1
|
Coussens NP, Dexheimer TS, Silvers T, Sanchez PR, Chen L, Hollingshead MG, Takebe N, Doroshow JH, Teicher BA. Combinatorial screen with apoptosis pathway targeted agents alrizomadlin, pelcitoclax, and dasminapant in multi-cell type tumor spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100230. [PMID: 40210129 DOI: 10.1016/j.slasd.2025.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Apoptosis, or programmed cell death, plays a critical role in maintaining tissue homeostasis by eliminating damaged or abnormal cells. Dysregulation of apoptosis pathways is a hallmark of cancer, allowing malignant cells to evade cell death and proliferate uncontrollably. Targeting apoptosis pathways has emerged as a promising therapeutic strategy in cancer treatment, aiming to restore the balance between cell survival and death. The MDM2 inhibitor alrizomadlin, the Bcl-2/Bcl-xL inhibitor pelcitoclax, and the IAP family inhibitor dasminapant were evaluated both individually and in combinations with standard of care and investigational anticancer small molecules in a spheroid model of solid tumors. The multi-cell type tumor spheroids were grown from human endothelial cells and mesenchymal stem cells combined with human malignant cells that were either established or patient-derived cell lines from the NCI Patient-Derived Models Repository. The malignant cell lines were derived from a range of solid tumors including uterine carcinosarcoma, synovial sarcoma, rhabdomyosarcoma, soft tissue sarcoma, malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor (MPNST), pancreas, ovary, colon, breast, and small cell lung cancer. Interactions were observed from combinations of the apoptosis pathway targeted agents. Additionally, interactions were observed from combinations of the apoptosis pathway targeted agents with other agents, including PARP inhibitors, the XPO1 inhibitor eltanexor, and the PI3K inhibitor copanlisib. Enhanced activity was also observed from combinations of the apoptosis pathway targeted agents with MAPK pathway targeted agents, including the MEK inhibitor cobimetinib as well as adagrasib and MRTX1133, which specifically target the KRAS G12C and G12D variants, respectively.
Collapse
Affiliation(s)
- Nathan P Coussens
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Thomas S Dexheimer
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Thomas Silvers
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Phillip R Sanchez
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Vinogradov AE, Anatskaya OV. "Cell dedifferentiation" versus "evolutionary reversal" theories of cancer: The direct contest of transcriptomic features. Int J Cancer 2025; 156:1802-1813. [PMID: 39888036 DOI: 10.1002/ijc.35352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Cell dedifferentiation is considered an important hallmark of cancer. The atavistic reversal to a unicellular-like (UC) state is a less widely accepted concept, so far not included in the conventional hallmarks. The activated expression of ontogenetically earlier and evolutionary earlier genes in cancers supports both theories because ontogenesis partially recapitulates phylogenesis during cell differentiation (the cellular biogenetic law). We directly contested both types of gene signatures in stem vs. differentiated and cancer vs. normal cells, using meta-analysis of human single-cell transcriptomes (totally, 38 pairwise comparisons involving over 18,600 cells). Because compared cells can differ in proliferation rate, the correction for cell cycle activity was applied. Taken together as multiple variables in stem vs. differentiated cells analyses, the ontogenetic signature excluded the UC signature from predictive variables, usually even forcing it to change the sign of prediction (from plus to minus). In contrast, in cancer vs. normal cells, the UC signature excluded the ontogenetic signature. Thus, the direct contest decided in favor of the atavistic theory and placed a UC-like state as a central hallmark of cancer, which has a plausible evolutionarily formed mechanism (UC attractor) and can generate other hallmarks. These data suggest a paradigm shift in the understanding of oncogenesis and propose an integrative framework for cancer research. In a practical sense, the upregulation of UC signature over ontogenetic signature indicates potential tumorigenicity, which can be used in early diagnostics and regenerative medicine. For therapy, these results suggest the UC center of cellular networks as a universal target.
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Yao M, Zhu X, Chen YC, Yang GH, Ao P. Exploring Multi-Target Therapeutic Strategies for Glioblastoma via Endogenous Network Modeling. Int J Mol Sci 2025; 26:3283. [PMID: 40244148 PMCID: PMC11989339 DOI: 10.3390/ijms26073283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Medical treatment of glioblastoma presents a significant challenge. A conventional medication has limited effectiveness, and a single-target therapy is usually effective only in the early stage of the treatment. Recently, there has been increasing focus on multi-target therapies, but the vast range of possible combinations makes clinical experimentation and implementation difficult. From the perspective of systems biology, this study conducted simulations for multi-target glioblastoma therapy based on dynamic analysis of previously established endogenous networks, validated with glioblastoma single-cell RNA sequencing data. Several potentially effective target combinations were identified. The findings also highlight the necessity of multi-target rather than single-target intervention strategies in cancer treatment, as well as the promise in clinical applications and personalized therapies.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, China;
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200444, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, China;
| | - Guo-Hong Yang
- Department of Physics, Shanghai University, Shanghai 200444, China;
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Huang S, Soto AM, Sonnenschein C. The end of the genetic paradigm of cancer. PLoS Biol 2025; 23:e3003052. [PMID: 40100793 DOI: 10.1371/journal.pbio.3003052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Genome sequencing of cancer and normal tissues, alongside single-cell transcriptomics, continues to produce findings that challenge the idea that cancer is a 'genetic disease', as posited by the somatic mutation theory (SMT). In this prevailing paradigm, tumorigenesis is caused by cancer-driving somatic mutations and clonal expansion. However, results from tumor sequencing, motivated by the genetic paradigm itself, create apparent 'paradoxes' that are not conducive to a pure SMT. But beyond genetic causation, the new results lend credence to old ideas from organismal biology. To resolve inconsistencies between the genetic paradigm of cancer and biological reality, we must complement deep sequencing with deep thinking: embrace formal theory and historicity of biological entities, and (re)consider non-genetic plasticity of cells and tissues. In this Essay, we discuss the concepts of cell state dynamics and tissue fields that emerge from the collective action of genes and of cells in their morphogenetic context, respectively, and how they help explain inconsistencies in the data in the context of SMT.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Ana M Soto
- Tufts University School of Medicine, Immunology, Boston, Massachusetts, United States of America
| | - Carlos Sonnenschein
- Tufts University School of Medicine, Immunology, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Liu Y, Yang Z, Pu JJ, Zhong J, Khoo U, Su Y, Zhang G. Proteogenomic characterisation of primary oral cancer unveils extracellular matrix remodelling and immunosuppressive microenvironment linked to lymph node metastasis. Clin Transl Med 2025; 15:e70261. [PMID: 40038875 PMCID: PMC11879901 DOI: 10.1002/ctm2.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an increasingly prevalent malignancy worldwide. This study aims to understand molecular alterations associated with lymph node metastasis of OSCC in order to improve treatment strategies. We analysed a cohort of 46 patients with primary OSCC, including 10 with lymph node metastasis and 36 without. Using a comprehensive multi-omics approach - encompassing genomic, transcriptomic, proteomic, epigenetic, single-cell, and spatial analyses - we integrated data to delineate the molecular landscape of OSCC in the context of lymph node metastasis. Our genomic analysis identified significant mutations in key genes within the MAPK, TGF-β and WNT signalling pathways, which are essential for tumour development. The proteogenomic analysis highlighted pathways critical for lymph node dissemination and factors contributing to an immunosuppressive tumour microenvironment. Elevated levels of POSTN were found to reorganise the extracellular matrix (ECM), interact with TGF-β, disrupt cell cycle regulation and suppress the immune response by reducing VCAM1 activity. Integrated analyses of single-cell and spatial transcriptome data revealed that cancer-associated fibroblasts (CAFs) secrete TGF-β1/2, promoting cancer cell metastasis through epithelial-mesenchymal transition (EMT). Our integrated multi-omics analysis provides a detailed understanding of molecular mechanisms driving lymph node metastasis of OSCC. These insights could lead to more precise diagnostics and targeted treatments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Liu
- Department of Thoracic Surgery/Institute of Thoracic OncologyWest China HospitalSichuan UniversityChengduChina
- Faculty of DentistryThe University of Hong KongHong KongHong Kong
| | - Zhenyu Yang
- Department of Thoracic Surgery/Institute of Thoracic OncologyWest China HospitalSichuan UniversityChengduChina
| | - Jingya Jane Pu
- Faculty of DentistryThe University of Hong KongHong KongHong Kong
| | - Jie Zhong
- Faculty of DentistryThe University of Hong KongHong KongHong Kong
| | - Ui‐Soon Khoo
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong KongHong Kong
| | - Yu‐Xiong Su
- Faculty of DentistryThe University of Hong KongHong KongHong Kong
| | - Gao Zhang
- Faculty of DentistryThe University of Hong KongHong KongHong Kong
| |
Collapse
|
6
|
Sibai M, Cervilla S, Grases D, Musulen E, Lazcano R, Mo CK, Davalos V, Fortian A, Bernat A, Romeo M, Tokheim C, Barretina J, Lazar AJ, Ding L, DUTRENEO Study Investigators, Grande E, Real FX, Esteller M, Bailey MH, Porta-Pardo E. The spatial landscape of cancer hallmarks reveals patterns of tumor ecological dynamics and drug sensitivity. Cell Rep 2025; 44:115229. [PMID: 39864059 DOI: 10.1016/j.celrep.2024.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/15/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Tumors are complex ecosystems of interacting cell types. The concept of cancer hallmarks distills this complexity into underlying principles that govern tumor growth. Here, we explore the spatial distribution of cancer hallmarks across 63 primary untreated tumors from 10 cancer types using spatial transcriptomics. We show that hallmark activity is spatially organized, with the cancer compartment contributing to the activity of seven out of 13 hallmarks, while the tumor microenvironment (TME) contributes to the activity of the rest. Additionally, we discover that genomic distance between tumor subclones correlates with differences in hallmark activity, even leading to clone-hallmark specialization. Finally, we demonstrate interdependent relationships between hallmarks at the junctions of TME and cancer compartments and how they relate to sensitivity to different neoadjuvant treatments in 33 bladder cancer patients from the DUTRENEO trial. In conclusion, our findings may improve our understanding of tumor ecology and help identify new drug biomarkers.
Collapse
Affiliation(s)
- Mustafa Sibai
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Sergi Cervilla
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Daniela Grases
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Eva Musulen
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Department of Pathology, Hospital Universitari General de Catalunya Grupo-QuirónSalud, Sant Cugat del Vallès, Spain
| | - Rossana Lazcano
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chia-Kuei Mo
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Arola Fortian
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Adrià Bernat
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Margarita Romeo
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jordi Barretina
- Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Alexander J Lazar
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Enrique Grande
- Medical Oncology Department. MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Francisco X Real
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Matthew H Bailey
- Department of Biology and Simmons Center for Cancer Research, Brigham Young University, Provo, UT, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain.
| |
Collapse
Collaborators
Enrique Grande, Teresa Alonso-Gordoa, Mario Álvarez-Maestro, Elena Andrada, Ainara Azueta, Raquel Benítez Javier Burgos, Daniel Castellano, M Angel Climent, Mario Domínguez, Ignacio Durán Albert Font, Isabel Galante, Patricia Galván, Juan F García, Xavier García Del Muro, Félix Guerrero-Ramos, Núria Malats, Miriam Marqués, Pablo Maroto, Jaime Martínez de Villarreal, Ane Moreno-Oya, Jesús M Paramio, Alvaro Pinto, Aleix Prat, Javier Puente, Oscar Reig, Francisco X Real,
Collapse
|
7
|
Dupont L, Jacob S, Philippe H. Scientist engagement and the knowledge-action gap. Nat Ecol Evol 2025; 9:23-33. [PMID: 39304789 DOI: 10.1038/s41559-024-02535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
The combined gravity of biodiversity loss and climate change keeps increasing. As the approaching catastrophe has never looked so alarming, the amount of scientific knowledge about the bioclimatic crisis is still rising exponentially. Here we reflect on how researchers in ecology or climate science behave amid this crisis. In face of the disproportionality between how much scientists know and how little they engage, we discuss four barriers that may underlie the decoupling of scientific awareness from concrete action. We then reflect on the potency of rational thinking to trigger engagement on its own, and question whether more scientific knowledge can be the tipping point towards radical changes within society. Our observations challenge the tenet that a better understanding of what surrounds us is necessary to protect it efficiently. With the environmental cost of scientific research itself as an additional factor that must be considered, we suggest there is an urgent need for researchers to collectively reflect on their situation and decide how to redirect their actions.
Collapse
Affiliation(s)
- Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France.
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| |
Collapse
|
8
|
Maurya SK, Chaudhri S, Kumar S, Gupta S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm Res 2025; 42:49-67. [PMID: 39775614 DOI: 10.1007/s11095-024-03811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Shannar A, Chou PJ, Peter R, Dave PD, Patel K, Pan Y, Xu J, Sarwar MS, Kong AN. Pharmacodynamics (PD), Pharmacokinetics (PK) and PK-PD Modeling of NRF2 Activating Dietary Phytochemicals in Cancer Prevention and in Health. CURRENT PHARMACOLOGY REPORTS 2024; 11:6. [PMID: 39649473 PMCID: PMC11618211 DOI: 10.1007/s40495-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Purpose of Review Dietary phytochemicals, bioactive compounds derived from plants, have gained increasing attention for their potential role in cancer prevention. Among these, NRF2 (nuclear factor erythroid 2-related factor 2) activating dietary phytochemicals such as curcumin, sulforaphane, ursolic acid, and cyanidin have demonstrated significant antioxidant and anti-inflammatory properties, making them promising agents in chemoprevention. This review examines the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of these dietary phytochemicals, with a focus on their NRF2-mediated effects in cancer prevention. Recent Findings Preclinical studies have highlighted the potential of these dietary phytochemicals to modulate oxidative stress and inflammation, key drivers of carcinogenesis. We explore the complexity of their PK/PD properties, influenced by factors such as bioavailability, metabolism, and drug interactions. While most of these phytochemicals follow two compartmental PK, their anti-oxidant and anti-inflammatory effects follow the indirect response (IDR) model. Furthermore, we discuss the application of physiologically based pharmacokinetic (PBPK) modeling to simulate the behavior of these compounds in humans, providing insights for clinical translation. Summary The integration of PK-PD analysis into the development of dietary phytochemical-based therapies offers a pathway to optimize dosing strategies, enhance therapeutic efficacy, and improve safety. This review underscores the importance of these compounds as part of cancer interception strategies, particularly in the early stages of cancer development, where they may offer a natural, less toxic alternative to conventional therapies. Graphical Abstract
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Komal Patel
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
10
|
Tang H, Zhang Y, Wu Y, Fu T, Cui C, Wang Z, Xie S, Wu Q, Tan W. The Emerging Era of Molecular Medicine. ACS NANO 2024; 18:30911-30918. [PMID: 39475564 DOI: 10.1021/acsnano.4c07969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The era of molecular medicine arose as we began to diagnose and treat diseases based on understanding how genes, proteins, and cells work, providing optimal therapeutic care through molecular profiling. Central to molecular medicine is molecular recognition, which is underpinned by techniques involving omics analysis, gene editing, and targeted agents. Recent advancements in these tools not only expand our understanding of biological processes but also aid in the development of diagnostic and treatment modalities at the molecular level, thus bridging the gap between medical research and clinical applications. This perspective traces the development of molecular tools, highlighting, along the way, their pivotal role in advancing molecular medicine for the global health of people.
Collapse
Affiliation(s)
- Heming Tang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Zhang
- Department of Geriatric Endocrinology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanyuan Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zongping Wang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qin Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
11
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Maddipati KR. Distinct etiology of chronic inflammation - implications on degenerative diseases and cancer therapy. Front Immunol 2024; 15:1460302. [PMID: 39555057 PMCID: PMC11563979 DOI: 10.3389/fimmu.2024.1460302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Acute inflammation is elicited by lipid and protein mediators in defense of the host following sterile or pathogen-driven injury. A common refrain is that chronic inflammation is a result of incomplete resolution of acute inflammation and behind the etiology of all chronic diseases, including cancer. However, mediators that participate in inflammation are also essential in homeostasis and developmental biology but without eliciting the clinical symptoms of inflammation. This non-inflammatory physiological activity of the so called 'inflammatory' mediators, apparently under the functional balance with anti-inflammatory mediators, is defined as unalamation (un-ala-mation). Inflammation in the absence of injury is a result of perturbance in unalamation due to a decrease in the anti-inflammatory mediators rather than an increase in the inflammatory mediators and leads to chronic inflammation. This concept on the etiology of chronic inflammation suggests that treatment of chronic diseases is better achieved by stimulating the endogenous anti-inflammatory mediators instead of inhibiting the 'inflammatory' mediator biosynthesis with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Furthermore, both 'inflammatory' and anti-inflammatory mediators are present at higher concentrations in the tumor microenvironment compared to normal tissue environments. Since cancer is a proliferative disorder rather than a degenerative disease, it is proposed that heightened unalamation, rather than chronic inflammation, drives tumor growth. This understanding helps explain the inefficacy of NSAIDs as anticancer agents. Finally, inhibition of anti-inflammatory mediator biosynthesis in tumor tissues could imbalance unalamation toward local acute inflammation triggering an immune response to restore homeostasis and away from tumor growth.
Collapse
|
13
|
Mirzayans R, Murray D. Amitotic Cell Division, Malignancy, and Resistance to Anticancer Agents: A Tribute to Drs. Walen and Rajaraman. Cancers (Basel) 2024; 16:3106. [PMID: 39272964 PMCID: PMC11394378 DOI: 10.3390/cancers16173106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
14
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Sun C, Yao M, Xiong R, Su Y, Zhu B, Chen YC, Ao P. Evolution of Telencephalon Anterior-Posterior Patterning through Core Endogenous Network Bifurcation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:631. [PMID: 39202101 PMCID: PMC11353805 DOI: 10.3390/e26080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
How did the complex structure of the telencephalon evolve? Existing explanations are based on phenomena and lack a first-principles account. The Darwinian dynamics and endogenous network theory-established decades ago-provides a mathematical and theoretical framework and a general constitutive structure for theory-experiment coupling for answering this question from a first-principles perspective. By revisiting a gene network that explains the anterior-posterior patterning of the vertebrate telencephalon, we found that upon increasing the cooperative effect within this network, fixed points gradually evolve, accompanied by the occurrence of two bifurcations. The dynamic behavior of this network is informed by the knowledge obtained from experiments on telencephalic evolution. Our work provides a quantitative explanation for how telencephalon anterior-posterior patterning evolved from the pre-vertebrate chordate to the vertebrate and provides a series of verifiable predictions from a first-principles perspective.
Collapse
Affiliation(s)
- Chen Sun
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Mengchao Yao
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ruiqi Xiong
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yang Su
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Binglin Zhu
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Zhang X, Chen YC, Yao M, Xiong R, Liu B, Zhu X, Ao P. Potential therapeutic targets of gastric cancer explored under endogenous network modeling of clinical data. Sci Rep 2024; 14:13127. [PMID: 38849404 PMCID: PMC11161650 DOI: 10.1038/s41598-024-63812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Improvement in the survival rate of gastric cancer, a prevalent global malignancy and the leading cause of cancer-related mortality calls for more avenues in molecular therapy. This work aims to comprehend drug resistance and explore multiple-drug combinations for enhanced therapeutic treatment. An endogenous network modeling clinic data with core gastric cancer molecules, functional modules, and pathways is constructed, which is then transformed into dynamics equations for in-silicon studies. Principal component analysis, hierarchical clustering, and K-means clustering are utilized to map the attractor domains of the stochastic model to the normal and pathological phenotypes identified from the clinical data. The analyses demonstrate gastric cancer as a cluster of stable states emerging within the stochastic dynamics and elucidate the cause of resistance to anti-VEGF monotherapy in cancer treatment as the limitation of the single pathway in preventing cancer progression. The feasibility of multiple objectives of therapy targeting specified molecules and/or pathways is explored. This study verifies the rationality of the platform of endogenous network modeling, which contributes to the development of cross-functional multi-target combinations in clinical trials.
Collapse
Affiliation(s)
- Xile Zhang
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China.
| | - Mengchao Yao
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Xiong
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Cancer, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical Systems, School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Ramisetty S, Subbalakshmi AR, Pareek S, Mirzapoiazova T, Do D, Prabhakar D, Pisick E, Shrestha S, Achuthan S, Bhattacharya S, Malhotra J, Mohanty A, Singhal SS, Salgia R, Kulkarni P. Leveraging Cancer Phenotypic Plasticity for Novel Treatment Strategies. J Clin Med 2024; 13:3337. [PMID: 38893049 PMCID: PMC11172618 DOI: 10.3390/jcm13113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dhivya Prabhakar
- City of Hope Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA;
| | - Evan Pisick
- City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA;
| | - Sagun Shrestha
- City of Hope Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA;
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Mirzayans R. Changing the Landscape of Solid Tumor Therapy from Apoptosis-Promoting to Apoptosis-Inhibiting Strategies. Curr Issues Mol Biol 2024; 46:5379-5396. [PMID: 38920994 PMCID: PMC11202608 DOI: 10.3390/cimb46060322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The many limitations of implementing anticancer strategies under the term "precision oncology" have been extensively discussed. While some authors propose promising future directions, others are less optimistic and use phrases such as illusion, hype, and false hypotheses. The reality is revealed by practicing clinicians and cancer patients in various online publications, one of which has stated that "in the quest for the next cancer cure, few researchers bother to look back at the graveyard of failed medicines to figure out what went wrong". The message is clear: Novel therapeutic strategies with catchy names (e.g., synthetic "lethality") have not fulfilled their promises despite decades of extensive research and clinical trials. The main purpose of this review is to discuss key challenges in solid tumor therapy that surprisingly continue to be overlooked by the Nomenclature Committee on Cell Death (NCCD) and numerous other authors. These challenges include: The impact of chemotherapy-induced genome chaos (e.g., multinucleation) on resistance and relapse, oncogenic function of caspase 3, cancer cell anastasis (recovery from late stages of apoptosis), and pitfalls of ubiquitously used preclinical chemosensitivity assays (e.g., cell "viability" and tumor growth delay studies in live animals) that score such pro-survival responses as "lethal" events. The studies outlined herein underscore the need for new directions in the management of solid tumors.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
19
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
20
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
21
|
Weisman CM. The permissive binding theory of cancer. Front Oncol 2023; 13:1272981. [PMID: 38023252 PMCID: PMC10666763 DOI: 10.3389/fonc.2023.1272981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The later stages of cancer, including the invasion and colonization of new tissues, are actively mysterious compared to earlier stages like primary tumor formation. While we lack many details about both, we do have an apparently successful explanatory framework for the earlier stages: one in which genetic mutations hold ultimate causal and explanatory power. By contrast, on both empirical and conceptual grounds, it is not currently clear that mutations alone can explain the later stages of cancer. Can a different type of molecular change do better? Here, I introduce the "permissive binding theory" of cancer, which proposes that novel protein binding interactions are the key causal and explanatory entity in invasion and metastasis. It posits that binding is more abundant at baseline than we observe because it is restricted in normal physiology; that any large perturbation to physiological state revives this baseline abundance, unleashing many new binding interactions; and that a subset of these cause the cellular functions at the heart of oncogenesis, especially invasion and metastasis. Significant physiological perturbations occur in cancer cells in very early stages, and generally become more extreme with progression, providing interactions that continually fuel invasion and metastasis. The theory is compatible with, but not limited to, causal roles for the diverse molecular changes observed in cancer (e.g. gene expression or epigenetic changes), as these generally act causally upstream of proteins, and so may exert their effects by changing the protein binding interactions that occur in the cell. This admits the possibility that molecular changes that appear quite different may actually converge in creating the same few protein complexes, simplifying our picture of invasion and metastasis. If correct, the theory offers a concrete therapeutic strategy: targeting the key novel complexes. The theory is straightforwardly testable by large-scale identification of protein interactions in different cancers.
Collapse
Affiliation(s)
- Caroline M. Weisman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
22
|
Erenpreisa J, Giuliani A, Cragg MS. Special Issue "Advances in Genome Regulation in Cancer". Int J Mol Sci 2023; 24:14567. [PMID: 37834014 PMCID: PMC10572122 DOI: 10.3390/ijms241914567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is globally increasing [...].
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mark Steven Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
23
|
Mirzayans R, Murray D. Intratumor Heterogeneity and Treatment Resistance of Solid Tumors with a Focus on Polyploid/Senescent Giant Cancer Cells (PGCCs). Int J Mol Sci 2023; 24:11534. [PMID: 37511291 PMCID: PMC10380821 DOI: 10.3390/ijms241411534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Single cell biology has revealed that solid tumors and tumor-derived cell lines typically contain subpopulations of cancer cells that are readily distinguishable from the bulk of cancer cells by virtue of their enormous size. Such cells with a highly enlarged nucleus, multiple nuclei, and/or multiple micronuclei are often referred to as polyploid giant cancer cells (PGCCs), and may exhibit features of senescence. PGCCs may enter a dormant phase (active sleep) after they are formed, but a subset remain viable, secrete growth promoting factors, and can give rise to therapy resistant and tumor repopulating progeny. Here we will briefly discuss the prevalence and prognostic value of PGCCs across different cancer types, the current understanding of the mechanisms of their formation and fate, and possible reasons why these tumor repopulating "monsters" continue to be ignored in most cancer therapy-related preclinical studies. In addition to PGCCs, other subpopulations of cancer cells within a solid tumor (such as oncogenic caspase 3-activated cancer cells and drug-tolerant persister cancer cells) can also contribute to therapy resistance and pose major challenges to the delivery of cancer therapy.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
24
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Pensotti A, Bertolaso M, Bizzarri M. Is Cancer Reversible? Rethinking Carcinogenesis Models-A New Epistemological Tool. Biomolecules 2023; 13:733. [PMID: 37238604 PMCID: PMC10216038 DOI: 10.3390/biom13050733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
A growing number of studies shows that it is possible to induce a phenotypic transformation of cancer cells from malignant to benign. This process is currently known as "tumor reversion". However, the concept of reversibility hardly fits the current cancer models, according to which gene mutations are considered the primary cause of cancer. Indeed, if gene mutations are causative carcinogenic factors, and if gene mutations are irreversible, how long should cancer be considered as an irreversible process? In fact, there is some evidence that intrinsic plasticity of cancerous cells may be therapeutically exploited to promote a phenotypic reprogramming, both in vitro and in vivo. Not only are studies on tumor reversion highlighting a new, exciting research approach, but they are also pushing science to look for new epistemological tools capable of better modeling cancer.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
26
|
Vinogradov AE, Anatskaya OV. Systemic Alterations of Cancer Cells and Their Boost by Polyploidization: Unicellular Attractor (UCA) Model. Int J Mol Sci 2023; 24:ijms24076196. [PMID: 37047167 PMCID: PMC10094663 DOI: 10.3390/ijms24076196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential features of the ‘atavistic reversal’, ‘cancer attractor’, ‘somatic mutation’, ‘genome chaos’, and ‘tissue organization field’ theories. The ‘atavistic reversal’ theory is taken as a keystone. We propose a possible mechanism of this reversal, its refinement called ‘gradual atavism’, and evidence for the ‘serial atavism’ model. We showed the gradual core-to-periphery evolutionary growth of the human interactome resulting in the higher protein interaction density and global interactome centrality in the UC center. In addition, we revealed that UC genes are more actively expressed even in normal cells. The modeling of random walk along protein interaction trajectories demonstrated that random alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further gradual activation of the UC center. These changes can be induced and accelerated by cellular stress that additionally activates UC genes (especially during cell proliferation), because the genes involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression of multicellular genes involved in communication with the extracellular environment (especially immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an understanding of oncogenesis and promote the development of therapeutic strategies.
Collapse
|
27
|
Kulsh J. Biochemistry-Not Oncogenes-May Demystify and Defeat Cancer. Oncol Ther 2023:10.1007/s40487-023-00221-y. [PMID: 36781712 DOI: 10.1007/s40487-023-00221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The presence of mutated genes strongly correlates with the incidence of cancer. Decades of research, however, has not yielded any specific causative gene or set of genes for the vast majority of cancers. The Cancer Genome Atlas program was supposed to provide clarity, but it only gave much more data without any accompanying insight into how the disease begins and progresses. It may be time to notice that epidemiological studies consistently show that the environment, not genes, has the principal role in causing cancer. Since carcinogenic chemicals in our food, drink, air, and water are the primary culprits, we need to look at the biochemistry of cancer, with a focus on enzymes that invariably facilitate transformations in a cell. In particular, attention should be paid to the rate-limiting enzyme in DNA synthesis, ribonucleotide reductase (RnR), whose activity is tightly linked to tumor growth. Besides circumstantial evidence that cancer is induced at this enzyme's vulnerable free-radical-containing active site by various carcinogens, its role in initiating retinoblastoma and human papillomavirus (HPV)-related cervical cancers has been well documented in recent years. Blocking the activity of malignant RnR is a certain way to arrest cancer.
Collapse
Affiliation(s)
- Jay Kulsh
- Independent Scientist, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
29
|
Soni S, Anand P, Swarnkar MK, Patial V, Tirpude NV, Padwad YS. MAPKAPK2-centric transcriptome profiling reveals its major role in governing molecular crosstalk of IGFBP2, MUC4, and PRKAR2B during HNSCC pathogenesis. Comput Struct Biotechnol J 2023; 21:1292-1311. [PMID: 36817960 PMCID: PMC9929207 DOI: 10.1016/j.csbj.2023.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.
Collapse
Key Words
- 3'-UTR
- 3′-UTR, 3′-untranslated region
- AREs, Adenylate-uridylate-rich element(s)
- ATCC, American Type Culture Collection
- ActD, Actinomycin D
- CISBP, Catalog of Inferred Sequence Binding Preferences
- Ct, Cycle Threshold
- DAP3, Death associated protein 3
- DEGs, Differentially expressed gene(s)
- Differentially expressed genes
- EHBP1, EH domain binding protein 1
- FC, Fold change
- FDR, False discovery rate
- FPKM, Fragments per kilobase of transcript per million mapped
- GFP, Green fluorescent protein
- GO, Gene Ontology
- HKG, House-keeping genes
- HNSCC
- HNSCCs, Head and neck squamous cell carcinoma(s)
- HQ, High quality
- IAEC, Institutional animal ethics committee
- IFN, Interferon
- IGFBP2, Insulin-like growth factor-binding protein 2
- IHC, Immunohistochemistry
- IP6K2, Inositol hexakisphosphate kinase 2
- KD, Knockdown
- KEGG, Kyoto encyclopedia of genes and genomics
- MAPK, Mitogen-Activated Protein Kinase
- MAPKAPK2
- MAPKAPK2 or MK2, Mitogen-activated protein kinase-activated protein kinase 2
- MELK, Maternal embryonic leucine zipper kinase
- MK2KD, MK2-knockdown
- MK2WT, MK2 wild-type
- MKP-1, Mitogen-activated protein kinase phosphatase-1
- MUC4, Mucin 4
- NGS, Next generation sequencing
- NOD/SCID, Non-obese diabetic/severe combined immunodeficient
- PRKAR2B, Protein kinase CAMP-dependent type II regulatory subunit beta
- QC, Quality control
- RBPs, RNA-binding protein(s)
- RIN, RNA integrity number
- RNA-seq, Ribose Nucleic Acid -sequencing
- RNA-sequencing
- RT-qPCR, Real-time quantitative polymerase chain reaction
- RUNX1, Runt-related transcription factor 1
- SLF2, SMC5-SMC6 complex localization factor 2
- TCGA, The cancer genome atlas
- TNF-α, Tumor necrosis factor-alpha
- TTP, Tristetraprolin
- Transcriptome
- VEGF, Vascular endothelial growth factor
- WB, Western blotting
- WT, Wild type
- ZNF662, Zinc finger protein 662
- p27, Cyclin-dependent kinase inhibitor 1B
- shRNA, Short hairpin RNA
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narendra V. Tirpude
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Mirzayans R, Murray D. What Are the Reasons for Continuing Failures in Cancer Therapy? Are Misleading/Inappropriate Preclinical Assays to Be Blamed? Might Some Modern Therapies Cause More Harm than Benefit? Int J Mol Sci 2022; 23:13217. [PMID: 36362004 PMCID: PMC9655591 DOI: 10.3390/ijms232113217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Over 50 years of cancer research has resulted in the generation of massive amounts of information, but relatively little progress has been made in the treatment of patients with solid tumors, except for extending their survival for a few months at best. Here, we will briefly discuss some of the reasons for this failure, focusing on the limitations and sometimes misunderstanding of the clinical relevance of preclinical assays that are widely used to identify novel anticancer drugs and treatment strategies (e.g., "synthetic lethality"). These include colony formation, apoptosis (e.g., caspase-3 activation), immunoblotting, and high-content multiwell plate cell-based assays, as well as tumor growth studies in animal models. A major limitation is that such assays are rarely designed to recapitulate the tumor repopulating properties associated with therapy-induced cancer cell dormancy (durable proliferation arrest) reflecting, for example, premature senescence, polyploidy and/or multinucleation. Furthermore, pro-survival properties of apoptotic cancer cells through phoenix rising, failed apoptosis, and/or anastasis (return from the brink of death), as well as cancer immunoediting and the impact of therapeutic agents on interactions between cancer and immune cells are often overlooked in preclinical studies. A brief review of the history of cancer research makes one wonder if modern strategies for treating patients with solid tumors may sometimes cause more harm than benefit.
Collapse
|
31
|
Atitey K. DEGBOE: Discrete time Evolution modeling of Gene mutation through Bayesian inference using qualitative Observation of mutation Events. J Biomed Inform 2022; 134:104197. [PMID: 36084801 PMCID: PMC9809132 DOI: 10.1016/j.jbi.2022.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/05/2023]
Abstract
An important aspect of cancer progression concerns the way in which gene mutations accumulate in cellular lineages. Comprehensive efforts into cataloging cancer genes have revealed that tumors demonstrate variability in genes that accumulate mutations which depend on the presence or absence of other mutations. However, understanding the stochastic process by which mutations arise across the genome is an important open problem of this nature in biology due to modeling discrete variate time-series is the most challenging, and, as yet, least well-developed of all areas of research in time-series. In this paper, a DEGBOE framework is proposed to model the mutation time-series given the sequence data of the gene mutations. The method relates the discrete-time, nonlinear and nonstationary series of gene mutations to the time-varying autoregressive moving average model. It presents the observation as a nonlinear function dependent on two variables: gene mutation, and gene-gene interactions characterizing the effects of the varying presence or absence of other gene mutations on a mutations' occurrence and evolution. DEGBOE is applied to model the dynamics of frequently mutated genes in lung cancer, includingEGFR,KRAS, and TP53. The results of the model are analyzed and compared to the original simulated data of theDNAwalk, and experimental lung cancer mutations data. It identifies the driver role of TP53 mutations in lung cancer progression.
Collapse
Affiliation(s)
- Komlan Atitey
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States.
| |
Collapse
|
32
|
Revisiting Epithelial Carcinogenesis. Int J Mol Sci 2022; 23:ijms23137437. [PMID: 35806442 PMCID: PMC9267463 DOI: 10.3390/ijms23137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The origin of cancer remains one of the most important enigmas in modern biology. This paper presents a hypothesis for the origin of carcinomas in which cellular aging and inflammation enable the recovery of cellular plasticity, which may ultimately result in cancer. The hypothesis describes carcinogenesis as the result of the dedifferentiation undergone by epithelial cells in hyperplasia due to replicative senescence towards a mesenchymal cell state with potentially cancerous behavior. In support of this hypothesis, the molecular, cellular, and histopathological evidence was critically reviewed and reinterpreted when necessary to postulate a plausible generic series of mechanisms for the origin and progression of carcinomas. In addition, the implications of this theoretical framework for the current strategies of cancer treatment are discussed considering recent evidence of the molecular events underlying the epigenetic switches involved in the resistance of breast carcinomas. The hypothesis also proposes an epigenetic landscape for their progression and a potential mechanism for restraining the degree of dedifferentiation and malignant behavior. In addition, the manuscript revisits the gradual degeneration of the nonalcoholic fatty liver disease to propose an integrative generalized mechanistic explanation for the involution and carcinogenesis of tissues associated with aging. The presented hypothesis might serve to understand and structure new findings into a more encompassing view of the genesis of degenerative diseases and may inspire novel approaches for their study and therapy.
Collapse
|
33
|
Li F, Wen H, Bukhari I, Liu B, Guo C, Ren F, Tang Y, Mi Y, Zheng P. Relationship Between CNVs and Immune Cells Infiltration in Gastric Tumor Microenvironment. Front Genet 2022; 13:869967. [PMID: 35754804 PMCID: PMC9214698 DOI: 10.3389/fgene.2022.869967] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a highly fatal and common malignancy of the digestive system. Recent therapeutic advancements have significantly improved the clinical outcomes in GC, but due to the unavailability of suitable molecular targets, a large number of patients do not respond to the immune checkpoint inhibitors (ICI) therapy. To identify and validate potential therapeutic and prognostic targets of gastric cancer, we used the “inferCNV” R package for analyzing single-cell sequencing data (GSE112302) of GC and normal epithelial cells. First, by using LASSO, we screened genes that were highly correlated with copy number variations (CNVs). Therefrom, five gene signature (CPVL, DDC, GRTP1, ONECUT2, and PRSS21) was selected by cross-validating the prognosis and risk management with the GC RNA-seq data obtained from GEO and TCGA. Moreover, the correlation analyses between CNVs of these genes and immune cell infiltration in gastric cancer identified CPVL as a potential prognostic marker. Finally, CPVL showed high expression in gastric cancer samples and cell lines, then siRNA-mediated silencing of CPVL expression in gastric cancer cells showed significant proliferation arrest in MGC803 cells. Here, we conclude that CNVs are key regulators of the immune cells infiltration in gastric TME as well as cancer development, and CPVL could potentially be used as a prognostic and therapeutic marker in gastric cancer.
Collapse
Affiliation(s)
- Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Liu
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Chenxu Guo
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - FeiFei Ren
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Youcai Tang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Monti N, Verna R, Piombarolo A, Querqui A, Bizzarri M, Fedeli V. Paradoxical Behavior of Oncogenes Undermines the Somatic Mutation Theory. Biomolecules 2022; 12:662. [PMID: 35625590 PMCID: PMC9138429 DOI: 10.3390/biom12050662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
The currently accepted theory on the influence of DNA mutations on carcinogenesis (the Somatic Mutation Theory, SMT) is facing an increasing number of controversial results that undermine the explanatory power of mutated genes considered as "causative" factors. Intriguing results have demonstrated that several critical genes may act differently, as oncogenes or tumor suppressors, while phenotypic reversion of cancerous cells/tissues can be achieved by modifying the microenvironment, the mutations they are carrying notwithstanding. Furthermore, a high burden of mutations has been identified in many non-cancerous tissues without any apparent pathological consequence. All things considered, a relevant body of unexplained inconsistencies calls for an in depth rewiring of our theoretical models. Ignoring these paradoxes is no longer sustainable. By avoiding these conundrums, the scientific community will deprive itself of the opportunity to achieve real progress in this important biomedical field. To remedy this situation, we need to embrace new theoretical perspectives, taking the cell-microenvironment interplay as the privileged pathogenetic level of observation, and by assuming new explanatory models based on truly different premises. New theoretical frameworks dawned in the last two decades principally focus on the complex interaction between cells and their microenvironment, which is thought to be the critical level from which carcinogenesis arises. Indeed, both molecular and biophysical components of the stroma can dramatically drive cell fate commitment and cell outcome in opposite directions, even in the presence of the same stimulus. Therefore, such a novel approach can help in solving apparently inextricable paradoxes that are increasingly observed in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valeria Fedeli
- Systems Biology Group Lab, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (N.M.); (R.V.); (A.P.); (A.Q.); (M.B.)
| |
Collapse
|
35
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Abstract
Drug resistance and metastasis-the major complications in cancer-both entail adaptation of cancer cells to stress, whether a drug or a lethal new environment. Intriguingly, these adaptive processes share similar features that cannot be explained by a pure Darwinian scheme, including dormancy, increased heterogeneity, and stress-induced plasticity. Here, we propose that learning theory offers a framework to explain these features and may shed light on these two intricate processes. In this framework, learning is performed at the single-cell level, by stress-driven exploratory trial-and-error. Such a process is not contingent on pre-existing pathways but on a random search for a state that diminishes the stress. We review underlying mechanisms that may support this search, and show by using a learning model that such exploratory learning is feasible in a high-dimensional system as the cell. At the population level, we view the tissue as a network of exploring agents that communicate, restraining cancer formation in health. In this view, disease results from the breakdown of homeostasis between cellular exploratory drive and tissue homeostasis.
Collapse
Affiliation(s)
- Aseel Shomar
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Barak
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
- Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
37
|
Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2022; 1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates: small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle. CONCLUSIONS Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body. GENERAL PERSPECTIVE This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.
Collapse
Affiliation(s)
- Anchala I Kuruppu
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka.
| | | | | | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Bandula Prasanna Galhena
- Department Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Priyani Paranagama
- Department of Chemistry, Faculty of Science, University of Kelaniya, Sri Lanka; Institute of Indigenous Medicine, University of Colombo, Sri Lanka
| | - Ranil De Silva
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka
| |
Collapse
|
38
|
Une analyse de la prise de décision médicale lors des réunions de concertations pluridisciplinaires. Bull Cancer 2022; 109:346-357. [DOI: 10.1016/j.bulcan.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
|
39
|
Heng J, Heng HH. Genome Chaos, Information Creation, and Cancer Emergence: Searching for New Frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel) 2021; 13:genes13010101. [PMID: 35052441 PMCID: PMC8774498 DOI: 10.3390/genes13010101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
The year 2021 marks the 50th anniversary of the National Cancer Act, signed by President Nixon, which declared a national “war on cancer.” Powered by enormous financial support, this past half-century has witnessed remarkable progress in understanding the individual molecular mechanisms of cancer, primarily through the characterization of cancer genes and the phenotypes associated with their pathways. Despite millions of publications and the overwhelming volume data generated from the Cancer Genome Project, clinical benefits are still lacking. In fact, the massive, diverse data also unexpectedly challenge the current somatic gene mutation theory of cancer, as well as the initial rationales behind sequencing so many cancer samples. Therefore, what should we do next? Should we continue to sequence more samples and push for further molecular characterizations, or should we take a moment to pause and think about the biological meaning of the data we have, integrating new ideas in cancer biology? On this special anniversary, we implore that it is time for the latter. We review the Genome Architecture Theory, an alternative conceptual framework that departs from gene-based theories. Specifically, we discuss the relationship between genes, genomes, and information-based platforms for future cancer research. This discussion will reinforce some newly proposed concepts that are essential for advancing cancer research, including two-phased cancer evolution (which reconciles evolutionary contributions from karyotypes and genes), stress-induced genome chaos (which creates new system information essential for macroevolution), the evolutionary mechanism of cancer (which unifies diverse molecular mechanisms to create new karyotype coding during evolution), and cellular adaptation and cancer emergence (which explains why cancer exists in the first place). We hope that these ideas will usher in new genomic and evolutionary conceptual frameworks and strategies for the next 50 years of cancer research.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 16 Divinity Ave, Cambridge, MA 02138, USA;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
40
|
Liu Z, Liu L, Guo C, Yu S, Meng L, Zhou X, Han X. Tumor suppressor gene mutations correlate with prognosis and immunotherapy benefit in hepatocellular carcinoma. Int Immunopharmacol 2021; 101:108340. [PMID: 34789428 DOI: 10.1016/j.intimp.2021.108340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The tumor microenvironment (TME) has profound impacts on prognosis and immunotherapy. The TME can be altered by the genomic mutations on specific tumor-suppressor genes (TSG), thus, comprehending the association between TME and TSG in hepatocellular carcinoma (HCC) is imperative. METHODS With a total of 1699 HCC patients from 6 international multicenter cohorts, we delineated the mutational landscape of TSG and summarized the proportion of TSG mutated HCC in different countries. Using the genomic and transcriptomic data, we comprehensively explored the impacts of TSG mutations on TME and immunity in HCC. A dataset of 31 HCC patients from the cBioPortal database was utilized to evaluate the predictive value of TSG subtypes for immunotherapy response. RESULTS Interestingly, TSG non-mutated HCC will have more "immune-hot" tumors, and display the infiltration abundance of immune cells such as B cell, CD4+/CD8+T cell, and neutrophil. Moreover, TSG non-mutated HCC was characterized by the higher expression level of three immune checkpoints, including CD40, CD40LG, and TNFRSF4. In line with the TME characterization and immune checkpoint profiles, TSG non-mutated HCC displayed prolonged overall survival and relapse-free survival, notably, are more likely to respond to immune checkpoint inhibitors. CONCLUSIONS Our findings suggested the TSG subtypes could serve as a promising biomarker for guiding surveillance protocol and immunotherapeutic decisions for patients with HCC.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - ChunGuang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Sun Yu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lingfang Meng
- Department of Infection Management, The Second Affiliated Hospital of Zhengzhou University, China
| | - Xueliang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
41
|
Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Rev Rep 2021; 18:37-55. [PMID: 34714532 DOI: 10.1007/s12015-021-10275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Tumorigenic cells are similar to neural stem cells or embryonic neural cells in regulatory networks, tumorigenicity and pluripotent differentiation potential. By integrating the evidence from developmental biology, tumor biology and evolution, I will make a detailed discussion on the observations and propose that neural stemness underlies two coupled cell properties, tumorigenicity and pluripotent differentiation potential. Neural stemness property of tumorigenic cells can hopefully integrate different observations/concepts underlying tumorigenesis. Neural stem cells and tumorigenic cells share regulatory networks; both exhibit neural stemness, tumorigenicity and pluripotent differentiation potential; both depend on expression or activation of ancestral genes; both rely primarily on aerobic glycolytic metabolism; both can differentiate into various cells/tissues that are derived from three germ layers, leading to tumor formation resembling severely disorganized or more degenerated process of embryonic tissue differentiation; both are enriched in long genes with more splice variants that provide more plastic scaffolds for cell differentiation, etc. Neural regulatory networks, which include higher levels of basic machineries of cell physiological functions and developmental programs, work concertedly to define a basic state with fast cell cycle and proliferation. This is predestined by the evolutionary advantage of neural state, the ground or initial state for multicellularity with adaptation to an ancient environment. Tumorigenesis might represent a process of restoration of neural ground state, thereby restoring a state with fast proliferation and pluripotent differentiation potential in somatic cells. Tumorigenesis and pluripotent differentiation potential might be better understood from understanding neural stemness, and cancer therapy should benefit more from targeting neural stemness.
Collapse
|
42
|
Liu J, Erenpreisa J, Sikora E. Polyploid giant cancer cells: An emerging new field of cancer biology. Semin Cancer Biol 2021; 81:1-4. [PMID: 34695579 DOI: 10.1016/j.semcancer.2021.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | - Ewa Sikora
- Laboratory of Moleuclar Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Personalization of medical treatments in oncology: time for rethinking the disease concept to improve individual outcomes. EPMA J 2021; 12:545-558. [PMID: 34642594 PMCID: PMC8495186 DOI: 10.1007/s13167-021-00254-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
The agenda of pharmacology discovery in the field of personalized oncology was dictated by the search of molecular targets assumed to deterministically drive tumor development. In this perspective, genes play a fundamental "causal" role while cells simply act as causal proxies, i.e., an intermediate between the molecular input and the organismal output. However, the ceaseless genomic change occurring across time within the same primary and metastatic tumor has broken the hope of a personalized treatment based only upon genomic fingerprint. Indeed, current models are unable in capturing the unfathomable complexity behind the outbreak of a disease, as they discard the contribution of non-genetic factors, environment constraints, and the interplay among different tiers of organization. Herein, we posit that a comprehensive personalized model should view at the disease as a "historical" process, in which different spatially and timely distributed factors interact with each other across multiple levels of organization, which collectively interact with a dynamic gene-expression pattern. Given that a disease is a dynamic, non-linear process - and not a static-stable condition - treatments should be tailored according to the "timing-frame" of each condition. This approach can help in detecting those critical transitions through which the system can access different attractors leading ultimately to diverse outcomes - from a pre-disease state to an overt illness or, alternatively, to recovery. Identification of such tipping points can substantiate the predictive and the preventive ambition of the Predictive, Preventive and Personalized Medicine (PPPM/3PM). However, an unusual effort is required to conjugate multi-omics approaches, data collection, and network analysis reconstruction (eventually involving innovative Artificial Intelligent tools) to recognize the critical phases and the relevant targets, which could help in patient stratification and therapy personalization.
Collapse
|
44
|
Jiao F, Guo R, Beckmann JS, Yan Z, Yang Y, Hu J, Wang X, Xie S. Great future or greedy venture: Precision medicine needs philosophy. Health Sci Rep 2021; 4:e376. [PMID: 34541334 PMCID: PMC8439431 DOI: 10.1002/hsr2.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Over the past decade, we have witnessed the initiation and implementation of precision medicine (PM), a discipline that promises to individualize and personalize medical management and treatment, rendering them ultimately more precise and effective. Despite of the continuing advances and numerous clinical applications, the potential of PM remains highly controversial, sparking heated debates about its future. METHOD The present article reviews the philosophical issues and practical challenges that are critical to the feasibility and implementation of PM. OUTCOME The explanation and argument about the relations between PM and computability, uncertainty as well as complexity, show that key foundational assumptions of PM might not be fully validated. CONCLUSION The present analysis suggests that our current understanding of PM is probably oversimplified and too superficial. More efforts are needed to realize the hope that PM has elicited, rather than make the term just as a hype.
Collapse
Affiliation(s)
- Fei Jiao
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Ruoyu Guo
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | | | - Zhonghai Yan
- Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Yun Yang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Jinxia Hu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Xin Wang
- Department of Clinical Laboratory & Center of Health Service Training970 Hospital of the PLA Joint Logistic Support ForceYantaiChina
| | - Shuyang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
45
|
Aranda-Anzaldo A, Dent MAR. Is cancer a disease set up by cellular stress responses? Cell Stress Chaperones 2021; 26:597-609. [PMID: 34031811 PMCID: PMC8275745 DOI: 10.1007/s12192-021-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 09/29/2022] Open
Abstract
For several decades, the somatic mutation theory (SMT) has been the dominant paradigm on cancer research, leading to the textbook notion that cancer is fundamentally a genetic disease. However, recent discoveries indicate that mutations, including "oncogenic" ones, are widespread in normal somatic cells, suggesting that mutations may be necessary but not sufficient for cancer to develop. Indeed, a fundamental but as yet unanswered question is whether or not the first step in oncogenesis corresponds to a mutational event. On the other hand, for some time, it has been acknowledged the important role in cancer progression of molecular processes that participate in buffering cellular stress. However, their role is considered secondary or complementary to that of putative oncogenic mutations. Here we present and discuss evidence that cancer may have its origin in epigenetic processes associated with cellular adaptation to stressful conditions, and so it could be a direct consequence of stress-buffering mechanisms that allow cells with aberrant phenotypes (not necessarily associated with genetic mutations) to survive and propagate within the organism. We put forward the hypothesis that there would be an inverse correlation between the activation threshold of the cellular stress responses (CSRs) and the risk of cancer, so that species or individuals with low-threshold CSRs will display a higher incidence or risk of cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx, México.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx, México
| |
Collapse
|
46
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
47
|
Sherekar S, Viswanathan GA. Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shubhank Sherekar
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| |
Collapse
|
48
|
Blanchard E, Longo G. From axiomatic systems to the Dogmatic gene and beyond. Biosystems 2021; 204:104396. [PMID: 33722644 DOI: 10.1016/j.biosystems.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The positivistic views that dominated the early debate on the foundations of mathematics, at the beginning of the 20th century, survived the "negative results" that have shown the limits of the axiomatic approach since the 1930s. Rigour, abstraction and symbolism have been confused with formalism, based on finite strings of signs, pre-given axioms, and potentially mechanisable rewriting rules. This contributed to major clarifications in the mathematical praxes but obscured the limits of formalisms due to the exclusion of the historical creation of sense proper to any science. We expand on this sometimes fruitful confusion with some case studies. We then hint to the historical creation of sense as a component of an epistemology of mathematics. We continue with an analogy with genocentric approaches in biology, as similar positivistic views resurfaced there fifty years later. Finite sequences of letters in the DNA would completely determine ontogenesis and phylogenesis, according to the Central Dogma of molecular biology. Limits and "negative evidence" have been disregarded while searching for the "gene for" everything. Alternative perspectives require a reconstruction of the sense of history as locus for the constitution of any object of biological knowledge. In particular, the historicity of biological evolution will be understood in terms of changing phase spaces and of the role of rare events in all phylogenetic trajectories. The analysis of the evolutionary production of variability, adaptivity and ecosystemic diversity is a key component of the project we hint to, as part of a renewed relation to the biological environment.
Collapse
Affiliation(s)
- Enka Blanchard
- Digitrust Consortium, Loria, Université de Lorraine, Nancy, France.
| | - Giuseppe Longo
- Centre Cavaillés, République des Savoirs, CNRS and École Normale Supérieure, Paris, France; School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
49
|
Chen J, Yang J, Li H, Yang Z, Zhang X, Li X, Wang J, Zhang Y, Chen S, Song M. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma. Mol Oncol 2021; 15:866-886. [PMID: 33513276 PMCID: PMC8024729 DOI: 10.1002/1878-0261.12910] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022] Open
Abstract
Systematic analysis of tumor-infiltrating lymphocytes is essential for the development of new cancer treatments and the prediction of clinical responses to immunotherapy. Immunomodulatory drugs are used for the treatment of oral squamous cell carcinoma (OSCC), depending on immune infiltration profiles of the tumor microenvironment. In this study, we isolated 11,866 single T cells from tumors and paired adjacent normal tissues of three patients with OSCC. Using single-cell RNA sequencing, we identified 14 distinct T-cell subpopulations within the tumors and 5 T-cell subpopulations in the adjacent normal tissues and delineated their developmental trajectories. Exhausted CD8+ T cells and regulatory CD4+ T cells (CD4+ Tregs) were enriched in OSCC tumors, potentially linked to tumor immunosuppression. Programmed death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) were identified as marker genes in exhausted CD8+ T cells, whereas forkhead box P3 (FOXP3) and CTLA4 were identified as markers of CD4+ Tregs. Furthermore, our data revealed that thymocyte selection-associated high-mobility group box (TOX) may be a key regulator of T-cell dysfunction in the OSCC microenvironment. Overexpression of TOX upregulated expression of genes related to T-cell dysfunction. In vitro experiments demonstrated that cytotoxic activity and proliferation efficiency of CD8+ T cells overexpressing PD-1 or TOX were reduced. Notable, the transcription factor PRDM1 was found to transactivate TOX expression via a binding motif in the TOX promoter. Our findings provide valuable insight into the functional states and heterogeneity of T-cell populations in OSCC that could advance the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingtao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiefeng Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiyuan Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia Wang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
50
|
Salgia R, Kulkarni P, Levine H, Loughlin DT. Quantifying Cancer: More Than Just a Numbers Game. Trends Cancer 2021; 7:267-269. [PMID: 33648875 DOI: 10.1016/j.trecan.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|