1
|
Dong P, Zhang N, Zhang Y, Liu CX, Li CL. Clinical characterization of PLAG1- related Silver-Russell syndrome:A clinical report. Eur J Med Genet 2023; 66:104837. [PMID: 37673301 DOI: 10.1016/j.ejmg.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is a rare genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Loss of methylation on chromosome 11p15 and maternal uniparental disomy on chromosome 7 (upd(7)mat) are two common causes, accounting for approximately 50% and 10% of all patients, respectively. Pathogenic variants of genes, such as HMGA2, IGF2, CDKN1C, and PLAG1, have also been detected in patients with SRS. So far, SRS caused by PLAG1 alterations have only been described in two sporadic cases and three families. PATIENT PRESENTATION The genetic and clinical manifestations of SRS in a patient carrying a novel variant of PLAG1 were reported and these results were compared with those of five previously reported cases. Trio-based whole-exome sequencing revealed a heterozygous variation in PLAG1 (NM_002655.3: c.131del; p.(Asn44Thrfs*6)) in an infant girl with clinical suspicion of SRS. Familial studies confirmed that the mutation was inherited from her father. As seen in previously reported cases, the patient presented with prenatal and postnatal growth retardation, relative macrocephaly at birth, prominent forehead during infancy, and triangular face. However, no clinical characteristics such as feeding difficulties, hypothyroidism, or psychomotor and speech delay. CONCLUSIONS This study identified the sixth documented case of PLAG1 variants leading to SRS and expanded our knowledge of the molecular spectrum of SRS phenotypes.
Collapse
Affiliation(s)
- Ping Dong
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China.
| | - Nan Zhang
- Department of Child Healthcare, Northwest Women's and Children's Hospital, Xi'an, Shaanxi Province, PR China
| | - Ying Zhang
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China
| | - Chun-Xue Liu
- Department of Child Healthcare, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, PR China
| | - Chun-Lan Li
- Department of Gyneocology, Children's Hospital of Anhui Province, Anhui Hospital of Children's Hospital of Fudan University, Hefei, Anhui Province, PR China.
| |
Collapse
|
2
|
Anamthathmakula P, Shallie PD, Nayak N, Dhal S, Vivian JL, Mor G, Soares MJ, Nayak NR. Variable Cre Recombination Efficiency in Placentas of Cyp19-Cre ROSA mT/mG Transgenic Mice. Cells 2023; 12:2096. [PMID: 37626906 PMCID: PMC10453067 DOI: 10.3390/cells12162096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSAmT/mG transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSAmT/mG mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.5. Both maternal and paternal Cre inheritance were analyzed by mating the respective Cyp19-Cre and ROSAmT/mG males and females. The genotype results showed the expected percentage of Cyp19-Cre;ROSAmT/mG fetuses (73%) and Cre mRNA was expressed in all of the Cyp19-Cre placentas. However, surprisingly, only about 50% of the Cyp19-Cre;ROSAmT/mG placentas showed Cre-mediated recombinase activity as demonstrated by placental enhanced green fluorescent protein (EGFP) expression. Further genetic excision analysis of the placentas revealed consistent results showing the absence of excision of the tdTomato in all of the Cyp19-Cre;ROSAmT/mG placentas lacking EGFP expression. Moreover, among the EGFP-expressing placentas, there was wide variability in recombination efficiency, even in placentas from the same litter, leading to a mosaic pattern of EGFP expression in different zones and cell types of the placentas. In addition, we observed a significantly higher percentage of Cre recombination activity in placentas with maternal Cre inheritance. Our results show frequent mosaicism, inconsistent recombination activity, and parent-of-origin effects in placentas from Cyp19-Cre;ROSAmT/mG mice, suggesting that tail-biopsy genotype results may not necessarily indicate the excision of floxed genes in Cyp19-Cre positive placentas. Thus, placenta-specific mutagenesis studies using the Cyp19-Cre model require extensive characterization and careful interpretation of the placental phenotypes for each floxed allele.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Philemon D. Shallie
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Neha Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Sabita Dhal
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jay L. Vivian
- Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
| | - Nihar R. Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
A family-based study of genetic and epigenetic effects across multiple neurocognitive, motor, social-cognitive and social-behavioral functions. Behav Brain Funct 2022; 18:14. [PMID: 36457050 PMCID: PMC9714039 DOI: 10.1186/s12993-022-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Many psychiatric and neurodevelopmental disorders are known to be heritable, but studies trying to elucidate the genetic architecture of such traits often lag behind studies of somatic traits and diseases. The reasons as to why relatively few genome-wide significant associations have been reported for such traits have to do with the sample sizes needed for the detection of small effects, the difficulty in defining and characterizing the phenotypes, partially due to overlaps in affected underlying domains (which is especially true for cognitive phenotypes), and the complex genetic architectures of the phenotypes, which are not wholly captured in traditional case-control GWAS designs. We aimed to tackle the last two issues by performing GWASs of eight quantitative neurocognitive, motor, social-cognitive and social-behavioral traits, which may be considered endophenotypes for a variety of psychiatric and neurodevelopmental conditions, and for which we employed models capturing both general genetic association and parent-of-origin effects, in a family-based sample comprising 402 children and their parents (mostly family trios). We identified 48 genome-wide significant associations across several traits, of which 3 also survived our strict study-wide quality criteria. We additionally performed a functional annotation of implicated genes, as most of the 48 associations were with variants within protein-coding genes. In total, our study highlighted associations with five genes (TGM3, CACNB4, ANKS1B, CSMD1 and SYNE1) associated with measures of working memory, processing speed and social behavior. Our results thus identify novel associations, including previously unreported parent-of-origin associations with relevant genes, and our top results illustrate new potential gene → endophenotype → disorder pathways.
Collapse
|
4
|
Li J, Khatab AA, Hu L, Zhao L, Yang J, Wang L, Xie G. Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:ijms232113208. [PMID: 36361995 PMCID: PMC9655271 DOI: 10.3390/ijms232113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Rice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field. In this paper, a genome-wide association study (GWAS) was used to identify the genes that participated in cold stress and chilling accumulation. A total of 235 significantly associated single-nucleotide polymorphisms (SNPs) were identified. Among them, we detected 120 and 88 SNPs for the relative shoot fresh weight under cold stress and chilling acclimation, respectively. Furthermore, 11 and 12 quantitative trait loci (QTLs) were identified for cold stress and chilling acclimation, respectively, by integrating the co-localized SNPs. Interestingly, we identified 10 and 15 candidate genes in 11 and 12 QTLs involved in cold stress and chilling acclimation, respectively, and two new candidate genes (LOC_Os01g62410, LOC_Os12g24490) were obviously up-regulated under chilling acclimation. Furthermore, OsMYB3R-2 (LOC_Os01g62410) that encodes a R1R2R3 MYB gene was associated with cold tolerance, while a new C3HC4-type zinc finger protein-encoding gene LOC_Os12g24490 was found to function as a putative E3 ubiquitin-protein ligase in rice. Moreover, haplotype, distribution, and Wright’s fixation index (FST) of both genes showed that haplotype 3 of LOC_Os12g24490 is more stable in chilling acclimation, and the SNP (A > T) showed a difference in latitudinal distribution. FST analysis of SNPs in OsMYB3R-2 (LOC_Os01g62410) and LOC_Os12g24490 indicated that several SNPs were under selection in rice indica and japonica subspecies. This study provided new candidate genes in genetic improvement of chilling acclimation response in rice.
Collapse
Affiliation(s)
- Jianguo Li
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed Adel Khatab
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science & Technology, Guangxi University, Nanning 530004, China
| | - Liyan Zhao
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangyi Yang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science & Technology, Guangxi University, Nanning 530004, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Guosheng Xie
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Sleiman MB, Roy S, Gao AW, Sadler MC, von Alvensleben GVG, Li H, Sen S, Harrison DE, Nelson JF, Strong R, Miller RA, Kutalik Z, Williams RW, Auwerx J. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 2022; 377:eabo3191. [PMID: 36173858 PMCID: PMC9905652 DOI: 10.1126/science.abo3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA variants that modulate life span provide insight into determinants of health, disease, and aging. Through analyses in the UM-HET3 mice of the Interventions Testing Program (ITP), we detected a sex-independent quantitative trait locus (QTL) on chromosome 12 and identified sex-specific QTLs, some of which we detected only in older mice. Similar relations between life history and longevity were uncovered in mice and humans, underscoring the importance of early access to nutrients and early growth. We identified common age- and sex-specific genetic effects on gene expression that we integrated with model organism and human data to create a hypothesis-building interactive resource of prioritized longevity and body weight genes. Finally, we validated Hipk1, Ddost, Hspg2, Fgd6, and Pdk1 as conserved longevity genes using Caenorhabditis elegans life-span experiments.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie C. Sadler
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Giacomo V. G. von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - James F. Nelson
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Randy Strong
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI 48109-2200, USA
| | - Zoltán Kutalik
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Khatab AA, Li J, Hu L, Yang J, Fan C, Wang L, Xie G. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. PLANTA 2022; 256:82. [PMID: 36103054 DOI: 10.1007/s00425-022-03995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Collapse
Affiliation(s)
- Ahmed Adel Khatab
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chuchuan Fan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
RNA Pol IV induces antagonistic parent-of-origin effects on Arabidopsis endosperm. PLoS Biol 2022; 20:e3001602. [PMID: 35389984 PMCID: PMC9017945 DOI: 10.1371/journal.pbio.3001602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gene expression in endosperm-a seed tissue that mediates transfer of maternal resources to offspring-is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.
Collapse
|
8
|
Macias-Velasco JF, St Pierre CL, Wayhart JP, Yin L, Spears L, Miranda MA, Carson C, Funai K, Cheverud JM, Semenkovich CF, Lawson HA. Parent-of-origin effects propagate through networks to shape metabolic traits. eLife 2022; 11:e72989. [PMID: 35356864 PMCID: PMC9075957 DOI: 10.7554/elife.72989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.
Collapse
Affiliation(s)
- Juan F Macias-Velasco
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Celine L St Pierre
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Li Yin
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Larry Spears
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Mario A Miranda
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Caryn Carson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | | | - Clay F Semenkovich
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Heather A Lawson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| |
Collapse
|
9
|
Reinsch N, Mayer M, Blunk I. Generalized gametic relationships for flexible analyses of parent-of-origin effects. G3 GENES|GENOMES|GENETICS 2021; 11:6166654. [PMID: 33693544 PMCID: PMC8496240 DOI: 10.1093/g3journal/jkab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Abstract
A class of epigenetic inheritance patterns known as genomic imprinting allows alleles to influence the phenotype in a parent-of-origin-specific manner. Various pedigree-based parent-of-origin analyses of quantitative traits have attempted to determine the share of genetic variance that is attributable to imprinted loci. In general, these methods require four random gametic effects per pedigree member to account for all possible types of imprinting in a mixed model. As a result, the system of equations may become excessively large to solve using all available data. If only the offspring have records, which is frequently the case for complex pedigrees, only two averaged gametic effects (transmitting abilities) per parent are required (reduced model). However, the parents may have records in some cases. Therefore, in this study, we explain how employing single gametic effects solely for informative individuals (i.e., phenotyped individuals), and only average gametic effects otherwise, significantly reduces the complexity compared with classical gametic models. A generalized gametic relationship matrix is the covariance of this mixture of effects. The matrix can also make the reduced model much more flexible by including observations from parents. Worked examples are present to illustrate the theory and a realistic body mass data set in mice is used to demonstrate its utility. We show how to set up the inverse of the generalized gametic relationship matrix directly from a pedigree. An open-source program is used to implement the rules. The application of the same principles to phased marker data leads to a genomic version of the generalized gametic relationships.
Collapse
Affiliation(s)
- Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Inga Blunk
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
10
|
A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form. Curr Biol 2020; 30:4857-4868.e6. [DOI: 10.1016/j.cub.2020.09.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
11
|
Nudel R, Christiani CAJ, Ohland J, Uddin MJ, Hemager N, Ellersgaard D, Spang KS, Burton BK, Greve AN, Gantriis DL, Bybjerg-Grauholm J, Jepsen JRM, Thorup AAE, Mors O, Werge T, Nordentoft M. Quantitative genome-wide association analyses of receptive language in the Danish High Risk and Resilience Study. BMC Neurosci 2020; 21:30. [PMID: 32635940 PMCID: PMC7341668 DOI: 10.1186/s12868-020-00581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most basic human traits is language. Linguistic ability, and disability, have been shown to have a strong genetic component in family and twin studies, but molecular genetic studies of language phenotypes are scarce, relative to studies of other cognitive traits and neurodevelopmental phenotypes. Moreover, most genetic studies examining such phenotypes do not incorporate parent-of-origin effects, which could account for some of the heritability of the investigated trait. We performed a genome-wide association study of receptive language, examining both child genetic effects and parent-of-origin effects. RESULTS Using a family-based cohort with 400 children with receptive language scores, we found a genome-wide significant paternal parent-of-origin effect with a SNP, rs11787922, on chromosome 9q21.31, whereby the T allele reduced the mean receptive language score by ~ 23, constituting a reduction of more than 1.5 times the population SD (P = 1.04 × 10-8). We further confirmed that this association was not driven by broader neurodevelopmental diagnoses in the child or a family history of psychiatric diagnoses by incorporating covariates for the above and repeating the analysis. CONCLUSIONS Our study reports a genome-wide significant association for receptive language skills; to our knowledge, this is the first documented genome-wide significant association for this phenotype. Furthermore, our study illustrates the importance of considering parent-of-origin effects in association studies, particularly in the case of cognitive or neurodevelopmental traits, in which parental genetic data are not always incorporated.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Camilla A J Christiani
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Jessica Ohland
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Md Jamal Uddin
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Section for Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Hemager
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Ditte Ellersgaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Birgitte K Burton
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Ditte L Gantriis
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Richardt M Jepsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Mental Health Centre for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Mental Health Centre Copenhagen, University of Copenhagen Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Fisher EMC, Bannerman DM. Mouse models of neurodegeneration: Know your question, know your mouse. Sci Transl Med 2020; 11:11/493/eaaq1818. [PMID: 31118292 DOI: 10.1126/scitranslmed.aaq1818] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Many mutant mouse strains have been developed as models to investigate neurodegenerative disease in humans. However, variability in results among studies using these mouse strains has led to questions about the value of these models. Here, we appraise various mouse models for dissecting neurodegenerative disease mechanisms and emphasize the importance of asking appropriate research questions. In therapeutic studies, we suggest that understanding variability among and within mouse models is crucial for preventing translational failures in human patients.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
13
|
Granot-Hershkovitz E, Wu P, Karasik D, Peter I, Peloso GM, Levy D, Vasan RS, Adrienne Cupples L, Liu CT, Meigs JB, Siscovick DS, Dupuis J, Friedlander Y, Hochner H. Searching for parent-of-origin effects on cardiometabolic traits in imprinted genomic regions. Eur J Hum Genet 2020; 28:646-655. [PMID: 31896779 PMCID: PMC7170899 DOI: 10.1038/s41431-019-0568-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
Cardiometabolic traits pose a major global public health burden. Large-scale genome-wide association studies (GWAS) have identified multiple loci accounting for up to 30% of the genetic variance in complex traits such as cardiometabolic traits. However, the contribution of parent-of-origin effects (POEs) to complex traits has been largely ignored in GWAS. Family-based studies enable the assessment of POEs in genetic association analyses. We investigated POEs on a range of complex traits in 3 family-based studies. The discovery phase was carried out in large pedigrees from the Kibbutzim Family Study (n = 901 individuals) and in 872 parent-offspring trios from the Jerusalem Perinatal Study. Focusing on imprinted genomic regions, we examined parent-specific associations with 12 complex traits (i.e., body-size, blood pressure, lipids), mostly cardiometabolic risk traits. Forty five of the 11,967 SNPs initially found to have POE were evaluated for replication (p value < 1 × 10-4) in Framingham Heart Study families (max n = 8000 individuals). Three common variants yielded evidence of POE in the meta-analysis. Two variants, located on chr6 in the HLA region, showed a paternal effect on height (rs1042136: βpaternal = -0.023, p value = 1.5 × 10-8 and rs1431403: βpaternal = -0.011, p value = 5.4 × 10-6). The corresponding maternally-derived effects were statistically nonsignificant. The variant rs9332053, located on chr13 in RCBTB2 gene, demonstrated a maternal effect on hip circumference (βmaternal = -4.24, p value = 9.6 × 10-6; βpaternal = 1.29, p value = 0.23). These findings provide evidence for the utility of incorporating POEs into association studies of cardiometabolic traits, especially anthropometric traits. The study highlights the benefits of using family-based data for deciphering the genetic architecture of complex traits.
Collapse
Affiliation(s)
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Daniel Levy
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Ramachandran S Vasan
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- Sections of Preventive medicine and Epidemiology, and cardiovascular medicine, Departments of Medicine and Epidemiology, Boston University Schools of Medicine and Public health, Boston, MA, 02118, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David S Siscovick
- Institute for Urban Health, New York Academy of Medicine, New York, NY, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Yechiel Friedlander
- Braun School of Public Health, The Hebrew University of Jerusalem, 99112102, Jerusalem, Israel
| | - Hagit Hochner
- Braun School of Public Health, The Hebrew University of Jerusalem, 99112102, Jerusalem, Israel.
| |
Collapse
|
14
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
15
|
da Silva Francisco Junior R, Dos Santos Ferreira C, Santos E Silva JC, Terra Machado D, Côrtes Martins Y, Ramos V, Simões Carnivali G, Garcia AB, Medina-Acosta E. Pervasive Inter-Individual Variation in Allele-Specific Expression in Monozygotic Twins. Front Genet 2019; 10:1178. [PMID: 31850058 PMCID: PMC6887657 DOI: 10.3389/fgene.2019.01178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023] Open
Abstract
Despite being developed from one zygote, heterokaryotypic monozygotic (MZ) co-twins exhibit discordant karyotypes. Epigenomic studies in biological samples from heterokaryotypic MZ co-twins are of the most significant value for assessing the effects on gene- and allele-specific expression of an extranumerary chromosomal copy or structural chromosomal disparities in otherwise nearly identical germline genetic contributions. Here, we use RNA-Seq data from existing repositories to establish within-pair correlations for the breadth and magnitude of allele-specific expression (ASE) in heterokaryotypic MZ co-twins discordant for trisomy 21 and maternal 21q inheritance, as well as homokaryotypic co-twins. We show that there is a genome-wide disparity at ASE sites between the heterokaryotypic MZ co-twins. Although most of the disparity corresponds to changes in the magnitude of biallelic imbalance, ASE sites switching from either strictly monoallelic to biallelic imbalance or the reverse occur in few genes that are known or predicted to be imprinted, subject to X-chromosome inactivation or A-to-I(G) RNA edited. We also uncovered comparable ASE differences between homokaryotypic MZ twins. The extent of ASE discordance in MZ twins (2.7%) was about 10-fold lower than the expected between pairs of unrelated, non-twin males or females. The results indicate that the observed within-pair dissimilarities in breadth and magnitude of ASE sites in the heterokaryotypic MZ co-twins could not solely be attributable to the aneuploidy and the missing allelic heritability at 21q.
Collapse
Affiliation(s)
| | - Cristina Dos Santos Ferreira
- Laboratório de Biotecnologia, Núcleo de Diagnóstico e Investigação Molecular, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Juan Carlo Santos E Silva
- Laboratório de Biotecnologia, Núcleo de Diagnóstico e Investigação Molecular, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Douglas Terra Machado
- Laboratório de Biotecnologia, Núcleo de Diagnóstico e Investigação Molecular, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Yasmmin Côrtes Martins
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Victor Ramos
- Department of Genetics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Simões Carnivali
- Department of Computational Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Beatriz Garcia
- Laboratório de Biotecnologia, Núcleo de Diagnóstico e Investigação Molecular, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Enrique Medina-Acosta
- Laboratório de Biotecnologia, Núcleo de Diagnóstico e Investigação Molecular, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| |
Collapse
|
16
|
Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla JM, Karady M, Mentink RA, Wu A, Oluwatobi BR, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Curr Biol 2019; 29:4183-4192.e6. [PMID: 31761704 DOI: 10.1016/j.cub.2019.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - José Manuel Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bello Rilwan Oluwatobi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bruno Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstr. 3, 06466 Seeland, Gatersleben, Germany
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
17
|
Lakhal‐Chaieb L, Cook RJ, Zhong Y. Testing the heritability and parent‐of‐origin hypotheses for ages at onset of psoriatic arthritis under biased sampling. Biometrics 2019; 76:293-303. [DOI: 10.1111/biom.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Lajmi Lakhal‐Chaieb
- Département de Mathématiques et de StatistiqueUniversité LavalQuébec Québec Canada
| | - Richard J. Cook
- Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterloo Ontario Canada
| | - Yujie Zhong
- School of Statistics and ManagementShanghai University of Finance and EconomicsShanghai China
| |
Collapse
|
18
|
Babbs RK, Beierle JA, Ruan QT, Kelliher JC, Chen MM, Feng AX, Kirkpatrick SL, Benitez FA, Rodriguez FA, Pierre JJ, Anandakumar J, Kumar V, Mulligan MK, Bryant CD. Cyfip1 Haploinsufficiency Increases Compulsive-Like Behavior and Modulates Palatable Food Intake in Mice: Dependence on Cyfip2 Genetic Background, Parent-of Origin, and Sex. G3 (BETHESDA, MD.) 2019; 9:3009-3022. [PMID: 31324746 PMCID: PMC6723122 DOI: 10.1534/g3.119.400470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Binge eating (BE) is a heritable trait associated with eating disorders and involves episodes of rapid, large amounts of food consumption. We previously identified cytoplasmic FMR1-interacting protein 2 (Cyfip2) as a genetic factor underlying compulsive-like BE in mice. CYFIP2 is a homolog of CYFIP1 which is one of four paternally-deleted genes in patients with Type I Prader-Willi Syndrome (PWS), a neurodevelopmental disorder whereby 70% of cases involve paternal 15q11-q13 deletion. PWS symptoms include hyperphagia, obesity (if untreated), cognitive deficits, and obsessive-compulsive behaviors. We tested whether Cyfip1 haploinsufficiency (+/-) would enhance compulsive-like behavior and palatable food (PF) intake in a parental origin- and sex-dependent manner on two Cyfip2 genetic backgrounds, including the BE-prone C57BL/6N (Cyfip2N/N) background and the BE-resistant C57BL/6J (Cyfip2J/J) background. Cyfip1+/- mice showed increased compulsive-like behavior on both backgrounds and increased PF intake on the Cyfip2N/N background. In contrast, maternal Cyfip1 haploinsufficiency on the BE-resistant Cyfip2J/J background induced a robust escalation in PF intake in wild-type Cyfip1J/J males while having no effect in Cyfip1J/- males. Notably, induction of behavioral phenotypes in wild-type males following maternal Fmr1+/- has previously been reported. In the hypothalamus, there was a paternally-enhanced reduction in CYFIP1 protein whereas in the nucleus accumbens, there was a maternally-enhanced reduction in CYFIP1 protein. Nochange in FMR1 protein (FMRP) was observed in Cyfip1+/- mice, regardless of parental origin. To summarize, Cyfip1 haploinsufficiency increased compulsive-like behavior and induced genetic background-dependent, sex-dependent, and parent-of-origin-dependent effects on PF consumption and CYFIP1 expression that could have relevance for neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Ashley X Feng
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fabiola A Benitez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fred A Rodriguez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Johanne J Pierre
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jeya Anandakumar
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, and
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, 71 S. Manassas St, Memphis, TN 38163
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| |
Collapse
|
19
|
Maternal and paternal origin differentially affect prosocial behavior and neural mechanisms in prairie voles. Behav Brain Res 2019; 360:94-102. [PMID: 30521929 DOI: 10.1016/j.bbr.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/24/2022]
Abstract
This study tested the hypotheses that maternal and paternal effects differentially influence expression of their offspring's adult behavior and underlying neural mechanisms. We predicted that maternal influences would be greater than paternal influences on male offspring. We tested these hypotheses by cross-breeding two phenotypically-, behaviorally- and neuroanatomically-distinct populations of prairie voles (Microtus ochrogaster) from Illinois, which are highly prosocial, and Kansas, which are significantly less prosocial. Females from each population were crossed with males from the other population. F1 crosses were tested as adults to determine the effect of parentage on the expression of prosocial behavior and aggression, using a same-sex dyadic encounter and a heterosexual partner preference test, and for the expression of oxytocin (OT) and arginine vasopressin (AVP) in the paraventricular nucleus of the hypothalamus (PVN). As predicted, all significant differences in males, behavioral, OT and AVP immunoreactivity, were associated exclusively with maternal influences. There was a significant effect of treatment in the OT immunoreactivity of females. The effect of treatment in females' OT was associated with an interaction of population and sex, while same-sex social interactions differences were associated with population. Finally, in females, paternity influenced heterosexual bonds, with females with Illinois sires forming a partner preference. The results indicate that maternal influences dominate in male offspring, suggesting a parent-of-origin effect, while paternal effects are limited to selected prosocial behavioral expression in daughters.
Collapse
|
20
|
|
21
|
|
22
|
Mozaffari SV, DeCara JM, Shah SJ, Sidore C, Fiorillo E, Cucca F, Lang RM, Nicolae DL, Ober C. Parent-of-origin effects on quantitative phenotypes in a large Hutterite pedigree. Commun Biol 2019; 2:28. [PMID: 30675526 PMCID: PMC6338666 DOI: 10.1038/s42003-018-0267-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
The impact of the parental origin of associated alleles in GWAS has been largely ignored. Yet sequence variants could affect traits differently depending on whether they are inherited from the mother or the father, as in imprinted regions, where identical inherited DNA sequences can have different effects based on the parental origin. To explore parent-of-origin effects (POEs), we studied 21 quantitative phenotypes in a large Hutterite pedigree to identify variants with single parent (maternal-only or paternal-only) effects, and then variants with opposite parental effects. Here we show that POEs, which can be opposite in direction, are relatively common in humans, have potentially important clinical effects, and will be missed in traditional GWAS. We identified POEs with 11 phenotypes, most of which are risk factors for cardiovascular disease. Many of the loci identified are characteristic of imprinted regions and are associated with the expression of nearby genes.
Collapse
Affiliation(s)
- Sahar V. Mozaffari
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
| | - Jeanne M. DeCara
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Sanjiv J. Shah
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042 Italy
- Dipartimento di Scienze Biomediche, Universita di Sassari, Sassari, 07100 Italy
| | - Roberto M. Lang
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Dan L. Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
- Department of Medicine, University of Chicago, Chicago, IL 60637 USA
- Department of Statistics, University of Chicago, Chicago, IL 60637 USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637 USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
23
|
Coping-Style Behavior Identified by a Survey of Parent-of-Origin Effects in the Rat. G3-GENES GENOMES GENETICS 2018; 8:3283-3291. [PMID: 30135107 PMCID: PMC6169385 DOI: 10.1534/g3.118.200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study we investigate the effects of parent of origin on complex traits in the laboratory rat, with a focus on coping style behavior in stressful situations. We develop theory, based on earlier work, to partition heritability into a component due to a combination of parent of origin, maternal, paternal and shared environment, and another component that estimates classical additive genetic variance. We use this theory to investigate the effects on heritability of the parental origin of alleles in 798 outbred heterogeneous stock rats across 199 complex traits. Parent-of-origin-like heritability was on average 2.7fold larger than classical additive heritability. Among the phenotypes with the most enhanced parent-of-origin heritability were 10 coping style behaviors, with average 3.2 fold heritability enrichment. To confirm these findings on coping behavior, and to eliminate the possibility that the parent of origin effects are due to confounding with shared environment, we performed a reciprocal F1 cross between the behaviorally divergent RHA and RLA rat strains. We observed parent-of-origin effects on F1 rat anxiety/coping-related behavior in the Elevated Zero Maze test. Our study is the first to assess genetic parent-of-origin effects in rats, and confirm earlier findings in mice that such effects influence coping and impulsive behavior, and suggest these effects might be significant in other mammals, including humans.
Collapse
|
24
|
Pervjakova N, Kukushkina V, Haller T, Kasela S, Joensuu A, Kristiansson K, Annilo T, Perola M, Salomaa V, Jousilahti P, Metspalu A, Mägi R. Genome-wide analysis of nuclear magnetic resonance metabolites revealed parent-of-origin effect on triglycerides in medium very low-density lipoprotein in PTPRD gene. Biomark Med 2018. [DOI: 10.2217/bmm-2018-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of the study was to explore the parent-of-origin effects (POEs) on a range of human nuclear magnetic resonance metabolites. Materials & methods: We search for POEs in 14,815 unrelated individuals from Estonian and Finnish cohorts using POE method for the genotype data imputed with 1000 G reference panel and 82 nuclear magnetic resonance metabolites. Results: Meta-analysis revealed the evidence of POE for the variant rs1412727 in PTPRD gene for the metabolite: triglycerides in medium very low-density lipoprotein. No POEs were detected for genetic variants that were previously known to have main effect on circulating metabolites. Conclusion: We demonstrated possibility to detect POEs for human metabolites, but the POEs are weak, and therefore it is hard to detect those using currently available sample sizes.
Collapse
Affiliation(s)
- N Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu 51010, Estonia
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, UK
| | - V Kukushkina
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - T Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - S Kasela
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - A Joensuu
- National Institute for Health & Welfare (THL), Department of Public Health Solutions, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - K Kristiansson
- National Institute for Health & Welfare (THL), Department of Public Health Solutions, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - T Annilo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - M Perola
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- National Institute for Health & Welfare (THL), Department of Public Health Solutions, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - V Salomaa
- National Institute for Health & Welfare (THL), Department of Public Health Solutions, Helsinki, Finland
| | - P Jousilahti
- National Institute for Health & Welfare (THL), Department of Public Health Solutions, Helsinki, Finland
| | - A Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - R Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
25
|
Joint Analysis of Strain and Parent-of-Origin Effects for Recombinant Inbred Intercrosses Generated from Multiparent Populations with the Collaborative Cross as an Example. G3-GENES GENOMES GENETICS 2018; 8:599-605. [PMID: 29255115 PMCID: PMC5919741 DOI: 10.1534/g3.117.300483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiparent populations (MPP) have become popular resources for complex trait mapping because of their wider allelic diversity and larger population size compared with traditional two-way recombinant inbred (RI) strains. In mice, the collaborative cross (CC) is one of the most popular MPP and is derived from eight genetically diverse inbred founder strains. The strategy of generating RI intercrosses (RIX) from MPP in general and from the CC in particular can produce a large number of completely reproducible heterozygote genomes that better represent the (outbred) human population. Since both maternal and paternal haplotypes of each RIX are readily available, RIX is a powerful resource for studying both standing genetic and epigenetic variations of complex traits, in particular, the parent-of-origin (PoO) effects, which are important contributors to many complex traits. Furthermore, most complex traits are affected by >1 genes, where multiple quantitative trait locus mapping could be more advantageous. In this paper, for MPP-RIX data but taking CC-RIX as a working example, we propose a general Bayesian variable selection procedure to simultaneously search for multiple genes with founder allelic effects and PoO effects. The proposed model respects the complex relationship among RIX samples, and the performance of the proposed method is examined by extensive simulations.
Collapse
|
26
|
Abstract
Heterogeneous Stock (HS) populations allow for fine-resolution genetic mapping of a variety of complex traits. HS mice and rats were created from breeding together eight inbred strains, followed by maintaining the colony in a manner that minimizes inbreeding. After 50 or more generations of breeding, the resulting animals' chromosomes represent a genetic mosaic of the founders' haplotypes, with the average distance between recombination events in the centiMorgan range. This allows for genetic mapping to only a few Mb, a much smaller region than what can be identified using traditional F2 intercross or backcross mapping strategies. HS animals have been used to fine-map a variety of complex traits including anxiety and fear behaviors, diabetes, asthma, and heart disease, among others. Once a quantitative trait locus (QTL) has been identified, founder sequence and expression analysis can be used to identify underlying causal genes. In the following review, we provide an overview of how HS rats and mice have been used to identify genetic loci, and in some cases the causal genes, underlying complex traits. We discuss the creation and breeding strategies for both HS rats and mice. We then discuss the statistical analyses used to identify genetic loci, as well as strategies to identify causal genes underlying these loci. We end the chapter by discussing limitations faced when using HS populations, including several statistical challenges that have not been fully resolved.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53130, USA.
| | - Richard Mott
- UCL Genetics Institute, University College London, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
27
|
Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, Harbison MD, Netchine I. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med 2017; 20:250-258. [PMID: 28796236 PMCID: PMC5846811 DOI: 10.1038/gim.2017.105] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022] Open
Abstract
Purpose Fetal growth is a complex process involving maternal, placental and fetal factors. The etiology of fetal growth retardation remains unknown in many cases. The aim of this study is to identify novel human mutations and genes related to Silver–Russell syndrome (SRS), a syndromic form of fetal growth retardation, usually caused by epigenetic downregulation of the potent fetal growth factor IGF2. Methods Whole-exome sequencing was carried out on members of an SRS familial case. The candidate gene from the familial case and two other genes were screened by targeted high-throughput sequencing in a large cohort of suspected SRS patients. Functional experiments were then used to link these genes into a regulatory pathway. Results We report the first mutations of the PLAG1 gene in humans, as well as new mutations in HMGA2 and IGF2 in six sporadic and/or familial cases of SRS. We demonstrate that HMGA2 regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner. Conclusion Genetic defects of the HMGA2–PLAG1–IGF2 pathway can lead to fetal and postnatal growth restriction, highlighting the role of this oncogenic pathway in the fine regulation of physiological fetal/postnatal growth. This work defines new genetic causes of SRS, important for genetic counseling.
Collapse
Affiliation(s)
- Walid Abi Habib
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France.,Current affiliation: Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Frédéric Brioude
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, University Hospital Center, Toulouse, France.,INSERM Unit 1043, Physiopathology Center of Toulouse Purpan (CTPT), Paul-Sabatier University, Toulouse, France
| | - James T Bennett
- Department of Pediatrics (Genetics), University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Anne Lienhardt-Roussie
- Département de Pédiatrie Médicale, Centre Hospitalo-Universitaire de Limoges, Limoges Cedex, France
| | - Frédérique Tixier
- Département d'Endocrinologie Pédiatrique, Hôpital Debrousse, Lyon, France
| | - Jennifer Salem
- RSS/SGA Research & Education Fund, MAGIC Foundation, Oak Park, Illinois, USA
| | - Tony Yuen
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Salah Azzi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Yves Le Bouc
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| | - Madeleine D Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irène Netchine
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France.,Service d'Explorations Fonctionnelles Endocriniennes, AP-HP, Hôpital Trousseau, Paris, France
| |
Collapse
|
28
|
Faux P, Druet T. A strategy to improve phasing of whole-genome sequenced individuals through integration of familial information from dense genotype panels. Genet Sel Evol 2017; 49:46. [PMID: 28511677 PMCID: PMC5434521 DOI: 10.1186/s12711-017-0321-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Haplotype reconstruction (phasing) is an essential step in many applications, including imputation and genomic selection. The best phasing methods rely on both familial and linkage disequilibrium (LD) information. With whole-genome sequence (WGS) data, relatively small samples of reference individuals are generally sequenced due to prohibitive sequencing costs, thus only a limited amount of familial information is available. However, reference individuals have many relatives that have been genotyped (at lower density). The goal of our study was to improve phasing of WGS data by integrating familial information from haplotypes that were obtained from a larger genotyped dataset and to quantify its impact on imputation accuracy. Results Aligning a pre-phased WGS panel [~5 million single nucleotide polymorphisms (SNPs)], which is based on LD information only, to a 50k SNP array that is phased with both LD and familial information (called scaffold) resulted in correctly assigning parental origin for 99.62% of the WGS SNPs, their phase being determined unambiguously based on parental genotypes. Without using the 50k haplotypes as scaffold, that value dropped as expected to 50%. Correctly phased segments were on average longer after alignment to the genotype phase while the number of switches decreased slightly. Most of the incorrectly assigned segments, and subsequent switches, were due to singleton errors. Imputation from 50k SNP array to WGS data with improved phasing had a marginal impact on imputation accuracy (measured as r2), i.e. on average, 90.47% with traditional techniques versus 90.65% with pre-phasing integrating familial information. Differences were larger for SNPs located in chromosome ends and rare variants. Using a denser WGS panel (~13 millions SNPs) that was obtained with traditional variant filtering rules, we found similar results although performances of both phasing and imputation accuracy were lower. Conclusions We present a phasing strategy for WGS data, which indirectly integrates familial information by aligning WGS haplotypes that are pre-phased with LD information only on haplotypes obtained with genotyping data, with both LD and familial information and on a much larger population. This strategy results in very few mismatches with the phase obtained by Mendelian segregation rules. Finally, we propose a strategy to further improve phasing accuracy based on haplotype clusters obtained with genotyping data. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0321-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre Faux
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
29
|
Abstract
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Collapse
Affiliation(s)
- Andrew Chess
- Department of Genetics and Genomic Sciences, Department of Developmental and Regenerative Biology, Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574;
| |
Collapse
|
30
|
Benonisdottir S, Oddsson A, Helgason A, Kristjansson RP, Sveinbjornsson G, Oskarsdottir A, Thorleifsson G, Davidsson OB, Arnadottir GA, Sulem G, Jensson BO, Holm H, Alexandersson KF, Tryggvadottir L, Walters GB, Gudjonsson SA, Ward LD, Sigurdsson JK, Iordache PD, Frigge ML, Rafnar T, Kong A, Masson G, Helgason H, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Epigenetic and genetic components of height regulation. Nat Commun 2016; 7:13490. [PMID: 27848971 PMCID: PMC5116096 DOI: 10.1038/ncomms13490] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β|=0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
Collapse
Affiliation(s)
| | | | - Agnar Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Department of Anthropology, University of Iceland, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Gerald Sulem
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.,Icelandic Cancer Registry, 105 Reykjavik, Iceland
| | | | | | - Lucas D Ward
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Paul D Iordache
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Reykjavik University, 101 Reykjavik, Iceland
| | | | | | - Augustine Kong
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Gisli Masson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
31
|
Transcriptome Profiling in Rat Inbred Strains and Experimental Cross Reveals Discrepant Genetic Architecture of Genome-Wide Gene Expression. G3-GENES GENOMES GENETICS 2016; 6:3671-3683. [PMID: 27646706 PMCID: PMC5100866 DOI: 10.1534/g3.116.033274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1-183 Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GK × BN)F2 offspring. Within each congenic we identified 73-1351 differentially expressed genes (DEGs), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localized outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately twofold expression changes, consistent with monoallelic expression. Altered biological pathways were replicated between congenic strains sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2735 expression quantitative trait loci (eQTL) in the F2 cross, including 26% predominantly cis-regulated genes, which validated DEGs in congenic strains. A hotspot of >300 eQTL in a 10 cM region of chromosome 1 was enriched in DEGs in a congenic strain. However, many DEGs among GK, BN and congenic strains did not replicate as eQTL in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation, and suggests a prominent impact of epistasis and monoallelic expression on gene transcription.
Collapse
|
32
|
Hallin J, Märtens K, Young AI, Zackrisson M, Salinas F, Parts L, Warringer J, Liti G. Powerful decomposition of complex traits in a diploid model. Nat Commun 2016; 7:13311. [PMID: 27804950 PMCID: PMC5097135 DOI: 10.1038/ncomms13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 01/20/2023] Open
Abstract
Explaining trait differences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.
Collapse
Affiliation(s)
- Johan Hallin
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Kaspar Märtens
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
| | - Alexander I. Young
- Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
| | - Francisco Salinas
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Leopold Parts
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Hinxton, UK
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Gianni Liti
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| |
Collapse
|
33
|
Pettigrew KA, Frinton E, Nudel R, Chan MTM, Thompson P, Hayiou-Thomas ME, Talcott JB, Stein J, Monaco AP, Hulme C, Snowling MJ, Newbury DF, Paracchini S. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes. J Neurodev Disord 2016; 8:24. [PMID: 27307794 PMCID: PMC4908686 DOI: 10.1186/s11689-016-9157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5-10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. METHODS We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. RESULTS We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. CONCLUSIONS A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Collapse
Affiliation(s)
| | - Emily Frinton
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | - Ron Nudel
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - May T. M. Chan
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- />Worcester College, University of Oxford, Oxford, OX1 2HB UK
| | - Paul Thompson
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
| | | | - Joel B. Talcott
- />School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - John Stein
- />Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Anthony P. Monaco
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Charles Hulme
- />Division of Psychology and Language Sciences, University College London, London, WC1 3PG UK
| | - Margaret J. Snowling
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
- />St John’s College, University of Oxford, Oxford, OX1 3JP UK
| | - Dianne F. Newbury
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Silvia Paracchini
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| |
Collapse
|
34
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
35
|
Hu Y, Rosa GJM, Gianola D. Incorporating parent-of-origin effects in whole-genome prediction of complex traits. Genet Sel Evol 2016; 48:34. [PMID: 27091137 PMCID: PMC4834899 DOI: 10.1186/s12711-016-0213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Background Parent-of-origin effects are due to differential contributions of paternal and maternal lineages to offspring phenotypes. Such effects include, for example, maternal effects in several species. However, epigenetically induced parent-of-origin effects have recently attracted attention due to their potential impact on variation of complex traits. Given that prediction of genetic merit or phenotypic performance is of interest in the study of complex traits, it is relevant to consider parent-of-origin effects in such predictions. We built a whole-genome prediction model that incorporates parent-of-origin effects by considering parental allele substitution effects of single nucleotide polymorphisms and gametic relationships derived from a pedigree (the POE model). We used this model to predict body mass index in a mouse population, a trait that is presumably affected by parent-of-origin effects, and also compared the prediction performance to that of a standard additive model that ignores parent-of-origin effects (the ADD model). We also used simulated data to assess the predictive performance of the POE model under various circumstances, in which parent-of-origin effects were generated by mimicking an imprinting mechanism. Results The POE model did not predict better than the ADD model in the real data analysis, probably due to overfitting, since the POE model had far more parameters than the ADD model. However, when applied to simulated data, the POE model outperformed the ADD model when the contribution of parent-of-origin effects to phenotypic variation increased. The superiority of the POE model over the ADD model was up to 8 % on predictive correlation and 5 % on predictive mean squared error. Conclusions The simulation and the negative result obtained in the real data analysis indicated that, in order to gain benefit from the POE model in terms of prediction, a sizable contribution of parent-of-origin effects to variation is needed and such variation must be captured by the genetic markers fitted. Recent studies, however, suggest that most parent-of-origin effects stem from epigenetic regulation but not from a change in DNA sequence. Therefore, integrating epigenetic information with genetic markers may help to account for parent-of-origin effects in whole-genome prediction.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.,Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| |
Collapse
|
36
|
Templeman NM, Mehran AE, Johnson JD. Hyper-Variability in Circulating Insulin, High Fat Feeding Outcomes, and Effects of Reducing Ins2 Dosage in Male Ins1-Null Mice in a Specific Pathogen-Free Facility. PLoS One 2016; 11:e0153280. [PMID: 27055260 PMCID: PMC4824531 DOI: 10.1371/journal.pone.0153280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Morita S, Nakabayashi K, Kawai T, Hayashi K, Horii T, Kimura M, Kamei Y, Ogawa Y, Hata K, Hatada I. Gene expression profiling of white adipose tissue reveals paternal transmission of proneness to obesity. Sci Rep 2016; 6:21693. [PMID: 26868178 PMCID: PMC4751506 DOI: 10.1038/srep21693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 11/21/2022] Open
Abstract
Previously, we found that C57BL/6J (B6) mice are more prone to develop obesity than PWK mice. In addition, we analyzed reciprocal crosses between these mice and found that (PWK × B6) F1 mice, which have B6 fathers, are more likely to develop dietary obesity than (B6 × PWK) F1 mice, which have B6 mothers. These results suggested that diet-induced obesity is paternally transmitted. In this study, we performed transcriptome analysis of adipose tissues of B6, PWK, (PWK × B6) F1, and (B6 × PWK) F1 mice using next-generation sequencing. We found that paternal transmission of diet-induced obesity was correlated with genes involved in adipose tissue inflammation, metal ion transport, and cilia. Furthermore, we analyzed the imprinted genes expressed in white adipose tissue (WAT) and obesity. Expression of paternally expressed imprinted genes (PEGs) was negatively correlated with body weight, whereas expression of maternally expressed imprinted genes (MEGs) was positively correlated. In the obesity-prone B6 mice, expression of PEGs was down-regulated by a high-fat diet, suggesting that abnormally low expression of PEGs contributes to high-fat diet-induced obesity in B6 mice. In addition, using single-nucleotide polymorphisms that differ between B6 and PWK, we identified candidate imprinted genes in WAT.
Collapse
Affiliation(s)
- Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi Maebashi, 371-8512, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku Tokyo, 157-8535, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku Tokyo, 157-8535, Japan
| | - Keiko Hayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku Tokyo, 157-8535, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi Maebashi, 371-8512, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi Maebashi, 371-8512, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Environmental and Life Science, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku Tokyo, 157-8535, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi Maebashi, 371-8512, Japan
| |
Collapse
|
38
|
Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. ADVANCES IN GENETICS 2016; 96:53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Hochner H, Allard C, Granot-Hershkovitz E, Chen J, Sitlani CM, Sazdovska S, Lumley T, McKnight B, Rice K, Enquobahrie DA, Meigs JB, Kwok P, Hivert MF, Borecki IB, Gomez F, Wang T, van Duijn C, Amin N, Rotter JI, Stamatoyannopoulos J, Meiner V, Manor O, Dupuis J, Friedlander Y, Siscovick DS. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults. PLoS Genet 2015; 11:e1005573. [PMID: 26451733 PMCID: PMC4599806 DOI: 10.1371/journal.pgen.1005573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of regulatory mechanisms, POEs specifically, in adiposity. In addition this study highlights the benefit of utilizing family studies for deciphering the genetic architecture of complex traits. To date, genetic variants identified in large-scale genetic studies using recent technical and methodological advances explain only a small proportion of the genetic basis of obesity, diabetes and other cardiovascular risk factors. These studies were typically conducted in samples of unrelated individuals. Here we utilize a family-based approach to identify genetic variants associated with obesity-related traits. Specifically, we examined the separate contribution of maternally- vs. paternally-inherited common genetic variants to these traits. By examining 1250 young adults and their mothers from Jerusalem, we show that a specific genetic variant, rs1367117, located in the APOB gene on chromosome 2 is related to body mass index and waist circumference when inherited from mother and not from father. This maternal effect is not restricted to Jerusalemites, but is also seen in a large sample of individuals of European descent from independent family studies worldwide. Our findings provide support of the role of complex genetic mechanisms in obesity, and highlight the benefit of utilizing family studies for uncovering genetic pathways underlying common risk factors and diseases.
Collapse
Affiliation(s)
- Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- * E-mail:
| | - Catherine Allard
- Département de Mathématiques, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Jinbo Chen
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Colleen M. Sitlani
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
| | - Sandra Sazdovska
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - James B. Meigs
- Harvard Medical School and General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pui Kwok
- Institute of Human Genetics, University of California, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
- Department of Dermatology, University of California, San Francisco, California, United States of America
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Felicia Gomez
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - John Stamatoyannopoulos
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Vardiella Meiner
- Department of Genetics and Metabolism, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Orly Manor
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - David S. Siscovick
- New York Academy of Medicine, New York, New York, United States of America
| |
Collapse
|
40
|
Howey R, Mamasoula C, Töpf A, Nudel R, Goodship J, Keavney B, Cordell H. Increased Power for Detection of Parent-of-Origin Effects via the Use of Haplotype Estimation. Am J Hum Genet 2015; 97:419-34. [PMID: 26320892 PMCID: PMC4564992 DOI: 10.1016/j.ajhg.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Parent-of-origin (or imprinting) effects relate to the situation in which traits are influenced by the allele inherited from only one parent and the allele from the other parent has little or no effect. Given SNP genotype data from case-parent trios, the parent of origin of each allele in the offspring can often be deduced unambiguously; however, this is not true when all three individuals are heterozygous. Most existing methods for investigating parent-of-origin effects operate on a SNP-by-SNP basis and either perform some sort of averaging over the possible parental transmissions or else discard ambiguous trios. If the correct parent of origin at a SNP could be determined, this would provide extra information and increase the power for detecting the effects of imprinting. We propose making use of the surrounding SNP information, via haplotype estimation, to improve estimation of parent of origin at a test SNP for case-parent trios, case-mother duos, and case-father duos. This extra information is then used in a multinomial modeling approach for estimating parent-of-origin effects at the test SNP. We show through computer simulations that our approach has increased power over previous approaches, particularly when the data consist only of duos. We apply our method to two real datasets and find a decrease in significance of p values in genomic regions previously thought to possibly harbor imprinting effects, thus weakening the evidence that such effects actually exist in these regions, although some regions retain evidence of significant effects.
Collapse
|
41
|
Erwin AA, Galdos MA, Wickersheim ML, Harrison CC, Marr KD, Colicchio JM, Blumenstiel JP. piRNAs Are Associated with Diverse Transgenerational Effects on Gene and Transposon Expression in a Hybrid Dysgenic Syndrome of D. virilis. PLoS Genet 2015; 11:e1005332. [PMID: 26241928 PMCID: PMC4524669 DOI: 10.1371/journal.pgen.1005332] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/29/2022] Open
Abstract
Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother's genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations. Transposable elements (TEs) are selfish elements that copy themselves. More than half of the human genome is comprised of such elements. Studies in the fruit flies Drosophila melanogaster and D. virilis have been important in demonstrating a role for RNA silencing by PIWI-interacting RNAs (piRNAs) in protecting the genome against these harmful elements. These small RNAs are capable of recognizing TE mRNAs and mediating their destruction. They are also transmitted by the female germline to offspring in order to maintain a stable genome across generations. When males carrying a particular TE family are crossed with females lacking the element, the mother is unable to provide genome defense via complementary piRNAs that target the element. This leads to excess TE activation in the germline and sterility, a phenomenon known as hybrid dysgenesis. In this article we characterize the genomic landscape of TE destabilization that occurs in dysgenic crosses of D. virilis. We demonstrate that this mobilization is associated with an increased level of germline TE expression that persists through adulthood. In addition, we find that TE activation is associated with diverse effects on normal gene expression that are also mediated by piRNAs.
Collapse
Affiliation(s)
- Alexandra A. Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Mauricio A. Galdos
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Michelle L. Wickersheim
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Chris C. Harrison
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kendra D. Marr
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jack M. Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Predazzi IM, Sobota RS, Sanna S, Bush WS, Bartlett J, Lilley JS, Linton MF, Schlessinger D, Cucca F, Fazio S, Williams SM. Sex-Specific Parental Effects on Offspring Lipid Levels. J Am Heart Assoc 2015; 4:JAHA.115.001951. [PMID: 26126546 PMCID: PMC4608079 DOI: 10.1161/jaha.115.001951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Plasma lipid levels are highly heritable traits, but known genetic loci can only explain a small portion of their heritability. Methods and Results In this study, we analyzed the role of parental levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TGs) in explaining the values of the corresponding traits in adult offspring. We also evaluated the contribution of nongenetic factors that influence lipid traits (age, body mass index, smoking, medications, and menopause) alone and in combination with variability at the genetic loci known to associate with TC, LDL-C, HDL-C, and TG levels. We performed comparisons among different sex-specific regression models in 416 families from the Framingham Heart Study and 304 from the SardiNIA cohort. Models including parental lipid levels explain significantly more of the trait variation than models without these measures, explaining up to ≈39% of the total trait variation. Of this variation, the parent-of-origin effect explains as much as ≈15% and it does so in a sex-specific way. This observation is not owing to shared environment, given that spouse-pair correlations were negligible (<1.5% explained variation in all cases) and is distinct from previous genetic and acquired factors that are known to influence serum lipid levels. Conclusions These findings support the concept that unknown genetic and epigenetic contributors are responsible for most of the heritable component of the plasma lipid phenotype, and that, at present, the clinical utility of knowing age-matched parental lipid levels in assessing risk of dyslipidemia supersedes individual locus effects. Our results support the clinical utility of knowing parental lipid levels in assessing future risk of dyslipidemia.
Collapse
Affiliation(s)
- Irene M Predazzi
- Atherosclerosis Research Unit, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN (I.M.P., J.S.L., M.R.F.L., S.F.) Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR (I.M.P., S.F.)
| | - Rafal S Sobota
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN (R.S.S., W.S.B.) Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH (R.S.S., J.B., S.M.W.)
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy (S.S., F.C.)
| | - William S Bush
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN (R.S.S., W.S.B.) Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH (W.S.B.)
| | - Jacquelaine Bartlett
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH (R.S.S., J.B., S.M.W.)
| | - Jessica S Lilley
- Atherosclerosis Research Unit, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN (I.M.P., J.S.L., M.R.F.L., S.F.) Division of Endocrinology, Department of Pediatrics, University of Mississippi School of Medicine, Jackson, MS (J.S.L.)
| | - MacRae F Linton
- Atherosclerosis Research Unit, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN (I.M.P., J.S.L., M.R.F.L., S.F.)
| | | | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy (S.S., F.C.)
| | - Sergio Fazio
- Atherosclerosis Research Unit, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN (I.M.P., J.S.L., M.R.F.L., S.F.) Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, OR (I.M.P., S.F.)
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH (R.S.S., J.B., S.M.W.)
| |
Collapse
|
43
|
Abstract
Most animal genomes are diploid, and mammalian development depends on specific adaptations that have evolved secondary to diploidy. Genomic imprinting and dosage compensation restrict haploid development to early embryos. Recently, haploid mammalian development has been reinvestigated since the establishment of haploid embryonic stem cells (ESCs) from mouse embryos. Haploid cells possess one copy of each gene, facilitating the generation of loss-of-function mutations in a single step. Recessive mutations can then be assessed in forward genetic screens. Applications of haploid mammalian cell systems in screens have been illustrated in several recent publications. Haploid ESCs are characterized by a wide developmental potential and can contribute to chimeric embryos and mice. Different strategies for introducing genetic modifications from haploid ESCs into the mouse germline have been further developed. Haploid ESCs therefore introduce new possibilities in mammalian genetics and could offer an unprecedented tool for genome exploration in the future.
Collapse
Affiliation(s)
- Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland;
| |
Collapse
|
44
|
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161:106-118. [PMID: 25815989 DOI: 10.1016/j.cell.2015.02.020] [Citation(s) in RCA: 845] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Reduced food intake, avoiding malnutrition, can ameliorate aging and aging-associated diseases in invertebrate model organisms, rodents, primates, and humans. Recent findings indicate that meal timing is crucial, with both intermittent fasting and adjusted diurnal rhythm of feeding improving health and function, in the absence of changes in overall intake. Lowered intake of particular nutrients rather than of overall calories is also key, with protein and specific amino acids playing prominent roles. Nutritional modulation of the microbiome can also be important, and there are long-term, including inter-generational, effects of diet. The metabolic, molecular, and cellular mechanisms that mediate both improvement in health during aging to diet and genetic variation in the response to diet are being identified. These new findings are opening the way to specific dietary and pharmacological interventions to recapture the full potential benefits of dietary restriction, which humans can find difficult to maintain voluntarily.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Science, Brescia University, 25123 Brescia, Italy; CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Environment, and Evolution, University College London, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|
47
|
Spies N, Smith CL, Rodriguez JM, Baker JC, Batzoglou S, Sidow A. Constraint and divergence of global gene expression in the mammalian embryo. eLife 2015; 4:e05538. [PMID: 25871848 PMCID: PMC4417935 DOI: 10.7554/elife.05538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
The effects of genetic variation on gene regulation in the developing mammalian embryo remain largely unexplored. To globally quantify these effects, we crossed two divergent mouse strains and asked how genotype of the mother or of the embryo drives gene expression phenotype genomewide. Embryonic expression of 331 genes depends on the genotype of the mother. Embryonic genotype controls allele-specific expression of 1594 genes and a highly overlapping set of cis-expression quantitative trait loci (eQTL). A marked paucity of trans-eQTL suggests that the widespread expression differences do not propagate through the embryonic gene regulatory network. The cis-eQTL genes exhibit lower-than-average evolutionary conservation and are depleted for developmental regulators, consistent with purifying selection acting on expression phenotype of pattern formation genes. The widespread effect of maternal and embryonic genotype in conjunction with the purifying selection we uncovered suggests that embryogenesis is an important and understudied reservoir of phenotypic variation.
Collapse
Affiliation(s)
- Noah Spies
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Cheryl L Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Jesse M Rodriguez
- Department of Computer Science, Stanford University, Stanford, United States
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford, United States
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, United States
| | - Arend Sidow
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
48
|
Esparza-Gordillo J, Matanovic A, Marenholz I, Bauerfeind A, Rohde K, Nemat K, Lee-Kirsch MA, Nordenskjöld M, Winge MCG, Keil T, Krüger R, Lau S, Beyer K, Kalb B, Niggemann B, Hübner N, Cordell HJ, Bradley M, Lee YA. Maternal filaggrin mutations increase the risk of atopic dermatitis in children: an effect independent of mutation inheritance. PLoS Genet 2015; 11:e1005076. [PMID: 25757221 PMCID: PMC4355615 DOI: 10.1371/journal.pgen.1005076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies suggest that allergy risk is preferentially transmitted through mothers. This can be due to genomic imprinting, where the phenotype effect of an allele depends on its parental origin, or due to maternal effects reflecting the maternal genome's influence on the child during prenatal development. Loss-of-function mutations in the filaggrin gene (FLG) cause skin barrier deficiency and strongly predispose to atopic dermatitis (AD). We investigated the 4 most prevalent European FLG mutations (c.2282del4, p.R501X, p.R2447X, and p.S3247X) in two samples including 759 and 450 AD families. We used the multinomial and maximum-likelihood approach implemented in the PREMIM/EMIM tool to model parent-of-origin effects. Beyond the known role of FLG inheritance in AD (R1meta-analysis = 2.4, P = 1.0 x 10−36), we observed a strong maternal FLG genotype effect that was consistent in both independent family sets and for all 4 mutations analysed. Overall, children of FLG-carrier mothers had a 1.5-fold increased AD risk (S1 = 1.50, Pmeta-analysis = 8.4 x 10−8). Our data point to two independent and additive effects of FLG mutations: i) carrying a mutation and ii) having a mutation carrier mother. The maternal genotype effect was independent of mutation inheritance and can be seen as a non-genetic transmission of a genetic effect. The FLG maternal effect was observed only when mothers had allergic sensitization (elevated allergen-specific IgE antibody plasma levels), suggesting that FLG mutation-induced systemic immune responses in the mother may influence AD risk in the child. Notably, the maternal effect reported here was stronger than most common genetic risk factors for AD recently identified through genome-wide association studies (GWAS). Our study highlights the power of family-based studies in the identification of new etiological mechanisms and reveals, for the first time, a direct influence of the maternal genotype on the offspring’s susceptibility to a common human disease. Most human diseases are caused by a combination of multiple environmental and genetic influences. The widely used case/control approach aims to identify disease risk genes by comparing the genetic constitution of affected and healthy individuals. Although successful, this approach ignores additional mechanisms influencing disease risk. Here, we studied mutations in the filaggrin gene (FLG), which are strong risk factors for atopic dermatitis (AD) and allergies, in a large number of families with AD. We found that FLG mutations in the mother, not the father, increased the AD risk of the children, even if the child did not inherit the mutation. Thus, our study revealed, for the first time, a direct influence of a maternal mutation on the child’s risk for a common disease. The maternal FLG effect was only found when the mothers were allergic, and was absent in families of non-allergic mothers. This finding suggests that FLG-induced changes in the maternal immune response shape the child’s immune system during pregnancy and increase the child’s risk for AD. Our study indicates that maternal FLG mutations act as strong environmental risk factors for the child and highlights the potential of family-based studies in uncovering novel disease mechanisms in medical genetics.
Collapse
Affiliation(s)
- Jorge Esparza-Gordillo
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Matanovic
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ingo Marenholz
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Bauerfeind
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
| | - Klaus Rohde
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
| | - Katja Nemat
- Klinik fur Kinder- und Jugendmedizin, Technical University Dresden, Dresden, Germany
| | - Min-Ae Lee-Kirsch
- Klinik fur Kinder- und Jugendmedizin, Technical University Dresden, Dresden, Germany
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Marten C. G. Winge
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Keil
- Institute for Social Medicine, Epidemiology and Health Economics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Krüger
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Lau
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten Beyer
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Kalb
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bodo Niggemann
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Bradley
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Dermatology Unit, Department of Medicine, Solna Karolinska University Hospital, Stockholm, Solna, Sweden
| | - Young-Ae Lee
- Max-Delbrück-Centrum (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
49
|
Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res 2015; 25:353-67. [PMID: 25614607 PMCID: PMC4352888 DOI: 10.1101/gr.175919.114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.
Collapse
Affiliation(s)
- Hala Al Adhami
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Brendan Evano
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Anne Le Digarcher
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Charlotte Gueydan
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | | | | | | | - Tristan Bouschet
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Annie Varrault
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Laurent Journot
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France; MGX-Montpellier GenomiX, Montpellier 34094, France
| |
Collapse
|
50
|
Ding B, Daugherty DW, Husemann M, Chen M, Howe AE, Danley PD. Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa. PLoS One 2014; 9:e114798. [PMID: 25494046 PMCID: PMC4262453 DOI: 10.1371/journal.pone.0114798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
The traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of species. The extraordinary diversity of East African cichlid fishes is often attributed to strong sexual selection and thus this system provides an excellent model to test predictions regarding the genetic architecture of sexually selected traits that contribute to reproductive isolation. In particular, theory predicts that rapid speciation is facilitated when male sexual traits and female mating preferences are controlled by a limited number of linked genes. However, few studies have examined the genetic basis of male secondary sexual traits and female mating preferences in cichlids and none have investigated the genetic architecture of both jointly. In this study, we artificially hybridized a pair of behaviorally isolated cichlid fishes from Lake Malawi and quantified both melanistic color pattern and female mate choice. We investigated the genetic architecture of both phenotypes using quantitative genetic analyses. Our results suggest that 1) many non-additively acting genetic factors influence melanistic color patterns, 2) female mate choice may be controlled by a minimum of 1-2 non-additive genetic factors, and 3) F2 female mate choice is not influenced by male courting effort. Furthermore, a joint analysis of color pattern and female mate choice indicates that the genes underlying these two traits are unlikely to be physically linked. These results suggest that reproductive isolation may evolve rapidly owing to the few genetic factors underlying female mate choice. Hence, female mate choice likely played an important role in the unparalleled speciation of East African cichlid fish.
Collapse
Affiliation(s)
- Baoqing Ding
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Daniel W. Daugherty
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Martin Husemann
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Ming Chen
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Aimee E. Howe
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| | - Patrick D. Danley
- Biology Department, Baylor University, One Bear Place #97388, Waco, Texas, 76798, United States of America
| |
Collapse
|