1
|
Dewhirst MW. A translational review of hyperthermia biology. Int J Hyperthermia 2025; 42:2447952. [PMID: 39799944 DOI: 10.1080/02656736.2024.2447952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted. The effects of hyperthermia are time and temperature dependent. Because intra-tumoral temperatures are non-uniform in tumors, one has to account for differential biologic effects in different parts of a tumor that occur simultaneously during and after hyperthermia.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Kim J, Lee JS, Noh S, Seo E, Lee J, Kim T, Cho SW, Kim G, Kim SS, Park J. Cellular level cryo-neuromodulation using rapid and localized cooling device combined with microelectrode array. Biosens Bioelectron 2025; 277:117257. [PMID: 39978154 DOI: 10.1016/j.bios.2025.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Cryotherapy, a rapid and effective medical treatment utilizing low temperatures, has not been widely adopted in clinical practice due to a limited understanding of its mechanisms and efficacy. This challenge stems from the absence of methods for fast, precise, and localized spatiotemporal temperature control, as well as the lack of reliable real-time quantitative techniques for measuring and analyzing the effects of cooling. To address these limitations, this study introduces a cryo-neuromodulation platform that integrates a high-speed precision cooling device with a microelectrode array (MEA) system. This platform enables the investigation of cellular-level cryo-modulation of neuronal activity and its effects on surrounding cells, providing a novel framework for advancing research in cryotherapy and neuromodulation. Experiments show that neurons recovered fully within 1 min of cooling with a fast-cooling rate (-20 °C/s at cooling) and that silenced neurons can influence distant cells via a well-organized network. Extended cooling durations (e.g., 10 min) resulted in altered neuronal dynamics, including delayed recovery and reduced burst activity, highlighting the importance of precise control over cooling parameters. This device offers reversible neural control, with potential applications in both research and clinical settings, such as anesthesia, pain management and treatment of neurological disorders like neocortical seizures.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soyeon Noh
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Eunseok Seo
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Gunho Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
3
|
Conti B, de Cabo R. Promoting health and survival through lowered body temperature. NATURE AGING 2025; 5:740-749. [PMID: 40205073 DOI: 10.1038/s43587-025-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
Core body temperature (Tb) is a long-established determinant of longevity across species. In this Perspective, we first summarize evidence demonstrating that reducing Tb increases lifespan and that lowered Tb contributes to the antiaging effects of calorie restriction. Next, we discuss recent data that diverge from prior hypotheses on the mechanisms by which Tb affects longevity, suggesting these are limited neither to the thermodynamics of nonenzymatic chemical reactions, nor reduced formation of mitochondrial reactive oxygen species nor lowered metabolic rate. Instead, recent findings in invertebrates show that cold promotes longevity via specific pathways including nutrient sensing and proteostasis, as well as modulating the thermodynamics of proteins and nucleic acids by changing their structure and function, for example, affecting temperature-sensitive ion channels, long-lived temperature-sensitive dauer mutations, base-pair stability and stem-loop RNA structures. Temperature affects the epigenetic signature and inflammation, and lowering Tb can also induce RNA-binding cold shock proteins, activate cold-sensitive kinases and differential splicing to potentially reshape the cellular environment. Finally, we reflect on important future work and the translational potential of temperature management and temperature mimetics.
Collapse
Affiliation(s)
- Bruno Conti
- San Diego Biomedical Research Institute, San Diego, CA, USA.
| | - Rafael de Cabo
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Muñoz Zamora A, Douglas A, Conway PB, Urrieta E, Moniz T, O'Leary JD, Marks L, Denny CA, Ortega-de San Luis C, Lynch L, Ryan TJ. Cold memories control whole-body thermoregulatory responses. Nature 2025; 641:942-951. [PMID: 40269165 PMCID: PMC12095059 DOI: 10.1038/s41586-025-08902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025]
Abstract
Environmental thermal challenges trigger the brain to coordinate both autonomic and behavioural responses to maintain optimal body temperature1-4. It is unknown how temperature information is precisely stored and retrieved in the brain and how it is converted into a physiological response. Here we investigated whether memories could control whole-body metabolism by training mice to remember a thermal challenge. Mice were conditioned to associate a context with a specific temperature by combining thermoregulatory Pavlovian conditioning with engram-labelling technology, optogenetics and chemogenetics. We report that if mice are returned to an environment in which they previously experienced a 4 °C cold challenge, they increase their metabolic rates regardless of the actual environmental temperature. Furthermore, we show that mice have increased hypothalamic activity when they are exposed to the cold, and that a specific network emerges between the hippocampus and the hypothalamus during the recall of a cold memory. Both natural retrieval and artificial reactivation of cold-sensitive memory engrams in the hippocampus mimic the physiological responses that are seen during a cold challenge. These ensembles are necessary for cold-memory retrieval. These findings show that retrieval of a cold memory causes whole-body autonomic and behavioural responses that enable mice to maintain thermal homeostasis.
Collapse
Affiliation(s)
- Andrea Muñoz Zamora
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aaron Douglas
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Paul B Conway
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Taylor Moniz
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - James D O'Leary
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lydia Marks
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Allen Institute, Seattle, WA, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene (RFMH), New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Gombert-Labedens M, Vesterdorf K, Fuller A, Maloney SK, Baker FC. Effects of menopause on temperature regulation. Temperature (Austin) 2025; 12:92-132. [PMID: 40330614 PMCID: PMC12051537 DOI: 10.1080/23328940.2025.2484499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/08/2025] Open
Abstract
Changes in thermoregulation, notably the emergence of hot flashes, occur during the menopause transition in association with reproductive hormonal changes. Hot flashes constitute the most characteristic symptom of menopause (prevalence of 50-80%), and have a substantial negative effect on quality of life. Here, we review the endocrine changes associated with menopause and the thermoregulatory system and its sensitivity to female sex hormones. We then review current knowledge on the underlying neural mechanisms of hot flashes and how the reproductive and thermoregulatory systems interact in females. We consider the kisspeptin-neurokinin B-dynorphin (KNDy) neuron complex, which becomes hyperactive when estradiol levels decrease. KNDy neurons project from the arcuate nucleus to thermoregulatory areas within the hypothalamic preoptic area, where heat loss mechanisms are triggered, including cutaneous vasodilation and sweating - characteristics of the hot flash. We describe the physiology and measurement of hot flashes and discuss the mixed research findings about thresholds for sweating in symptomatic individuals. We consider the unique situation of hot flashes that arise during sleep, and discuss the relationships between the environment, exercise, and body mass index with hot flashes. We also discuss the unique situation of surgical menopause (with oophorectomy) and cancer therapy, conditions that are associated with frequent, severe, hot flashes. We then provide an overview of treatments of hot flashes, including hormone therapy and targeted neurokinin B-antagonists, recently developed to target the neural mechanism of hot flashes. Finally, we highlight gaps in knowledge about menopausal thermoregulation and hot flashes and suggest future directions for research.
Collapse
Affiliation(s)
| | - Kristine Vesterdorf
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane K. Maloney
- School of Human Sciences, The University of Western Australia, Perth, Australia
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Ladyman SR, Georgescu TR, Stewart AM, Khant Aung Z, Cheong I, Grattan DR, Brown RSE. Prolactin modulation of thermoregulatory circuits provides resilience to thermal challenge of pregnancy. Cell Rep 2025; 44:115567. [PMID: 40215163 DOI: 10.1016/j.celrep.2025.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/23/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Pregnancy represents a significant challenge to thermal homeostasis, with adaptive changes required to cope with the increased generation of metabolic heat. We have investigated the hypothesis that prolactin action in the preoptic area (POA) of the hypothalamus contributes to adaptive changes in thermoregulation during pregnancy. Prolactin receptors (Prlr) are expressed in warm-responding neurons (WRNs) in the POA, and chemogenetic activation of this subpopulation induces profound hypothermia. Adeno-associates virus (AAV)-Cre-mediated deletion of Prlr in the POA results in significant hyperthermia throughout pregnancy, suggesting that prolactin action in the POA is required for appropriate thermoregulation during pregnancy. Moreover, deletion of Prlr in glutamate neurons (including WRNs) results in markedly impaired pup survival when animals were housed at mildly elevated environmental temperatures, demonstrating that prolactin action in the POA provides resilience to thermal challenges in pregnancy. Thus, prolactin has a key role in regulating the thermoregulatory circuits, providing optimal conditions for successful pregnancy.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Teodora R Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew M Stewart
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Abd El Hay MY, Kamm GB, Tlaie Boria A, Siemens J. Diverging roles of TRPV1 and TRPM2 in warm-temperature detection. eLife 2025; 13:RP95618. [PMID: 40215103 PMCID: PMC11991700 DOI: 10.7554/elife.95618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
The perception of innocuous temperatures is crucial for thermoregulation. The TRP ion channels TRPV1 and TRPM2 have been implicated in warmth detection, yet their precise roles remain unclear. A key challenge is the low prevalence of warmth-sensitive sensory neurons, comprising fewer than 10% of rodent dorsal root ganglion (DRG) neurons. Using calcium imaging of >20,000 cultured mouse DRG neurons, we uncovered distinct contributions of TRPV1 and TRPM2 to warmth sensitivity. TRPV1's absence - and to a lesser extent absence of TRPM2 - reduces the number of neurons responding to warmth. Additionally, TRPV1 mediates the rapid, dynamic response to a warmth challenge. Behavioural tracking in a whole-body thermal preference assay revealed that these cellular differences shape nuanced thermal behaviours. Drift diffusion modelling of decision-making in mice exposed to varying temperatures showed that TRPV1 deletion impairs evidence accumulation, reducing the precision of thermal choice, while TRPM2 deletion increases overall preference for warmer environments that wildtype mice avoid. It remains unclear whether TRPM2 in DRG sensory neurons or elsewhere mediates thermal preference. Our findings suggest that different aspects of thermal information, such as stimulation speed and temperature magnitude, are encoded by distinct TRP channel mechanisms.
Collapse
Affiliation(s)
- Muad Y Abd El Hay
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with the Max Planck SocietyFrankfurt am MainGermany
| | - Gretel B Kamm
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
| | - Alejandro Tlaie Boria
- Ernst Strüngmann Institute for Neuroscience in Cooperation with the Max Planck SocietyFrankfurt am MainGermany
| | - Jan Siemens
- Department of Pharmacology, Heidelberg UniversityHeidelbergGermany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| |
Collapse
|
8
|
Cao Z, Yung WH, Ke Y. Repeated activation of preoptic area recipient neurons in posterior paraventricular nucleus mediates chronic heat-induced negative emotional valence and hyperarousal states. eLife 2025; 13:RP101302. [PMID: 40202515 PMCID: PMC11981607 DOI: 10.7554/elife.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.
Collapse
Affiliation(s)
- Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong KongChina
| | - Wing-Ho Yung
- Department of Neuroscience, College of Biomedicine, City University of Hong KongHong KongChina
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong KongChina
| |
Collapse
|
9
|
Kaplan HS, Logeman BL, Zhang K, Yawitz TA, Santiago C, Sohail N, Talay M, Seo C, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory input, sex and function shape hypothalamic cell type development. Nature 2025:10.1038/s41586-025-08603-0. [PMID: 40044853 DOI: 10.1038/s41586-025-08603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/12/2024] [Indexed: 03/12/2025]
Abstract
Mammalian behaviour and physiology undergo major changes in early life. Young animals rely on conspecifics to meet their needs and start showing nutritional independence and sex-specific social interactions at weaning and puberty, respectively. How neuronal populations regulating homeostatic functions and social behaviours develop during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioural control have been identified1-6. These data show a marked diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioural or physiological function of the corresponding cell types. We identify key stages of preoptic development, including early diversification, perinatal emergence of sex differences, postnatal maturation and refinement of signalling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide new insights into the development of neurons controlling homeostatic functions and social behaviours and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tate A Yawitz
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Mustafa Talay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Changwoo Seo
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, Ontario, Canada
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2025; 125:769-780. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Chen B, Gao C, Liu C, Guo T, Hu J, Xue J, Tang K, Chen Y, Yu T, Shen Q, Sun H, Yang WZ, Shen WL. Heat acclimation in mice requires preoptic BDNF neurons and postsynaptic potentiation. Cell Res 2025; 35:224-227. [PMID: 39725738 PMCID: PMC11909230 DOI: 10.1038/s41422-024-01064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Baoting Chen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Cuicui Gao
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Changhao Liu
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Tongtong Guo
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Xue
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China
| | - Kangmin Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongbin Sun
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| | - Wen Z Yang
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| | - Wei L Shen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state in mice slows blood epigenetic aging and prolongs healthspan. NATURE AGING 2025; 5:437-449. [PMID: 40055478 PMCID: PMC11922754 DOI: 10.1038/s43587-025-00830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/03/2025] [Indexed: 03/12/2025]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase healthspan, remain unknown. Here we demonstrate that the activity of a spatially defined neuronal population in the preoptic area, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor-like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves healthspan. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the decelerating effect of TLSs on aging is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the decelerating effects of torpor and hibernation on aging and support the growing body of evidence that Tb is an important mediator of the aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Zhang N, Yu M, Zhao Q, Feng B, Deng Y, Bean JC, Liu Q, Eappen BP, He Y, Conde KM, Liu H, Yang Y, Tu L, Wang M, Li Y, Yin N, Liu H, Han J, Threat DA, Xu N, Smiley T, Xu P, Chen L, Zeng T, He Y, Wang C. Altered thermal preference by preoptic estrogen receptor alpha neurons in postpartum females. Mol Metab 2025; 93:102108. [PMID: 39909189 PMCID: PMC11849645 DOI: 10.1016/j.molmet.2025.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE This study aims to investigate how reproductive experience (RE) alters thermal preference and thermoregulation in female mice, with a focus on estrogen receptor alpha (ERα)-expressing neurons in the preoptic area (POA). METHODS Thermal preference and body temperature were measured in female mice with and without RE, and virgin female mice with selective deletion of ERα from the POA (ERαPOA-KO). The number and activity of ERα-expressing POA neurons (ERαPOA) were assessed using immunohistochemistry and in vitro electrophysiology in response to temperature changes and ERα agonist. RESULTS We showed that female mice prefer a cooler environment starting from late pregnancy and persisting long term postpartum. Female mice with RE (>4 weeks post-weaning) displayed lower body temperature and a lower thermal preferred temperature, and lost preference for warm environments (30 °C) but preserved avoidance of cold environments (15 °C). This was associated with a significant decrease in the number of ERαPOA neurons. Importantly, virgin female ERαPOA-KO mice displayed lower thermal preferred temperature and impaired warm preference, mimicking RE mice. We further found that distinct ERαPOA subpopulations can be regulated by temperature changes with or without presynaptic blockers, and by ERα agonist. More importantly, RE decreased the number of warm-activated ERαPOA neurons and reduced the excitatory effects of warmth and estrogen-ERα signaling, while cold-activated ERαPOA neurons were slightly enhanced in female mice with RE. CONCLUSION Our results support that the thermosensing ability and estrogenic effects in ERαPOA neurons are regulated by reproductive experience, altering thermal preference.
Collapse
Affiliation(s)
- Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qianru Zhao
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA; Department of Biological Chemistry, School of Pharmaceutical Sciences, South-central Minzu University, Wuhan, 430074, China
| | - Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Yue Deng
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin P Eappen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Darah Ave Threat
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Taylor Smiley
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, Hubei 430022, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, Hubei 430022, China; Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, Hubei 430022, China.
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic and Metabolism Control Department, Louisiana State University, Baton Rouge, LA, 70808, USA.
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Heat acclimation induces hypothalamic temperature sensitivity that promotes heat tolerance. Nat Neurosci 2025; 28:220-221. [PMID: 39690322 DOI: 10.1038/s41593-024-01835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
|
15
|
Ohba A, Yamaguchi H. The Art of Chilling Out: How Neurons Regulate Torpor. Bioessays 2025; 47:e202400190. [PMID: 39600072 PMCID: PMC11755697 DOI: 10.1002/bies.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Endothermic animals expend significant energy to maintain high body temperatures, which offers adaptability to varying environmental conditions. However, this high metabolic rate requires increased food intake. In conditions of low environmental temperature and scarce food resources, some endothermic animals enter a hypometabolic state known as torpor to conserve energy. Torpor involves a marked reduction in body temperature, heart rate, respiratory rate, and locomotor activity, enabling energy conservation. Despite their biological significance and potential medical applications, the neuronal mechanisms regulating torpor still need to be fully understood. Recent studies have focused on fasting-induced daily torpor in mice due to their suitability for advanced neuroscientific techniques. In this review, we highlight recent advances that extend our understanding of neuronal mechanisms regulating torpor. We also discuss unresolved issues in this research field and future directions.
Collapse
Affiliation(s)
- Akinobu Ohba
- Department of Cell PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Yamaguchi
- Division of Multicellular Circuit DynamicsNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
16
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2025; 28:346-360. [PMID: 39653806 PMCID: PMC11802458 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
17
|
Adahman Z, Ooyama R, Gashi DB, Medik ZZ, Hollosi HK, Sahoo B, Akowuah ND, Riceberg JS, Carcea I. Hypothalamic Vasopressin Neurons Enable Maternal Thermoregulatory Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634569. [PMID: 40196592 PMCID: PMC11974691 DOI: 10.1101/2025.01.23.634569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Newborns of many mammalian species are partial poikilotherms and require adult thermoregulatory care for survival. In mice, pup survival in cold and cool ambient temperature depends on the ability of adult caregivers to huddle pups and bring them into a high-quality nest. It is therefore essential that adult mice adjust parental care as a function of changes in ambient temperature. Here, we investigated how mouse maternal care adapts to a range of temperatures, from cold to warm. We show that changes in ambient temperature affect several individual and co-parenting maternal behaviors in both dams and virgin female mice, and modulate activity of vasopressin neurons. Furthermore, we establish that the effects of ambient temperature on both maternal care and the activity of vasopressin neurons depend in part on thermosensation, specifically on the TRPM8 sensor. Using trans-synaptic anterograde tracing and whole-brain activity mapping, we find that vasopressin neurons from the paraventricular hypothalamic nucleus connect synaptically with temperature-responsive brain structures implicated in maternal care. We then show that optogenetic activation of vasopressin projections to the central amygdala, a structure activated by cold ambient temperature, recapitulates the effects of cold on co-parenting behaviors. Our data provide a biological mechanism for maternal thermoregulatory behavior in mice with translational relevance to the reported association between ecosystem temperature fluctuations and variations in human child neglect cases.
Collapse
Affiliation(s)
- Zahra Adahman
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Rumi Ooyama
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Dinore B. Gashi
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
| | - Zeyneb Z. Medik
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Bezmialem Vakıf University, Department of Medicine, Instanbul, Turkey
| | - Hannah K. Hollosi
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
| | - Biswaranjan Sahoo
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | - Nana D. Akowuah
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, School of Graduate Studies, Health Sciences Campus, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| | | | - Ioana Carcea
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ, USA
- Rutgers, The State University of New Jersey, Brain Health Institute, Piscataway, NJ, USA
| |
Collapse
|
18
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
19
|
Li J, Zhou Z, Wu Y, Zhao J, Duan H, Peng Y, Wang X, Fan Z, Yin L, Li M, Liu F, Yang Y, Du L, Li J, Zhong H, Hou W, Zhang F, Ma H, Zhang X. Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons. Theranostics 2025; 15:1376-1398. [PMID: 39816678 PMCID: PMC11729562 DOI: 10.7150/thno.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS. Methods: Male C57BL/6 mice (6-8 weeks) and male TRPV1-Cre mice (6-8 weeks) were used in our experiments. The EHS model with or without HA training were established for this study. RNA sequencing, qPCR, immunoblot, immunofluorescent assays, calcium imaging, optogenetic/ chemical genetic intervention, virus tracing, patch clamp, and other methods were employed to investigate the molecular mechanism and neural circuit by which HA training improves the function of the medial preoptic area (mPOA) neurons. Furthermore, a novel exosome-based strategy targeting the central nervous system to deliver irisin, a protective peptide generated by HA, was established to protect against EHS. Results: HA-related neurons in the mPOA expressing transient receptor potential vanilloid-1 (TRPV1) were identified as a population whose activation reduces Tb; inversely, dysfunction of these neurons contributes to hyperthermia and EHS. mPOATRPV1 neurons facilitate vasodilation and reduce adipose tissue thermogenesis, which is associated with their inhibitory projection to the raphe pallidus nucleus (RPa) and dorsal medial hypothalamus (DMH) neurons, respectively. Furthermore, HA improves the function of preoptic heat-sensitive neurons by enhancing TRPV1 expression, and Trpv1 ablation reverses the HA-induced heat tolerance. A central nervous system-targeted exosome strategy to deliver irisin, a protective peptide generated by HA, can promote preoptic TRPV1 expression and exert similar protective effects against EHS. Conclusions: Preoptic TRPV1 neurons could be enhanced by HA, actively contributing to heat defense through the mPOA"DMH/RPa circuit during EHS, which results in the suppression of adipose tissue thermogenesis and facilitation of vasodilatation. A delivery strategy of exosomes engineered with RVG-Lamp2b-Irisin significantly improves the function of mPOATRPV1 neurons, providing a promising preventive strategy for EHS in the future.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Ziqing Zhou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China, 100071
| | - You Wu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jianshuai Zhao
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haokai Duan
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yuliang Peng
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xiaoke Wang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lu Yin
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Mengyun Li
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fuhong Liu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yongheng Yang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lixia Du
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jin Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haixing Zhong
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Wugang Hou
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| |
Collapse
|
20
|
Wang Z, Li L, Li M, Lu Z, Qin L, Naumann RK, Wang H. Chemogenetic Modulation of Preoptic Gabre Neurons Decreases Body Temperature and Heart Rate. Int J Mol Sci 2024; 25:13061. [PMID: 39684772 DOI: 10.3390/ijms252313061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
The preoptic area of the hypothalamus is critical for regulation of brain-body interaction, including circuits that control vital signs such as body temperature and heart rate. The preoptic area contains approximately 70 molecularly distinct cell types. The Gabre gene is expressed in a subset of preoptic area cell types. It encodes the GABA receptor ε-subunit, which is thought to confer resistance to anesthetics at the molecular level, but the function of Gabre cells in the brain remains largely unknown. We generated and have extensively characterized a Gabre-cre knock-in mouse line and used chemogenetic tools to interrogate the function of Gabre cells in the preoptic area. Comparison with macaque GABRE expression revealed the conserved character of Gabre cells in the preoptic area. In awake mice, we found that chemogenetic activation of Gabre neurons in the preoptic area reduced body temperature, whereas chemogenetic inhibition had no effect. Furthermore, chemogenetic inhibition of Gabre neurons in the preoptic area decreased the heart rate, whereas chemogenetic activation had no effect under isoflurane anesthesia. These findings suggest an important role of preoptic Gabre neurons in maintaining vital signs such as body temperature and heart rate during wakefulness and under anesthesia.
Collapse
Affiliation(s)
- Ziyue Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lanxiang Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Li
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Zhonghua Lu
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Robert Konrad Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
21
|
Xing M, Li Y, Zhang Y, Zhou J, Ma D, Zhang M, Tang M, Ouyang T, Zhang F, Shi X, Sun J, Chen Z, Zhang WJ, Zhang S, Xie X. Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits. Nat Commun 2024; 15:8939. [PMID: 39414808 PMCID: PMC11484884 DOI: 10.1038/s41467-024-53258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The paraventricular hypothalamus (PVH) is crucial for food intake control, yet the presynaptic mechanisms underlying PVH neurons remain unclear. Here, we show that RUVBL2 in the PVH is significantly reduced during energy deficit, and knockout (KO) of PVH RUVBL2 results in hyperphagic obesity in mice. RUVBL2-expressing neurons in the PVH (PVHRUVBL2) exert the anorexigenic effect by projecting to the arcuate hypothalamus, the dorsomedial hypothalamus, and the parabrachial complex. We further demonstrate that PVHRUVBL2 neurons form the synaptic connections with POMC and AgRP neurons in the ARC. PVH RUVBL2 KO impairs the excitatory synaptic transmission by reducing presynaptic boutons and synaptic vesicles near active zone. Finally, RUVBL2 overexpression in the PVH suppresses food intake and protects against diet induced obesity. Together, this study demonstrates an essential role for PVH RUVBL2 in food intake control, and suggests that modulation of synaptic plasticity could be an effective way to curb appetite and obesity.
Collapse
Affiliation(s)
- Mingming Xing
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Juemou Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Ouyang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fumiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
22
|
Wang M, Zhang S. High temperatures and traffic accident crimes: Evidence from more than 470,000 offenses in China. ECONOMICS AND HUMAN BIOLOGY 2024; 55:101440. [PMID: 39447467 DOI: 10.1016/j.ehb.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/14/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
How does climate change affect road safety? This study examines the impacts of high temperatures on the crime of causing traffic casualties based on comprehensive data covering more than 470,000 offenses from verdicts published by Chinese courts. Using 2014-2018 city-level daily panel data, we find that a day with a daily maximum temperature above 100 °F leads to a significant 11.9 % increase in traffic accident crime compared with days with a mild temperature. Heterogeneity analyses reveal that people aged 45 and above, samples on weekdays, and samples in regions with high population densities are more vulnerable to the effects of extreme heat. More importantly, we find no lagged or cumulative effects and little evidence of adaptation. Finally, by using traffic congestion index data, we observe that drivers can engage in avoidance behavior on hot days, suggesting that our estimates may provide a lower bound on the effect of extreme heat on traffic accident crime.
Collapse
Affiliation(s)
- Meng Wang
- School of Economics and Management, Harbin Institute of Technology, Shenzhen, China.
| | - Shiying Zhang
- School of Economics and Management, Harbin Institute of Technology, Shenzhen, China.
| |
Collapse
|
23
|
Mani A, Haddad F, Barreda DR, Salinas I. The telencephalon is a neuronal substrate for systemic inflammatory responses in teleosts via polyamine metabolism. Proc Natl Acad Sci U S A 2024; 121:e2404781121. [PMID: 39284055 PMCID: PMC11441480 DOI: 10.1073/pnas.2404781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 10/02/2024] Open
Abstract
Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| | - Farah Haddad
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
24
|
Blomqvist A. Prostaglandin E 2 production in the brainstem parabrachial nucleus facilitates the febrile response. Temperature (Austin) 2024; 11:309-317. [PMID: 39583895 PMCID: PMC11583619 DOI: 10.1080/23328940.2024.2401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 11/26/2024] Open
Abstract
Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop. New evidence suggests how and where this inhibition takes place. In two consecutive studies from Cheng et al. and Xu et al., it has been shown that prostaglandin E2, which generates fever by acting on thermosensory neurons in the preoptic hypothalamus, also acts on neurons in the brainstem parabrachial nucleus, which receive temperature information from temperature-activated spinal cord neurons and relay this information to the thermoregulatory center in the hypothalamus to either induce cold or heat defenses. By acting on the same type of prostaglandin E2 receptor that is critical for fever generation in the preoptic hypothalamus, the EP3 receptor, prostaglandin E2 inhibits the signaling of the heat-responsive parabrachial neurons, while stimulating the cold-responsive neurons. These novel findings thus show that prostaglandin E2, by binding to the same receptor subtype in the parabrachial nucleus as in the preoptic hypothalamus, adjusts the sensitivity of the thermosensory system in a coordinated manner to allow the development of febrile body temperatures.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Raam T, Li Q, Gu L, Elagio G, Lim KY, Zhang X, Correa SM, Hong W. Neural basis of collective social behavior during environmental challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613378. [PMID: 39345632 PMCID: PMC11429680 DOI: 10.1101/2024.09.17.613378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans and animals have a remarkable capacity to collectively coordinate their behavior to respond to environmental challenges. However, the underlying neurobiology remains poorly understood. Here, we found that groups of mice self-organize into huddles at cold ambient temperature during the thermal challenge assay. We found that mice make active (self-initiated) and passive (partner-initiated) decisions to enter or exit a huddle. Using microendoscopic calcium imaging, we found that active and passive decisions are encoded distinctly within the dorsomedial prefrontal cortex (dmPFC). Silencing dmPFC activity in some mice reduced their active decision-making, but also induced a compensatory increase in active decisions by non-manipulated partners, conserving the group's overall huddle time. These findings reveal how collective behavior is implemented in neurobiological mechanisms to meet homeostatic needs during environmental challenges.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Qin Li
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Linfan Gu
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Gabrielle Elagio
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Kayla Y. Lim
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Xingjian Zhang
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Yoshida N, Daikoku T, Nagai Y, Kuniyoshi Y. Emergence of integrated behaviors through direct optimization for homeostasis. Neural Netw 2024; 177:106379. [PMID: 38762941 DOI: 10.1016/j.neunet.2024.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Homeostasis is a self-regulatory process, wherein an organism maintains a specific internal physiological state. Homeostatic reinforcement learning (RL) is a framework recently proposed in computational neuroscience to explain animal behavior. Homeostatic RL organizes the behaviors of autonomous embodied agents according to the demands of the internal dynamics of their bodies, coupled with the external environment. Thus, it provides a basis for real-world autonomous agents, such as robots, to continually acquire and learn integrated behaviors for survival. However, prior studies have generally explored problems pertaining to limited size, as the agent must handle observations of such coupled dynamics. To overcome this restriction, we developed an advanced method to realize scaled-up homeostatic RL using deep RL. Furthermore, several rewards for homeostasis have been proposed in the literature. We identified that the reward definition that uses the difference in drive function yields the best results. We created two benchmark environments for homeostasis and performed a behavioral analysis. The analysis showed that the trained agents in each environment changed their behavior based on their internal physiological states. Finally, we extended our method to address vision using deep convolutional neural networks. The analysis of a trained agent revealed that it has visual saliency rooted in the survival environment and internal representations resulting from multimodal input.
Collapse
Affiliation(s)
- Naoto Yoshida
- Graduate School of Information Science and Technology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Tatsuya Daikoku
- International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence (WPI-IRCN), Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Kuniyoshi
- Graduate School of Information Science and Technology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
27
|
Fatt MP, Zhang MD, Kupari J, Altınkök M, Yang Y, Hu Y, Svenningsson P, Ernfors P. Morphine-responsive neurons that regulate mechanical antinociception. Science 2024; 385:eado6593. [PMID: 39208104 PMCID: PMC7616448 DOI: 10.1126/science.ado6593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Opioids are widely used, effective analgesics to manage severe acute and chronic pain, although they have recently come under scrutiny because of epidemic levels of abuse. While these compounds act on numerous central and peripheral pain pathways, the neuroanatomical substrate for opioid analgesia is not fully understood. By means of single-cell transcriptomics and manipulation of morphine-responsive neurons, we have identified an ensemble of neurons in the rostral ventromedial medulla (RVM) that regulates mechanical nociception in mice. Among these, forced activation or silencing of excitatory RVMBDNF projection neurons mimicked or completely reversed morphine-induced mechanical antinociception, respectively, via a brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)-dependent mechanism and activation of inhibitory spinal galanin-positive neurons. Our results reveal a specific RVM-spinal circuit that scales mechanical nociception whose function confers the antinociceptive properties of morphine.
Collapse
Affiliation(s)
- Michael P. Fatt
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Müge Altınkök
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Yunting Yang
- Division of Neuro, Department of Clinical Neuroscience, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Per Svenningsson
- Division of Neuro, Department of Clinical Neuroscience, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65Stockholm, Sweden
| |
Collapse
|
28
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. eLife 2024; 13:RP98677. [PMID: 39207910 PMCID: PMC11361704 DOI: 10.7554/elife.98677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.
Collapse
|
29
|
Zhou L, Cui X, Mo G, Wei J, Mo M, Zhong Y. Immediate fever during anaesthesia recovery after surgical procedure with scoliosis: A case report and literature review. Int J Surg Case Rep 2024; 121:110027. [PMID: 39003972 DOI: 10.1016/j.ijscr.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Fever is a common clinical symptom in patients with postoperative scoliosis. However, there are rare reports of immediately fevers occurring following operative procedures. CASE PRESENTATION A 15-year-old female with a 1-year history of scoliosis was admitted to the hospital after a health examination. The patient was diagnosed with idiopathic scoliosis and underwent a posterior idiopathic scoliosis procedure and correction for pedicle fixation. The clinical symptoms, including chills, fever, increased heart rate and increased blood pressure, were observed immediately following surgery during anaesthesia recovery. The patient was discharged from the hospital 12 days post-surgery. Over the 90-day follow-up, no chills, fever (≥38 °C), deep tissue infection, or surgery-related complications were reported. This remained consistent for the subsequent 3-year follow-up. CLINICAL DISCUSSION The patient was discharged 12 days after the operation, and no chills or fever (≥38 °C) occurred during the 90-day follow-up. Furthermore, there were no instances of deep tissue infection or any other surgery-related complications throughout the subsequent 3-year follow-up duration. A literature review has performed for this subject by systematic review. We identified only three reports that specifically examined postoperative fever as an observational measure among spine surgical patients. Unfortunately, none of these reports mentioned immediate postoperative fever. CONCLUSION Based on the available clinical data and research evidence, it is recommended to exercise caution when treating patients who experience postoperative chill and fever, as it may be caused by a combination of intraoperative hypothermia and anaesthesia inhibition. While these symptoms may be self-limiting in nature, close monitoring and appropriate management should be implemented to ensure patient safety and to identify any potential complications.
Collapse
Affiliation(s)
- Limin Zhou
- Department of Operating room, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China
| | - Xiumei Cui
- Department of Nursing, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China.
| | - Guixi Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China
| | - Jingsong Wei
- Department of Spine Surgery, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China
| | - Meizhen Mo
- Department of Operating room, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China
| | - Yiyue Zhong
- Department of Operating room, Affiliated Hospital of Guangdong Medical University, No.57 South People Avenue, Zhanjiang 524001, China.
| |
Collapse
|
30
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 PMCID: PMC12007011 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
31
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
32
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
33
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
34
|
Sarubbi J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. Hypothalamic Neuromodulation and Control of the Dermal Surface Temperature of Livestock during Hyperthermia. Animals (Basel) 2024; 14:1745. [PMID: 38929364 PMCID: PMC11200636 DOI: 10.3390/ani14121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.
Collapse
Affiliation(s)
- Juliana Sarubbi
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, Palmeira das Missões 3751, RS, Brazil
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina;
| | - Adriana Olmos-Hernandez
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| |
Collapse
|
35
|
Basu R, Elmendorf AJ, Lorentz B, Mahler CA, Lazzaro O, App B, Zhou S, Yamamoto Y, Suber M, Wann JC, Roh HC, Sheets PL, Johnson TS, Flak JN. Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs. Mol Metab 2024; 84:101951. [PMID: 38729241 PMCID: PMC11112375 DOI: 10.1016/j.molmet.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.
Collapse
Affiliation(s)
- Rashmita Basu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Andrew J Elmendorf
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Betty Lorentz
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Olivia Lazzaro
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Britany App
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shudi Zhou
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yura Yamamoto
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Mya Suber
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Jamie C Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick L Sheets
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Melvin and Bren Simon Comprehensive Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan N Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| |
Collapse
|
36
|
Nagayama S, Hasegawa-Ishii S, Kikuta S. Anesthetized animal experiments for neuroscience research. Front Neural Circuits 2024; 18:1426689. [PMID: 38884008 PMCID: PMC11177690 DOI: 10.3389/fncir.2024.1426689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Brain research has progressed with anesthetized animal experiments for a long time. Recent progress in research techniques allows us to measure neuronal activity in awake animals combined with behavioral tasks. The trends became more prominent in the last decade. This new research style triggers the paradigm shift in the research of brain science, and new insights into brain function have been revealed. It is reasonable to consider that awake animal experiments are more ideal for understanding naturalistic brain function than anesthetized ones. However, the anesthetized animal experiment still has advantages in some experiments. To take advantage of the anesthetized animal experiments, it is important to understand the mechanism of anesthesia and carefully handle the obtained data. In this minireview, we will shortly summarize the molecular mechanism of anesthesia in animal experiments, a recent understanding of the neuronal activities in a sensory system in the anesthetized animal brain, and consider the advantages and disadvantages of the anesthetized and awake animal experiments. This discussion will help us to use both research conditions in the proper manner.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology, Medical School of Nihon University, Tokyo, Japan
| |
Collapse
|
37
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|
38
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589556. [PMID: 38659782 PMCID: PMC11042348 DOI: 10.1101/2024.04.15.589556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (PACAP) neurons firing activity. GABA-A receptor antagonist or genetic deletion of VGAT in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking VGAT resulted in excitation of PACAP neurons and hypothermia. Mice lacking VGAT expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5 °C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic PACAP neurons. Taken together our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic PACAP neurons is the cellular mechanism that triggers this response.
Collapse
|
39
|
Tagawa N, Mori K, Koebis M, Aiba A, Iino Y, Tsuneoka Y, Funato H. Activation of lateral preoptic neurons is associated with nest-building in male mice. Sci Rep 2024; 14:8346. [PMID: 38594484 PMCID: PMC11004109 DOI: 10.1038/s41598-024-59061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.
Collapse
Affiliation(s)
- Natsuki Tagawa
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Keita Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Atsu Aiba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Hiromasa Funato
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
40
|
Amaz SA, Shahid MAH, Chaudhary A, Jha R, Mishra B. Embryonic thermal manipulation reduces hatch time, increases hatchability, thermotolerance, and liver metabolism in broiler embryos. Poult Sci 2024; 103:103527. [PMID: 38412748 PMCID: PMC10907853 DOI: 10.1016/j.psj.2024.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
The broilers' health and growth performance are affected by egg quality, incubation conditions, and posthatch management. Broilers are more susceptible to heat stress because they have poor thermoregulatory capacity. So, it is crucial to develop a strategy to make chicks thermotolerant and cope with heat stress in post-hatch life. This study investigated the effects of embryonic thermal manipulation (TM) on different hatching parameters (hatch time, hatchability, and hatch weight), brain thermotolerance, and liver metabolism. Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5°C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19-21, standard temperature, 37.5°C) and 236 eggs were incubated at a standard temperature (37.5°C) till hatch. The samples were collected from the Control and TM groups on ED 15 and 18 of the embryonic periods. Hatchability was significantly higher (P < 0.05) in the TM group (94.50%) than in the control group (91.0%). Hatch weight did not differ significantly between the TM group (50.54 g) and the Control group (50.39 g). Most importantly, hatch time was significantly lower (P < 0.05) in the TM group than in the Control. In the D15 embryo brain, the mRNA expression of TRPV1,TRPV2, TRPV3, and the epigenetic marker H3K27 were significantly lower (P < 0.05) in the TM group compared to the Control group. However, in the D18 brain, the expression of TRPV1, TRPV2, and CRHR1 was significantly higher (P < 0.05) in the TM group than in the Control group. In the liver, the mRNA expression of SLC6A14 was significantly lower (P < 0.05) in the D15 TM group than in the D15 Control group. Conversely, the DIO3 mRNA expression was significantly higher (P < 0.05) in the D15 TM group than in the D15 Control group. The expression of GPX3, FOXO1, IGF2, and GHR in the liver was significantly higher in the D18 TM group compared to the D18 Control group (P < 0.05). In conclusion, increased expression of the aforementioned markers during the later embryonic period has been linked to reduced hatch time by increasing liver metabolism and thermotolerance capacity in the brain.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Md Ahosanul Haque Shahid
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, 96822.
| |
Collapse
|
41
|
Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules 2024; 14:424. [PMID: 38672441 PMCID: PMC11048226 DOI: 10.3390/biom14040424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.
Collapse
Affiliation(s)
- Theresa Harvey
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
42
|
Jayne L, Lavin-Peter A, Roessler J, Tyshkovskiy A, Antoszewski M, Ren E, Markovski A, Sun S, Yao H, Sankaran VG, Gladyshev VN, Brooke RT, Horvath S, Griffith EC, Hrvatin S. A torpor-like state (TLS) in mice slows blood epigenetic aging and prolongs healthspan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585828. [PMID: 38585858 PMCID: PMC10996477 DOI: 10.1101/2024.03.20.585828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (Tb) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased Tb. Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that Tb is an important mediator of aging processes.
Collapse
Affiliation(s)
- Lorna Jayne
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Present address: Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Aurora Lavin-Peter
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Julian Roessler
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erika Ren
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Aleksandar Markovski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steve Horvath
- Epigenetic Clock Development Foundation, Torrance, CA, USA
- Altos Labs, Cambridge, UK
| | - Eric C. Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Sinisa Hrvatin
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
43
|
Geng Y, Chen G, Cao R, Dai H, Hu Z, Yu S, Wang L, Zhu L, Xiang H, Zhu M. A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing. NANO-MICRO LETTERS 2024; 16:152. [PMID: 38466482 PMCID: PMC10928041 DOI: 10.1007/s40820-024-01345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 03/13/2024]
Abstract
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical. However, patients suffering from skin damage are struggling with the surrounding scene and situational awareness. Here, we report an interactive self-regulation electronic system by mimicking the human thermos-reception system. The skin-inspired self-adaptive system is composed of two highly sensitive thermistors (thermal-response composite materials), and a low-power temperature control unit (Laser-induced graphene array). The biomimetic skin can realize self-adjusting in the range of 35-42 °C, which is around physiological temperature. This thermoregulation system also contributed to skin barrier formation and wound healing. Across wound models, the treatment group healed ~ 10% more rapidly compared with the control group, and showed reduced inflammation, thus enhancing skin tissue regeneration. The skin-inspired self-adaptive system holds substantial promise for next-generation robotic and medical devices.
Collapse
Affiliation(s)
- Yaqi Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Hongmei Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Le Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
44
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
45
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
46
|
Mason AE, Kasl P, Soltani S, Green A, Hartogensis W, Dilchert S, Chowdhary A, Pandya LS, Siwik CJ, Foster SL, Nyer M, Lowry CA, Raison CL, Hecht FM, Smarr BL. Elevated body temperature is associated with depressive symptoms: results from the TemPredict Study. Sci Rep 2024; 14:1884. [PMID: 38316806 PMCID: PMC10844227 DOI: 10.1038/s41598-024-51567-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/06/2024] [Indexed: 02/07/2024] Open
Abstract
Correlations between altered body temperature and depression have been reported in small samples; greater confidence in these associations would provide a rationale for further examining potential mechanisms of depression related to body temperature regulation. We sought to test the hypotheses that greater depression symptom severity is associated with (1) higher body temperature, (2) smaller differences between body temperature when awake versus asleep, and (3) lower diurnal body temperature amplitude. Data collected included both self-reported body temperature (using standard thermometers), wearable sensor-assessed distal body temperature (using an off-the-shelf wearable sensor that collected minute-level physiological data), and self-reported depressive symptoms from > 20,000 participants over the course of ~ 7 months as part of the TemPredict Study. Higher self-reported and wearable sensor-assessed body temperatures when awake were associated with greater depression symptom severity. Lower diurnal body temperature amplitude, computed using wearable sensor-assessed distal body temperature data, tended to be associated with greater depression symptom severity, though this association did not achieve statistical significance. These findings, drawn from a large sample, replicate and expand upon prior data pointing to body temperature alterations as potentially relevant factors in depression etiology and may hold implications for development of novel approaches to the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Ashley E Mason
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA.
| | - Patrick Kasl
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Severine Soltani
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Abigail Green
- Neurosciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Wendy Hartogensis
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Stephan Dilchert
- Department of Management, Zicklin School of Business, Baruch College, The City University of New York, New York, NY, USA
| | | | - Leena S Pandya
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Chelsea J Siwik
- Department of Wellness and Preventative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Simmie L Foster
- Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Maren Nyer
- Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Charles L Raison
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Frederick M Hecht
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L Smarr
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
47
|
Henning Y, Adam K, Gerhardt P, Begall S. Hypoxic and hypercapnic burrow conditions lead to downregulation of free triiodothyronine and hematocrit in Ansell's mole-rats (Fukomys anselli). J Comp Physiol B 2024; 194:33-40. [PMID: 38059996 PMCID: PMC10940439 DOI: 10.1007/s00360-023-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
African mole-rats live in self-dug burrow systems under hypoxic and hypercapnic conditions. Adaptations to hypoxia include suppression of resting metabolic rate (RMR) and core body temperature (Tb). Because the thyroid hormones (THs) thyroxine (T4) and triiodothyronine (T3) are positive regulators of RMR and Tb, we hypothesized that serum TH concentrations would also be downregulated under hypoxic conditions. To test this hypothesis, we kept Ansell's mole-rats (Fukomys anselli) in terraria filled with soil in which they were allowed to construct underground burrows to achieve chronic intermittent hypoxia and hypercapnia. The animals stayed in these hypoxic and hypercapnic burrows voluntarily, although given the choice to stay aboveground. We collected blood samples before and after treatment to measure serum T4 and T3 concentrations as well as hematological parameters. The free fraction of the transcriptionally-active T3 was significantly decreased after treatment, indicating that cellular TH signaling was downregulated via peripheral mechanisms, consistent with the assumption that aerobic metabolism is downregulated under hypoxic conditions. Furthermore, we found that hematocrit and hemoglobin concentrations were also downregulated after treatment, suggesting that oxygen demand decreases under hypoxia, presumably due to the metabolic shift towards anaerobic metabolism. Taken together, we have identified a potential upstream regulator of physiological adaptations to hypoxia in these highly hypoxia-tolerant animals.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Kamilla Adam
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Patricia Gerhardt
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Hare MT, Carter ME, Swoap SJ. Activation of oxytocinergic neurons enhances torpor in mice. J Comp Physiol B 2024; 194:95-104. [PMID: 38170253 DOI: 10.1007/s00360-023-01528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.
Collapse
Affiliation(s)
- Maia T Hare
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, MA, 01267, USA.
| |
Collapse
|
49
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
50
|
Niu C, Yue X, An JJ, Bass R, Xu H, Xu B. Genetic Dissection of BDNF and TrkB Expression in Glial Cells. Biomolecules 2024; 14:91. [PMID: 38254691 PMCID: PMC10813193 DOI: 10.3390/biom14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase receptor B (TrkB) are widely expressed in the central nervous system. It is well documented that neurons express BDNF and full-length TrkB (TrkB.FL) as well as a lower level of truncated TrkB (TrkB.T). However, there are conflicting reports regarding the expression of BDNF and TrkB in glial cells, particularly microglia. In this study, we employed a sensitive and reliable genetic method to characterize the expression of BDNF and TrkB in glial cells in the mouse brain. We utilized three Cre mouse strains in which Cre recombinase is expressed in the same cells as BDNF, TrkB.FL, or all TrkB isoforms, and crossed them to Cre-dependent reporter mice to label BDNF- or TrkB-expressing cells with soma-localized EGFP. We performed immunohistochemistry with glial cell markers to examine the expression of BDNF and TrkB in microglia, astrocytes, and oligodendrocytes. Surprisingly, we found no BDNF- or TrkB-expressing microglia in examined CNS regions, including the somatomotor cortex, hippocampal CA1, and spinal cord. Consistent with previous studies, most astrocytes only express TrkB.T in the hippocampus of adult brains. Moreover, there are a small number of astrocytes and oligodendrocytes that express BDNF in the hippocampus, the function of which is to be determined. We also found that oligodendrocyte precursor cells, but not mature oligodendrocytes, express both TrkB.FL and TrkB.T in the hippocampus of adult mice. These results not only clarify the expression of BDNF and TrkB in glial cells but also open opportunities to investigate previously unidentified roles of BDNF and TrkB in astrocytes and oligodendrocytes.
Collapse
Affiliation(s)
- Changran Niu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xinpei Yue
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Juan Ji An
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
| | - Robert Bass
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
| | - Baoji Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA; (C.N.); (X.Y.); (J.J.A.); (R.B.); (H.X.)
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|