POS) has been reported to present potential antitumor activity for glioblastoma (GBM). However, its molecular mechanisms remain unclear. In this study, we found that POS has potent cytotoxicity and inhibits cell viability and proliferation in GBM. In addition, we adopted a sphere formation assay to detect the self-renewal capacity, performed western blotting to measure cancer stem-like cells (CSCs) marker proteins (CD133, SOX2, Nanog and Oct4) and applied flow cytometry to monitor the subpopulation of CD144+/CD33+ cells, and the results all demonstrated that POS can remarkably weaken CSCs stemness. Furthermore, western blotting, immunoflurescence, transmission electron microscopy and acridine orange staining were performed to detect autophagy-related proteins (LC3, SQSTM1, Beclin 1 and Atg5), count the numbers of endogenous LC3 puncta, visually observe the ultrastructural morphology of autophagosomes and judge the formation of acidic vesicular organelles, respectively, and the results validated that POS promotes autophagy induction. Importantly, the suppressive effect of POS on CSCs stemness was partially relieved when autophagy was blocked by the autophagy inhibitor chloroquine (CQ) or Atg5 shRNA. Bioinformatic techniques, including weighted gene coexpression network analysis (WGCNA), gene set difference analysis (GSVA) and KEGG pathway analysis, combined with experimental validations showed that survivin, which is implicated in both autophagy and the stem cell index, is one of the target proteins of POS and that POS weakens CSCs stemness via suppressing the Wnt/β-catenin signaling pathway in GBM. Besides, POS-induced autophagy and the Wnt/β-catenin signaling pathway are negative regulators for each other. Finally, the antitumor activity of POS was confirmed in GBM xenograft models in vivo. Consistent with the in vitro conclusions, POS upregulated the expression of LC3 and decreased the expression of CD133, survivin and β-catenin, as shown by the immunohistochemistry analysis. In summary, this work provides an experimental foundation for exploiting POS as a CSCs-targeting antitumor drug for GBM treatment.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yinfeng Tan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Rangru Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Rangru Liu,
| |
Collapse
|
39
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
40
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
41
|
Ethanol Extract of Sargassum siliquastrum Inhibits Lipopolysaccharide-Induced Nitric Oxide Generation by Downregulating the Nuclear Factor-Kappa B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6160010. [PMID: 35722164 PMCID: PMC9205721 DOI: 10.1155/2022/6160010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Sargassum siliquastrum (SS) is an edible brown seaweed widely consumed in Korea and considered a functional food source. Previous studies have reported various biological activities of SS extracts, including antioxidant and hepatoprotective properties. In the present study, we examined the anti-inflammatory effects of the SS extract and assessed the underlying mechanism of action. The SS extract significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in a dose-dependent manner (% of NO production at 500 μg/mL: 60.1 ± 0.9%), with no obvious toxicity. Furthermore, the SS extract inhibited mRNA and protein expression levels of inducible NO synthase, as well as LPS-induced expression and production of proinflammatory cytokines such as IL-1β, IL-6, or TNF-α (IL-6 production (ng/mL) : LPS−: 0.7 ± 0.3; LPS+: 68.1 ± 2.8; LPS + SS extract: 51.9 ± 1.2; TNF-α production (ng/mL) : LPS−: 0.3 ± 0.1; LPS+: 23.0 ± 0.1; LPS + SS extract: 18.2 ± 10.8). Mechanistically, the SS extract attenuated LPS-induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (nuclear factor-kappa B, NF-κB) signaling pathway such as phosphorylation of NF-κB p65 and degradation of IκB-α, thereby blocking LPS-induced activation of NF-κB transcriptional activity. The SS extract also enhanced LPS-induced heme oxygenase-1 expression and attenuated LPS-induced cellular reactive oxygen species production (% of ROS production at 500 μg/mL: 52.2 ± 1.3%). Collectively, these findings suggest that the SS extract elicits anti-inflammatory effects in mouse macrophage cells.
Collapse
|
42
|
Shrivastava R, Gandhi P, Gothalwal R. The road-map for establishment of a prognostic molecular marker panel in glioma using liquid biopsy: current status and future directions. Clin Transl Oncol 2022; 24:1702-1714. [PMID: 35653004 DOI: 10.1007/s12094-022-02833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are primary intracranial tumors with defined molecular markers available for precise diagnosis. The prognosis of glioma is bleak as there is an overlook of the dynamic crosstalk between tumor cells and components of the microenvironment. Herein, different phases of gliomagenesis are presented with reference to the role and involvement of secreted proteomic markers at various stages of tumor initiation and development. The secreted markers of inflammatory response, namely interleukin-6, tumor necrosis factor-α, interferon-ϒ, and kynurenine, proliferation markers human telomerase reverse transcriptase and microtubule-associated-protein-Tau, and stemness marker human-mobility-group-AThook-1 are involved in glial tumor initiation and growth. Further, hypoxia and angiogenic factors, heat-shock-protein-70, endothelial-growth-factor-receptor-1 and vascular endothelial growth factor play a major role in promoting vascularization and tumor volume expansion. Eventually, molecules such as matrix-metalloprotease-7 and intercellular adhesion molecule-1 contribute to the degradation and remodeling of the extracellular matrix, ultimately leading to glioma progression. Our study delineates the roadmap to develop and evaluate a non-invasive panel of secreted biomarkers using liquid biopsy for precisely evaluating disease progression, to accomplish a clinical translation.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Raisen Bypass Road, Bhopal, M.P., 462038, India.
| | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P., 462026, India
| |
Collapse
|
43
|
Sun H, Meng W, Zhu J, Wang L. Antitumor activity and molecular mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:643-658. [PMID: 35307759 DOI: 10.1007/s00210-022-02200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proprotein convertase family of proteins that activate other proteins in cells. Functionally, PCSK9 binds to the receptor of low-density lipoprotein particles (LDL) to regulate cholesterol metabolism and lipoprotein homeostasis in human body. PCSK9 inhibition is a novel pharmacological strategy to control hypercholesterolemia and cardiovascular diseases. Recently accumulating evidence realizes that PCSK9 possesses other roles in cells, such as regulation of tissue inflammatory response, intratumoral immune cell infiltration, and tumor progression. This review discussed the advancement of PCSK9 research on its role and underlying mechanisms in tumor development and progression. For example, PCSK9 inhibition could attenuate progression of breast cancer, glioma, colon tumor, hepatocellular cancer, prostate cancer, and lung adenocarcinoma and promote apoptosis of glioma, prostate cancer, and hepatocellular cancer cells. PCSK9 deficiency could reduce liver metastasis of B16F1 melanoma cells by lowering the circulating cholesterol levels. PCSK9 gene knockdown substantially attenuated mouse tumor growth in vivo by activation of cytotoxic T cells, although PCSK9 knockdown had no effect on morphology and growth rate of different mouse cancer cell lines in vitro. PCSK9 inhibition thus can be used to control human cancers. Future preclinical and clinical studies are warranted to define anti-tumor activity of PCSK9 inhibition.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Wen Meng
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Jie Zhu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China.
| |
Collapse
|
44
|
Switzer CH, Cho HJ, Eykyn TR, Lavender P, Eaton P. NOS2 and S-nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proc Natl Acad Sci U S A 2022; 119:e2200022119. [PMID: 35584114 PMCID: PMC9173756 DOI: 10.1073/pnas.2200022119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)–methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5–dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.
Collapse
Affiliation(s)
- Christopher H. Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Hyun-Ju Cho
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Thomas R. Eykyn
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Paul Lavender
- AsthmaUK Centre in Allergic Mechanisms of Asthma, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Philip Eaton
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
45
|
Gilbertson SE, Walter HC, Gardner K, Wren SN, Vahedi G, Weinmann AS. Topologically associating domains are disrupted by evolutionary genome rearrangements forming species-specific enhancer connections in mice and humans. Cell Rep 2022; 39:110769. [PMID: 35508135 PMCID: PMC9142060 DOI: 10.1016/j.celrep.2022.110769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Distinguishing between conserved and divergent regulatory mechanisms is
essential for translating preclinical research from mice to humans, yet there is
a lack of information about how evolutionary genome rearrangements affect the
regulation of the immune response, a rapidly evolving system. The current model
is topologically associating domains (TADs) are conserved between species,
buffering evolutionary rearrangements and conserving long-range interactions
within a TAD. However, we find that TADs frequently span evolutionary
translocation and inversion breakpoints near genes with species-specific
expression in immune cells, creating unique enhancer-promoter interactions
exclusive to the mouse or human genomes. This includes TADs encompassing
immune-related transcription factors, cytokines, and receptors. For example, we
uncover an evolutionary rearrangement that created a shared LPS-inducible
regulatory module between OASL and P2RX7 in
human macrophages that is absent in mice. Therefore, evolutionary genome
rearrangements disrupt TAD boundaries, enabling sequence-conserved enhancer
elements from divergent genomic locations between species to create unique
regulatory modules. It is currently unclear how evolutionary genome rearrangements affecting
the mouse and human genomes influence the expression of genes important in
immunity. Gilbertson et al. report that evolutionary genome rearrangements
disrupt topologically associating domain boundaries, enabling sequence-conserved
enhancer elements from divergent locations between species to create unique
regulatory modules.
Collapse
Affiliation(s)
- Sarah E Gilbertson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hannah C Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine Gardner
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spencer N Wren
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Golnaz Vahedi
- Department of Genetics, Institute of Immunology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Ribatti D, Pezzella F. Vascular Co-Option and Other Alternative Modalities of Growth of Tumor Vasculature in Glioblastoma. Front Oncol 2022; 12:874554. [PMID: 35433447 PMCID: PMC9005970 DOI: 10.3389/fonc.2022.874554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Non-angiogenic tumors grow in the absence of angiogenesis by two main mechanisms: cancer cells infiltrating and occupying the normal tissues to exploit pre-existing vessels (vascular co-option); the cancer cells themselves forms channels able to provide blood flow (the so called vasculogenic mimicry). In the original work on vascular co-option initiated by Francesco Pezzella, the non-angiogenic cancer cells were described as “exploiting” pre-existing vessels. Vascular co-option has been described in primary and secondary (metastatic) sites. Vascular co-option is defined as a process in which tumor cells interact with and exploit the pre-existing vasculature of the normal tissue in which they grow. As part of this process, cancer cells first migrate toward vessels of the primary tumor, or extravasate at a metastatic site and rest along the ab-luminal vascular surface. The second hallmark of vascular co-option is the interaction of cancer cells with the ab-luminal vascular surface. The first evidence for this was provided in a rat C6 glioblastoma model, showing that the initial tumor growth phase was not always avascular as these initial tumors can be vascularized by pre-existing vessels. The aim of this review article is to analyze together with vascular co-option, other alternative mode of vascularization occurring in glioblastoma multiforme (GBM), including vasculogenic mimicry, angiotropism and trans-differentiation of glioblastoma stem cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
47
|
Wang Y, Cheng Y, Yang Q, Kuang L, Liu G. Overexpression of FOXD2-AS1 enhances proliferation and impairs differentiation of glioma stem cells by activating the NOTCH pathway via TAF-1. J Cell Mol Med 2022; 26:2620-2632. [PMID: 35419917 PMCID: PMC9077300 DOI: 10.1111/jcmm.17268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging data have highlighted the importance of long noncoding RNAs (lncRNAs) in exerting critical biological functions and roles in different forms of brain cancer, including gliomas. In this study, we sought to investigate the role of lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) in glioma cells. First, we used sphere formation assay and flow cytometry to select U251 glioma stem cells (GSCs). Then, we quantified the expression of lncRNA FOXD2-AS1, TATA-box binding protein associated factor 1 (TAF-1) and NOTCH1 in glioma tissues and GSCs, as well as the expression of GSC stem markers, OCT4, SOX2, Nanog, Nestin and CD133 in GSCs. Colony formation assay, sphere formation assay, and flow cytometry were used to evaluate GSC stemness. Next, the correlations among lncRNA FOXD2-AS1, TAF-1 and NOTCH1 were investigated. LncRNA FOXD2-AS1, TAF-1 and NOTCH1 were found to be elevated in glioma tissues and GSCs, and silencing lncRNA FOXD2-AS1 inhibited stemness and proliferation, while promoting apoptosis and differentiation of GSCs. LncRNA FOXD2-AS1 overexpression also led to increased NOTCH1 by recruiting TAF-1 to the NOTCH1 promoter region, thereby promoting stemness and proliferation, while impairing cell apoptosis and differentiation. Mechanistically, lncRNA FOXD2-AS1 elevation promoted glioma in vivo by activating the NOTCH signalling pathway via TAF-1 upregulation. Taken together, the key findings of our investigation support the proposition that downregulation of lncRNA FOXD2-AS1 presents a viable and novel molecular candidate for improving glioma treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurotumor Disease Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanli Cheng
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qi Yang
- Department of Orthopeadic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lei Kuang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guolei Liu
- Department of Otorhinolaryngology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
48
|
TSPYL2 reduced gefitinib resistance and DNA damage repair via suppressing SIRT1-mediated FOXO3 deacetylation. Future Med Chem 2022; 14:407-419. [PMID: 35192400 DOI: 10.4155/fmc-2021-0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a malignancy with high mortality. TSPYL2 participates in tumor suppression but its role in CRC remains unknown. Methodology & results: TSPYL2 was downregulated and SIRT1 was upregulated in gefitinib drug-resistant (GEF-DR) tissues of patients with CRC. The GEF-resistant cells, HCT116 and HCT-15, were successfully established. The knockdown of TSPYL2 promoted resistance to GEF in CRC cells. Interestingly, immunofluorescence and western blot assays demonstrated that TSPYL2 inhibited DNA damage repair in HCT-15 and HCT116 GEF-resistant cells. Mechanically, TSPYL2 reduced the resistance to GEF and inhibited DNA damage repair via suppressing SIRT1-mediated FOXO3 deacetylation. TSPYL2 consistently inhibited tumor growth and decreased resistance to GEF in vivo. Conclusion: TSPYL2 reduced resistance to GEF and suppressed DNA damage through downregulating SIRT1-mediated FOXO3 deacetylation, indicating that TSPYL2 might be a novel therapeutic target in CRC.
Collapse
|
49
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
50
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|