1
|
Dong H, Wang X, Zheng Y, Li J, Liu Z, Wang A, Shen Y, Wu D, Cui H. Mapping the rapid growth of multi-omics in tumor immunotherapy: Bibliometric evidence of technology convergence and paradigm shifts. Hum Vaccin Immunother 2025; 21:2493539. [PMID: 40275437 PMCID: PMC12026087 DOI: 10.1080/21645515.2025.2493539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
This study aims to fill the knowledge gap in systematically mapping the evolution of omics-driven tumor immunotherapy research through a bibliometric lens. While omics technologies (genomics, transcriptomics, proteomics, metabolomics)provide multidimensional molecular profiling, their synergistic potential with immunotherapy remains underexplored in large-scale trend analyses. A comprehensive search was conducted using the Web of Science Core Collection for literature related to omics in tumor immunotherapy, up to August 2024. Bibliometric analyses, conducted using R version 4.3.3, VOSviewer 1.6.20, and Citespace 6.2, examined publication trends, country and institutional contributions, journal distributions, keyword co-occurrence, and citation bursts. This analysis of 9,494 publications demonstrates rapid growth in omics-driven tumor immunotherapy research since 2019, with China leading in output (63% of articles) yet exhibiting limited multinational collaboration (7.9% vs. the UK's 61.8%). Keyword co-occurrence and citation burst analyses reveal evolving frontiers: early emphasis on "PD-1/CTLA-4 blockade" has transitioned toward "machine learning," "multi-omics," and "lncRNA," reflecting a shift to predictive modeling and biomarker discovery. Multi-omics integration has facilitated the development of immune infiltration-based prognostic models, such as TIME subtypes, which have been validated across multiple tumor types, which inform clinical trial design (e.g. NCT06833723). Additionally, proteomic analysis of melanoma patients suggests that metabolic biomarkers, particularly oxidative phosphorylation and lipid metabolism, may stratify responders to PD-1 blockade therapy. Moreover, spatial omics has confirmed ENPP1 as a potential novel therapeutic target in Ewing sarcoma. Citation trends underscore clinical translation, particularly mutation-guided therapies. Omics technologies are transforming tumor immunotherapy by enhancing biomarker discovery and improving therapeutic predictions. Future advancements will necessitate longitudinal omics monitoring, AI-driven multi-omics integration, and international collaboration to accelerate clinical translation. This study presents a systematic framework for exploring emerging research frontiers and offers insights for optimizing precision-driven immunotherapy.
Collapse
Affiliation(s)
- Huijing Dong
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmeng Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yumin Zheng
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Li
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zhening Liu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Aolin Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yulei Shen
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Daixi Wu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Tian Y, Ma L, Liu S, Bai X, Shah N, Zhang L, Wang X, Zhang Y, Ding X. The prognostic value of AST-lymphocyte ratio index in liver cancer patients treated with TACE: a systematic review and single-center retrospective study. BMC Gastroenterol 2025; 25:348. [PMID: 40340835 PMCID: PMC12063415 DOI: 10.1186/s12876-025-03949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND AND AIMS AST-lymphocyte ratio index (ALRI) has been proposed as a potentially prognostic indicator of liver cancer patients underwent transcatheter arterial chemoembolization (TACE) in studies, but the numbers were small and the results were controversial. In this study, we systematically assessed the prognostic value of ALRI in liver cancer patients treated with TACE by integrating meta-analysis with single-center clinical analysis. METHODS We conducted a systematic literature search across multiple databases and evaluated the quality of included studies using the Newcastle-Ottawa Scale. We employed a fixed-effect model to calculate the pooled hazard ratio (HR) and 95% confidence interval (CI). Publication bias were evaluated using funnel plot, Begg's and Egger's tests. Concurrently, we integrated clinical data from 127 HCC patients treated with TACE at our center, employed X-tile software to ascertain the optimal cutoff value for ALRI, and analyzed the relationship between ALRI and clinical characteristics as well as overall survival (OS), using chi-square tests, Kaplan-Meier survival curves, and Cox proportional hazards models. RESULTS The meta-analysis included 7 studies, and the pooled hazard ratio (HR) indicated that elevated ALRI was significantly associated with poorer OS in liver cancer patients underwent TACE (HR = 1.75, 95% CI: 1.46-2.1, P<0.01), with no significant heterogeneity (P = 0.542, I2 = 0.00%). Clinical analysis of 127 patients further supported this finding, with patients in the high ALRI group showed significantly lower OS compared to those in the low ALRI group (1-year OS rate: 96.7% vs. 87.9%, 2-year OS rate: 61.5% vs. 42.7%; C2 = 28.006, P<0.01). Multivariate Cox regression analysis revealed that number of tumors, tumor size and ALRI were all independent prognostic factors for OS (ALRI HR = 6.456, 95%CI: 2.247-18.55, P < 0.01). CONCLUSIONS An increase in ALRI may serve as an independent prognostic indicator of poor outcomes in liver cancer patients undergoing TACE. While it offers benefits such as being non-invasive and cost-effective, further large-scale, multicenter, prospective studies are essential to validate the efficacy of ALRI and establish standardized cutoff values for clinical application.
Collapse
Affiliation(s)
- Yali Tian
- Department of Infectious Disease, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 301, Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia Hui Autonomous Region, 750021, China
- Ningxia Medical University, No. 692, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Lina Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Shuaiwei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Xiaoyang Bai
- Ningxia Medical University, No. 692, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Nawaz Shah
- Ningxia Medical University, No. 692, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Le Zhang
- Ningxia Medical University, No. 692, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Xia Wang
- Ningxia Medical University, No. 692, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China
| | - Yuxi Zhang
- Department of Infectious Disease, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 301, Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia Hui Autonomous Region, 750021, China.
| | - Xiangchun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia Hui Autonomous Region, 750004, China.
- Infectious Disease Clinical Research Center of Ningxia, 804 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
3
|
Sun H, Cao Z, Zhao B, Zhou D, Chen Z, Zhang B. An elevated percentage of CD4⁺CD25⁺CD127 low regulatory T cells in peripheral blood indicates a poorer prognosis in hepatocellular carcinoma after curative hepatectomy. BMC Gastroenterol 2025; 25:340. [PMID: 40335903 PMCID: PMC12060481 DOI: 10.1186/s12876-025-03940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Previous studies suggest the percentage of CD4⁺CD25⁺CD127low regulatory T cells (Tregs) in peripheral blood of patients with hepatocellular carcinoma (HCC) was significantly higher than that in healthy, which may be a significant predictor of HCC clinical outcome, and we examined the utility of Tregs in predicting prognosis in HCC after curative hepatectomy. METHODS 77 diagnosed HCC patients from August 2018 to March 2023 were selected as research objects, we retrospectively analyzed whether the preoperative percentage of CD4⁺CD25⁺CD127low Tregs in peripheral blood predicts prognosis after curative hepatectomy in HCC patients. The percentage of CD4⁺CD25⁺CD127low Tregs was detected by flow cytometry. RESULTS The percentage of CD4⁺CD25⁺CD127low Tregs was significantly elevated in patients who developed recurrence and death (p < 0.050). X-tile software was used to calculate optimal cut-off value of Treg percentage (5.85%), and patients were divided into two groups with high and low Treg percentage. Patients with higher preoperative Treg percentage had a significantly poorer prognosis (p < 0.050). Cox regression demonstrated the percentage of CD4⁺CD25⁺CD127low Tregs was an independent indicator for poor prognosis after hepatectomy. The Recurrence-free survival (RFS) (the log-rank test, p < 0.001) and Overall survival (OS) (the log-rank test, p = 0.008) in patients with higher Treg percentage were significantly lower than that in patients with lower Treg percentage. The results were confirmed by the subgroup analysis. CONCLUSION The percentage of CD4⁺CD25⁺ CD127low Tregs in peripheral blood is associated with poor prognosis in HCC patients. It can be suggested as a potential prognostic indicator for HCC patients after hepatectomy and complement existing risk stratification tools. Measuring the percentage of CD4⁺CD25⁺ CD127low Tregs may contribute to the formulation of treatment strategies and the improvement of the prognosis for HCC patients.
Collapse
Affiliation(s)
- Haoran Sun
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zepeng Cao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Baochen Zhao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Dachen Zhou
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zhongbiao Chen
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Bin Zhang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China.
| |
Collapse
|
4
|
Trehan R, Huang P, Zhu XB, Wang X, Soliman M, Strepay D, Nur A, Kedei N, Arhin M, Ghabra S, Rodríguez-Matos F, Benmebarek MR, Ma C, Korangy F, Greten TF. SPP1 + macrophages cause exhaustion of tumor-specific T cells in liver metastases. Nat Commun 2025; 16:4242. [PMID: 40335453 PMCID: PMC12059142 DOI: 10.1038/s41467-025-59529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Functional tumor-specific CD8+ T cells are essential for effective anti-tumor immune response and immune checkpoint inhibitor therapy. Here we show that, compared to other organ sites, primary, metastatic liver tumors in murine models contain a higher number of tumor-specific CD8+ T cells which are also dysfunctional. High-dimensional, multi-omic analysis of patient samples reveals a higher frequency of exhausted tumor-reactive CD8+ T cells and enriched interactions between these cells and SPP1+ macrophages in profibrotic, alpha-SMA rich regions specifically in the liver. Differential pseudotime trajectory inference analysis reveals that extrahepatic signaling promotes an intermediate cell (IC) population in the liver, characterized by co-expression of VISG4, CSF1R, CD163, TGF-βR, IL-6R, and SPP1. Analysis of premetastatic adenocarcinoma patient samples reveals enrichment of this population may predict liver metastasis. These findings suggest a mechanism by which extrahepatic tumors drive liver metastasis by promoting an IC population that inhibits tumor-reactive CD8+ T cell function.
Collapse
Affiliation(s)
- Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marlaine Soliman
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Arhin
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shadin Ghabra
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Rodríguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Liu JG, Yu L, Guo XL, He XM, Li M, Gao RY, Zhao BH, Li QY, Zhu WJ, Xu P, Gu XH, Chen YA, Yin XL, Shang Y, Guo ZH, Mao JH, Hu YX, Lu LM, Hua J, Zhang H, Li Y. Characterizing the immune landscape of tumor-infiltrating lymphocytes in non-small cell lung cancer. Genes Immun 2025:10.1038/s41435-025-00330-w. [PMID: 40325180 DOI: 10.1038/s41435-025-00330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Tumor-Infiltrating Lymphocytes (TILs) immunotherapy is a highly promising treatment for Non-small Cell Lung Cancer (NSCLC), which is responsible for 18% of all cancer-related deaths. The heterogeneity of TILs remains poorly understood. Here, we utilized combined single-cell RNA (scRNA)/T cell receptor sequencing (scTCR-seq) data from lung adenocarcinoma (LUAD) patients. Naïve CD4+ and effector memory CD8+ T cells were increased in tumor tissue compared with circulating blood samples. Activated signaling pathways were detected, and GZMA was identified as a potential novel diagnostic biomarker. During the transitional phase, macrophages (FTL) and dendritic (AIF1) cells transported the most CD3 TCR clones to T cells, while cytotoxicity CD8+ T (NKG7) cells transported to terminal exhausted CD8+ T cells. In both transition and expansion phases, T helper cells (CXCL13) are transported to regulatory T cells (Tregs). Additionally, we investigated the expression profiles of key cytokines, checkpoint receptors, and their ligands. Cytotoxicity CD8+ T cells (CCL5 and IFNG), T helper cells (FTL, TNFRSF4, and TIGIT), and regulatory T cells (CTLA4, TIGIT and FTL) exhibited functional roles in both primary and metastatic tumor stages. Taken together, our study provides a single-cell resolution of the TIL immune landscape and suggests potential treatment strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Jin-Guo Liu
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Lin Yu
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xian-Ling Guo
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xue-Min He
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ren-Yuan Gao
- Department of Abdominal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Bing-Hui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Qian-Yu Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Wen-Jing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Ping Xu
- Standard BioTools, Shanghai, China
| | - Xiao-Hua Gu
- Department of Interventional Therapy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-An Chen
- Department of Oncology, No. 455 Hospital of Chinese People's Liberation Army, The Navy Medical University, Shanghai, China
| | - Xiao-Lan Yin
- Department of Oncology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhen-Hong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Jia-Hao Mao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yang-Xi Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Li-Ming Lu
- Central Laboratory, Shanghai Chest Hospital and Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hua
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Hua Zhang
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China
| | - Yue Li
- SPH Biotherapeutics (Shanghai) Limited, Cellular Therapeutics Center for Cancers, Shanghai, China.
| |
Collapse
|
6
|
Peng L, Liang Q, Rong PF, Zhang S, Chen H, Liu H, Ma X, Wang W. Peripheral T lymphocyte immune characteristics dictate response to transarterial chemoembolization in unresectable hepatocellular carcinoma. Therap Adv Gastroenterol 2025; 18:17562848251333295. [PMID: 40342832 PMCID: PMC12059425 DOI: 10.1177/17562848251333295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Background Although transcatheter arterial chemoembolization (TACE) is one of the first-line treatments for unresectable HCC (uHCC) patients, its overall efficacy varies significantly. Therefore, the identification of reliable biomarkers capable of effectively distinguishing TACE-responsive populations is clinically critical. Objectives Our research aims to investigate T-lymphocyte subpopulations and associated pathways in peripheral blood that contribute to TACE refractoriness, as well as to develop effective methods for predicting TACE efficacy. Design This is an observational study. Methods A total of 50 patients who underwent standard TACE-based therapy between January 2020 and December 2022 were included in this study. TACE response was evaluated within 1-3 months following two consecutive TACE sessions. Patients with TACE failure were assigned to the Non-Response group, whereas the remaining were categorized into the Response group. Blood samples were collected prior to treatment and subsequently analyzed using flow cytometry and RNA sequencing. Predictors were analyzed using univariate and multivariate analyses within the bivariate logistic regression models. Pathway enrichment analysis was performed using gene set enrichment analysis (GSEA). Results A total of 24 of 50 (48%) exhibited TACE failure (Non-Response). Baseline peripheral T-lymphocyte analysis revealed that the Non-Response group had a higher abundance of senescent phenotype (TSenescence, CD27-CD28-) in both CD4/CD8+ T cells (p < 0.0001), but a lower proportion of memory stem cell (TSCM) subpopulation (CD4+ TSCM: p = 0.0411; CD8+ TSCM: p < 0.0001). Furthermore, in CD8+ T cells, they exhibited higher expression of exhaustion marks (PD-1: p = 0.0005; LAG-3: p = 0.0026; TIGIT: p = 0.0014) and significantly lower production of effector molecules (TNF-α: p < 0.0001; IFN-γ: p = 0.0018; GZMB: p < 0.0001). Transcriptomics revealed that the Response group was enriched in pathways associated with energy and drug metabolism. Univariate and multivariate analyses demonstrated that the baseline CD8+ TSCM and CD8+ TSenescence subpopulations were significant predictive factors for TACE efficacy. Conclusion Our study demonstrated significant differences in the immune characteristics of peripheral T lymphocytes between the Non-Response and Response groups. The CD8+ TSCM and CD8+ TSenescence subsets are potential predictors of TACE efficacy and long-term survival. These insights into peripheral blood T lymphocytes offer valuable evidence to help clinicians more effectively identify potential TACE-responsive populations, predict survival, and develop personalized treatment regimens for patients with uHCC.
Collapse
Affiliation(s)
- Lei Peng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peng Fei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Shengwang Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Chen
- Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Huaping Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Pathogenesis and Systemic Treatment of Hepatocellular Carcinoma: Current Status and Prospects. Mol Cancer Ther 2025; 24:692-708. [PMID: 39417575 DOI: 10.1158/1535-7163.mct-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options has greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Yu H, Duan H, He R, Tian Y, Jiang J, Xiao F, Liu Q, Liu J, Li H, Yu X. Integrated transcriptomics profile reveals the role of Gal-1 and miR-21 in intrahepatic cholangiocarcinoma progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167882. [PMID: 40318846 DOI: 10.1016/j.bbadis.2025.167882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/08/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly invasive liver tumor with a poor prognosis, arises from the intrahepatic bile ducts. It is the second most common type of liver cancer. Understanding the mechanisms driving ICC progression is crucial for identification of biomarkers and therapeutic targets. Galectin-1 (Gal-1), encoded by the LGALS1 gene, is known to be upregulated in various malignancies and plays a significant role in cancer progression. However, its underlying mechanisms in ICC have yet to be fully elucidated. The study employed RNA-seq analysis, western blot, cell migration, colony forming, EdU assay, qRT-PCR, luciferase assay and mIHC to investigate the expression pattern of Gal-1 in ICC and its role in the progression of the disease. Our findings revealed a significant upregulation of Gal-1 in ICC tissues. Notably, downregulation of Gal-1inhibited ICC cell proliferation and migration. Further, Gal-1 appears to promote ICC progression through miR-21/STAT3-related pathways, playing a critical role to the tumor microenvironment. These results suggest that Gal-1 may serve as a promising molecular diagnostic marker and therapeutic target for ICC.
Collapse
Affiliation(s)
- Huasong Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huahong Duan
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ruiqi He
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Tian
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiayang Jiang
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Research Center of Biliary Disease, the First Affiliated Hospital of Hunan Normal University, Changsha, China; Key Laboratory of Biliary Disease Prevention and treatment, the First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China; Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
9
|
Zheng C, Liu S, Fazel Modares N, St Paul M, Mak TW. Cholinergic T cells revitalize the tumor immune microenvironment: TIME to ChAT. Nat Immunol 2025; 26:665-677. [PMID: 40307453 DOI: 10.1038/s41590-025-02144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/06/2025] [Indexed: 05/02/2025]
Abstract
Crosstalk between the nervous system and the immune system shapes the tumor microenvironment. Cholinergic T cells, a unique population of T cell antigen receptor-induced acetylcholine-producing T cells, have emerged as an integrative interface between these two fundamental body systems. Here we review the distinct characteristics and functions of cholinergic T cells in cancer settings. We first outline the expression of choline acetyltransferase and the cholinergic machinery in T cells. We then describe the dysfunctional state of choline acetyltransferase-expressing T cells in cancer and delve into their modulatory effects on T cells, cancer cells and the tumor microenvironment, including its populations of immune cells, its vasculature and its nerves. We also discuss the clinical implications of harnessing the potential of cholinergic T cells and future directions for increasing our understanding of their importance and possible exploitation.
Collapse
Affiliation(s)
- Chunxing Zheng
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tak W Mak
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025; 209:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
11
|
Han Y, Shi L, Jiang N, Huang J, Jia X, Zhu B. Dissecting the Single-Cell Diversity and Heterogeneity Underlying Cervical Precancerous Lesions and Cancer Tissues. Reprod Sci 2025; 32:1502-1519. [PMID: 39354287 PMCID: PMC12041141 DOI: 10.1007/s43032-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
The underlying cellular diversity and heterogeneity from cervix precancerous lesions to cervical squamous cell carcinoma (CSCC) is investigated. Four single-cell datasets including normal tissues, normal adjacent tissues, precancerous lesions, and cervical tumors were integrated to perform disease stage analysis. Single-cell compositional data analysis (scCODA) was utilized to reveal the compositional changes of each cell type. Differentially expressed genes (DEGs) among cell types were annotated using BioCarta. An assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis was performed to correlate epigenetic alterations with gene expression profiles. Lastly, a logistic regression model was used to assess the similarity between the original and new cohort data (HRA001742). After global annotation, seven distinct cell types were categorized. Eight consensus-upregulated DEGs were identified in B cells among different disease statuses, which could be utilized to predict the overall survival of CSCC patients. Inferred copy number variation (CNV) analysis of epithelial cells guided disease progression classification. Trajectory and ATAC-seq integration analysis identified 95 key transcription factors (TF) and one immunohistochemistry (IHC) testified key-node TF (YY1) involved in epithelial cells from CSCC initiation to progression. The consistency of epithelial cell subpopulation markers was revealed with single-cell sequencing, bulk sequencing, and RT-qPCR detection. KRT8 and KRT15, markers of Epi6, showed progressively higher expression with disease progression as revealed by IHC detection. The logistic regression model testified the robustness of the resemblance of clusters among the various datasets utilized in this study. Valuable insights into CSCC cellular diversity and heterogeneity provide a foundation for future targeted therapy.
Collapse
Affiliation(s)
- Yanling Han
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lu Shi
- CRE Life Institute, Beijing, 100000, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, 323000, China.
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
12
|
Li J, Xuan M, Yang L, Liu Y, Lou N, Fu L, Shi Q, Xue C. Comprehensive single-cell analysis deciphered the immunoregulatory mechanism of TPPU in alleviating sepsis-related acute liver injury. J Adv Res 2025; 71:457-470. [PMID: 39956402 DOI: 10.1016/j.jare.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
INTRODUCTION Sepsis-related acute liver injury involves complex immune dysfunctions. Epoxyeicosatrienoic acids (EETs), bioactive molecules derived from arachidonic acid (AA) via cytochrome P450 (CYP450) and rapidly hydrolyzed by soluble epoxide hydrolase (sEH), possess anti-inflammatory properties. Nevertheless, the impact of the sEH inhibitor TPPU on sepsis-related acute liver injury remains uncertain. OBJECTIVES This study utilized comprehensive single-cell analysis to investigate the immunoregulatory mechanism of TPPU in alleviating sepsis-related acute liver injury. METHODS Hepatic bulk RNA sequencing and proteomics analyses were employed to investigate the mechanisms underlying sepsis-related acute liver injury induced by cecal ligation and puncture in mice. Cytometry by time-of-flight and single-cell RNA sequencing were conducted to thoroughly examine the immunoregulatory role of TPPU at single-cell resolution. RESULTS Downregulation of AA metabolism and the CYP450 pathway was observed during sepsis-related acute liver injury, and TPPU treatment reduced inflammatory cytokine production and mitigated sepsis-related hepatic inflammatory injury. Comprehensive single-cell analysis revealed that TPPU promotes the expansion of anti-inflammatory CD206+CD73+ M2-like macrophages and PDL1-CD39-CCR2+ neutrophils, reprogramming liver neutrophils to an anti-inflammatory CAMP+NGP+CD177+ phenotype. Additionally, TPPU inhibits the CCL6-CCR1 signaling mediated by M2-like macrophages and CAMP+NGP+CD177+ neutrophils, altering intercellular communication within the septic liver immune microenvironment. CONCLUSION This study demonstrated TPPU's protective efficacy against sepsis-related acute liver injury, underscoring its vital role in modulating liver macrophages and neutrophils and enhancing prospects for personalized immunomodulatory therapy.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmiao Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Hu W, Chen ZM, Wang Y, Yang C, Wu ZY, You LJ, Zhai ZY, Huang ZY, Zhou P, Huang SL, Li XX, Yang GH, Bao CJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Tan LK, Zhang YX, Gong W. Single-cell RNA sequencing dissects the immunosuppressive signatures in Helicobacter pylori-infected human gastric ecosystem. Nat Commun 2025; 16:3903. [PMID: 40281037 PMCID: PMC12032416 DOI: 10.1038/s41467-025-59339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Helicobacter pylori (H. pylori) manipulates the host immune system to establish a persistent colonization, posing a serious threat to human health, but the mechanisms remain poorly understood. Here we integrate single-cell RNA sequencing and TCR profiling for analyzing 187,192 cells from 11 H. pylori-negative and 12 H. pylori-positive individuals to describe the human gastric ecosystem reprogrammed by H. pylori infection, as manifested by impaired antigen presentation and phagocytosis function. We further delineate a monocyte-to-C1QC+ macrophage differentiation trajectory driven by H. pylori infection, while T cell responses exhibit broad functional impairment and hyporesponsiveness with restricted clonal expansion capacity. We also identify an HLA-DRs- and CTLA4-expressing T cell population residing in H. pylori-inhabited stomach that potentially contribute to immune evasion. Together, our findings provide single-cell resolution information into the immunosuppressive microenvironment shaped by H. pylori infection, offering critical insights for developing novel therapeutic approaches to eliminate this globally prevalent pathogen.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Chao Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zi Ying Wu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Li Kai Tan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King's College London, London, UK
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Stur E, Peng F, Teng PN, Bayraktar E, Hu M, Corvigno S, Brown DJ, Lee S, Moore KN, Bateman NW, Darcy KM, Maxwell GL, P Conrads T, Sahni N, Vázquez-García I, Shah SP, Celestino J, D Fleming N, Navin NE, Wang L, Sood AK. The dynamic immune behavior of primary and metastatic ovarian carcinoma. NPJ Precis Oncol 2025; 9:120. [PMID: 40281242 PMCID: PMC12032089 DOI: 10.1038/s41698-025-00818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/17/2025] [Indexed: 04/29/2025] Open
Abstract
Patients with high-grade serous ovarian carcinoma (HGSC) are usually diagnosed with advanced-stage disease, and the tumors often have immunosuppressive characteristics. Together, these factors are important for disease progression, drug resistance, and mortality. In this study, we used a combination of single-cell sequencing and spatial transcriptomics to identify the molecular mechanisms that lead to immunosuppression in HGSC. Primary tumors consistently showed a more active immune microenvironment than did omental tumors. In addition, we found that untreated primary tumors were mostly populated by dysfunctional CD4 and CD8 T cells in later stages of differentiation; this, in turn, was correlated with expression changes in the interferon α and γ pathways in epithelial cells, showing that cross-communication between the epithelial and immune compartments is important for immune suppression in HGSC. These findings could have implications for the design of clinical trials with immune-modulating drugs.
Collapse
Affiliation(s)
- Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Hu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J Brown
- Obstetrics and Gynecology, Stephenson Cancer Center, Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute, Oklahoma City, OK, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen N Moore
- Obstetrics and Gynecology, Stephenson Cancer Center, Stephenson Cancer Center at the University of Oklahoma Health Sciences Center/Sarah Cannon Research Institute, Oklahoma City, OK, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Walter Reed National Military Medical Center, Bethesda, MD, 20889, USA
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - George L Maxwell
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Thomas P Conrads
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, Boston, MA, USA
- Irving Institute for Cancer Dynamics, Columbia University, Cambridge, MA, 10027, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, MA, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Institute for Data Science in Oncology (IDSO), The University of Texas MD, Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Biancotti JC, Moore HE, Sescleifer AM, Sferra SR, Penikis AB, Miller JL, Kunisaki SM. Spinal Cord Organoids from Human Amniotic Fluid iPSC Recapitulate the Diversity of Cell Phenotypes During Fetal Neural Tube Morphogenesis. Mol Neurobiol 2025:10.1007/s12035-025-04944-z. [PMID: 40254702 DOI: 10.1007/s12035-025-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Myelomeningocele (MMC) is a severe form of spina bifida associated with substantial neurologic morbidity. In vitro modeling systems of human spinal cord development may help to elucidate the underlying pathophysiology of the MMC spinal cord. To that end, we developed spinal cord organoids (SCO), defined as self-organized, three-dimensional clusters of spinal tissue, that were derived from human amniotic fluid-induced pluripotent stem cells. Here, we used a variety of analyses, including immunofluorescent and single-cell transcriptomic approaches, to characterize SCOs from healthy and MMC fetuses. Organoids contained a diverse range of neural and mesodermal phenotypes when cultured for up to 130 days in vitro. Multielectrode arrays revealed functional activity with evidence of emerging neuronal networks. Fetal spina bifida environment modeling was successfully established by culturing SCOs in second- and third-trimester amniotic fluid for 3 weeks. Taken together, we show that functional SCOs can recapitulate the cellular identity of the fetal spinal cord and represent a novel research platform to study the interplay between cellular, biochemical, and mechanical cues during human MMC neural tube morphogenesis.
Collapse
Affiliation(s)
- Juan C Biancotti
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Hannah E Moore
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anne M Sescleifer
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shelby R Sferra
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Annalise B Penikis
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jena L Miller
- Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shaun M Kunisaki
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Johns Hopkins University School of Medicine, 1800 Orleans Street, Suite 7353, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Biswas B, Sugimoto M, Hoque MA. Discovery of Genomic Targets and Therapeutic Candidates for Liver Cancer Using Single-Cell RNA Sequencing and Molecular Docking. BIOLOGY 2025; 14:431. [PMID: 40282296 PMCID: PMC12024973 DOI: 10.3390/biology14040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Liver cancer is one of the most common malignancies and the second leading cause of cancer-related deaths worldwide, particularly in developing countries, where it poses a significant financial burden. Early detection and timely treatment remain challenging due to the complex mechanisms underlying the initiation and progression of liver cancer. This study aims to uncover key genomic features, analyze their functional roles, and propose potential therapeutic drugs identified through molecular docking, utilizing single-cell RNA sequencing (scRNA-seq) data from liver cancer studies. We applied two advanced hybrid methods known for their robust identification of differentially expressed genes (DEGs) regardless of sample size, along with four top-performing individual methods. These approaches were used to analyze four scRNA-seq datasets, leading to the identification of essential DEGs. Through a protein-protein-interaction (PPI) network, we identified 25 hub-of-hub genes (hHubGs) and 20 additional hHubGs from two naturally occurring gene clusters, ultimately validating a total of 36 hHubGs. Functional, pathway, and survival analyses revealed that these hHubGs are strongly linked to liver cancer. Based on molecular docking and binding-affinity scores with 36 receptor proteins, we proposed 10 potential therapeutic drugs, which we selected from a pool of 300 cancer meta-drugs. The choice of these drugs was further validated using 14 top-ranked published receptor proteins from a set of 42. The proposed candidates include Adozelesin, Tivozanib, NVP-BHG712, Nilotinib, Entrectinib, Irinotecan, Ponatinib, and YM201636. This study provides critical insights into the genomic landscape of liver cancer and identifies promising therapeutic candidates, serving as a valuable resource for advancing liver cancer research and treatment strategies.
Collapse
Affiliation(s)
- Biplab Biswas
- Department of Statistics, Faculty of Science, Gopalganj Science & Technology University, Gopalganj 8100, Bangladesh;
- Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan;
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Md. Aminul Hoque
- Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
17
|
Gong H, Nie D, Li Z. The crosstalk between broad epigenetic modification and T cell metabolism within tumor microenvironment. Int Immunopharmacol 2025; 152:114410. [PMID: 40068521 DOI: 10.1016/j.intimp.2025.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
T cells play an important role in adaptive immune responses, providing antigen specificity for pathogen and tumor recognition. Recent studies have elucidated the complex interplay between T cell metabolism and broad epigenetic modifications in response to tumors, occurring at transcriptional, post-transcriptional, and post-translational levels. At the transcriptional level, gene expression is regulated through mechanisms such as DNA methylation, chromatin remodeling, and transcription factor activity. Post-transcriptionally, gene expression is further modulated by non-coding RNAs and RNA modifications, an area of increasing research interest. In addition, histone proteins are primarily regulated by well-established post-translational modifications (PTMs), including acetylation and methylation. Novel PTMs such as succinylation, glycosylation, glutamylation, and lactylation add complexity to the regulation and warrant further investigation. At present, the interaction between CD8+ T cell metabolism and epigenetic modifications in response to malignancies has been reported extensively. However, the interplay in CD4+ T cells remains less understood. In this review, we introduce the differentiation trajectories of T cells and critically evaluate existing interplay between metabolic activity and epigenetic modifications influences the functional dynamics in both CD8+ and CD4+ T cells, offering promising avenues for the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The affiliated hospital of Southwest Medical University, Luzhou 646000, People's Republic of China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
18
|
Hong G, Han DK, Rhu J, Hong SK, Choi Y, Yi NJ, Lee KW, Kim J, Yang J, Suh KS. Safety and Therapeutic Outcomes of Adjuvant Immunotherapy With Autologous Cytokine-induced Killer Cells for Patients With Hepatocellular Carcinoma Beyond Milan Criteria After Liver Transplantation. Transplantation 2025:00007890-990000000-01062. [PMID: 40235029 DOI: 10.1097/tp.0000000000005406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND Adjuvant immunotherapy with autologous cytokine-induced killer (CIK) cells for hepatocellular carcinoma (HCC) remains understudied in liver transplant patients because of potential risks of acute rejection and diminished efficacy by immunosuppression. METHODS This study examined the safety and effectiveness of CIK therapy in patients with HCC exceeding the Milan criteria, treated at 2 Korean hospitals between 2019 and 2021. We analyzed clinical outcomes of 16 patients who underwent CIK therapy compared with 44 propensity-matched controls who did not receive CIK therapy. CIK cells were administered in 6 escalating doses, either 3 or 6 times over the course of weeks 4, 5, 6, 8, 10, and 12 posttransplantation. RESULTS CIK therapy was well-tolerated without significant treatment-related adverse reactions. Maximal tolerated dose of CIK cells was 10 × 109, which had been repeated 6 times. The CIK group exhibited higher 2-y HCC recurrence-free (87.5% versus 62.9%, P = 0.027) and patient survival (100% versus 81.5%, P = 0.002) rates, with no significant difference in rejection-free survival rates (92.9% versus 95.0%, P = 0.926) compared with the no-CIK group. Subgroup analysis showed that the CIK group in patients with high retreat scores, elevated R3-α-fetoprotein scores, and those beyond the University of California San Francisco criteria had improved HCC recurrence-free survival. Immunological evaluation showed elevated CD8+ T cells and polymorphonuclear myeloid-derived suppressor cells with transient increases in granzyme B and tumor necrosis factor-α levels in the CIK group. CONCLUSIONS These findings advocate CIK therapy as a safe and effective, potential adjuvant treatment for HCC beyond Milan criteria after transplantation, supporting further validation trials.
Collapse
Affiliation(s)
- Geun Hong
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, EWHA Womans University College of Medicine, Seoul, Republic of Korea
| | - Dong Kyu Han
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongman Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Kyung-Suk Suh
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Montgomery L, Larbi A. Monitoring Immune Responses to Vaccination: A Focus on Single-Cell Analysis and Associated Challenges. Vaccines (Basel) 2025; 13:420. [PMID: 40333304 PMCID: PMC12030821 DOI: 10.3390/vaccines13040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Monitoring the immune response to vaccination encompasses both significant challenges and promising opportunities for scientific advancement. The primary challenge lies in the inherent complexity and interindividual variability of immune responses, influenced by factors including age, genetic background, and prior immunological history. This variability necessitates the development of sophisticated, highly sensitive assays capable of accurately quantifying immune parameters such as antibody titers, T-cell responses, and cytokine profiles. Furthermore, the temporal dynamics of the immune response require comprehensive longitudinal studies to elucidate the durability and quality of vaccine-induced immunity. Challenges of this magnitude pave the way for immunological research advancements and diagnostic methodologies. Cutting-edge monitoring techniques, such as high-throughput sequencing and advanced flow cytometry, enable deeper insights into the mechanistic underpinnings of vaccine efficacy and contribute to the iterative design of more effective vaccines. Additionally, the integration of analytical tools holds the potential to predict immune responses and tailor personalized vaccination strategies. This will be addressed in this review to provide insight for enhancing public health outcomes and fortifying preparedness against future infectious disease threats.
Collapse
Affiliation(s)
- LaToya Montgomery
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, Brea, CA 92821, USA;
| | - Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, Brea, CA 92821, USA;
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
20
|
Xie DH, Li SQ, Sun K, Wang J, Shi ZY, Wang YZ, Chang Y, Yuan XY, Jiang H, Jiang Q, Chang YJ, Huang XJ, Qin YZ. The effect of TIGIT and PD1 expression on T cell function and prognosis in adult patients with acute myeloid leukemia at diagnosis. Cancer Immunol Immunother 2025; 74:170. [PMID: 40214805 PMCID: PMC11992289 DOI: 10.1007/s00262-025-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a recently-identified immune checkpoint molecule, and no study ever explores the prognostic significance of TIGIT on bone marrow T cells of newly-diagnosed acute myeloid leukemia (AML) patients. We collected fresh marrow samples from 71 adult AML patients at diagnosis and 31 healthy donors (HDs) to test for TIGIT and PD1 expression in T cells by flow cytometry. Fifteen newly-diagnosed AML patients and six HDs were performed T cell activation in vitro and tested intracellular TNF-α and INF-γ production. Three bone marrow samples of AML patients were performed single cell RNA-sequencing (scRNA-seq). AML patients had significantly higher frequency of TIGIT + cells in CD4 + T cells but similar frequency in CD8 + T cells compared with HDs (p = 0.0006 and 0.77). High percentage of TIGIT + PD1 + in CD8 + T cells independently predicted poor relapse-free survival (RFS) (p = 0.029). Differing from HDs, AML patients had lower level of intracellular TNF-α and INF-γ in TIGIT + cells compared with their TIGIT- counterparts in both CD4 + T and CD8 + T cells. TIGIT + PD1 + CD8 + T cells of patients exhibited significantly lower level of intracellular TNF-α compared with those of HDs (p = 0.024). scRNA-seq data showed that TIGIT + PDCD1 + CD8 + T cells had significantly higher exhaustion score than TIGIT + and PD1 + CD8 + T cells and lower cytotoxic score than TIGIT + CD8 + T cells (p = 0.0016, 0.012 and 0.0014). Therefore, CD8 + T cells with TIGIT and PD1 co-expression exhibited high degree of exhaustion and dysfunctional cytotoxicity, and high percentage of bone marrow TIGIT + PD1 + in CD8 + T cells at diagnosis predicted poor outcome in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Female
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Male
- Adult
- Middle Aged
- Prognosis
- Aged
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Young Adult
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Si-Qi Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Ni C, Hua R, Yang Y, Liang J, Liu W, Wang L, Yao X, Li A, Yu L, Feng R, Lv D, Qin Z, Zhai W. Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate stratification of patients with extrahepatic cholangiocarcinoma. BMC Gastroenterol 2025; 25:235. [PMID: 40205358 PMCID: PMC11983802 DOI: 10.1186/s12876-025-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma (eCCA) is a rare but refractory cancer with dense desmoplasia. Prognosis-associated stromal cells in eCCA remain poorly characterized. Here, we profiled the tumor cellular composition and identified prognosis-related stromal signatures by single-cell RNA sequencing (scRNA-seq) in eCCA. ECCA patients were further stratified into different categories based on identified stromal signatures. METHODS Using scRNA-seq, we profiled the transcriptomes of 37,498 individual cells from eight eCCA biopsies, including five tumor tissues and three paired adjacent normal tissues. Bulk RNA sequencing (bRNA-seq) was also performed on 43 eCCA tumor tissues. Stromal cell composition and heterogeneity were examined through differential gene expression and gene set enrichment analyses. By assessing the expression levels of marker genes in bRNA-seq data, the correlation of stromal cell clusters with survival was explored. The GSVA scores of the cell-specific signature genes of the prognosis-related stromal cell subtypes were calculated and used to stratify eCCA patients. RESULTS The results revealed that tumor stroma in eCCA were composed of hematopoietic progenitor-like cells (HPLCs), fibroblasts (Fb), Schwann cells (Sch), endothelial cells and immune cells. Prognosis-associated stromal cell subpopulations included MKI67 + HPLC, TMEM158 + C3-Fb, FOXP3 + regulatory T cells (Treg), SLIT2 + Sch, TPSD1 + C2-mast cells (MC) and CTSG + C3-MC. Based on these stromal signatures, the eCCA tumors were categorized into three classes: proliferative Group 1 with enrichment of MKI67 + HPLC, inflammatory and fibrotic Group 2 with enrichment of TPSD1 + C2- MC, FOXP3 + Treg and TMEM158 + C3-Fb, and neuronal Group 3 with enrichment of SLIT2 + Sch and CTSG + C3-MC. ECCA patients in Group 3 had a better prognosis when compared to Group 1 and 2, reflecting different impact of stromal subtypes on tumor progression. CONCLUSION Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate the stratification of eCCA into proliferative, inflammatory and fibrotic, and neuronal phenotypes, which has important implications on molecular classification and exploring therapeutic targets in eCCA.
Collapse
Affiliation(s)
- Chen Ni
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Rulin Hua
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuanyuan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Linlin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaohan Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Zhihai Qin
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
22
|
Wang E, Sun S, Li H, Jia Y, Bai Z. HBx/WDR5 enhances IGF-1 transcription in hepatocellular carcinoma cells and promotes recruitment, infiltration, and activity of Treg cells. Immunol Res 2025; 73:69. [PMID: 40199768 PMCID: PMC11978548 DOI: 10.1007/s12026-025-09620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
HBV X protein (HBx), the smallest open reading frame in the hepatitis B virus (HBV) genome, can promote hepatocellular carcinoma (HCC) tumorigenesis by activating the expression of multiple oncogenes through inducing epigenetic alterations and interacting with the underlying transcriptional machinery. HBV non-infected HepG2 and Huh7 cells were transfected with HBx expression plasmids. The transcriptional, protein expression, and secretion levels of IGF-1 were detected by RT-qPCR, western blot, and ELISA, respectively. ChIP-qPCR was used to analyze the binding proteins on the IGF-1 gene. A co-culture system of HCC and Treg cells was designed using Transwell chambers. IGF-1 mRNA, protein, and secretion levels were increased in HepG2 and Huh7 cells exogenously expressing HBx. HBx was able to enter the nucleus and interact with the enhancer region of the IGF-1 gene. Levels of WDR5 and H3K4me1, which bind to the enhancer region of the IGF-1 gene, were also increased in HepG2 and Huh7 cells ectopically expressing HBx. Knockdown of WDR5 counteracted the upregulation of IGF-1 mRNA and protein levels by HBx. In the cell co-culture system, HBx/IGF-1 signaling in HCC cells promoted Treg cells expansion, IL-10 secretion, and infiltration, which was blocked by the IGF-1R inhibitor picropodophyllin. HBx/WDR5 promoted IGF-1 transcription in HCC cells through enhancers. HBx could promote Treg cell recruitment, infiltration, and activity by enhancing IGF-1 expression. IGF-1/IGF-1R signaling plays an important role in the communication between HCC cells and Treg cells. Targeting WDR or IGF-1/IGF-1R would be beneficial for the treatment of HCC.
Collapse
Affiliation(s)
- Erli Wang
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Shuhua Sun
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Hui Li
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yi Jia
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Zhe Bai
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
23
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
24
|
Liu GM, Guo R, Xu JW. A bibliometric and visual analysis based on immune checkpoint inhibitors for hepatocellular carcinoma: 2014 - 2024. Front Pharmacol 2025; 16:1520055. [PMID: 40260385 PMCID: PMC12009821 DOI: 10.3389/fphar.2025.1520055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have changed the treatment landscape of hepatocellular carcinoma (HCC), especially those with unresectable advanced stages. The field has progressed rapidly, and the research hotspots have significantly changed compared to previous years. The study aims to comprehensively review and analyze the development history, knowledge structure, current research focus, and emerging trends in ICIs for HCC. Materials and methods Reviews and articles published in English from The Web of Science Core Collection (WoSCC) database from 2014 to 2024 were systemically retrieved. Citespace, VOSviewer, and Bibliometrix R package were used for further bibliometric analysis and visualization for countries, institutions, authors, references, and keywords. Results 2,941 records were included for analysis. The literature on ICIs for HCC has continued to grow steadily over the past decade. Three major research centers have emerged: North America, Europe, and East Asia. The Chinese institution has the highest publication volume, but Kudo Masatoshi from Japan has the highest number of publications. At the same time, Richard S. Finn from the United States leads in citations and co-citations. The most prolific journal is "Cancers". The clustering and Timeline view of critical literature and keywords indicated that research on ICIs for HCC is rapidly advancing toward a more evidence-based, personalized, and multimodal approach. Immune evasion mechanisms, predictive biomarkers, and high-quality clinical trials focusing on Novel combination, conversion, and perioperative therapies, including ICIs, are emerging hotspots. Conclusion This study highlights the groundbreaking advancements of ICIs in treating HCC and shows a trend rapidly advancing towards a more evidence-based, personalized, and multimodal approach. The study updated the current understanding of ICIs in hepatocellular carcinoma and identified vital future directions for research, such as the exploration of mechanisms of immune evasion, developing predictive biomarkers, and combining therapy strategies.
Collapse
Affiliation(s)
- Gao-Min Liu
- Meizhou Clinical Medical College of Shantou University Medical College, Meizhou, China
- Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Meizhou, China
| | - Rui Guo
- Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Meizhou, China
| | - Ji-Wei Xu
- Meizhou Clinical Medical College of Shantou University Medical College, Meizhou, China
- Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Meizhou, China
| |
Collapse
|
25
|
Yuan S, Sun R, Shi H, Chapman NM, Hu H, Guy C, Rankin S, Kc A, Palacios G, Meng X, Sun X, Zhou P, Yang X, Gottschalk S, Chi H. VDAC2 loss elicits tumour destruction and inflammation for cancer therapy. Nature 2025; 640:1062-1071. [PMID: 40108474 PMCID: PMC12018455 DOI: 10.1038/s41586-025-08732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Tumour cells often evade immune pressure exerted by CD8+ T cells or immunotherapies through mechanisms that are largely unclear1,2. Here, using complementary in vivo and in vitro CRISPR-Cas9 genetic screens to target metabolic factors, we established voltage-dependent anion channel 2 (VDAC2) as an immune signal-dependent checkpoint that curtails interferon-γ (IFNγ)-mediated tumour destruction and inflammatory reprogramming of the tumour microenvironment. Targeting VDAC2 in tumour cells enabled IFNγ-induced cell death and cGAS-STING activation, and markedly improved anti-tumour effects and immunotherapeutic responses. Using a genome-scale genetic interaction screen, we identified BAK as the mediator of VDAC2-deficiency-induced effects. Mechanistically, IFNγ stimulation increased BIM, BID and BAK expression, with VDAC2 deficiency eliciting uncontrolled IFNγ-induced BAK activation and mitochondrial damage. Consequently, mitochondrial DNA was aberrantly released into the cytosol and triggered robust activation of cGAS-STING signalling and type I IFN response. Importantly, co-deletion of STING signalling components dampened the therapeutic effects of VDAC2 depletion in tumour cells, suggesting that targeting VDAC2 integrates CD8+ T cell- and IFNγ-mediated adaptive immunity with a tumour-intrinsic innate immune-like response. Together, our findings reveal VDAC2 as a dual-action target to overcome tumour immune evasion and establish the importance of coordinately destructing and inflaming tumours to enable efficacious cancer immunotherapy.
Collapse
Affiliation(s)
- Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renqiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoyang Yang
- Experimental Cellular Therapeutics Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
26
|
Zou L, Chen J, Xie L, Zhang L, Wan L, Li W, Xu H. Landscape of T Cells in Tuberculous Pleural Effusion. THE CLINICAL RESPIRATORY JOURNAL 2025; 19:e70066. [PMID: 40170555 PMCID: PMC11962214 DOI: 10.1111/crj.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 02/11/2025] [Indexed: 04/03/2025]
Abstract
The distribution and the function of T lymphocyte subsets in pleural effusion (PE) and peripheral blood (PB) in tuberculous pleural effusion (TPE) patients remain unclear. In this study, we aimed to explore the expression patterns, regulatory mechanisms, and functions of T lymphocyte subsets in TPE patients, especially the distribution of T lymphocyte subsets at the single cell level. The CD3+ T cells were isolated from PE and PB of four TPE patients for single-cell RNA sequencing (scRNA-seq) to screen T cell subsets. T-SNE projection, Gene Set Variation Analysis (GSVA), and pseudotime analysis were performed to analyze the composition, molecular and functional properties, and developmental trajectories of T cell subsets. Finally, ELISA was carried out to identify the cytokines secreted by PE and PB. We found that CD4+CD8- T lymphocytes (Th1, Th2, and FOXP3+ Treg cells) were preferentially enriched in PE. The proportion of exhausted CD4-CD8+ cells in PE was higher than that in PB, while the proportion of initial and effector CD4-CD8+ cells was quite the reverse. We also found a large number of unexpected double positive (DP) cells in PE and PB, among which the proportion of CD4+CD8+-C10-CCL3 cells was the most different between PE and PB. Meanwhile, CD4+CD8+-C10-CCL3 was the group with the largest number of interactions with other groups. CD4-CD8- cells were mainly found in PE and may be involved in the immunomodulatory effect of PE. Furthermore, the concentrations of cytokines secreted by Th1, Th2, and Treg in PE were higher than those in PB. Our study is helpful to understand the distribution pattern and dynamic changes of T cells in PE and PB of TPE patients and further understand that the functional status and regulation of T cells will be crucial for the successful development of TPE immunotherapy.
Collapse
Affiliation(s)
- Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Jing Chen
- Beijing Economic and Technological Development ZoneAnnoroad Gene Technology Co., LtdBeijingChina
| | - Li Xie
- Department of TuberculosisBeijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Weimin Li
- National Tuberculosis Clinical Lab of ChinaBeijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical UniversityBeijingChina
| | - Hongtao Xu
- Department of Laboratory MedicineBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
27
|
Salou M, Paiva RA, Lantz O. Development and Functions of MAIT Cells. Annu Rev Immunol 2025; 43:253-283. [PMID: 39879553 DOI: 10.1146/annurev-immunol-082323-025943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.
Collapse
Affiliation(s)
- Marion Salou
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Rafael A Paiva
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Olivier Lantz
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie, Gustave-Roussy and Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
28
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
29
|
Sailo BL, Chauhan S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Goel A, Sethi G, Kunnumakkara AB. Therapeutic potential of tocotrienols as chemosensitizers in cancer therapy. Phytother Res 2025; 39:1694-1720. [PMID: 38353331 DOI: 10.1002/ptr.8131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2025]
Abstract
Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/β-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, California, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
30
|
Wang J, Yang H, Chen J, Sun Y, Pei H, Li L. DNA Origami Scaffold-Based Peptide-Major Histocompatibility Complex Multimers for Spatial Imaging of T Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18116-18123. [PMID: 40079396 DOI: 10.1021/acsami.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Visualizing the spatial distribution of antigen-specific T cells is essential for understanding immune responses and improving therapeutic strategies. However, detecting low-affinity antigen-specific T cells and enhancing signals from low-abundance populations remain challenging due to limitations in sensitivity. Here, we report DNA origami scaffold-based peptide-major histocompatibility complex multimers (DOS-pMHCs) with precise spatial organization of pMHC and signaling molecules on the nanoscale for enhanced in situ visualization of antigen-specific T cells. The two-dimensional triangular DNA origami precisely organizes pMHCs and signaling molecules with high valency, significantly improving binding to antigen-specific T cells and signal amplification. These DOS-pMHCs facilitate enhanced visualization of antigen-specific T cells in lymphoid tissues compared to traditional tetramers. Moreover, we show that DOS-pMHCs enable the in situ detection of autoimmune T cells with lower affinity T cell receptors (TCRs), which are difficult to identify using traditional tetramers. This in situ detection strategy provides a powerful tool for mapping the spatial distribution of antigen-specific T cells, thus holding great potential for advancing our understanding of immune responses and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Jianing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Han Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
31
|
Wang J, Liu C, Wu T, Tan L, Wang J, Zhang W, Liu Y, Wei X, Zhang D. Unveiling the role of PPIF and macrophage subtypes in LSCC progression via single-cell and exosome RNA sequencing. Sci Rep 2025; 15:10141. [PMID: 40128571 PMCID: PMC11933383 DOI: 10.1038/s41598-025-93584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignancy with a rising incidence over time. The tumor microenvironment (TME) plays a crucial role in LSCC development, yet the precise cellular characteristics of laryngeal cancer and its TME remain unclear. Here, we employed single-cell RNA sequencing analysis to uncover the heterogeneous populations of tumor and immune cells and investigate the role of the TME in LSCC. This analysis revealed significant heterogeneity among malignant cells, T cells, and macrophages. Notably, regulatory T cells were markedly increased at tumor sites, and macrophage analysis identified an increased presence of the Macrophage-C1-C1QC subset with up-regulated PPIF expression. Bulk RNA-seq further confirmed PPIF up-regulation in exosomes derived from LSCC tissues. Consistently, survival analysis indicated that high PPIF expression was associated with poor prognosis in LSCC. Further analyses suggested that PPIF up-regulation in Macrophage-C1-C1QC cells was associated with the enhancement of their anti-inflammatory phenotype and the promotion of F11R-F11R signaling with malignant cells, allowing LSCC cells to evade macrophage-mediated cytotoxicity. Our study provides new insights into the cellular dynamics of LSCC and highlights the critical role of Macrophage-C1-C1QC and PPIF in LSCC progression, offering potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Jianchao Wang
- Department of Otolaryngology, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), No.29 Bulan Rd, Shenzhen, 518112, Guangdong, China
| | - Chunhan Liu
- Department of Otolaryngology, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), No.29 Bulan Rd, Shenzhen, 518112, Guangdong, China
- Vertigo Clinic, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), No.29 Bulan Rd, Shenzhen, 518112, Guangdong, China
| | - Tailin Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Lei Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiangyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, No.204 Donggang West Rd, Lanzhou, 730000, Gansu, China
| | - Wenliang Zhang
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, No. 5022 Binhe Avenue, Shenzhen, 518000, Guangdong, China
| | - Yang Liu
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, No. 5022 Binhe Avenue, Shenzhen, 518000, Guangdong, China
| | - Xudong Wei
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, No.204 Donggang West Rd, Lanzhou, 730000, Gansu, China.
| | - Di Zhang
- Department of Otolaryngology, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), No.29 Bulan Rd, Shenzhen, 518112, Guangdong, China.
| |
Collapse
|
32
|
Muhammed TM, Jasim SA, Zwamel AH, Rab SO, Ballal S, Singh A, Nanda A, Ray S, Hjazi A, Yasin HA. T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04035-9. [PMID: 40100377 DOI: 10.1007/s00210-025-04035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The primary therapies for HCC are liver transplantation, hepatic tumor excision, radiofrequency ablation, and molecular-targeted medicines. An unfavorable prognosis marks HCC and has limited pharmacological response in therapeutic studies. The tumor immune microenvironment (TME) imposes significant selection pressure on HCC, resulting in its evolution and recurrence after various treatments. As the principal cellular constituents of tumor-infiltrating lymphocytes (TILs), T cells have shown both anti-tumor and protumor actions in HCC. T cell-mediated immune responses are pivotal in cancer monitoring and elimination. TILs are recognized for their critical involvement in the progression, prognosis, and immunotherapeutic management of HCC. Foxp3 + , CD8 + , CD3 + , and CD4 + T cells are the extensively researched subtypes of TILs. This article examines the functions and processes of several subtypes of TILs in HCC. Emerging T cell-based therapies, including TILs and chimeric antigen receptor (CAR)-T cell therapy, have shown tumor regression in several clinical and preclinical studies. Herein, it also delves into the existing T cell-based immunotherapies in HCC, with emphasis on TILs and CAR-T cells.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Biology Department, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
33
|
Shen WK, Zhang CY, Gu YM, Luo T, Chen SY, Yue T, Xie GY, Liao Y, Yuan Y, Lei Q, Guo AY. An automatic annotation tool and reference database for T cell subtypes and states at single-cell resolution. Sci Bull (Beijing) 2025:S2095-9273(25)00288-9. [PMID: 40157887 DOI: 10.1016/j.scib.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
T cells have various subtypes and states with different functions. However, a reference list and automated annotation tool for T cell subtypes and states are lacking, which is critical for analyzing and comparing T cells under various conditions. We constructed the largest human T cell reference, containing 1,348,268 T cells from 35 conditions and 16 tissues. We classified T cells into 33 subtypes and further stratified them into 68 categories according to subtype and state. Based on this reference, we developed a tool named STCAT to automatically annotate T cells from scRNA-seq data by hierarchical models and marker correction. The accuracy of STCAT was 28% higher than that of existing tools validated on six independent datasets, including cancer and healthy samples. Using STCAT, we consistently discovered that CD4+ Th17 cells were enriched in late-stage lung cancer patients in multiple datasets, whereas MAIT cells were prevalent in milder-stage COVID-19 patients. We also confirmed a decrease in Treg cytotoxicity in post-treatment ovarian cancer. Systematic landscape analyses of CD4+ and CD8+ T cell references revealed that CD4+ Treg cells were enriched in tumor samples and that CD8+ naive-related cells were abundant in healthy individuals. Finally, we deposited all the T cell references and annotations into a TCellAtlas (https://guolab.wchscu.cn/TCellAtlas) database, which allows users to browse T cell expression profiles and analyze customized scRNA-seq data by STCAT. In conclusion, comprehensive human T cell subtypes and states reference, automated annotation tool, and database will greatly facilitate research on T cell immunity and tumor immunology.
Collapse
Affiliation(s)
- Wen-Kang Shen
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chu-Yu Zhang
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi-Min Gu
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Luo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Si-Yi Chen
- Department of Rheumatology & Immunology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Yue
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China; Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gui-Yan Xie
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liao
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qian Lei
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - An-Yuan Guo
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
Cao C, Huang YC, Luo HC, He JL, Wang RC, Yang F, Meng WR, Li L, Zhu GQ. Deciphering the Premetastatic Lymphatic Niche of Oral Squamous Cell Carcinoma. J Dent Res 2025:220345241307894. [PMID: 40082761 DOI: 10.1177/00220345241307894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent types of malignancies in the oral cavity, with a high incidence of lymph node (LN) metastasis. While previous studies have explored the mechanisms of lymphatic metastasis, little is known about the cellular architecture within the premetastatic niche of LNs. In this study, we established mouse models of premetastatic LNs, which demonstrated an immunosuppressive premetastatic environment in tumor-draining LNs prior to metastasis. We performed single-cell RNA sequencing on LNs from patients with OSCC, including premetastatic tumor-draining LNs and paired contralateral LNs. Our analysis identified a subset of CD4+ T cells that exclusively expressed MIR155HG, characterized by a preexhausted state and active immune exhaustion signaling with myeloid cells (henceforth, CD4+ Tex-pre cells). In silico analyses and in vivo experiments revealed a higher abundance of CD4+ Tex-pre cells in tumor-draining premetastatic LNs when compared with contralateral LNs, with their numbers increasing as LN metastasis progressed. Moreover, adoptive transfer of CD4+ Tex-pre cells aggravated immune suppression in tumor-draining premetastatic LNs and promoted LN metastasis. The presence of CD4+ Tex-pre cells was further validated by integrating external data sets and conducting in situ RNAscope staining. Finally, using bulk RNA sequencing data sets, we found that CD4+ Tex-pre infiltration was associated with lymphatic metastasis and that CD4+ Tex-pre scores could inform treatment decisions for low-grade cases without clinical nodal involvement. Overall, our study provides a comprehensive view of the single-cell landscape in the premetastatic niche of OSCC LNs and highlights the role of CD4+ Tex-pre cells in shaping the premetastatic niche.
Collapse
Affiliation(s)
- C Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y C Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H C Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - J L He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R C Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W R Meng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - G Q Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Liu M, Hernandez MO, Castven D, Lee HP, Wu W, Wang L, Forgues M, Hernandez JM, Marquardt JU, Ma L. Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642107. [PMID: 40161587 PMCID: PMC11952337 DOI: 10.1101/2025.03.07.642107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spatial cellular context is crucial in shaping intratumor heterogeneity. However, understanding how each tumor establishes its unique spatial landscape and what factors drive the landscape for tumor fitness remains significantly challenging. Here, we analyzed over 2 million cells from 50 tumor biospecimens using spatial single-cell imaging and single-cell RNA sequencing. We developed a deep learning-based strategy to spatially map tumor cell states and the architecture surrounding them, which we referred to as Spatial Dynamics Network (SDN). We found that different tumor cell states may be organized into distinct clusters, or 'villages', each supported by unique SDNs. Notably, tumor cell villages exhibited village-specific molecular co-dependencies between tumor cells and their microenvironment and were associated with patient outcomes. Perturbation of molecular co-dependencies via random spatial shuffling of the microenvironment resulted in destabilization of the corresponding villages. This study provides new insights into understanding tumor spatial landscape and its impact on tumor aggressiveness.
Collapse
Affiliation(s)
- Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Maria O. Hernandez
- Spatial Imaging Technology Resource, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Darko Castven
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center, Lübeck, Germany
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Hu X, Kang X, Zhao F, Cui Y, Fu Y, Yang X, Yin J, Li W, Fan J, Yang B, Fang Z, Qin T, Zhuang X, Liu Y, Feng C, Yang Y, Lu F, Zhang L, Chen W, Wu M, Du N, Sheng X, Zhou X, Li J, Chen G, Sun C. Heterogeneous cellular responses to hyperthermia support combined intraperitoneal hyperthermic immunotherapy for ovarian cancer mouse models. Sci Transl Med 2025; 17:eadp2124. [PMID: 40073154 DOI: 10.1126/scitranslmed.adp2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
The benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer remains controversial, hindering the development of rational combination therapies based on hyperthermia (HT). This study reports the preliminary results of the neoadjuvant HIPEC (NHIPEC) trial (ChiCTR2000038173), demonstrating enhanced tumor response in high-grade serous ovarian cancer with NHIPEC. Through single-cell RNA sequencing analysis, we identified both homogeneous and heterogeneous cellular responses to HT within the tumor and microenvironment. Epithelial-mesenchymal transition-activated tumor cells and matrix metallopeptidase 11 (MMP-11)+ cancer-associated fibroblasts (CAFs) exhibited greater reductions and higher sensitivity to HT. CUT&Tag and RNA sequencing integration unveiled the differential binding programs and transcriptional regulatory mechanisms of HSF1 under normothermia (NT) and HT in tumor cells and CAFs. Furthermore, HT ameliorated the immunosuppressive tumor microenvironment, and in vivo mouse models confirmed the combined antitumor effects of HT and programmed cell death ligand 1 blockade. These findings provide an innovative strategy for rational combination therapy with HT in ovarian cancer.
Collapse
Affiliation(s)
- Xingyuan Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaoyan Kang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Faming Zhao
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yaoyuan Cui
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yu Fu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaohang Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Yin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Wenting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Junpeng Fan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Bin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Zixuan Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Tianyu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xucui Zhuang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yiting Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Chenzhao Feng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yunyi Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Li Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Weihao Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Miaofang Wu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangdong 510000, China
| | - Ning Du
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangdong 510000, China
| | - Xia Sheng
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangdong 510000, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| |
Collapse
|
37
|
Zhang Y, Chen H, Mo H, Zhao N, Sun X, Liu B, Gao R, Xu B, Zhang Z, Liu Z, Ma F. Distinct cellular mechanisms underlie chemotherapies and PD-L1 blockade combinations in triple-negative breast cancer. Cancer Cell 2025; 43:446-463.e7. [PMID: 39919737 DOI: 10.1016/j.ccell.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Combining immune checkpoint blockade (ICB) with chemotherapy shows promise for treating triple-negative breast cancer (TNBC), though the mechanisms remain incompletely understood. Here, we integrate published and new single-cell RNA sequencing (scRNA-seq) data to investigate the tumor immune microenvironment (TIME) in TNBC patients treated with paclitaxel (PTX), nab-paclitaxel (Nab-PTX), and their combinations with the anti-PD-L1 antibody atezolizumab (ATZ). Compared to ATZ plus PTX, ATZ plus Nab-PTX rewires TCF7+ stem-like effector memory CD8+ T cells (Tsem) and CD4+ T follicular helper (Tfh) cells. Nab-paclitaxel, unlike PTX, also reshapes the myeloid compartment, expanding mast cells and pro-inflammatory macrophages. Our analyses in human TNBC and murine models underscore the crucial role of mast cells in orchestrating anti-tumor immune responses, likely by promoting the recruitment and activation of T and B cells. In vivo experiments demonstrate that activating mast cells alongside PD-L1 blockade attenuates TNBC progression, suggesting mast cells as a promising adjunct for enhancing ICB therapy efficacy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongnan Mo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing, ChaoYang District, Beijing 100005, China
| | - Baolin Liu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
38
|
Miyagi H, Yu X, Peak T, Dhillon J, Le C, Wang X, Yoder S, Marchion D, Lu X, Pettaway C, Moran Segura C, Zhang C, Roman Souza G, Yu A, Zemp L, Spiess P, Chahoud J. Progressive T cell exhaustion and predominance of aging tissue associated macrophages with advancing disease stage in penile squamous cell carcinoma. Sci Rep 2025; 15:7703. [PMID: 40044748 PMCID: PMC11882776 DOI: 10.1038/s41598-025-89760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Penile squamous cell carcinoma (PSCC) is a rare malignancy with limited understanding of the tumor immune microenvironment (TIME). The interplay between PSCC and the immune system across disease progression and HPV infection status remains poorly characterized. This study aims to assess the TIME changes from localized to advanced disease and between HPV-positive versus negative tumors to identify potential immune evasion mechanisms in advanced PSCC. scRNA-seq was performed on ten PSCC tissue samples from penile, lymph node and distant metastatic sites with four matched penile and lymph node samples to understand the cellular heterogeneity within PSCC tumors. Analysis of immune cell populations and transcriptional hallmarks were performed stratified by localized (pT1-3, N0) versus advanced (N1-3, M0 or any N, M1) disease states and HPV infection status. We observed significant differences in immune cell infiltration between localized and advanced PSCC disease states and by HPV status. Advanced disease states demonstrated an exhausted immune phenotype, characterized by terminally exhausted CD8+ T cells, M2-like macrophages and hypoxic signature, while localized disease states demonstrated an active innate immune system characterized by increased DCs. HPV-negative tumors displayed low immune cell infiltration while HPV-positive tumors demonstrated an immune exhausted phenotype. These findings offer valuable insights into the evolving PSCC immune landscape, paving the way for the development of potential therapeutic approaches for advanced PSCC.
Collapse
Affiliation(s)
- Hiroko Miyagi
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Taylor Peak
- Department of Urology, University of Tennessee College of Medicine, Chatanooga, USA
| | - Jasreman Dhillon
- Pathology Department, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Casey Le
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doug Marchion
- Tissue Core Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Norte Dame, IN, 46556, USA
| | - Curtis Pettaway
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriel Roman Souza
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Alice Yu
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Logan Zemp
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Philippe Spiess
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Jad Chahoud
- Genitourinary Oncology Department, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
39
|
Liang BG, Zheng YM, Shen HY, Yang GH, Xu WX, Tan CJ, Ke AW, Qin WZ. Cordycepin mediates pyroptosis in HCC through the upregulation of TXNIP and synergizes with anti-PD-L1 immunotherapy. Hepatol Commun 2025; 9:e0633. [PMID: 40008893 PMCID: PMC11868431 DOI: 10.1097/hc9.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are effective treatments for HCC; however, their therapeutic efficacy is often limited by the development of drug resistance. Therefore, investigating new combination therapeutics involving immune checkpoint inhibitors is critical to improving patient prognosis. In this study, we investigated the therapeutic effect of cordycepin (COR) in HCC and its synergistic effect with anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy. METHODS We selected 2 HCC cell lines to investigate the effects of COR on HCC growth using in vivo and in vitro experiments. We performed RNA sequencing of the MHCC97H cell line treated with or without COR to understand the underlying mechanism and identify the key regulatory genes. Through in vivo and in vitro experiments on gene knockdown cells, we identified thioredoxin-interacting protein as a key molecule involved in the role of COR. Next, we used mouse subcutaneous and orthotopic tumor models to evaluate the therapeutic effects of COR, atezolizumab (a programmed death-ligand 1 [PD-L1] inhibitor), or their combination. Multiple immunofluorescence staining revealed that the combination of atezolizumab and COR therapy greatly increased the number of tumor-infiltrating CD8+ T cells and PD-L1 expression in HCC compared to monotherapy. RESULTS Our study revealed that COR significantly inhibited HCC growth both in vitro and in vivo. Mechanistically, we showed that COR induces endoplasmic reticulum stress, which upregulates thioredoxin-interacting protein expression and leads to HCC cell pyroptosis. In addition, the combination treatment with COR and PD-L1 inhibitors profoundly inhibited HCC. CONCLUSIONS Overall, our study successfully established a combined therapeutic strategy using COR and PD-L1 inhibitors. This strategy has significant synergistic effects on cancer cells, highlighting its importance in cancer therapy.
Collapse
Affiliation(s)
- Bu-Gang Liang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Hong-Ye Shen
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Xin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Chang-Jun Tan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Zheng Qin
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| |
Collapse
|
40
|
Ma L, Luan Y, Lu L. Analyze the Diversity and Function of Immune Cells in the Tumor Microenvironment From the Perspective of Single-Cell RNA Sequencing. Cancer Med 2025; 14:e70622. [PMID: 40062730 PMCID: PMC11891933 DOI: 10.1002/cam4.70622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Cancer development is closely associated with complex alterations in the tumor microenvironment (TME). Among these, immune cells within the TME play a huge role in personalized tumor diagnosis and treatment. OBJECTIVES This review aims to summarize the diversity of immune cells in the TME, their impact on patient prognosis and treatment response, and the contributions of single-cell RNA sequencing (scRNA-seq) in understanding their functional heterogeneity. METHODS We analyzed recent studies utilizing scRNA-seq to investigate immune cell populations in the TME, focusing on their interactions and regulatory mechanisms. RESULTS ScRNA-seq reveals the functional heterogeneity of immune cells, enhances our understanding of their role in tumor antibody responses, and facilitates the construction of immune cell interaction networks. These insights provide guidance for the development of cancer immunotherapies and personalized treatment approaches. CONCLUSION Applying scRNA-seq to immune cell analysis in the TME offers a novel pathway for personalized cancer treatment. Despite its promise, several challenges remain, highlighting the need for further advancements to fully integrate scRNA-seq into clinical applications.
Collapse
Affiliation(s)
- Lujuan Ma
- Department of Medical Oncology, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Yu Luan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
41
|
Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, Yang L. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat Biotechnol 2025; 43:329-344. [PMID: 38744947 PMCID: PMC11919731 DOI: 10.1038/s41587-024-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wenbin Guo
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aarushi Bajpai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Seet
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M Larson
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Huang X, Zheng S, Li S, Huang Y, Zhang W, Liu F, Cao Q. Machine Learning-Based Pathomics Model Predicts Angiopoietin-2 Expression and Prognosis in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:561-574. [PMID: 39746507 DOI: 10.1016/j.ajpath.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
Angiopoietin-2 (ANGPT2) shows promise as prognostic marker and therapeutic target in hepatocellular carcinoma (HCC). However, assessing ANGPT2 expression and prognostic potential using histopathology images viewed with naked eye is challenging. Herein, machine learning was employed to develop a pathomics model for analyzing histopathology images to predict ANGPT2 status. HCC cases obtained from The Cancer Genome Atlas (TCGA-HCC; n = 267) were randomly assigned to the training or testing set, and cases from a single center were employed as a validation set (n = 91). In the TCGA-HCC cohort, the group with high ANGPT2 expression had a significantly lower overall survival compared with the group with low ANGPT2. Histopathologic features in the training set were extracted, screened, and incorporated into a gradient-boosting machine model that generated a pathomics score, which successfully predicted ANGPT2 expression in the three data sets and showed remarkable risk stratification for overall survival in both the TCGA-HCC (P < 0.0001) and single-center cohorts (P = 0.001). Multivariate analysis suggested that the pathomics score could serve as a predictor of prognosis (P < 0.001). Bioinformatics analysis illustrated a distinction in tumor growth and development related gene-enriched pathways, vascular endothelial growth factor-related gene expression, and immune cell infiltration between high and low pathomics scores. This study indicates that the use of histopathology image features can enhance the prediction of molecular status and prognosis in HCC. The integration of image features with machine learning may improve prognosis prediction in HCC.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuqi Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Fang Y, Chen Y, Niu S, Lyu Z, Tian Y, Shen X, Li YR, Yang L. Biological functions and therapeutic applications of human mucosal-associated invariant T cells. J Biomed Sci 2025; 32:32. [PMID: 40025566 PMCID: PMC11871619 DOI: 10.1186/s12929-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Gao Y, Zhang Z, Huang X, You M, Du C, Li N, Hao Y, Wang K, Ding X, Yang F, Cheng SQ, Luo J, Chen R, Yang P. HBV-associated hepatocellular carcinomas inhibit antitumor CD8 + T cell via the long noncoding RNA HDAC2-AS2. Nat Commun 2025; 16:2055. [PMID: 40021665 PMCID: PMC11871238 DOI: 10.1038/s41467-025-57367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Extracellular vesicles (EV) are critical mediators of intercellular communication within the tumor microenvironment, and cancer-cell-secreted EVs often facilitate cancer progression. Here we show that in HBV-associated HCC, tumor-cell-derived EVs contain a TGFβ-inducible long noncoding RNA, termed HDAC2-AS2. EVs enriched with HDAC2-AS2 facilitate cancer progression by suppressing cytotoxicity of intra-tumor CD8+ T cells. Mechanistically, in activated cytotoxic CD8+ T cells, translocation of the transcription factor cyclin-dependent kinase 9 (CDK9), to the cytoplasm is critical for functional integrity. HDAC2-AS2 targets and blocks cytosolic CDK9, and this results in exhaustion of PD-1+CD8+ T cells and suppression of IFN-γ+CD8+ T cell cytotoxicity. Notably, we demonstrate that low CDK9 and high HDAC2-AS2 expressions are associated with poor survival of HCC, which can be rescued by anti-PD-1 therapy. These findings emphasize the significance of tumor-derived EVs in suppressing antitumor CD8+ T cell immunity to promote tumorigenesis, and highlight extracellular HDAC2-AS2 as a promising biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yanan Gao
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhenxing Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xuetao Huang
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Maojun You
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chengzhi Du
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nan Li
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yajing Hao
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xiang Ding
- University of Chinese Academy of Sciences, 100101, Beijing, China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, 100101, Beijing, China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jianjun Luo
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
| | - Runsheng Chen
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
| | - Pengyuan Yang
- State Key Laboratory of Epigenetic Regulation and Intervention, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
45
|
Gu XY, Gu SL, Chen ZY, Tong JL, Li XY, Dong H, Zhang CY, Qian WX, Ma XC, Yi CH, Yi YX. Uncovering immune cell heterogeneity in hepatocellular carcinoma by combining single-cell RNA sequencing with T-cell receptor sequencing. World J Hepatol 2025; 17:99046. [PMID: 40027555 PMCID: PMC11866147 DOI: 10.4254/wjh.v17.i2.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Understanding the status and function of tumor-infiltrating immune cells is essential for improving immunotherapeutic effects and predicting the clinical response in human patients with carcinoma. However, little is known about tumor-infiltrating immune cells, and the corresponding research results in hepatocellular carcinoma (HCC) are limited. AIM To investigate potential biomarker genes that are important for the development of HCC and to understand how immune cell subsets react throughout this process. METHODS Using single-cell RNA sequencing and T-cell receptor sequencing, the heterogeneity and potential functions of immune cell subpopulations from HCC tissue and normal tissue adjacent to carcinoma, as well as their possible interactions, were analyzed. RESULTS Eight T-cell clusters from patients were analyzed and identified using bioinformatics, including six typical major T-cell clusters and two newly identified T-cell clusters, among which Fc epsilon receptor 1G+ T cells were characterized by the upregulation of Fc epsilon receptor 1G, tyrosine kinase binding protein, and T cell receptor delta constant, whereas metallothionein 1E+ T cells proliferated significantly in tumors. Differentially expressed genes, such as regulator of cell cycle, cysteine and serine rich nuclear protein 1, SMAD7 and metallothionein 1E, were identified as significantly upregulated in tumors and have potential as biomarkers. In association with T-cell receptor analysis, we inferred the clonal expansion characteristics of each T-cell cluster in HCC patients. CONCLUSION We identified lymphocyte subpopulations and potential biomarker genes critical for HCC development and revealed the clonal amplification of infiltrating T cells. These data provide valuable resources for understanding the response of immune cell subsets in HCC.
Collapse
Affiliation(s)
- Xin-Yu Gu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Shuang-Lin Gu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Zi-Yi Chen
- Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, Hunan Province, China
| | - Jin-Long Tong
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiao-Yue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Hui Dong
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Cai-Yun Zhang
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Wen-Xian Qian
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiu-Chang Ma
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Chang-Hua Yi
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- College of Medical Technology, Shaoyang University, Shaoyang 422000, Hunan Province, China
| | - Yong-Xiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
46
|
Zhao F, Chen M, Wu T, Ji M, Li F. Integration of single-cell and bulk RNA sequencing to identify a distinct tumor stem cells and construct a novel prognostic signature for evaluating prognosis and immunotherapy in LUAD. J Transl Med 2025; 23:222. [PMID: 39987127 PMCID: PMC11847374 DOI: 10.1186/s12967-025-06243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are crucial for lung adenocarcinoma (LUAD). This study investigates tumor stem cell gene signatures in LUAD using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq), aiming to develop a prognostic tumor stem cell marker signature (TSCMS) model. METHODS LUAD scRNA-seq and RNA-seq data were analyzed. CytoTRACE software quantified the stemness score of tumor-derived epithelial cell clusters. Gene Set Variation Analysis (GSVA) identified potential biological functions in different clusters. The TSCMS model was constructed using Lasso-Cox regression, and its prognostic value was assessed through Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses. Immune infiltration was evaluated using the Cibersortx algorithm, and drug response prediction was performed using the pRRophetic package. TAF10 functional investigations in LUAD cells involved bioinformatics analysis, qRT-PCR, Western blot, immunohistochemistry, and assays for cell proliferation. RESULTS Seven distinct cell clusters were identified by CytoTRACE, with epithelial cell cluster 1 (Epi_C1) showing the highest stemness potential. The TSCMS model included 49 tumor stemness-related genes; high-risk patients exhibited lower immune and ESTIMATE scores and increased tumor purity. Significant differences in immune landscapes and chemotherapy sensitivity were observed between risk groups. TAF10 positively correlated with RNA expression-based stemness scores in various tumors, including LUAD. It was over-expressed in LUAD cell lines and clinical tumor tissues, with high expression linked to poor prognosis. Silencing TAF10 inhibited LUAD cell proliferation and tumor sphere formation. CONCLUSIONS This study demonstrates the TSCMS model's prognostic value in LUAD, reveals insights into immune infiltration and therapeutic response, and identifies TAF10 as a potential therapeutic target.
Collapse
Affiliation(s)
- Fengyun Zhao
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| | - Mengting Chen
- South China Normal University, Guangzhou, 510630, Guangdong, China
| | - Tianjiao Wu
- Guangdong Medical University, Zhanjiang, 523000, Guangdong, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
47
|
Revilla SA, Frederiks CL, Prekovic S, Mocholi E, Kranenburg O, Coffer PJ. Tumor-derived colorectal cancer organoids induce a unique Treg cell population by directing CD4 + T cell differentiation. iScience 2025; 28:111827. [PMID: 39995881 PMCID: PMC11848486 DOI: 10.1016/j.isci.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In colorectal cancer (CRC), increased numbers of tumor-infiltrating CD4+ regulatory T (Treg) cells correlate with tumor development, immunotherapy failure, and poor prognosis. To assess how CRC tumors directly modulate Treg cell differentiation, we developed an in vitro co-culture system using CD4+ T cells from Foxp3eGFP mice and CRC tumor-derived organoids. Co-culture resulted in a significant increase in Treg cell numbers. RNA-sequencing identified a distinct transcriptional profile of CRC organoid-induced Treg cells, with upregulation of genes associated with CRC Treg cells in vivo. High expression of genes upregulated in CRC organoid-induced Treg cells correlates with shorter progression-free intervals and overall survival in CRC patients. Human CRC organoids similarly induced Treg cells with enhanced suppressive capacity and upregulated genes linked to CRC Treg cells in vivo. This model provides insights into how CRC tumors modulate CD4+ T cell differentiation and can identify approaches to disrupt Treg cells and stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cynthia L. Frederiks
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Enric Mocholi
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
48
|
Zhu Y, Xu W, He Y, Yang W, Song S, Wen C. Therapeutic implications of endoplasmic reticulum stress gene CCL3 in cervical squamous cell carcinoma. Cell Biol Toxicol 2025; 41:47. [PMID: 39976849 PMCID: PMC11842515 DOI: 10.1007/s10565-024-09949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/20/2024] [Indexed: 02/23/2025]
Abstract
This study investigated ERS-related gene expressions in CESC, identifying two molecular subtypes, P1 and P2, and constructing a precise prognostic model based on these subtypes. TCGA's whole-genome expression profiles were used to recognize these subtypes through the ConsensusClusterPlus method, further refining prognostic models with univariate and Lasso Cox regression analyses validated by the GSE39001 dataset. The study analyzed the expression distribution of ERS marker genes within T cell subgroups using scRNA-seq data (GSE168652), highlighting T cell diversity. The critical role of the CCL3 gene in prognostic models was examined explicitly in CD8 + T cells from healthy individuals and CESC patients. Elevated CCL3 levels were observed in patients' CD8 + T cells compared to healthy controls. Functional experiments involving CCL3 knockdown and overexpression in HeLa and SiHa CESC cell lines were conducted to investigate its impact on cell proliferation, migration, and invasion. These findings were subsequently validated in a nude mouse model. The results demonstrated that suppressing CCL3 inhibited cell proliferation, migration, and invasion significantly, while its overexpression promoted these processes. In the mouse model, CCL3 silencing reduced tumor growth and decreased Ki-67 labeling within the tumor tissues, indicating the therapeutic potential of targeting CCL3 in CESC treatment, possibly through CD8 + T cell regulation. This study contributes new prognostic assessment tools and personalized treatment options for CESC patients, paving the way for more targeted therapies in CESC by discovering the CCL3 gene, presenting significant clinical implications.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Wei Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Wenjuan Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyue Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Rd, Hangzhou, 310053, China.
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
49
|
Ye F, Huang J, Cheng X, Chen SC, Huang F, Huang WC, Hua B, Li E, Jiang J, Lin H, Siegel M, Liao E, Wang J, Yue B, Shi W, Xu Y, Wang X, Wang J, Yan Y, He H, Liu E, Lu B, Zhong Z. AWT020: a novel fusion protein harnessing PD-1 blockade and selective IL-2 Cis-activation for enhanced anti-tumor immunity and diminished toxicity. Front Immunol 2025; 16:1537466. [PMID: 40046051 PMCID: PMC11880808 DOI: 10.3389/fimmu.2025.1537466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
Background The clinical success of the immune checkpoint inhibitor (ICI) targeting programmed cell death protein 1 (PD-1) has revolutionized cancer treatment. However, the full potential of PD-1 blockade therapy remains unrealized, as response rates are still low across many cancer types. Interleukin-2 (IL-2)-based immunotherapies hold promise, as they can stimulate robust T cell expansion and enhance effector function - activities that could synergize potently with PD-1 blockade. Yet, IL-2 therapies also carry a significant drawback: they can trigger severe systemic toxicities and induce immune suppression by expanding regulatory T cells. Methods To overcome the challenges of PD-1 blockade and IL-2 therapies while enhancing safety and efficacy, we have engineered a novel fusion protein, AWT020, combining a humanized anti-PD-1 nanobody and an engineered IL-2 mutein (IL-2c). The IL-2c component of AWT020 has been engineered to exhibit no binding to the IL-2 receptor alpha (IL-2Rα) subunit and attenuated affinity for the IL-2 receptor beta and gamma (IL-2Rβγ) complex, aiming to reduce systemic immune cell activation, thereby mitigating the severe toxicity often associated with IL-2 therapies. The anti-PD-1 antibody portion of AWT020 serves a dual purpose: it precisely delivers the IL-2c payload to tumor-infiltrating T cells while blocking the immune-inhibitory signals mediated by the PD-1 pathway. Results AWT020 showed significantly enhanced pSTAT5 signaling in PD-1 expressing cells and promoted the proliferation of activated T cells over natural killer (NK) cells. In preclinical studies using both anti-PD-1-sensitive and -resistant mouse tumor models, the mouse surrogate of AWT020 (mAWT020) demonstrated markedly enhanced anti-tumor efficacy compared to an anti-PD-1 antibody, IL-2, or the combination of an anti-PD-1 antibody and IL-2. In addition, the mAWT020 treatment was well-tolerated, with minimal signs of toxicity. Immune profiling revealed that mAWT020 preferentially expands CD8+ T cells within tumors, sparing peripheral T and NK cells. Notably, this selective tumoral T-cell stimulation enables potent tumor-specific T-cell responses, underscoring the molecule's enhanced efficacy and safety. Conclusion The AWT020 fusion protein offers a promising novel immunotherapeutic strategy by integrating PD-1 blockade and IL-2 signaling, conferring enhanced anti-tumor activity with reduced toxicity.
Collapse
Affiliation(s)
- Fan Ye
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Xiaoli Cheng
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Fang Huang
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Botong Hua
- Anwita Biosciences, San Carlos, CA, United States
| | - Ella Li
- Anwita Biosciences, San Carlos, CA, United States
| | - Jenny Jiang
- Anwita Biosciences, San Carlos, CA, United States
| | - Hanna Lin
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Eric Liao
- Anwita Biosciences, San Carlos, CA, United States
| | - Ji Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Bella Yue
- Anwita Biosciences, San Carlos, CA, United States
| | - Wenli Shi
- Anwita Biosciences, San Carlos, CA, United States
| | - Yanghua Xu
- Anwita Biosciences, San Carlos, CA, United States
| | - Xin Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Jiaming Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Yuyuan Yan
- Anwita Biosciences, San Carlos, CA, United States
| | - Honglin He
- Anwita Biosciences, San Carlos, CA, United States
| | - Eugene Liu
- Anwita Biosciences, San Carlos, CA, United States
| | - Binfeng Lu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Ziyang Zhong
- Anwita Biosciences, San Carlos, CA, United States
| |
Collapse
|
50
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|