1
|
Cinnamon E, Stein I, Zino E, Rabinovich S, Shovman Y, Schlesinger Y, Salame TM, Reich-Zeliger S, Albrecht T, Roessler S, Schirmacher P, Lotem M, Ben-Neriah Y, Parnas O, Pikarsky E. RORc-expressing immune cells negatively regulate tertiary lymphoid structure formation and support their pro-tumorigenic functions. J Hepatol 2025; 82:1050-1067. [PMID: 39710149 DOI: 10.1016/j.jhep.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND & AIMS RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy. In liver cancer, some TLSs are pro-tumorigenic as they harbor tumor progenitor cells and support their growth. The processes involved in TLS development and acquisition of pro- or anti-tumorigenic roles are largely unknown. This study aims to explore the role of RORc-expressing cells in TLS development in the context of inflammation-associated liver cancer. METHODS IKKβ(EE)Hep mice, exhibiting chronic liver inflammation, TLS formation and liver cancer, were crossed with RORc knockout mice to explore RORc's effect on TLS and tumor formation. TLS phenotypes were analyzed using transcriptional, proteomic, and immunohistochemical techniques. CD4, CD8, and B-cell depletions were used to assess their contribution to liver TLS and tumor formation. RESULTS RORc-expressing cells are detected within TLSs of both human patients and mice developing intrahepatic cholangiocarcinoma. In mice, these cells negatively regulate TLS formation, as excess TLSs form in their absence. CD4 cells are essential for liver TLS formation, while B cells are required for TLS formation specifically in the absence of RORc-expressing cells. Importantly, in chronically inflamed livers lacking RORc-expressing cells, TLSs become anti-tumorigenic, reducing tumor load. Anti-tumorigenic TLSs revealed enrichment of exhausted CD8 cells with effector functions, germinal center B cells and plasma cells. B cells are key in limiting tumor development, possibly via tumor-directed antibodies. CONCLUSIONS RORc-expressing cells negatively regulate B-cell responses and facilitate the pro-tumorigenic functions of hepatic TLSs. IMPACT AND IMPLICATIONS RORc-expressing immune cells play critical roles in immune regulation, yet their specific influence on tertiary lymphoid structures (TLSs) in liver pathology and cancer has not been elucidated. Our study reveals that RORc-expressing cells act as negative regulators of TLS formation and shape the immune microenvironment in a manner that promotes tumor development. In the absence of RORc-expressing cells, TLSs not only increase in number but also acquire anti-tumorigenic properties. These findings suggest that RORc-expressing cells serve as key modulators of liver immune dynamics, with potential implications for the use of RORc as a biomarker to differentiate between pro- and anti-tumorigenic immune environments and as a target for manipulating TLS abundance and phenotype in liver cancer.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ilan Stein
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elvira Zino
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Stav Rabinovich
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yehuda Shovman
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
2
|
Chen Y, Ren L, Xu X, Sun Z, Dai M, Li Y, Ma X, Li J. RAF1 in AgRP neurons involved in the regulation of energy metabolism via the MAPK signaling pathway. J Biomed Res 2025; 39:1-19. [PMID: 40432214 DOI: 10.7555/jbr.39.20250114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
V-raf-leukemia viral oncogene 1(RAF1), a serine/threonine protein kinase, is universally acknowledged to play a crucial role in tumorigenesis and cell development. However, the specific role of hypothalamic RAF1 in regulating energy metabolism remains unknown. In this study, we found that the expression of RAF1 was significantly increased in hypothalamic AgRP neurons of diet induced obesity (DIO) mice. Under normal chow diet (NCD) feeding, over-expression of Raf1 in AgRP neurons leads to obesity in mice characterized by increased body weight, fat mass, and impaired glucose tolerance. Conversely, knock-out of the Raf1 gene in AgRP neurons protects against DIO, reducing fat mass and improving glucose tolerance. Mechanistically, Raf1 activates the MAPK signaling pathway, culminating in cAMP response element-binding protein (CREB) phosphorylation, which enhances transcription of Agrp and Npy. Insulin stimulation further potentiates the RAF1-MEK1/2-ERK1/2-CREB axis, highlighting RAF1's role in integrating hormonal and nutritional signals to regulate energy balance. Collectively, these findings underscore the important role of RAF1 in AgRP neurons in maintaining the energy homeostasis and obesity pathogenesis, positioning it and its downstream pathways as potential therapeutic targets for innovative strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuqian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lianci Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Clinical Center for Reproductive Medicine, First Afffliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xinyi Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhenning Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingxi Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Clinical Center for Reproductive Medicine, First Afffliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Dillard KE, Zhang H, Dubbs LZ, Chou CW, Terrace C, Javanmardi K, Kim W, Forsberg KJ, Finkelstein IJ. Mechanism of Cas9 inhibition by AcrIIA11. Nucleic Acids Res 2025; 53:gkaf318. [PMID: 40277083 PMCID: PMC12022753 DOI: 10.1093/nar/gkaf318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025] Open
Abstract
Mobile genetic elements evade CRISPR-Cas adaptive immunity by encoding anti-CRISPR proteins (Acrs). Acrs inactivate CRISPR-Cas systems via diverse mechanisms but generally coevolve with a narrow subset of Cas effectors that share high sequence similarity. Here, we demonstrate that AcrIIA11 inhibits Streptococcus pyogenes (Sp), Staphylococcus aureus (Sa), and Francisella novicida (Fn) Cas9s in vitro and in human cells. Single-molecule imaging reveals that AcrIIA11 hinders SaCas9 target search by reducing its diffusion on nonspecific DNA. DNA cleavage is inhibited because the AcrIIA11:SaCas9 complex binds to protospacer adjacent motif (PAM)-rich off-target sites, preventing SaCas9 from reaching its target. AcrIIA11 also greatly slows down DNA cleavage after SaCas9 reaches its target site. A negative-stain electron microscopy reconstruction of an AcrIIA11:SaCas9 RNP complex reveals that the heterodimer assembles with a 1:1 stoichiometry. Physical AcrIIA11-Cas9 interactions across type IIA and IIB Cas9s correlate with nuclease inhibition and support its broad-spectrum activity. These results add a kinetic inhibition mechanism to the phage-CRISPR arms race.
Collapse
Affiliation(s)
- Kaylee E Dillard
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Hongshan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Lianne Z Dubbs
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Chia-Wei Chou
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Cynthia Terrace
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Kamyab Javanmardi
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Wantae Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Kevin J Forsberg
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
4
|
Lou Z, Zhang Y, Liang X, Cao M, Ma Y, Chen PR, Fan X. Deep-Red and Ultrafast Photocatalytic Proximity Labeling Empowered In Situ Dissection of Tumor-Immune Interactions in Primary Tissues. J Am Chem Soc 2025; 147:9716-9726. [PMID: 40036744 DOI: 10.1021/jacs.4c17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Immunotherapy efficacy in solid tumors varies greatly, influenced by the tumor microenvironment (TME) and the dynamic tumor-immune interactions within it. Decoding these interactions in situ with minimal interference with native tissue architecture and delicate immune responses is critical for understanding tumor progression and optimizing therapeutic strategies. Here, we introduce CAT-Tissue, a novel deep-red photocatalytic proximity labeling method that enables ultrafast, high-resolution profiling of tumor-immune interactions in primary tissues. By leveraging nanobody-Chlorin e6 as the photocatalyst and biotin-aniline as the probe, CAT-Tissue enabled the rapid and comprehensive detection of various tumor-immune interactions in both coculture systems and primary tumor sections. Coupled with bulk RNA-sequencing, CAT-Tissue revealed distinct gene expression patterns between tumor-neighboring and tumor-distal lymphocytes, highlighting the recognition and immune responses of tumor-neighboring CD8+ T cells, which exhibited activated, effector, and exhausted phenotypes. By leveraging a deep-red photocatalytic proximity cell labeling strategy with excellent tissue penetration and biocompatibility, CAT-Tissue offers a nongenetically encoded platform with high sensitivity and spatiotemporal controllability for rapid profiling tumor-immune interactions within complex tissue environments in situ, which may advance our understanding of tumor immunology and guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Zhizheng Lou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Zhang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Liang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mengrui Cao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yicong Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Wang W, Li X, Hu R, Dong L, Pei S, Jin L, Gao Q, Chen X, Yin M. BET inhibitor in combination with BCG vaccine enhances antitumor efficacy and orchestrates T cell reprogramming for melanoma. Cell Rep Med 2025; 6:101995. [PMID: 40107246 PMCID: PMC11970395 DOI: 10.1016/j.xcrm.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Immunotherapy shows remarkable benefits in treating melanoma, yet existing approaches achieve limited overall responses. Here, we show that a combination of bromodomain and extra-terminal protein family inhibitor, NHWD-870, and Bacillus Calmette-Guérin vaccine is a promising therapeutic strategy for melanomas. Single-cell transcriptome analyses and functional experiments show that the combination therapy significantly inhibited tumor growth by reprogramming T cells toward an immune-activated state, enhancing their cytotoxicity, preventing their exhaustion, and increasing the recruitment of them into the tumor microenvironment. We identify the molecule, MT1, as a direct downstream target of BRD4, which is effectively suppressed by NHWD-870. Furthermore, our findings are reinforced by a humanized patient-derived xenograft (PDX) model, which exhibits notable antitumor effects in humanized tumor-bearing mice treated with the combination therapy. Our study underscores the immense potential of this therapeutic approach for clinical practice, offering promising prospects in overcoming the limitations of current treatments.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing 404100, China; Translational Medicine Research Center (TMRC), School of Medicine Chongqing University, Shapingba, Chongqing 400000, China.
| | - Rui Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Shiyao Pei
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liping Jin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Qian Gao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
6
|
Sinclair LV, Youdale T, Spinelli L, Gakovic M, Langlands AJ, Pathak S, Howden AJM, Ganley IG, Cantrell DA. Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells. Nat Immunol 2025; 26:429-443. [PMID: 40016525 PMCID: PMC11876071 DOI: 10.1038/s41590-025-02090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
Autophagy shapes CD8 T cell fate; yet the timing, triggers and targets of this process are poorly defined. Herein, we show that naive CD8 T cells have high autophagic flux, and we identify an autophagy checkpoint whereby antigen receptor engagement and inflammatory cytokines acutely repress autophagy by regulating amino acid transporter expression and intracellular amino acid delivery. Activated T cells with high levels of amino acid transporters have low autophagic flux in amino-acid-replete conditions but rapidly reinduce autophagy when amino acids are restricted. A census of proteins degraded and fueled by autophagy shows how autophagy shapes CD8 T cell proteomes. In cytotoxic T cells, dominant autophagy substrates include cytolytic effector molecules, and amino acid and glucose transporters. In naive T cells, mitophagy dominates and selective mitochondrial pruning supports the expression of molecules that coordinate T cell migration and survival. Autophagy thus differentially prunes naive and effector T cell proteomes and is dynamically repressed by antigen receptors and inflammatory cytokines to shape T cell differentiation.
Collapse
Affiliation(s)
- Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Tom Youdale
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Milica Gakovic
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alistair J Langlands
- National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, UK
| | - Shalini Pathak
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G Ganley
- MRC PPU, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
7
|
Alves E, Currenti J, Crawford K, Chopra A, Ram R, Barnett L, Read JF, Al-kaabi M, James I, Carlson JM, Eton M, Stelmach S, Deshpande P, Pilkinton MA, McDonnell WJ, Bosco A, Mallal SA, John M, Kalams SA, Gaudieri S. HIV-1 adapts to HLA class II-associated selection pressure exerted by CD4 + and CD8 + T cells. SCIENCE ADVANCES 2025; 11:eadr4238. [PMID: 39951541 PMCID: PMC11827868 DOI: 10.1126/sciadv.adr4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Developing an effective HIV-1 vaccine is a global health priority, but HIV-1 mutational escape from T cells poses a challenge. While escape from human leukocyte antigen class I (HLA-I)-restricted CD8+ T cells is well characterized, less is known about HLA-II-restricted T cell escape. We used computational methods to identify 149 sites across the HIV-1 clade B genome under HLA-II-associated selection. Functional assays, including activation-induced intracellular cytokine staining and enzyme-linked immunospot for interferon-γ, revealed diverse mechanisms of HIV-1 adaptation to HLA-II-associated immune pressure, ranging from loss to sustained antigen recognition. T cell receptor and RNA sequencing demonstrated variable clonotype overlap of T cell clones to recognize adapted versus non-adapted peptides, with cells targeting adapted peptides exhibiting a dysfunctional transcriptomic state. Moreover, incorporating HLA-II-associated adaptation strengthened the correlation between Gag-specific viral adaptation and poor disease outcomes. Last, we mapped viral regions prone to HLA-II-associated adaptation and found that these adaptations can increase in frequency within populations.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Keeley Crawford
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James F. Read
- Asthma and Airway Disease Research Center, The BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Max Eton
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Stelmach
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J. McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, The BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Simon A. Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Shinkawa T, Chang E, Rakib T, Cavallo K, Lai R, Behar SM. CD226 identifies effector CD8 + T cells during tuberculosis and costimulates recognition of Mycobacterium tuberculosis-infected macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634303. [PMID: 39896604 PMCID: PMC11785225 DOI: 10.1101/2025.01.22.634303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
CD8+ T cells defend against Mycobacterium tuberculosis (Mtb) infection but variably recognize Mtb-infected macrophages. To define how the diversity of lung parenchymal CD8+ T cells changes during chronic infection, cells from C57BL/6J mice infected for 6- and 41-weeks were analyzed by scRNA-seq. We identified an effector lineage, including a cluster that expresses high levels of cytotoxic effectors and cytokines, and dysfunctional lineage that transcriptionally resembles exhausted T cells. The most significant differentially expressed gene between two distinct CD8+ T cell lineages is CD226. Mtb-infected IFNγ-eYFP reporter mice revealed IFNγ production is enriched in CD226+CD8+ T cells, confirming these as functional T cells in vivo. Purified CD226+ but not CD226- CD8+ T cells recognize Mtb-infected macrophages, and CD226 blockade inhibits IFNγ and granzyme B production. Thus, CD226 costimulation is required for efficient CD8+ T cell recognition of Mtb-infected macrophages, and its expression identifies CD8+ T cells that recognize Mtb-infected macrophages.
Collapse
Affiliation(s)
- Tomoyo Shinkawa
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Evelyn Chang
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Tasfia Rakib
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rocky Lai
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Maurer K, Park CY, Mani S, Borji M, Raths F, Gouin KH, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Lawson MJ, Fabani M, Neuberg DS, Bachireddy P, Glezer EN, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy. Sci Immunol 2025; 10:eadr0782. [PMID: 39854478 DOI: 10.1126/sciimmunol.adr0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded ZNF683+ CD8+ cytotoxic T lymphocytes with in vitro specificity for patient-matched AML. These cells originated primarily from the DLI product and appeared to coordinate antitumor immune responses through interaction with diverse immune cell types within the marrow microenvironment. Nonresponders lacked this cross-talk and had cytotoxic T lymphocytes with elevated TIGIT expression. Our study identifies recipient bone marrow microenvironment differences as a determinant of an effective antileukemia response and opens opportunities to modulate cellular therapy.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cameron Y Park
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shouvik Mani
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Mehdi Borji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Yinuo Jin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jia Yi Zhang
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Crystal Shin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - James R Brenner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Krishna
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wesley Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haoxiang Lyu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Domenic Abbondanza
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Chanell Mangum
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pavan Bachireddy
- Department of Hematopoietic Biology & Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elham Azizi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
10
|
Masuda K, Iketani S, Liu L, Huang J, Qiao Y, Shah J, McNairy ML, Groso C, Ricupero C, Loffredo LF, Wang Q, Purpura L, Coelho-dos-Reis JGA, Sheng Z, Yin MT, Tsuji M. Distinct CD8 + T-cell types Associated with COVID-19 Severity in Unvaccinated HLA-A2 + Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632164. [PMID: 39868279 PMCID: PMC11761488 DOI: 10.1101/2025.01.12.632164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although emerging data have revealed the critical role of memory CD8+ T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8+ T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8+ T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity. Single-cell analyses of HLA-A2-restricted CD8+ T cells, which recognize highly conserved immunodominant SARS-CoV-2-specific epitopes, demonstrate divergent profiles in unvaccinated patients with mild versus severe disease. CD8+ T-cell types including cytotoxic KLRB1 + CD8αα cells with innate-like T-cell signatures, IFNG hi ID3 hi memory cells and IL7R + proliferative stem cell-like memory cells are preferentially observed in mild COVID-19, whereas distinct terminally-differentiated T-cell subsets are predominantly detected in severe COVID-19: highly activated FASL hi T-cell subsets and early-terminated or dysfunctional IL4R + GATA3 + stem cell-like memory T-cell subset. In conclusion, our findings suggest that unique and contrasting SARS-CoV-2-specific CD8+ T-cell profiles may dictate COVID-19 severity.
Collapse
Affiliation(s)
- Kazuya Masuda
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yujie Qiao
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jayesh Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Meredith L. McNairy
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christine Groso
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christopher Ricupero
- Center for Dental & Craniofacial Regeneration, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qian Wang
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Purpura
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
11
|
Liu S, Feng C, Tan L, Zhang D, Li YX, Han Y, Wang C. Single-cell dissection of multifocal bladder cancer reveals malignant and immune cells variation between primary and recurrent tumor lesions. Commun Biol 2024; 7:1659. [PMID: 39702554 DOI: 10.1038/s42003-024-07343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Bladder carcinoma (BLCA) is characterized by a high rate of post-surgery recurrence and multifocality. Multifocal tumors have a higher risk of recurrence compared to single tumors, significantly impacting bladder cancer-specific mortality. However, the interregional or intraregional heterogeneity within both primary and recurrent tumors remains poorly understood. Here, we employed single-cell RNA sequencing to analyze tumor lesions from five multifocal bladder cancer patients comprising three primary tumors and two recurrent tumors. Our findings revealed that malignant cells derived from recurrent multifocal bladder cancer exhibited higher interregional transcriptional similarity and consistent cellular communication. Furthermore, our analysis uncovered that malignant cells from recurrent tumors may evade immune destruction by suppressing cytokine responses and natural killer cell activity. Notably, we identified a preference for the expression of the tryptophan metabolic enzyme IL4I1 on SPP1+ macrophages in recurrent tumors. Functional analyses have revealed that IL4I1 may promotes tumor progression in recurrent tumors by activating the aryl hydrocarbon receptor (AHR) and recruiting regulatory T cells to suppress adaptive immunity. Taken together, our study provides a comprehensive understanding of primary and recurrent multifocal bladder tumors, offering valuable resources for analyzing the multifocality and recurrence of bladder cancer.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Linyi Tan
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
12
|
Hänggi K, Li J, Gangadharan A, Liu X, Celias DP, Osunmakinde O, Keske A, Davis J, Ahmad F, Giron A, Anadon CM, Gardner A, DeNardo DG, Shaw TI, Beg AA, Yu X, Ruffell B. Interleukin-1α release during necrotic-like cell death generates myeloid-driven immunosuppression that restricts anti-tumor immunity. Cancer Cell 2024; 42:2015-2031.e11. [PMID: 39577420 PMCID: PMC11631672 DOI: 10.1016/j.ccell.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Necroptosis can promote antigen-specific immune responses, suggesting induced necroptosis as a therapeutic approach for cancer. Here we sought to determine the mechanism of immune activation but found the necroptosis mediators RIPK3 and MLKL dispensable for tumor growth in genetic and implantable models of breast or lung cancer. Surprisingly, inducing necroptosis within established breast tumors generates a myeloid suppressive microenvironment that inhibits T cell function, promotes tumor growth, and reduces survival. This was dependent upon the release of the nuclear alarmin interleukin-1α (IL-1α) by dying cells. Critically, IL-1α release occurs during chemotherapy and targeting this molecule reduces the immunosuppressive capacity of tumor myeloid cells and promotes CD8+ T cell recruitment and effector function. Neutralizing IL-1α enhances the efficacy of single agent paclitaxel or combination therapy with PD-1 blockade in preclinical models. Low IL1A levels correlates with positive patient outcome in several solid malignancies, particularly in patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Achintyan Gangadharan
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxian Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua Davis
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Auriane Giron
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Li X, Yi H, Jin Z, Jiang K, Xue K, Wang J, Qian Y, Xiang Q, Zhu S, Yan R, Yang Y, Sun S, Li K, Zhou Z, Yu W, Jiang N, Ding C, Lin X, Zhong J, Dong Y, Liu Y, Yu X. MCRS1 sensitizes T cell-dependent immunotherapy by augmenting MHC-I expression in solid tumors. J Exp Med 2024; 221:e20240959. [PMID: 39545935 PMCID: PMC11572484 DOI: 10.1084/jem.20240959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Dampened antigen presentation underscores the resistance of pancreatic cancer to T cell-mediated anti-tumor immunity, rendering immunotherapy largely ineffective. By high-throughput CRISPR activation perturbation, we discovered that the transcriptional regulator MCRS1 significantly augmented the sensitivity of mouse pancreatic cancer cells to T cell immunity in vitro and in vivo. Mechanistically, MCRS1 interacted with the transcription factor and genome organizer YY1 to coordinately increase the chromatin accessibility and expression of MHC-I genes. Elevated MCRS1 subverted MHC-I suppression and activated anti-tumor T cells, which sensitized mouse pancreatic cancer to α-PD-1 therapy. Remarkably, high MCRS1 expression was associated with increased T cell infiltration and extended survival of patients with pancreatic cancer and was predictive of favorable responses to α-PD-1 therapy in patients with lung cancer. Together, our study uncovers that MCRS1 sensitizes cancer cells to T cell immunity by transcriptionally subverting MHC-I suppression, which enhances the effectiveness of α-PD-1 therapy in mice and humans, paving the way to further improve immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheyu Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Kaitao Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Kangkang Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuping Qian
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Xiang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sijing Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Runhe Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Yang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shenfei Sun
- Zhongshan Hospital, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zichu Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinhua Lin
- Zhongshan Hospital, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
| |
Collapse
|
14
|
James SE, Chen S, Ng BD, Fischman JS, Jahn L, Boardman AP, Rajagopalan A, Elias HK, Massa A, Manuele D, Nichols KB, Lazrak A, Lee N, Roche AM, McFarland AG, Petrichenko A, Everett JK, Bushman FD, Fei T, Kousa AI, Lemarquis AL, DeWolf S, Peled JU, Vardhana SA, Klebanoff CA, van den Brink MRM. Leucine zipper-based immunomagnetic purification of CAR T cells displaying multiple receptors. Nat Biomed Eng 2024; 8:1592-1614. [PMID: 39715901 PMCID: PMC11917073 DOI: 10.1038/s41551-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2024] [Indexed: 12/25/2024]
Abstract
Resistance to chimaeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms, most notably antigen loss and tumour-induced immune suppression. It has been suggested that T cells expressing multiple CARs may overcome the resistance of tumours and that T cells expressing receptors that switch inhibitory immune-checkpoint signals into costimulatory signals may enhance the activity of the T cells in the tumour microenvironment. However, engineering multiple features into a single T cell product is difficult because of the transgene-packaging constraints of current gene-delivery vectors. Here we describe a cell-sorting method that leverages leucine zippers for the selective single-step immunomagnetic purification of cells co-transduced with two vectors. Such 'Zip sorting' facilitated the generation of T cells simultaneously expressing up to four CARs and coexpressing up to three 'switch' receptors. In syngeneic mouse models, T cells with multiple CARs and multiple switch receptors eliminated antigenically heterogeneous populations of leukaemia cells coexpressing multiple inhibitory ligands. By combining diverse therapeutic strategies, Zip-sorted multi-CAR multi-switch-receptor T cells can overcome multiple mechanisms of CAR T cell resistance.
Collapse
Affiliation(s)
- Scott E James
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| | - Sophia Chen
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Brandon D Ng
- Weill Cornell Medical College, New York, NY, USA
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Jacob S Fischman
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenz Jahn
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Alexander P Boardman
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adhithi Rajagopalan
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Harold K Elias
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alyssa Massa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Dylan Manuele
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina Petrichenko
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I Kousa
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Andri L Lemarquis
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- City of Hope National Medical Center, Duarte, CA, USA
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Santosha A Vardhana
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
15
|
Zhu Z, Luo Y, Lou G, Yihunie K, Wizzard S, DeVilbiss AW, Muh S, Ma C, Shinde SS, Hoar J, Hu T, Zhang N, Biswal S, DeBerardinis RJ, Wu T, Yao C. The redox sensor KEAP1 facilitates adaptation of T cells to chronic antigen stimulation by preventing hyperactivation. Sci Immunol 2024; 9:eadk2954. [PMID: 39612322 DOI: 10.1126/sciimmunol.adk2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 07/10/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
During persistent antigen stimulation, exhausted CD8+ T cells are continuously replenished by self-renewing stem-like T cells. However, how CD8+ T cells adapt to chronic stimulation remains unclear. Here, we show that persistent antigen stimulation primes chromatin for regulation by the redox-sensing KEAP1-NRF2 pathway. Loss of KEAP1 in T cells impaired control of chronic viral infection. T cell-intrinsic KEAP1 suppressed NRF2 to promote expansion and persistence of virus-specific CD8+ T cells, drive a stem-like T cell response, down-regulate immune checkpoint molecules, and limit T cell receptor (TCR) hyperactivation and apoptosis. NRF2 epigenetically derepressed BACH2 targets and opposed a stem-like program driven by BACH2. In exhausted T cells induced by tonic GD2 chimeric antigen receptor (CAR) signaling, the effects of KEAP1 deficiency were rescued by inhibiting proximal TCR signaling. Enhancing mitochondrial oxidation improved the expansion and survival of KEAP1-deficient CD8+ GD2 CAR T cells and up-regulated markers associated with stem-like cells. Thus, the KEAP1-NRF2 axis regulates stem-like CD8+ T cells and long-term T cell immunity during chronic antigen exposure.
Collapse
Affiliation(s)
- Ziang Zhu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Immunology PhD Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Luo
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guohua Lou
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kiddist Yihunie
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cancer Biology PhD Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Safuwra Wizzard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Immunology PhD Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew W DeVilbiss
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology, & Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sejal S Shinde
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan Hoar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taidou Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nu Zhang
- Department of Microbiology, Immunology, & Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
- Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern, Dallas, TX 75225, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cellular Networks in Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake C, Pardoll D. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. eLife 2024; 13:RP96812. [PMID: 39565188 DOI: 10.7554/elife.96812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paolo D A Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Charles Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Drew Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
17
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Li Y, Xu Z, Qi Z, Huang X, Li M, Liu S, Yan Y, Gao M. Application of Carbon Nanomaterials to Enhancing Tumor Immunotherapy: Current Advances and Prospects. Int J Nanomedicine 2024; 19:10899-10915. [PMID: 39479174 PMCID: PMC11524014 DOI: 10.2147/ijn.s480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advances in tumor immunotherapy have highlighted the pivotal role of carbon nanomaterials, such as carbon dots, graphene quantum dots, and carbon nanotubes. This review examines the unique benefits of these materials in cancer treatment, focusing on their mechanisms of action within immunotherapy. These include applications in immunoregulation, recognition, and enhancement. We explore how these nanomaterials when combined with specific biomolecules, can form immunosensors. These sensors are engineered for highly sensitive and specific detection of tumor markers, offering crucial support for early diagnosis and timely therapeutic interventions. This review also addresses significant challenges facing carbon nanomaterials in clinical settings, such as issues related to long-term biocompatibility and the hurdles of clinical translation. These challenges require extensive ongoing research and discussion. This review is of both theoretical and practical importance, aiming to promote using carbon nanomaterials in tumor immunotherapy, potentially transforming clinical outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingyu Li
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, People’s Republic of China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Hansen SB, Unal B, Kuzu OF, Saatcioglu F. Immunological facets of prostate cancer and the potential of immune checkpoint inhibition in disease management. Theranostics 2024; 14:6913-6934. [PMID: 39629128 PMCID: PMC11610136 DOI: 10.7150/thno.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 12/06/2024] Open
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in men and a major cause of cancer-related deaths. Whereas localized PCa can be cured by surgery and radiotherapy, metastatic disease can be treated, but is not curable. Inhibition of androgen signaling remains the main therapeutic intervention for treatment of metastatic PCa, in addition to chemotherapy, radionuclide therapy and emerging targeted therapies. Although initial responses are favorable, resistance to these therapies invariably arise with development of castration resistant PCa (CRPC) and lethal phenotypes. Recent findings have implicated the crosstalk between PCa cells and the tumor microenvironment (TME) as a key factor for disease progression and metastasis, and the immune system is becoming an increasingly attractive target for therapy. Given the striking success of immune checkpoint inhibitors (ICIs) in various cancer types, preclinical and clinical studies have begun to explore their potential in PCa. It has become clear that the PCa TME is largely immunosuppressive, and ICI therapy does not have efficacy for PCa. Intense effort is therefore being made in the field to understand the mechanisms of suppression and to turn the immunosuppressive TME into an immune active one that would enable ICI efficacy. Herein we examine this recent body of knowledge and how the mutational landscape of PCa integrates with an immunosuppressive TME to circumvent ICI-mediated T-cell activity and tumor killing. We then review the emerging potential success of combinatorial ICI approaches, utility of careful patient selection, and potential novel strategies to improve the efficacy of ICI for PCa therapy.
Collapse
Affiliation(s)
| | - Bilal Unal
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Omer Faruk Kuzu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kabir AU, Zeng C, Subramanian M, Wu J, Kim M, Krchma K, Wang X, Halabi CM, Pan H, Wickline SA, Fremont DH, Artyomov MN, Choi K. ZBTB46 coordinates angiogenesis and immunity to control tumor outcome. Nat Immunol 2024; 25:1546-1554. [PMID: 39134750 DOI: 10.1038/s41590-024-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/16/2024] [Indexed: 09/01/2024]
Abstract
Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome1. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs)2,3, controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth. Zbtb46 downregulation led to a hallmark pro-tumor microenvironment (TME), including dysfunctional vasculature and immunosuppressive conditions. Analysis of human cancer data revealed a similar association of low ZBTB46 expression with an immunosuppressive TME and a worse prognosis. In contrast, enforced Zbtb46 expression led to TME changes to restrict tumor growth. Mechanistically, Zbtb46-deficient endothelial cells were highly angiogenic, and Zbtb46-deficient bone marrow progenitors upregulated Cebpb and diverted the DC program to immunosuppressive myeloid lineage output, potentially explaining the myeloid lineage skewing phenomenon in cancer4. Conversely, enforced Zbtb46 expression normalized tumor vessels and, by suppressing Cebpb, skewed bone marrow precursors toward immunostimulatory myeloid lineage output, leading to an immune-hot TME. Remarkably, Zbtb46 mRNA treatment synergized with anti-PD1 immunotherapy to improve tumor management in preclinical models. These findings identify ZBTB46 as a critical factor for angiogenesis and for myeloid lineage skewing in cancer and suggest that maintaining its expression could have therapeutic benefits.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carisa Zeng
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Madhav Subramanian
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Minseo Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
22
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
23
|
Pouxvielh K, Marotel M, Drouillard A, Villard M, Moreews M, Bossan A, Poiget M, Khoryati L, Benezech S, Fallone L, Hamada S, Rousseaux N, Picq L, Rocca Y, Berton A, Teixeira M, Mathieu AL, Ainouze M, Hasan U, Fournier A, Thaunat O, Marçais A, Walzer T. Tumor-induced natural killer cell dysfunction is a rapid and reversible process uncoupled from the expression of immune checkpoints. SCIENCE ADVANCES 2024; 10:eadn0164. [PMID: 39196934 PMCID: PMC11352832 DOI: 10.1126/sciadv.adn0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
Natural killer (NK) cells often become dysfunctional during tumor progression, but the molecular mechanisms underlying this phenotype remain unclear. To explore this phenomenon, we set up mouse lymphoma models activating or not activating NK cells. Both tumor types elicited type I interferon production, leading to the expression of a T cell exhaustion-like signature in NK cells, which included immune checkpoint proteins (ICPs). However, NK cell dysfunction occurred exclusively in the tumor model that triggered NK cell activation. Moreover, ICP-positive NK cells demonstrated heightened reactivity compared to negative ones. Furthermore, the onset of NK cell dysfunction was swift and temporally dissociated from ICPs induction, which occurred as a later event during tumor growth. Last, NK cell responsiveness was restored when stimulation was discontinued, and interleukin-15 had a positive impact on this reversion. Therefore, our data demonstrate that the reactivity of NK cells is dynamically controlled and that NK cell dysfunction is a reversible process uncoupled from the expression of ICPs.
Collapse
Affiliation(s)
- Kévin Pouxvielh
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
- Sanofi Oncology Research, Vitry-Sur-Seine, France
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Anna Bossan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Mathilde Poiget
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Liliane Khoryati
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sarah Benezech
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Lucie Fallone
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sarah Hamada
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Noémi Rousseaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Louis Picq
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marine Teixeira
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | | | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
24
|
Li M. IKZF2 Degradation: It's Time to Take into Account it When Designing Cereblon-Based PROTACs. Chembiochem 2024; 25:e202400365. [PMID: 38802326 DOI: 10.1002/cbic.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) has become a very important means of protein degradation and a new way of disease treatment. In particular, PROTACs constructed with ligands for E3 ligase cereblon account for more than 90 % of the PROTACs currently in clinical research. Notably, CRBN ligands themselves are a class of molecular glue compounds capable of degrading neo-substrate proteins. Compared to the target proteins degradation, the degradation of neo-substrates, especially IKZF2, has not received enough attention. Therefore, this review summarizes the currently published IKZF2 degraders derived from articles and patents, which are conducive to the design of PROTACs with desired IKZF2 degradation from the perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Minglei Li
- Chemical Biology Center, School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- School of Pharmaceutical Sciences & Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, 250117, Shandong, China
| |
Collapse
|
25
|
Jackson CM, Pant A, Dinalankara W, Choi J, Jain A, Nitta R, Yazigi E, Saleh L, Zhao L, Nirschl TR, Kochel CM, Hwa-Lin Bergsneider B, Routkevitch D, Patel K, Cho KB, Tzeng S, Neshat SY, Kim YH, Smith BJ, Ramello MC, Sotillo E, Wang X, Green JJ, Bettegowda C, Li G, Brem H, Mackall CL, Pardoll DM, Drake CG, Marchionni L, Lim M. The cytokine Meteorin-like inhibits anti-tumor CD8 + T cell responses by disrupting mitochondrial function. Immunity 2024; 57:1864-1877.e9. [PMID: 39111315 PMCID: PMC11324406 DOI: 10.1016/j.immuni.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ayush Pant
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wikum Dinalankara
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Saleh
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Stephany Tzeng
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Y Neshat
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Cecilia Ramello
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jordan J Green
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal L Mackall
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
26
|
Cillo AR, Cardello C, Shan F, Karapetyan L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi A, Workman CJ, Kirkwood JM, Bruno TC, Vignali DAA. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8 + T cells to promote antitumor immunity. Cell 2024; 187:4373-4388.e15. [PMID: 39121849 PMCID: PMC11346583 DOI: 10.1016/j.cell.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024]
Abstract
Relatlimab (rela; anti-LAG-3) plus nivolumab (nivo; anti-PD-1) is safe and effective for treatment of advanced melanoma. We designed a trial (NCT03743766) where advanced melanoma patients received rela, nivo, or rela+nivo to interrogate the immunologic mechanisms of rela+nivo. Analysis of biospecimens from this ongoing trial demonstrated that rela+nivo led to enhanced capacity for CD8+ T cell receptor signaling and altered CD8+ T cell differentiation, leading to heightened cytotoxicity despite the retention of an exhaustion profile. Co-expression of cytotoxic and exhaustion signatures was driven by PRDM1, BATF, ETV7, and TOX. Effector function was upregulated in clonally expanded CD8+ T cells that emerged after rela+nivo. A rela+nivo intratumoral CD8+ T cell signature was associated with a favorable prognosis. This intratumoral rela+nivo signature was validated in peripheral blood as an elevated frequency of CD38+TIM3+CD8+ T cells. Overall, we demonstrated that cytotoxicity can be enhanced despite the retention of exhaustion signatures, which will inform future therapeutic strategies.
Collapse
Affiliation(s)
- Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology (ISB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lilit Karapetyan
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cindy Sander
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Rush
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ryan C Massa
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anjali Rohatgi
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M Kirkwood
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Yu H, Nishio H, Barbi J, Mitchell-Flack M, Vignali PDA, Zheng Y, Lebid A, Chang KY, Fu J, Higgins M, Huang CT, Zhang X, Li Z, Blosser L, Tam A, Drake CG, Pardoll DM. Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578284. [PMID: 38352414 PMCID: PMC10862906 DOI: 10.1101/2024.01.31.578284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Collapse
Affiliation(s)
- Hong Yu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroshi Nishio
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joseph Barbi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paolo D A Vignali
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: University of Pittsburgh, Carnegie Mellon
| | - Ying Zheng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kwang-Yu Chang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Juan Fu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Makenzie Higgins
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ching-Tai Huang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116044, China
| | - Lee Blosser
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Current address: Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Immunology and Hematopoiesis Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Thakore PI, Schnell A, Huang L, Zhao M, Hou Y, Christian E, Zaghouani S, Wang C, Singh V, Singaraju A, Krishnan RK, Kozoriz D, Ma S, Sankar V, Notarbartolo S, Buenrostro JD, Sallusto F, Patsopoulos NA, Rozenblatt-Rosen O, Kuchroo VK, Regev A. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H17 cells. Nat Immunol 2024; 25:1395-1410. [PMID: 39009838 DOI: 10.1038/s41590-024-01901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Alexandra Schnell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Linglin Huang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Maryann Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chao Wang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anvita Singaraju
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh Kumar Krishnan
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deneen Kozoriz
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venkat Sankar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
29
|
Li H, Han Z, Sun Y, Wang F, Hu P, Gao Y, Bai X, Peng S, Ren C, Xu X, Liu Z, Chen H, Yang Y, Bo X. CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection. Nat Commun 2024; 15:5997. [PMID: 39013885 PMCID: PMC11252405 DOI: 10.1038/s41467-024-50426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.
Collapse
Affiliation(s)
- Hao Li
- Academy of Military Medical Sciences, Beijing, China
| | - Zebei Han
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yu Sun
- Academy of Military Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Pengzhen Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuang Gao
- Department of Hematology, PLA General Hospital, the Fifth Medical Center, Beijing, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing, China
| | - Shiyu Peng
- Academy of Military Medical Sciences, Beijing, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing, China
| | - Zeyu Liu
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China.
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
30
|
Tooley K, Jerby L, Escobar G, Krovi SH, Mangani D, Dandekar G, Cheng H, Madi A, Goldschmidt E, Lambden C, Krishnan RK, Rozenblatt-Rosen O, Regev A, Anderson AC. Pan-cancer mapping of single CD8 + T cell profiles reveals a TCF1:CXCR6 axis regulating CD28 co-stimulation and anti-tumor immunity. Cell Rep Med 2024; 5:101640. [PMID: 38959885 PMCID: PMC11293343 DOI: 10.1016/j.xcrm.2024.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
CD8+ T cells must persist and function in diverse tumor microenvironments to exert their effects. Thus, understanding common underlying expression programs could better inform the next generation of immunotherapies. We apply a generalizable matrix factorization algorithm that recovers both shared and context-specific expression programs from diverse datasets to a single-cell RNA sequencing (scRNA-seq) compendium of 33,161 CD8+ T cells from 132 patients with seven human cancers. Our meta-single-cell analyses uncover a pan-cancer T cell dysfunction program that predicts clinical non-response to checkpoint blockade in melanoma and highlights CXCR6 as a pan-cancer marker of chronically activated T cells. Cxcr6 is trans-activated by AP-1 and repressed by TCF1. Using mouse models, we show that Cxcr6 deletion in CD8+ T cells increases apoptosis of PD1+TIM3+ cells, dampens CD28 signaling, and compromises tumor growth control. Our study uncovers a TCF1:CXCR6 axis that counterbalances PD1-mediated suppression of CD8+ cell responses and is essential for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Katherine Tooley
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Livnat Jerby
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulia Escobar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - S Harsha Krovi
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide Mangani
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gitanjali Dandekar
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanning Cheng
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella Goldschmidt
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Conner Lambden
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana C Anderson
- The Gene Lay Institute of Immunology and Inflammation of Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Seel K, Schirrmann RL, Stowitschek D, Ioseliani T, Roiter L, Knierim A, André MC. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Cancer Immunol Immunother 2024; 73:180. [PMID: 38967649 PMCID: PMC11226419 DOI: 10.1007/s00262-024-03766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.
Collapse
Affiliation(s)
- Katharina Seel
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Ronja Larissa Schirrmann
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Daniel Stowitschek
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Tamar Ioseliani
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Lea Roiter
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Alina Knierim
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany
| | - Maya C André
- Department of Pediatric Hematology and Oncology, University Children´s Hospital, Eberhard Karls University, Hoppe-Seyler-Str.1, 72076, Tuebingen, Germany.
- Division of Respiratory and Critical Care Medicine, University Children`s Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Wang B, Wang K, Wu D, Sahni S, Jiang P, Ruppin E. Decoupling the correlation between cytotoxic and exhausted T lymphocyte states enhances melanoma immunotherapy response prediction. iScience 2024; 27:109926. [PMID: 38832027 PMCID: PMC11145333 DOI: 10.1016/j.isci.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Cytotoxic T lymphocyte (CTL) and terminal exhausted T lymphocyte (ETL) activities crucially influence immune checkpoint inhibitor (ICI) response. Despite this, the efficacy of ETL and CTL transcriptomic signatures for response prediction remains limited. Investigating this across the TCGA and publicly available single-cell cohorts, we find a strong positive correlation between ETL and CTL expression signatures in most cancers. We hence posited that their limited predictability arises due to their mutually canceling effects on ICI response. Thus, we developed DETACH, a computational method to identify a gene set whose expression pinpoints to a subset of melanoma patients where the CTL and ETL correlation is low. DETACH enhances CTL's prediction accuracy, outperforming existing signatures. DETACH signature genes activity also demonstrates a positive correlation with lymphocyte infiltration and the prevalence of reactive T cells in the tumor microenvironment (TME), advancing our understanding of the CTL cell state within the TME.
Collapse
Affiliation(s)
- Binbin Wang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Sahil Sahni
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD USA
| |
Collapse
|
33
|
Voltarelli VA, Amano MT, Tobias GC, Borges GS, Oliveira da Paixão A, Pereira MG, Saraiva Câmara NO, Caldeira W, Ribeiro AF, Otterbein LE, Negrão CE, Turner JE, Brum PC, Camargo AA. Moderate-intensity aerobic exercise training improves CD8 + tumor-infiltrating lymphocytes effector function by reducing mitochondrial loss. iScience 2024; 27:110121. [PMID: 38957793 PMCID: PMC11217614 DOI: 10.1016/j.isci.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mariane Tami Amano
- Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, SP, Brazil
| | - Gabriel Cardial Tobias
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Gabriela Silva Borges
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcelo Gomes Pereira
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Waldir Caldeira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - Alberto Freitas Ribeiro
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carlos Eduardo Negrão
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Heart Institute, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - James Edward Turner
- Department for Health, University of Bath, Bath, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Patricia Chakur Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
34
|
Zhang J, Li J, Hou Y, Lin Y, Zhao H, Shi Y, Chen K, Nian C, Tang J, Pan L, Xing Y, Gao H, Yang B, Song Z, Cheng Y, Liu Y, Sun M, Linghu Y, Li J, Huang H, Lai Z, Zhou Z, Li Z, Sun X, Chen Q, Su D, Li W, Peng Z, Liu P, Chen W, Huang H, Chen Y, Xiao B, Ye L, Chen L, Zhou D. Osr2 functions as a biomechanical checkpoint to aggravate CD8 + T cell exhaustion in tumor. Cell 2024; 187:3409-3426.e24. [PMID: 38744281 DOI: 10.1016/j.cell.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kaiyun Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Bingying Yang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zengfang Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Liu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yueyue Linghu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixin Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China.
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
35
|
Hayward B, Kumari D, Santra S, van Karnebeek CDM, van Kuilenburg ABP, Usdin K. All three MutL complexes are required for repeat expansion in a human stem cell model of CAG-repeat expansion mediated glutaminase deficiency. Sci Rep 2024; 14:13772. [PMID: 38877099 PMCID: PMC11178883 DOI: 10.1038/s41598-024-64480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~ 120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLβ, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.
Collapse
Affiliation(s)
- Bruce Hayward
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Clara D M van Karnebeek
- Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam Gastro-Enterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen Usdin
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Hayward B, Kumari D, Santra S, van Karnebeek CD, van Kuilenburg AB, Usdin K. All three MutL complexes are required for repeat expansion in a human stem cell model of CAG-repeat expansion mediated glutaminase deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573357. [PMID: 38260514 PMCID: PMC10802475 DOI: 10.1101/2023.12.26.573357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLβ, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.
Collapse
Affiliation(s)
- Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, United Kingdom
| | - Clara D.M. van Karnebeek
- Amsterdam UMC location University of Amsterdam, Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- United for Metabolic Diseases, The Netherlands
| | - André B.P. van Kuilenburg
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Blaya-Cánovas JL, Griñán-Lisón C, Blancas I, Marchal JA, Ramírez-Tortosa C, López-Tejada A, Benabdellah K, Cortijo-Gutiérrez M, Cano-Cortés MV, Graván P, Navarro-Marchal SA, Gómez-Morales J, Delgado-Almenta V, Calahorra J, Agudo-Lera M, Sagarzazu A, Rodríguez-González CJ, Gallart-Aragón T, Eich C, Sánchez-Martín RM, Granados-Principal S. Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy. Mol Cancer 2024; 23:83. [PMID: 38730475 PMCID: PMC11084007 DOI: 10.1186/s12943-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. METHODS NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. RESULTS We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. CONCLUSIONS These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.
Collapse
Grants
- PRDJA19001BLAY Fundación Científica Asociación Española Contra el Cáncer
- POSTDOC_21_638 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- RTI2018.101309B-C22 Ministerio de Ciencia, Innovación y Universidades
- FPU19/04450 Ministerio de Ciencia, Innovación y Universidades
- DOC_01686 Consejería de Transformación Económica, Industria, Conocimiento y Universidades
- PI19/01533 Instituto de Salud Carlos III
- P29/22/02 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- José L Blaya-Cánovas
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén, 23007, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- UGC de Oncología, Hospital Universitario San Cecilio, Granada, 18016, Spain
- Department of Medicine, University of Granada, Granada, 18016, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM), University of Granada, Granada, 18100, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - César Ramírez-Tortosa
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- UGC de Anatomía Patológica, Hospital San Cecilio, Granada, 18016, Spain
| | - Araceli López-Tejada
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Marina Cortijo-Gutiérrez
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - M Victoria Cano-Cortés
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Pablo Graván
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Department of Applied Physics, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Saúl A Navarro-Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, 18100, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM), University of Granada, Granada, 18100, Spain
- Department of Applied Physics, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT-CSIC-UGR, Armilla, 18100, Spain
| | - Violeta Delgado-Almenta
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Jesús Calahorra
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén, 23007, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - María Agudo-Lera
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Amaia Sagarzazu
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | | | - Tania Gallart-Aragón
- Department of Medicine, University of Granada, Granada, 18016, Spain
- UGC de Cirugía General y del Aparato Digestivo, Hospital Universitario San Cecilio, Granada, 18016, Spain
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Rosario M Sánchez-Martín
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, 18100, Spain.
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain.
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, 18071, Spain.
| |
Collapse
|
38
|
Thomas MF, Slowikowski K, Manakongtreecheep K, Sen P, Samanta N, Tantivit J, Nasrallah M, Zubiri L, Smith NP, Tirard A, Ramesh S, Arnold BY, Nieman LT, Chen JH, Eisenhaure T, Pelka K, Song Y, Xu KH, Jorgji V, Pinto CJ, Sharova T, Glasser R, Chan P, Sullivan RJ, Khalili H, Juric D, Boland GM, Dougan M, Hacohen N, Li B, Reynolds KL, Villani AC. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat Med 2024; 30:1349-1362. [PMID: 38724705 PMCID: PMC11673812 DOI: 10.1038/s41591-024-02895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.
Collapse
Affiliation(s)
- Molly Fisher Thomas
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA.
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA.
| | - Kamil Slowikowski
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Kasidet Manakongtreecheep
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nandini Samanta
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Mazen Nasrallah
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Medicine, North Shore Physicians Group, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Leyre Zubiri
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Eisenhaure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vjola Jorgji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Glasser
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Harvard Medical School, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Kerry L Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Ramakrishnan A, Piehl N, Simonton B, Parikh M, Zhang Z, Teregulova V, van Olst L, Gate D. Epigenetic dysregulation in Alzheimer's disease peripheral immunity. Neuron 2024; 112:1235-1248.e5. [PMID: 38340719 PMCID: PMC11031321 DOI: 10.1016/j.neuron.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The peripheral immune system in Alzheimer's disease (AD) has not been thoroughly studied with modern sequencing methods. To investigate epigenetic and transcriptional alterations to the AD peripheral immune system, we used single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing. We reveal a striking amount of open chromatin in peripheral immune cells in AD. In CD8 T cells, we uncover a cis-regulatory DNA element co-accessible with the CXC motif chemokine receptor 3 gene promoter. In monocytes, we identify a novel AD-specific RELA transcription factor binding site adjacent to an open chromatin region in the nuclear factor kappa B subunit 2 gene. We also demonstrate apolipoprotein E genotype-dependent epigenetic changes in monocytes. Surprisingly, we also identify differentially accessible chromatin regions in genes associated with sporadic AD risk. Our findings provide novel insights into the complex relationship between epigenetics and genetic risk factors in AD peripheral immunity.
Collapse
Affiliation(s)
- Abhirami Ramakrishnan
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Natalie Piehl
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brooke Simonton
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milan Parikh
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyang Zhang
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Teregulova
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
40
|
Maurer K, Park CY, Mani S, Borji M, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Neuberg DS, Bachireddy P, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated Immune Cell Networks in the Bone Marrow Microenvironment Define the Graft versus Leukemia Response with Adoptive Cellular Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579677. [PMID: 38405900 PMCID: PMC10888840 DOI: 10.1101/2024.02.09.579677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.
Collapse
|
41
|
Sun Y, Liu Y, Li R, Zhang C, Wu M, Zhang X, Xu H, Zeng R, Zeng Y, Liu X. Direct visualization of immune status for tumor-infiltrating lymphocytes by rolling circle amplification. JOURNAL OF BIOPHOTONICS 2024; 17:e202300374. [PMID: 37885324 DOI: 10.1002/jbio.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
The immune status of tumor-infiltrating lymphocytes (TILs) is essential for the effectiveness of cancer immunotherapies. However, due to the diversity of immune status in TILs, cellular heterogeneity, and the applicability to the clinic, it is still lacking effective strategies to meet clinical needs. We developed a novel immuno-recognition-induced method based on rolling circle amplification (RCA), namely immunoRCA, to in situ visualize the immune status of TILs in actual clinical samples. This developed immunoRCA method, in which, feature mRNAs were used as the biomarkers for the immune status of TILs, has a low fluorescence background, high sensitivity, and specificity. The immunoRCA was able to efficiently evaluate the immune status of CD8+ T cells regulated by activating or inhibiting factors, track the T cell type and immune status during in vitro expansion, and in situ visualize the number, location, and immune status of TILs in clinical specimens.
Collapse
Affiliation(s)
- Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Rui Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Rui Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, People's Republic of China
| |
Collapse
|
42
|
Lee CYC, Kennedy BC, Richoz N, Dean I, Tuong ZK, Gaspal F, Li Z, Willis C, Hasegawa T, Whiteside SK, Posner DA, Carlesso G, Hammond SA, Dovedi SJ, Roychoudhuri R, Withers DR, Clatworthy MR. Tumour-retained activated CCR7 + dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity. Nat Commun 2024; 15:682. [PMID: 38267413 PMCID: PMC10808534 DOI: 10.1038/s41467-024-44787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.
Collapse
Affiliation(s)
- Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tetsuo Hasegawa
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | - David A Posner
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
43
|
Abstract
The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.
Collapse
Affiliation(s)
- Ramiah D Jacks
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Zhu Z, Lou G, Teng XL, Wang H, Luo Y, Shi W, Yihunie K, Hao S, DeGolier K, Liao C, Huang H, Zhang Q, Fry T, Wang T, Yao C, Wu T. FOXP1 and KLF2 reciprocally regulate checkpoints of stem-like to effector transition in CAR T cells. Nat Immunol 2024; 25:117-128. [PMID: 38012417 PMCID: PMC10841689 DOI: 10.1038/s41590-023-01685-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
In cancer and infections, self-renewing stem-like CD8+ T cells mediate the response of immunotherapies and replenish terminally exhausted T cells and effector-like T cells. However, the programs governing the lineage choice in chimeric antigen receptor (CAR) T cells are unclear. Here, by simultaneously profiling single-cell chromatin accessibility and transcriptome in the same CAR T cells, we identified heterogeneous chromatin states within CD8+ T cell subsets that foreshadowed transcriptional changes and were primed for regulation by distinct transcription factors. Transcription factors that controlled each CD8+ T cell subset were regulated by high numbers of enhancers and positioned as hubs of gene networks. FOXP1, a hub in the stem-like network, promoted expansion and stemness of CAR T cells and limited excessive effector differentiation. In the effector network, KLF2 enhanced effector CD8+ T cell differentiation and prevented terminal exhaustion. Thus, we identified gene networks and hub transcription factors that controlled the differentiation of stem-like CD8+ CAR T cells into effector or exhausted CD8+ CAR T cells.
Collapse
Affiliation(s)
- Ziang Zhu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Immunology Ph.D. Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guohua Lou
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiao-Lu Teng
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haixia Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ying Luo
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wangke Shi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiddist Yihunie
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shumeng Hao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kole DeGolier
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Terry Fry
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Zhou P, Shi H, Huang H, Sun X, Yuan S, Chapman NM, Connelly JP, Lim SA, Saravia J, Kc A, Pruett-Miller SM, Chi H. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 2023; 624:154-163. [PMID: 37968405 PMCID: PMC10700132 DOI: 10.1038/s41586-023-06733-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Xu F, Wang X, Huang Y, Zhang X, Sun W, Du Y, Xu Z, Kou H, Zhu S, Liu C, Wei X, Li X, Jiang Q, Xu Y. Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8 + T cell. Cell Rep 2023; 42:113424. [PMID: 37963015 DOI: 10.1016/j.celrep.2023.113424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/12/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Depletion of CD8+ T cells is a major obstacle in immunotherapy; however, the relevant mechanisms remain largely unknown. Here, we showed that prostate cancer (PCa) cell-derived exosomes hamper CD8+ T cell function by transporting interleukin-8 (IL-8). Compared to the low IL-8 levels detected in immune cells, PCa cells secreted the abundance of IL-8 and further accumulated in exosomes. The delivery of PCa cell-derived exosomes into CD8+ T cells exhausted the cells through enhanced starvation. Mechanistically, exosomal IL-8 overactivated PPARα in recipient cells, thereby decreasing glucose utilization by downregulating GLUT1 and HK2 but increasing fatty acid catabolism via upregulation of CPT1A and ACOX1. PPARα further activates uncoupling protein 1 (UCP1), leading to fatty acid catabolism for thermogenesis rather than ATP synthesis. Consequently, inhibition of PPARα and UCP1 restores CD8+ T cell proliferation by counteracting the effect of exosomal IL-8. This study revealed that the tumor exosome-activated IL-8-PPARα-UCP1 axis harms tumor-infiltrating CD8+ T cells by interfering with energy metabolism.
Collapse
Affiliation(s)
- Fan Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Xiumei Wang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Ying Huang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Xiaoqian Zhang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Yuanyuan Du
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Zhi Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Hengyuan Kou
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Shuyi Zhu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Caidong Liu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiao Li
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| | - Qin Jiang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China.
| | - Yong Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| |
Collapse
|
47
|
Sathe A, Ayala C, Bai X, Grimes SM, Lee B, Kin C, Shelton A, Poultsides G, Ji HP. GITR and TIGIT immunotherapy provokes divergent multicellular responses in the tumor microenvironment of gastrointestinal cancers. Genome Med 2023; 15:100. [PMID: 38008725 PMCID: PMC10680277 DOI: 10.1186/s13073-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Understanding the mechanistic effects of novel immunotherapy agents is critical to improving their successful clinical translation. These effects need to be studied in preclinical models that maintain the heterogenous tumor microenvironment (TME) and dysfunctional cell states found in a patient's tumor. We investigated immunotherapy perturbations targeting co-stimulatory molecule GITR and co-inhibitory immune checkpoint TIGIT in a patient-derived ex vivo system that maintains the TME in its near-native state. Leveraging single-cell genomics, we identified cell type-specific transcriptional reprogramming in response to immunotherapy perturbations. METHODS We generated ex vivo tumor slice cultures from fresh surgical resections of gastric and colon cancer and treated them with GITR agonist or TIGIT antagonist antibodies. We applied paired single-cell RNA and TCR sequencing to the original surgical resections, control, and treated ex vivo tumor slice cultures. We additionally confirmed target expression using multiplex immunofluorescence and validated our findings with RNA in situ hybridization. RESULTS We confirmed that tumor slice cultures maintained the cell types, transcriptional cell states and proportions of the original surgical resection. The GITR agonist was limited to increasing effector gene expression only in cytotoxic CD8 T cells. Dysfunctional exhausted CD8 T cells did not respond to GITR agonist. In contrast, the TIGIT antagonist increased TCR signaling and activated both cytotoxic and dysfunctional CD8 T cells. This included cells corresponding to TCR clonotypes with features indicative of potential tumor antigen reactivity. The TIGIT antagonist also activated T follicular helper-like cells and dendritic cells, and reduced markers of immunosuppression in regulatory T cells. CONCLUSIONS We identified novel cellular mechanisms of action of GITR and TIGIT immunotherapy in the patients' TME. Unlike the GITR agonist that generated a limited transcriptional response, TIGIT antagonist orchestrated a multicellular response involving CD8 T cells, T follicular helper-like cells, dendritic cells, and regulatory T cells. Our experimental strategy combining single-cell genomics with preclinical models can successfully identify mechanisms of action of novel immunotherapy agents. Understanding the cellular and transcriptional mechanisms of response or resistance will aid in prioritization of targets and their clinical translation.
Collapse
Affiliation(s)
- Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Carlos Ayala
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Byrne Lee
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Cindy Kin
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Andrew Shelton
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - George Poultsides
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Chen C, Wang Z, Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol 2023; 12:95. [PMID: 37964355 PMCID: PMC10647168 DOI: 10.1186/s40164-023-00457-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is essentially an adaptive immunity weapon in prokaryotes against foreign DNA. This system inspires the development of genome-editing technology in eukaryotes. In biomedicine research, CRISPR has offered a powerful platform to establish tumor-bearing models and screen potential targets in the immuno-oncology field, broadening our insights into cancer genomics. In translational medicine, the versatile CRISPR/Cas9 system exhibits immense potential to break the current limitations of cancer immunotherapy, thereby expanding the feasibility of adoptive cell therapy (ACT) in treating solid tumors. Herein, we first explain the principles of CRISPR/Cas9 genome editing technology and introduce CRISPR as a tool in tumor modeling. We next focus on the CRISPR screening for target discovery that reveals tumorigenesis, immune evasion, and drug resistance mechanisms. Moreover, we discuss the recent breakthroughs of genetically modified ACT using CRISPR/Cas9. Finally, we present potential challenges and perspectives in basic research and clinical translation of CRISPR/Cas9. This review provides a comprehensive overview of CRISPR/Cas9 applications that advance our insights into tumor-immune interaction and lay the foundation to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
49
|
Schnell A, Huang L, Regan BML, Singh V, Vonficht D, Bollhagen A, Wang M, Hou Y, Bod L, Sobel RA, Chihara N, Madi A, Anderson AC, Regev A, Kuchroo VK. Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation. Nat Immunol 2023; 24:1908-1920. [PMID: 37828379 PMCID: PMC10864036 DOI: 10.1038/s41590-023-01645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Brianna M L Regan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dominik Vonficht
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina Bollhagen
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Wang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norio Chihara
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Asaf Madi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
50
|
Moseley CE, Zamvil SS. Targeting PGLYRP1 in cancer and autoimmunity. Nat Immunol 2023; 24:1785-1786. [PMID: 37828380 DOI: 10.1038/s41590-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Carson E Moseley
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Program in Immunology, University of California, San Francisco, CA, USA
| | - Scott S Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Program in Immunology, University of California, San Francisco, CA, USA.
| |
Collapse
|