1
|
Butterfield GL, Reisman SJ, Iglesias N, Gersbach CA. Gene regulation technologies for gene and cell therapy. Mol Ther 2025:S1525-0016(25)00278-3. [PMID: 40195118 DOI: 10.1016/j.ymthe.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Gene therapy stands at the forefront of medical innovation, offering unique potential to treat the underlying causes of genetic disorders and broadly enable regenerative medicine. However, unregulated production of therapeutic genes can lead to decreased clinical utility due to various complications. Thus, many technologies for controlled gene expression are under development, including regulated transgenes, modulation of endogenous genes to leverage native biological regulation, mapping and repurposing of transcriptional regulatory networks, and engineered systems that dynamically react to cell state changes. Transformative therapies enabled by advances in tissue-specific promoters, inducible systems, and targeted delivery have already entered clinical testing and demonstrated significantly improved specificity and efficacy. This review highlights next-generation technologies under development to expand the reach of gene therapies by enabling precise modulation of gene expression. These technologies, including epigenome editing, antisense oligonucleotides, RNA editing, transcription factor-mediated reprogramming, and synthetic genetic circuits, have the potential to provide powerful control over cellular functions. Despite these remarkable achievements, challenges remain in optimizing delivery, minimizing off-target effects, and addressing regulatory hurdles. However, the ongoing integration of biological insights with engineering innovations promises to expand the potential for gene therapy, offering hope for treating not only rare genetic disorders but also complex multifactorial diseases.
Collapse
Affiliation(s)
- Gabriel L Butterfield
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Samuel J Reisman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Tremblay F, Xiong Q, Shah SS, Ko CW, Kelly K, Morrison MS, Giancarlo C, Ramirez RN, Hildebrand EM, Voytek SB, El Sebae GK, Wright SH, Lofgren L, Clarkson S, Waters C, Linder SJ, Liu S, Eom T, Parikh S, Weber Y, Martinez S, Malyala P, Abubucker S, Friedland AE, Maeder ML, Lombardo A, Myer VE, Jaffe AB. A potent epigenetic editor targeting human PCSK9 for durable reduction of low-density lipoprotein cholesterol levels. Nat Med 2025; 31:1329-1338. [PMID: 39930141 PMCID: PMC12003160 DOI: 10.1038/s41591-025-03508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
Epigenetic editing holds the promise of durable therapeutic effects by silencing disease-causing genes without changing the underlying DNA sequence. In this study, we designed an epigenetic editor to target human PCSK9 and thereby induce DNA methylation at this locus. A single administration of lipid nanoparticles encapsulating mRNA encoding this epigenetic editor was sufficient to drive near-complete silencing of human PCSK9 in transgenic mice. Silencing was durable for at least 1 year and was fully maintained after partial hepatectomy-induced liver regeneration. In addition, we showed reversibility of epigenetic editing in mice with previously silenced PCSK9 upon treatment with a targeted epigenetic activator designed to demethylate the PCSK9 locus. Notably, in cynomolgus monkeys, a single administration of the epigenetic editor potently and durably decreased circulating PCSK9 protein levels by approximately 90% with concomitant reduction in low-density lipoprotein cholesterol levels by approximately 70%. These findings demonstrate the therapeutic potential of durable and reversible epigenetic editing in vivo and support the development of epigenetic editor-based treatment for hypercholesterolemia.
Collapse
Affiliation(s)
| | - Qiang Xiong
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | - Shrijal S Shah
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | - Chih-Wei Ko
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | | | | | | | | | | | - Sarah B Voytek
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | | | - Shane H Wright
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | | | | | | | | | - Songlei Liu
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | - Taesun Eom
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | - Shefal Parikh
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | - Yuki Weber
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | | | - Padma Malyala
- Chroma Medicine, Boston, MA, USA
- nChromaBio, Boston, MA, USA
| | | | | | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Aron B Jaffe
- Chroma Medicine, Boston, MA, USA
- Curie.Bio, Cambridge, MA, USA
| |
Collapse
|
3
|
Puzzo F, Kay MA. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol Ther 2025:S1525-0016(25)00215-1. [PMID: 40156191 DOI: 10.1016/j.ymthe.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic and acquired diseases. The liver has been and continues as a prime target for in vivo gene therapy due to its essential biological functions, vascular access to the major target cell (hepatocytes), and relatively immunotolerant environment. Adeno-associated virus (AAV) vectors have become the cornerstone of liver-directed therapies, demonstrating remarkable success in conditions such as hemophilia A and B, with US Food and Drug Administration (FDA)-approved therapies like etranacogene dezaparvovec, Beqvez, and Roctavian marking milestones in the field. Despite these advances, challenges persist, including vector immunogenicity, species-specific barriers, and high manufacturing costs. Innovative strategies, such as capsid engineering, immune modulation, and novel delivery systems, are continuing to address these issues in expanding the scope of therapeutic applications. Some of the challenges with many new therapies result in the discordance between preclinical success and translation into humans. The advent of various genome-editing tools to repair genomic mutations or insert therapeutic DNAs into precise locations in the genome further enhances the potential for a single-dose medicine that will offer durable life-long therapeutic treatments. As advancements accelerate, liver-targeted gene therapy is poised to continue to transform the treatment landscape for both genetic and acquired disorders, for which unmet challenges remain.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Li M, Yu F, Zhu B, Xiao J, Yan C, Yang X, Liang X, Wang F, Zhang H, Zhang F. Interactions between human immunodeficiency virus and human endogenous retroviruses. J Virol 2025; 99:e0231924. [PMID: 39918304 PMCID: PMC11915820 DOI: 10.1128/jvi.02319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Human immunodeficiency virus (HIV), a retrovirus of the Lentivirus genus, targets CD4+ T cells, causing immune dysfunction and AIDS. Approximately 8% of the human genome consists of human endogenous retroviruses (HERVs), ancient retroviral remnants that may interact with HIV. Despite antiretroviral therapy, challenges such as drug resistance, poor immune reconstitution (PIR), and reservoirs remain. This GEM discusses the impact of HIV on HERVs, the potential roles of HERVs in PIR and reservoirs, and provides insights into future research directions.
Collapse
Affiliation(s)
- Mengying Li
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fengting Yu
- Medical School, University of the Chinese Academy of Sciences, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chang Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Hanxi Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- WHO Collaborating Centre for Comprehensive Management of HIV Treatment and Care, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
O'Donnell CW, Farelli JD, Belaghzal H, Chen J, Beech L, Sullivan J, Morrison-Smith C, Siecinski S, Katz A, Mildrum S, Gurnani M, Dhanania P, Webb CR, Castello Coatti G, Rumale P, Costa DFG, Gibson MI, Wang YE, Newman JV, McCauley TG. Programmable mRNA therapeutics for controlled epigenomic modulation of single and multiplexed gene expression in diverse diseases. Nat Commun 2025; 16:2517. [PMID: 40082450 PMCID: PMC11906599 DOI: 10.1038/s41467-025-57920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Pathogenic gene dysregulation can be attributed to chromatin state change that pre-transcriptionally regulates expression. Recent breakthroughs elucidating the rules governing this DNA control layer, an epigenetic code, unlock a modality in precision medicine to target gene dysregulation across myriad diseases. Here we present a modular platform to design programmable mRNA therapeutics, Epigenomic Controllers (EC), that control gene expression through directed epigenetic change. By leveraging natural mechanisms, ECs tune expression levels of one or multiple genes with durable effect of weeks-to-months in female mice following a single dose. We design and characterize ECs to multiple target genes and identify an EC that effectively inhibits the cancer- and inflammatory-disorder-associated multi-gene cluster CXCL1-8. With precision targeting of NF-kB signaling and identification of homologous murine surrogates, ECs significantly reduce neutrophil migration in vivo during acute lung inflammation in female mice. A platform approach to EC design for epigenomic modulation expands treatment frontiers for diverse gene targets, including those considered "undruggable."
Collapse
Affiliation(s)
| | | | | | - Justin Chen
- Omega Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | - Adam Katz
- Omega Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pattali RK, Ornelas IJ, Nguyen CD, Xu D, Divekar NS, Nuñez NK. CRISPRoff epigenome editing for programmable gene silencing in human cell lines and primary T cells. Methods Enzymol 2025; 712:517-551. [PMID: 40121086 DOI: 10.1016/bs.mie.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The advent of CRISPR-based technologies has enabled the rapid advancement of programmable gene manipulation in cells, tissues, and whole organisms. An emerging platform for targeted gene perturbation is epigenetic editing, the direct editing of chemical modifications on DNA and histones that ultimately results in repression or activation of the targeted gene. In contrast to CRISPR nucleases, epigenetic editors modulate gene expression without inducing DNA breaks or altering the genomic sequence of host cells. Recently, we developed the CRISPRoff epigenetic editing technology that simultaneously establishes DNA methylation and repressive histone modifications at targeted gene promoters. Transient expression of CRISPRoff and the accompanying single guide RNAs in mammalian cells results in transcriptional repression of targeted genes that is memorized heritably by cells through cell division and differentiation. Here, we describe our protocol for the delivery of CRISPRoff through plasmid DNA transfection, as well as the delivery of CRISPRoff mRNA, into transformed human cell lines and primary immune cells. We also provide guidance on evaluating target gene silencing and highlight key considerations when utilizing CRISPRoff for gene perturbations. Our protocols are broadly applicable to other CRISPR-based epigenetic editing technologies, as programmable genome manipulation tools continue to evolve rapidly.
Collapse
Affiliation(s)
- Rithu K Pattali
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Izaiah J Ornelas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Carolyn D Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Da Xu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Nikita S Divekar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - NunezJames K Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, United States.
| |
Collapse
|
8
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2025; 43:369-383. [PMID: 38760567 PMCID: PMC11919711 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Guerra-Resendez RS, Lydon SL, Ma AJ, Bedford GC, Reed DR, Kim S, Terán ER, Nishiguchi T, Escobar M, DiNardo AR, Hilton IB. Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells. ACS Synth Biol 2025; 14:384-397. [PMID: 39898483 PMCID: PMC11854388 DOI: 10.1021/acssynbio.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.
Collapse
Affiliation(s)
| | | | - Alex J. Ma
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Guy C. Bedford
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Daniel R. Reed
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Sunghwan Kim
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Erik R. Terán
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Tomoki Nishiguchi
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mario Escobar
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Andrew R. DiNardo
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Isaac B. Hilton
- Systems,
Synthetic, and Physical Biology Program, Rice University, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
O'Geen H, Mihalovits A, Brophy BD, Yang H, Miller MW, Lee CJ, Segal DJ, Tomkova M. De-novo DNA Methylation of Bivalent Promoters Induces Gene Activation through PRC2 Displacement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636872. [PMID: 39975160 PMCID: PMC11839071 DOI: 10.1101/2025.02.07.636872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Promoter DNA methylation is a key epigenetic mark, commonly associated with gene silencing. However, we noticed that a positive association between promoter DNA methylation and expression is surprisingly common in cancer. Here, we use hit-and-run CRISPR/dCas9 epigenome editing to evaluate how deposition of DNA methylation can regulate gene expression dependent on pre-existing chromatin environment. While the predominant effect of DNA methylation in non-bivalent promoters is gene repression, we show that in bivalent promoters this often leads to gene activation. We demonstrate that gain of DNA methylation leads to reduced MTF2 binding and eviction of H3K27me3, a repressive mark that guards bivalent genes against activation. Our cancer patient data analyses reveal that in cancer, this mechanism likely leads to activation of a large group of transcription factors regulating pluripotency, apoptosis, and senescence signalling. In conclusion, our study uncovers an activating role of DNA methylation in bivalent promoters, with broad implications for cancer and development.
Collapse
|
12
|
Su X, Zhang M, Zhu H, Cai J, Wang Z, Xu Y, Wang L, Shen C, Cai M. Mechanisms of T-cell Depletion in Tumors and Advances in Clinical Research. Biol Proced Online 2025; 27:5. [PMID: 39905296 PMCID: PMC11792740 DOI: 10.1186/s12575-025-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
T lymphocytes (T cells) are essential components of the adaptive immune system that play a vital role in identifying and eliminating infected and tumor cells. In tumor immunotherapy, T cells have emerged as a promising therapeutic strategy due to their high specificity, potent cytotoxic capability, long-lasting immune memory, and adaptability within immunotherapeutic approaches. However, tumors can evade the immune system by depleting T cells through various mechanisms, such as inhibitory receptor signaling, metabolic exhaustion, and physical barriers within the tumor microenvironment. This review provided an overview of the mechanisms underlying T-cell depletion in tumors and discussed recent advances in clinical research related to T-cell immunotherapy for tumors. It highlighted the need for in-depth studies on key issues such as indications, dosage, and sequencing of combined therapeutic strategies tailored to different patients and tumor types, providing practical guidance for individualized treatment. Future research on T-cell depletion would be necessary to uncover the fundamental mechanisms and laws of T-cell depletion, offering both theoretical insights and practical guidance for the selection and optimization of tumor immunotherapy. Furthermore, interdisciplinary, cross-disciplinary, and international collaborative innovations are necessary for developing more effective and safer treatments for tumor patients.
Collapse
Affiliation(s)
- Xiangfei Su
- China Association of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hong Zhu
- Tongling People's Hospital, Tongling, Anhui, China
| | - Jingwen Cai
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhen Wang
- Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Yuewei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China
| | - Chen Shen
- Key Laboratory of Data Science and Innovation and Development of Traditional Chinese Medicine and Social Sciences of Anhui Province, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Hefei, Anhui, 230012, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, No. 300, Shouchun Road, Hefei, Anhui, 230061, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
13
|
Adli M, Przybyla L, Burdett T, Burridge PW, Cacheiro P, Chang HY, Engreitz JM, Gilbert LA, Greenleaf WJ, Hsu L, Huangfu D, Hung LH, Kundaje A, Li S, Parkinson H, Qiu X, Robson P, Schürer SC, Shojaie A, Skarnes WC, Smedley D, Studer L, Sun W, Vidović D, Vierbuchen T, White BS, Yeung KY, Yue F, Zhou T. MorPhiC Consortium: towards functional characterization of all human genes. Nature 2025; 638:351-359. [PMID: 39939790 DOI: 10.1038/s41586-024-08243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/17/2024] [Indexed: 02/14/2025]
Abstract
Recent advances in functional genomics and human cellular models have substantially enhanced our understanding of the structure and regulation of the human genome. However, our grasp of the molecular functions of human genes remains incomplete and biased towards specific gene classes. The Molecular Phenotypes of Null Alleles in Cells (MorPhiC) Consortium aims to address this gap by creating a comprehensive catalogue of the molecular and cellular phenotypes associated with null alleles of all human genes using in vitro multicellular systems. In this Perspective, we present the strategic vision of the MorPhiC Consortium and discuss various strategies for generating null alleles, as well as the challenges involved. We describe the cellular models and scalable phenotypic readouts that will be used in the consortium's initial phase, focusing on 1,000 protein-coding genes. The resulting molecular and cellular data will be compiled into a catalogue of null-allele phenotypes. The methodologies developed in this phase will establish best practices for extending these approaches to all human protein-coding genes. The resources generated-including engineered cell lines, plasmids, phenotypic data, genomic information and computational tools-will be made available to the broader research community to facilitate deeper insights into human gene functions.
Collapse
Affiliation(s)
- Mazhar Adli
- Robert H. Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Laralynne Przybyla
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Tony Burdett
- Omics Section, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK
| | - Paul W Burridge
- Department of Pharmacology, Center for Pharmacogenomics, Northwestern University, Feinberg School of Medicine, Evanston, IL, USA
| | - Pilar Cacheiro
- William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, UK
| | - Howard Y Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Basic Science and Engineering (BASE) Initiative, Stanford University, Stanford, CA, USA
| | - Luke A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA
| | | | - Li Hsu
- Department of Biostatistics, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Ling-Hong Hung
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, USA
| | - Anshul Kundaje
- Departments of Genetics and Computer Science, Stanford University, Stanford, CA, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Helen Parkinson
- Knowledge Management Section, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK
| | - Xiaojie Qiu
- Basic Science and Engineering (BASE) Initiative, Stanford University, Stanford, CA, USA
- Departments of Genetics and Computer Science, Stanford University, Stanford, CA, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Stephan C Schürer
- Molecular and Cellular Pharmacology; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Damian Smedley
- William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London, UK
| | - Lorenz Studer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Wei Sun
- Department of Biostatistics, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dušica Vidović
- Molecular and Cellular Pharmacology; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, FL, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Brian S White
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ka Yee Yeung
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Zhou
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
14
|
Doctor Y, Sanghvi M, Mali P. A Manual for Genome and Transcriptome Engineering. IEEE Rev Biomed Eng 2025; 18:250-267. [PMID: 39514364 PMCID: PMC11875898 DOI: 10.1109/rbme.2024.3494715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
Collapse
Affiliation(s)
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, CA 92039, USA
| |
Collapse
|
15
|
Su-Tobon Q, Fan J, Goldstein M, Feeney K, Ren H, Autissier P, Wang P, Huang Y, Mohanty U, Niu J. CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers. Nat Commun 2025; 16:595. [PMID: 39799111 PMCID: PMC11724954 DOI: 10.1038/s41467-025-55957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs. We optimize a bacterial CRISPR-hybrid system coupled with FACS, and identified high affinity RNA aptamers orthogonal to existing aptamer-RBP pairs. Application of orthogonal aptamer-RBP pairs in multiplexed CRISPR allows effective simultaneous transcriptional activation and repression of endogenous genes in mammalian cells.
Collapse
Affiliation(s)
- Qiwen Su-Tobon
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jiayi Fan
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Kevin Feeney
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hongyuan Ren
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Peiyi Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Yingzi Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
16
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025:10.1038/s41576-024-00804-z. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
17
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Yin JA, Frick L, Scheidmann MC, Liu T, Trevisan C, Dhingra A, Spinelli A, Wu Y, Yao L, Vena DL, Knapp B, Guo J, De Cecco E, Ging K, Armani A, Oakeley EJ, Nigsch F, Jenzer J, Haegele J, Pikusa M, Täger J, Rodriguez-Nieto S, Bouris V, Ribeiro R, Baroni F, Bedi MS, Berry S, Losa M, Hornemann S, Kampmann M, Pelkmans L, Hoepfner D, Heutink P, Aguzzi A. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat Biomed Eng 2025; 9:127-148. [PMID: 39633028 PMCID: PMC11754104 DOI: 10.1038/s41551-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms. The quadruple-sgRNA libraries yielded high perturbation efficacies in deletion (75-99%) and silencing (76-92%) experiments and substantial fold changes in activation experiments. Moreover, an arrayed activation screen of 1,634 human transcription factors uncovered 11 novel regulators of the cellular prion protein PrPC, screening with a pooled version of the ablation library led to the identification of 5 novel modifiers of autophagy that otherwise went undetected, and 'post-pooling' individually produced lentiviruses eliminated template-switching artefacts and enhanced the performance of pooled screens for epigenetic silencing. Quadruple-sgRNA arrayed libraries are a powerful and versatile resource for targeted genome-wide perturbations.
Collapse
Grants
- A.A. is supported by institutional core funding by the University of Zurich and the University Hospital of Zurich, and is the recipient of grants from the Nomis Foundation, the Swiss National Research Foundation (grant ID 179040 and grant ID 207872, Sinergia grant ID 183563), the Swiss Personal-ized Health Network (SPHN, 2017DRI17), an Advanced Grant of the European Research Council (ERC Prion2020 No. 670958), the HMZ ImmunoTarget grant, the Human Frontiers Science Pro-gram (grant ID RGP0001/2022), the Michael J. Fox Foundation (grant ID MJFF-022156), Swissuni-versities (CRISPR4ALL), and a donation from the estate of Dr. Hans Salvisberg.
- J-A.Y. is the recip-ient of the postdoc grant Forschungskredit from University of Zurich and the Career Development Awards grant of the Synapsis Foundation – Alzheimer Research Switzerland ARS (Grant ID 2021-CDA02).
- China Scholarship Council
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuel C Scheidmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Tingting Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anna Spinelli
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yancheng Wu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Longping Yao
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Dalila Laura Vena
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Edward J Oakeley
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joel Jenzer
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jasmin Haegele
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Michal Pikusa
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Vangelis Bouris
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rafaela Ribeiro
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Federico Baroni
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manmeet Sakshi Bedi
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
22
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
23
|
Vázquez-Domínguez I, Öktem M, Winkelaar FA, Nguyen TH, Hoogendoorn AD, Roschi E, Astuti GD, Timmermans R, Suárez-Herrera N, Bruno I, Ruiz-Llombart A, Brealey J, de Jong OG, Collin RW, Mastrobattista E, Garanto A. Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102345. [PMID: 39494150 PMCID: PMC11531624 DOI: 10.1016/j.omtn.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Florian A. Winkelaar
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Anita D.M. Hoogendoorn
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| | - Eleonora Roschi
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Raoul Timmermans
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Bruno
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Albert Ruiz-Llombart
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Joseph Brealey
- NanoFCM Co Ltd. MediCity, D6 Thane Road, Nottingham NG90 6BH, UK
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Rob W.J. Collin
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
24
|
Sang Y, Xu L, Bao Z. Development of artificial transcription factors and their applications in cell reprograming, genetic screen, and disease treatment. Mol Ther 2024; 32:4208-4234. [PMID: 39473180 PMCID: PMC11638881 DOI: 10.1016/j.ymthe.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Gene dysregulations are associated with many human diseases, such as cancers and hereditary diseases. Artificial transcription factors (ATFs) are synthetic molecular tools to regulate the expression of disease-associated genes, which is of great significance in basic biological research and biomedical applications. Recent advances in the engineering of ATFs for regulating endogenous gene expression provide an expanded set of tools for understanding and treating diseases. However, the potential immunogenicity, large size, inefficient delivery, and off-target effects persist as obstacles for ATFs to be developed into therapeutics. Moreover, the activation of an endogenous gene following ATF activity lacks durability. In this review, we first describe the functional components of ATFs, including DNA-binding domains, transcriptional effector domains, and control switches. We then highlight examples of applications of ATFs, including cell reprogramming and differentiation, pathogenic gene screening, and disease treatment. Finally, we analyze and summarize major challenges for the clinical translation of ATFs and propose potential strategies to improve these useful molecular tools.
Collapse
Affiliation(s)
- Yetong Sang
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Lingjie Xu
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Zehua Bao
- Institute of Bioengineering & Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
25
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2540-2553. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
26
|
Lee H, Friedman MJ, Kim SB, Oh S. DNA regulatory element cooperation and competition in transcription. BMB Rep 2024; 57:509-520. [PMID: 39523506 PMCID: PMC11693600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Regulation of eukaryotic transcription is a complex process that enables precise temporal and spatial control of gene expression. Promoters, which are cis-regulatory elements (CREs) located proximal to the transcription start site (TSS), selectively integrate regulatory cues from distal CREs, or enhancers, and their associated transcriptional machinery. In this review, we discuss current knowledge regarding CRE cooperation and competition impacting gene expression, including features of enhancer-promoter, enhancer-enhancer, and promoter-promoter interplay. We also provide an overview of recent insights into the underlying molecular mechanisms that facilitate physical and functional interaction of regulatory elements, such as the involvement of enhancer RNAs and biomolecular condensates. [BMB Reports 2024; 57(12): 509-520].
Collapse
Affiliation(s)
- Haram Lee
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| | - Meyer Joseph Friedman
- Department and School of Medicine, University of California, San Diego, CA 92093, USA, Seoul 01795, Korea
| | - Sang Bum Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Soohwan Oh
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| |
Collapse
|
27
|
Martin H, Wassef M. [Targeted epigenome engineering]. Med Sci (Paris) 2024; 40:955-962. [PMID: 39705566 DOI: 10.1051/medsci/2024182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Cellular differentiation and homeostasis rely on complex mechanisms to control gene expression, enabling the different cell lineages of an organism to establish and then "memorize" different epigenetic states. The processes that control gene expression are centered on chromatin, a complex of DNA, histone proteins and RNA, whose structure is finely regulated. Targeted epigenomic engineering tools make it possible to interfere with and study these processes, revealing the logic of epigenetic memory mechanisms. This article reviews the main classes of targeted epigenome modification tools and illustrates how they can be used to better understand and modify the epigenome of cells, paving the way for potentially revolutionary therapeutic prospects.
Collapse
Affiliation(s)
- Hedvika Martin
- Institut Curie, Paris Sciences et Lettres, Sorbonne Université, Paris, France - Inserm U934/CNRS UMR 3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences et Lettres, Sorbonne Université, Paris, France - Inserm U934/CNRS UMR 3215, Paris, France
| |
Collapse
|
28
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024; 8:1682-1699. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
29
|
Xu D, Besselink S, Ramadoss GN, Dierks PH, Lubin JP, Pattali RK, Brim JI, Christenson AE, Colias PJ, Ornelas IJ, Nguyen CD, Chasins SE, Conklin BR, Nuñez JK. Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625496. [PMID: 39651312 PMCID: PMC11623636 DOI: 10.1101/2024.11.26.625496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression. After rational engineering, we show that RENDER induces durable epigenetic silencing of endogenous genes across various human cell types, including primary T cells. Additionally, we apply RENDER to epigenetically repress endogenous genes in human stem cell-derived neurons, including the reduction of the neurodegenerative disease associated V337M-mutated Tau protein. Together, our RENDER platform advances the delivery of CRISPR-based epigenome editors into human cells, broadening the use of epigenome editing in fundamental research and therapeutic applications.
Collapse
|
30
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
31
|
Wan J, Thurm AR, Allen SJ, Ludwig CH, Patel AN, Bintu L. High-throughput development and characterization of new functional nanobodies for gene regulation and epigenetic control in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621523. [PMID: 39554150 PMCID: PMC11566033 DOI: 10.1101/2024.11.01.621523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Controlling gene expression and chromatin state via the recruitment of transcriptional effector proteins to specific genetic loci has advanced the potential of mammalian synthetic biology, but is still hindered by the challenge of delivering large chromatin regulators. Here, we develop a new method for generating small nanobodies against human chromatin regulators that can repress or activate gene expression. We start with a large and diverse nanobody library and perform enrichment against chromatin regulatory complexes using yeast display, followed by high-throughput pooled selection for transcriptional control when recruited to a reporter in human cells. This workflow allows us to efficiently select tens of functional nanobodies that can act as transcriptional repressors or activators in human cells.
Collapse
Affiliation(s)
- Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
- Present address: Pharma Technical Development, Genentech, South San Francisco, CA, 94080
| | - Abby R. Thurm
- Program in Biophysics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Sage J. Allen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Connor H. Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Aayan N. Patel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305
| |
Collapse
|
32
|
Legere NJ, Hinson JT. Emerging CRISPR Therapies for Precision Gene Editing and Modulation in the Cardiovascular Clinic. Curr Cardiol Rep 2024; 26:1231-1240. [PMID: 39287778 DOI: 10.1007/s11886-024-02125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW Outline the growing suite of novel genome editing tools powered by CRISPR-Cas9 technology that are rapidly advancing towards the clinic for the treatment of cardiovascular disorders. RECENT FINDINGS A diversity of new genome editors and modulators are being developed for therapies across myriad human diseases. Recent breakthroughs have improved the efficacy, safety, specificity, and delivery of CRISPR-mediated therapies that could impact heart disease in the next decade, though several challenges remain. Many iterations of the original CRISPR system have been developed seeking to leverage its vast therapeutic potential. As examples, nuclease-free editing, precision single-nucleotide editing, gene expression regulation, and epigenomic modifications are now feasible with the current CRISPR-mediated suite of enzymes. These emerging tools will be indispensable for the development of novel cardiovascular therapeutics as demonstrated by recent successes in both basic research laboratories and pre-clinical models. Here, we provide an overview of current and emerging CRISPR-mediated technologies as they pertain to the cardiovascular system, highlighting successful implementations and future challenges.
Collapse
Affiliation(s)
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT, USA.
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Calhoun Cardiology Center, UConn Health, Farmington, CT, USA.
| |
Collapse
|
33
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Wilson CM, Pommier GC, Richman DD, Sambold N, Hussmann JA, Weissman JS, Gilbert LA. Combinatorial effector targeting (COMET) for transcriptional modulation and locus-specific biochemistry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620517. [PMID: 39554033 PMCID: PMC11565746 DOI: 10.1101/2024.10.28.620517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding how human gene expression is coordinately regulated by functional units of proteins across the genome remains a major biological goal. Here, we present COMET, a high-throughput screening platform for combinatorial effector targeting for the identification of transcriptional modulators. We generate libraries of combinatorial dCas9-based fusion proteins, containing two to six effector domains, allowing us to systematically investigate more than 110,000 combinations of effector proteins at endogenous human loci for their influence on transcription. Importantly, we keep full proteins or domains intact, maintaining catalytic cores and surfaces for protein-protein interactions. We observe more than 5800 significant hits that modulate transcription, we demonstrate cell type specific transcriptional modulation, and we further investigate epistatic relationships between our effector combinations. We validate unexpected combinations as synergistic or buffering, emphasizing COMET as both a method for transcriptional effector discovery, and as a functional genomics tool for identifying novel domain interactions and directing locus-specific biochemistry.
Collapse
Affiliation(s)
- Caroline M. Wilson
- Tetrad Graduate Program, University of California, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Arc Institute, Palo Alto, CA 94304, USA
| | - Greg C. Pommier
- Department of Urology, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Current Address: Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel D. Richman
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | | | - Jeffrey A. Hussmann
- Current Address: Prime Medicine, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Arc Institute, Palo Alto, CA 94304, USA
- Lead contact
| |
Collapse
|
35
|
Sinha J, Nickels JF, Thurm AR, Ludwig CH, Archibald BN, Hinks MM, Wan J, Fang D, Bintu L. The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. Mol Cell 2024; 84:3899-3915.e7. [PMID: 39368466 PMCID: PMC11526022 DOI: 10.1016/j.molcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Collapse
Affiliation(s)
- Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan F Nickels
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michaela M Hinks
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
37
|
Pattali RK, Ornelas IJ, Nguyen CD, Xu D, Divekar NS, Nuñez JK. CRISPRoff epigenetic editing for programmable gene silencing in human cells without DNA breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612111. [PMID: 39345634 PMCID: PMC11429707 DOI: 10.1101/2024.09.09.612111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advent of CRISPR-based technologies has enabled the rapid advancement of programmable gene manipulation in cells, tissues, and whole organisms. An emerging platform for targeted gene perturbation is epigenetic editing, the direct editing of chemical modifications on DNA and histones that ultimately results in repression or activation of the targeted gene. In contrast to CRISPR nucleases, epigenetic editors modulate gene expression without inducing DNA breaks or altering the genomic sequence of host cells. Recently, we developed the CRISPRoff epigenetic editing technology that simultaneously establishes DNA methylation and repressive histone modifications at targeted gene promoters. Transient expression of CRISPRoff and the accompanying single guide RNAs in mammalian cells results in transcriptional repression of targeted genes that is memorized heritably by cells through cell division and differentiation. Here, we describe our protocol for the delivery of CRISPRoff through plasmid DNA transfection, as well as the delivery of CRISPRoff mRNA, into transformed human cell lines and primary immune cells. We also provide guidance on evaluating target gene silencing and highlight key considerations when utilizing CRISPRoff for gene perturbations. Our protocols are broadly applicable to other CRISPR-based epigenetic editing technologies, as programmable genome manipulation tools continue to evolve rapidly.
Collapse
Affiliation(s)
- Rithu K. Pattali
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Izaiah J. Ornelas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Carolyn D. Nguyen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Da Xu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nikita S. Divekar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - James K. Nuñez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Tran NT, Han R. Rapidly evolving genome and epigenome editing technologies. Mol Ther 2024; 32:2803-2806. [PMID: 39163859 PMCID: PMC11403209 DOI: 10.1016/j.ymthe.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Genome editing technologies are rapidly evolving, from the early zinc-finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR-Cas9 (Figure 1, initial genome editing technologies), which generate double-strand breaks (DSBs), to base editing, which makes precise nucleobase conversion without inducing DSBs, and prime editing, which can carry out all types of edits without DSBs or donor DNA templates. The emergence of these revolutionary technologies offers us unprecedented opportunities for biomedical research and therapy development.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Renzhi Han
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
39
|
Johnston JR, Adler ED. Precision Genetic Therapies: Balancing Risk and Benefit in Patients with Heart Failure. Curr Cardiol Rep 2024; 26:973-983. [PMID: 39110386 PMCID: PMC11379760 DOI: 10.1007/s11886-024-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW Precision genetic medicine is evolving at a rapid pace and bears significant implications for clinical cardiology. Herein, we discuss the latest advancements and emerging strategies in gene therapy for cardiomyopathy and heart failure. RECENT FINDINGS Elucidating the genetic architecture of heart failure has paved the way for precision therapies in cardiovascular medicine. Recent preclinical studies and early-phase clinical trials have demonstrated encouraging results that support the development of gene therapies for heart failure arising from a variety of etiologies. In addition to the discovery of new therapeutic targets, innovative delivery platforms are being leveraged to improve the safety and efficacy of cardiac gene therapies. Precision genetic therapy represents a potentially safe and effective approach for improving outcomes in patients with heart failure. It holds promise for radically transforming the treatment paradigm for heart failure by directly targeting the underlying etiology. As this new generation of cardiovascular medicines progress to the clinic, it is especially important to carefully evaluate the benefits and risks for patients.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Eric D Adler
- Division of Cardiology, Department of Internal Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
Wellhausen N, Baek J, Gill SI, June CH. Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance. Nat Rev Cancer 2024; 24:614-628. [PMID: 39048767 DOI: 10.1038/s41568-024-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Adoptive cell therapies engineered to express chimeric antigen receptors (CARs) or transgenic T cell receptors (TCRs) to recognize and eliminate cancer cells have emerged as a promising approach for achieving long-term remissions in patients with cancer. To be effective, the engineered cells must persist at therapeutically relevant levels while avoiding off-tumour toxicities, which has been challenging to realize outside of B cell and plasma cell malignancies. This Review discusses concepts to enhance the efficacy, safety and accessibility of cellular immunotherapies by endowing cells with selective resistance to small-molecule drugs or antibody-based therapies to facilitate combination therapies with substances that would otherwise interfere with the functionality of the effector cells. We further explore the utility of engineering healthy haematopoietic stem cells to confer resistance to antigen-directed immunotherapies and small-molecule targeted therapies to expand the therapeutic index of said targeted anticancer agents as well as to facilitate in vivo selection of gene-edited haematopoietic stem cells for non-malignant applications. Lastly, we discuss approaches to evade immune rejection, which may be required in the setting of allogeneic cell therapies. Increasing confidence in the tools and outcomes of genetically modified cell therapy now paves the way for rational combinations that will open new therapeutic horizons.
Collapse
Affiliation(s)
- Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanne Baek
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
42
|
Kantor B, O'Donovan B, Rittiner J, Hodgson D, Lindner N, Guerrero S, Dong W, Zhang A, Chiba-Falek O. The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders. Nat Commun 2024; 15:7259. [PMID: 39179542 PMCID: PMC11344155 DOI: 10.1038/s41467-024-50515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/12/2024] [Indexed: 08/26/2024] Open
Abstract
Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Adeno-associated-viruses (AAVs) represent the delivery vehicle of choice for therapeutic platform. However, their small packaging capacity isn't suitable for large constructs including most CRISPR/dCas9-effector vectors. Thus, AAV-based CRISPR/Cas systems have been delivered via two separate viral vectors. Here we develop a compact CRISPR/dCas9-based repressor system packaged in AAV as a single optimized vector. The system comprises the small Staphylococcus aureus (Sa)dCas9 and an engineered repressor molecule, a fusion of MeCP2's transcription repression domain (TRD) and KRAB. The dSaCas9-KRAB-MeCP2(TRD) vector platform repressed robustly and sustainably the expression of multiple genes-of-interest, in vitro and in vivo, including ApoE, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD). Our platform broadens the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA.
| | - Bernadette O'Donovan
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Rittiner
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Dellila Hodgson
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Lindner
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Sophia Guerrero
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Wendy Dong
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Austin Zhang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Viral Vector Core, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
43
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
44
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
Kawa Y, Shindo M, Ohgane J, Inui M. Epigenome editing revealed the role of DNA methylation of T-DMR/CpG island shore on Runx2 transcription. Biochem Biophys Rep 2024; 38:101733. [PMID: 38799114 PMCID: PMC11127475 DOI: 10.1016/j.bbrep.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
RUNX2 is a transcription factor crucial for bone formation. Mutant mice with varying levels of Runx2 expression display dosage-dependent skeletal abnormalities, underscoring the importance of Runx2 dosage control in skeletal formation. RUNX2 activity is regulated by several molecular mechanisms, including epigenetic modification such as DNA methylation. In this study, we investigated whether targeted repressive epigenome editing including hypermethylation to the Runx2-DMR/CpG island shore could influence Runx2 expression using Cas9-based epigenome-editing tools. Through the transient introduction of CRISPRoff-v2.1 and gRNAs targeting Runx2-DMR into MC3T3-E1 cells, we successfully induced hypermethylation of the region and concurrently reduced Runx2 expression during osteoblast differentiation. Although the epigenome editing of Runx2-DMR did not impact the expression of RUNX2 downstream target genes, these results indicate a causal relationship between the epigenetic status of the Runx2-DMR and Runx2 transcription. Additionally, we observed that hypermethylation of the Runx2-DMR persisted for at least 24 days under growth conditions but decreased during osteogenic differentiation, highlighting an endogenous DNA demethylation activity targeting the Runx2-DMR during the differentiation process. In summary, our study underscore the usefulness of the epigenome editing technology to evaluate the function of endogenous genetic elements and revealed that the Runx2-DMR methylation is actively regulated during osteoblast differentiation, subsequently could influence Runx2 expression.
Collapse
Affiliation(s)
- Yutaro Kawa
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| | - Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
| |
Collapse
|
47
|
Neumann EN, Bertozzi TM, Wu E, Serack F, Harvey JW, Brauer PP, Pirtle CP, Coffey A, Howard M, Kamath N, Lenz K, Guzman K, Raymond MH, Khalil AS, Deverman BE, Minikel EV, Vallabh SM, Weissman JS. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 2024; 384:ado7082. [PMID: 38935715 PMCID: PMC11875203 DOI: 10.1126/science.ado7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Edwin N. Neumann
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Tessa M. Bertozzi
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Elaine Wu
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Fiona Serack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Catherine P. Pirtle
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Alissa Coffey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nikita Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Kenney Lenz
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Kenia Guzman
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Michael H. Raymond
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
| | - Ahmad S. Khalil
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115. USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
49
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
50
|
Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, Canarutto D, Varesi A, Gaddoni C, Brombin C, Cugnata F, Zonari E, Naldini MM, Barcella M, Gentner B, Merelli I, Naldini L. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat Biotechnol 2024; 42:877-891. [PMID: 37679541 PMCID: PMC11180610 DOI: 10.1038/s41587-023-01915-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.
Collapse
Affiliation(s)
- Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|