1
|
Benoit-Pilven C, Asteljoki JV, Leinonen JT, Karjalainen J, Daly MJ, Tukiainen T. Early establishment and life course stability of sex biases in the human brain transcriptome. CELL GENOMICS 2025:100890. [PMID: 40425010 DOI: 10.1016/j.xgen.2025.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
To elaborate on the origins of the established male-female differences in several brain-related phenotypes, we assessed the patterns of transcriptomic sex biases in the developing and adult human forebrain. We find an abundance of sex differences in expression (sex-DEs) in the prenatal brain, driven by both hormonal and sex-chromosomal factors, and considerable consistency in the sex effects between the developing and adult brain, with little sex-DE exclusive to the adult forebrain. Sex-DE was not enriched in genes associated with brain disorders, consistent with systematic differences in the characteristics of these genes (e.g., constraint). Yet, the genes with persistent sex-DE across the lifespan were overrepresented in disease gene co-regulation networks, pointing to their potential to mediate sex biases in brain phenotypes. Altogether, our work highlights prenatal development as a crucial time point for the establishment of brain sex differences.
Collapse
Affiliation(s)
- Clara Benoit-Pilven
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juho V Asteljoki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaakko T Leinonen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Ayeldeen G, Shaker OG, Gomaa M, Magdy MM, Elsamaloty N, Kamel AS, Senousy MA. Association of Epistatic Effects of lncRNA GAS5, miR-146a, IRAK-1, and miR-155 Genetic Variants with Multiple Sclerosis Risk and Severity. Mol Neurobiol 2025:10.1007/s12035-025-04876-8. [PMID: 40234289 DOI: 10.1007/s12035-025-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The complex genetic architecture of heritability in multiple sclerosis (MS) remains undisclosed mainly. Epistasis (gene-gene interaction) substantially impacts MS; however, it is largely unexplored, especially among the non-coding RNA genes and their targets. The long non-coding RNA GAS5 exacerbates demyelination and sponges miR-146a and miR-155, impeccable contributors to MS pathogenesis. miR-146a negatively regulates the immune responses by targeting IRAK-1. We investigated the association of epistatic effects and haplotypes of five single nucleotide polymorphisms (SNPs), GAS5 rs2067079, miR-146a rs2910164 and rs57095329, IRAK-1 rs3027898, and miR-155 rs767649, with the risk of MS and its phenotypes. The expression quantitative trait locus (eQTL) associated with these variants was explored through bioinformatics analysis. The study enrolled 116 MS patients and 120 healthy controls. No strong linkage disequilibrium (D' ≥ 0.8) was detected among the studied SNPs. SNP-SNP interactions overlaid an overall magnified risk of MS and its phenotypes compared to the single-locus effects. After adjustment for multiple comparisons, the most significant interactions associated with the risk of overall MS and secondary-progressive MS were rs2067079-rs2910164, rs2910164-rs57095329, and rs3027898-rs767649. The last two former SNP-SNP interactions were highly associated with relapsing-remitting MS risk. The same pattern of interactions, as observed in association with MS risk, was female-specific. The CCAAA haplotype (alleles in the order of rs2067079, rs2910164, rs57095329, rs3027898, and rs767649) was protective against MS risk (CCAAA vs. CGAAT, adjusted OR = 0.14, 95% CI = 0.03-0.69, P = 0.009). Among MS patients, harboring the CGACT and CGAAT haplotypes was more prevalent in females and males, respectively. MS patients having EDSS ≥ 6 had a significantly higher frequency of the CCGCA haplotype than those with EDSS < 6. Functional analysis revealed rs2067079, rs57095329, and rs767649 as strong cis-eQTL regulating multiple genes, particularly in the brain and immune system. We propose that a magnified combined effect of GAS5, miR-146a, IRAK-1, and miR-155 genetic variants via epistatic interactions might impact the risk of MS and its phenotypes and could help in the risk stratification of MS patients.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Gomaa
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mostafa M Magdy
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nourhan Elsamaloty
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez St, Cairo, PO 11786, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Büyükgöl F, Gürdamar B, Aluçlu MU, Beckmann Y, Bilguvar K, Boz C, Bülbül A, Bünül SD, Çetin Ö, Demir CF, Demir S, Duman T, Efendi H, Ekmekçi Ö, Ertetik U, Ethemoğlu Ö, Everest E, Gümüş H, Gündüz T, Karabudak R, Karaman B, Kürtüncü M, Mutluer M, Reda MD, Saip S, Seferoğlu M, Sever E, Sezerman OU, Şen S, Taşdelen B, Tecellioğlu M, Terzi M, Tuncer A, Turan ÖF, Tütüncü M, Uncu G, Uygunoğlu U, Uzunköprü C, Voyvoda U, Yetkin MF, Yüceyar N, Siva A, Turanlı ET. Exome sequencing reveals low-frequency and rare variant contributions to multiple sclerosis susceptibility in Turkish families. Sci Rep 2025; 15:11682. [PMID: 40188234 PMCID: PMC11972333 DOI: 10.1038/s41598-025-94691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Multiple sclerosis (MS) is characterized as an immune-mediated central nervous system disease marked by chronic inflammation, demyelination, and progressive neurodegeneration. In this study, we evaluated the contribution of low-frequency and rare genetic variants to MS susceptibility within one of the largest family-based MS cohorts to date, comprising 215 individuals from 59 Turkish multiplex MS families. Whole exome sequencing was conducted on all samples including affected and unaffected members, followed by investigation of the effect of well-established human leukocyte antigen loci for MS on the elevated MS risk observed in our families. Subsequently, a gene-based burden analysis was performed on candidate genes identified through both our segregation analysis and existing literature. To prioritize the genes and pathways that are potentially associated with MS, a segregation-based analysis of the variants was conducted and complemented by gene-based pathway enrichment analysis. Our results highlighted the significance of the extracellular matrix in MS pathogenesis, as we identified laminin-related genes including LAMA5 and LAMB1 from both the segregation analysis and gene-based burden test. Hemidesmosome assembly emerged as a key pathway in our analysis, primarily driven by the identification of DST and PLEC as significant genes in the gene-based segregation analysis. Finally, we identified two rare coding variants passing our allele frequency and deleteriousness score-based filters, rs41266745 (C> T) in the CD109 gene with CADD phred score 24 and rs143093165 (T> G) in the ITPR1 gene with CADD phred score 22 and LOEUF 0.325, segregating within more than one family. Overall, this is one of the first and largest family-based MS studies from Turkey that features a unique cohort from an admixed population that enabled the detection of novel low-frequency and rare variants associated with MS. The findings from this study offer valuable insights that could guide future research aimed at further exploring and understanding the factors contributing to MS risk.
Collapse
Affiliation(s)
- Furkan Büyükgöl
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Berk Gürdamar
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Mehmet Ufuk Aluçlu
- Department of Neurology, School of Medicine, Dicle University, Diyarbakır, Turkey
| | - Yeşim Beckmann
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Kaya Bilguvar
- Department of Neurosurgery and Genetics, Yale Program on Neurogenetics and Brain Tumor Research Program, Yale Center of Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Department of Translational Medicine, Health Sciences Institute, Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Cavit Boz
- Department of Neurology, Karadeniz Technical University Medical School, Trabzon, Turkey
| | - Alper Bülbül
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sena Destan Bünül
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Özge Çetin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Caner Feyzi Demir
- Department of Neurology, School of Medicine, Firat University, Elazıǧ, Turkey
| | - Serkan Demir
- Clinic of Neurology, Sancaktepe Şehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Taşkın Duman
- Department of Neurology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hüsnü Efendi
- Department of Neurology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Özgül Ekmekçi
- Department of Neurology, Ege University, Izmir, Turkey
| | - Utku Ertetik
- Department of Medical Biotechnology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Özlem Ethemoğlu
- Department of Neurology, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Elif Everest
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD, USA
| | - Haluk Gümüş
- Clinic of Neurology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Tuncay Gündüz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Rana Karabudak
- Department of Neurology, Yeditepe University Hospitals, Istanbul, Turkey
| | | | - Murat Kürtüncü
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Muzaffer Mutluer
- Department of Neurology, Karaman Medical Center, Karaman, Turkey
| | - Meziyet Dilara Reda
- Department of Molecular Biology and Genetics, Institute of Natural and Applied Science, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sabahattin Saip
- Department of Neurology, Faculty of Medicine, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Meral Seferoğlu
- Department of Neurology, University Of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Elif Sever
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sedat Şen
- Department of Neurology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Beril Taşdelen
- Clinic of Neurology, Sancaktepe Şehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Tecellioğlu
- Department of Neurology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Murat Terzi
- Department of Neurology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Aslı Tuncer
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ömer Faruk Turan
- Department of Neurology, Faculty of Medicine, Bursa Uludaǧ University, Bursa, Turkey
| | - Melih Tütüncü
- Department of Neurology, Faculty of Medicine, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Gülgün Uncu
- Eskisehir City Health Application and Research Center, Department of Neurology, University of Health Sciences, Eskisehir, Turkey
| | - Uğur Uygunoğlu
- Department of Neurology, Faculty of Medicine, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Cihat Uzunköprü
- Department of Neurology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Umut Voyvoda
- Department of Molecular Biology and Genetics, Institute of Natural and Applied Science, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Mehmet Fatih Yetkin
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nur Yüceyar
- Department of Neurology, Ege University, Izmir, Turkey
| | - Aksel Siva
- Department of Neurology, Faculty of Medicine, Istanbul University Cerrahpaşa, Istanbul, Turkey.
| | - Eda Tahir Turanlı
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
- Department of Molecular Biology and Genetics, Institute of Natural and Applied Science, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| |
Collapse
|
4
|
Ren Y, Wang X, Wang W, Wang Z. Thyroid function and multiple sclerosis: a two-sample mendelian randomization study and mediation analysis. Sci Rep 2025; 15:9022. [PMID: 40089493 PMCID: PMC11910515 DOI: 10.1038/s41598-025-89888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Multiple sclerosis (MS) is a prevalent neurological disorder with a complex etiology, often associated with thyroid function. However, the causal relationship between these two conditions remains poorly understood. This study aimed to elucidate the causal relationship between thyroid function and MS using a bidirectional Mendelian randomization (MR) approach and to investigate the potential mediating role of immune cells. We conducted a two-sample MR analysis using summary statistics from large-scale genome-wide association studies (GWAS). We included results from sensitivity tests such as MR-Egger, weighted median, and leave-one-out analyses to support the robustness and reliability of the findings. The inverse variance-weighted (IVW) method was the primary approach, with sensitivity analyses conducted using seven additional MR methods. Furthermore, multivariable MR and mediation analysis were conducted to uncover potential mediating immune cells underlying the observed associations. The MR analysis showed that Hypothyroidism and elevated Thyroid-Stimulating Hormone (TSH) levels(normal) reduced the risk of MS (P = 0.012, OR (95%CI) :0.914(0.851, 0.98); P = 0.020, OR (95%CI) :0.88(0.789, 0.98)). Free thyroxine (FT4) increased the risk of MS (P = 0.020, OR (95%CI) :1.268(1.051, 1.53)). Mediation analysis showed evidence of indirect effect of FT4 on MS through "HLA DR on CD33br HLA DR + CD14" and "IgD- CD27- %B cell" with a mediated proportion of 39.16% (positive effect), 78.53% (reverse effect) of the total effect. This study provided genetic evidence that FT4 may increase the risk of developing MS. "HLA DR on CD33br HLA DR + CD14" and "IgD- CD27- %B cell", mediated the causal relationship between thyroid function and MS, highlighting the importance of further investigating their roles in these conditions.
Collapse
Affiliation(s)
- Yinghao Ren
- Department of Dermatology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Weiliang Wang
- Epilepsy Center, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, China.
| | - Zeyu Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Gómez-Pinedo U, Torre-Fuentes L, Matías-Guiu JA, Pytel V, Ojeda-Hernández DD, Selma-Calvo B, Montero-Escribano P, Vidorreta-Ballesteros L, Matías-Guiu J. Exonic variants of the P2RX7 gene in familial multiple sclerosis. Neurologia 2025; 40:150-160. [PMID: 36470550 DOI: 10.1016/j.nrleng.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Several studies have analysed the presence of P2RX7 variants in patients with MS, reporting diverging results. METHODS Our study analyses P2RX7 variants detected through whole-exome sequencing (WES). RESULTS We analysed P2RX7, P2RX4, and CAMKK2 gene variants detected by whole-exome sequencing in all living members (n = 127) of 21 families including at least 2 individuals with multiple sclerosis. P2RX7 gene polymorphisms previously associated with autoimmune disease. Although no differences were observed between individuals with and without multiple sclerosis, we found greater polymorphism of gain-of-function variants of P2RX7 in families with individuals with multiple sclerosis than in the general population. Copresence of gain-of-function and loss-of-function variants was not observed to reduce the risk of presenting the disease. Three families displayed heterozygous gain-of-function SNPs in patients with multiple sclerosis but not in healthy individuals. We were unable to determine the impact of copresence of P2RX4 and CAMKK2 variants with P2RX7 variants, or the potential effect of the different haplotypes described in the gene. No clinical correlations with other autoimmune diseases were observed in our cohort. CONCLUSIONS Our results support the hypothesis that the disease is polygenic and point to a previously unknown mechanism of genetic predisposition to familial forms of multiple sclerosis. P2RX7 gene activity can be modified, which suggests the possibility of preventive pharmacological treatments for families including patients with familial multiple sclerosis.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D D Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Yu XH, Lu HM, Li J, Su MZ, Li XM, Jin Y. Association between 25(OH) vitamin D and multiple sclerosis: cohort, shared genetics, and Causality. Nutr J 2024; 23:151. [PMID: 39616386 PMCID: PMC11608472 DOI: 10.1186/s12937-024-01059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS), an autoimmune disorder causing demyelination and neurological damage, has been linked to 25-hydroxyvitamin D (25OHD) levels, suggesting its role in immune response and MS onset. This study used GWAS datasets to investigate genetic associations between 25OHD and MS. METHODS We utilized a large-scale prospective cohort to evaluate serum 25OHD levels and MS risk. Linkage Disequilibrium Score Regression (LDSC) assessed genetic correlations between 25OHD levels and MS. Cross-trait genome-wide pleiotropy analysis revealed shared genetic loci. MAGMA analysis identified pleiotropic genes, enriched tissues, and gene sets. Stratified LDSC estimated tissue-specific and cell-specific heritability enrichment, and multi-trait co-localization analysis identified shared immune cell subsets. Bidirectional Mendelian Randomization (MR) assessed the causal association between 25OHD and MS risk. RESULTS The observational study found a nonlinear relationship between 25OHD levels and MS risk, with the lowest quartile showing significant risk elevation. Our findings revealed shared genetic structure between 25OHD levels and MS, suggesting a common biological pathway involving immune function and CNS integrity. We found 24 independent loci shared between 25OHD levels and MS risk, enriched in brain tissues and involved in pathways like LDL, HDL, and TG metabolism. Four loci (6p24.3, 6p22.2, 12q14.1, and 19p13.2) had strong co-localization evidence, with mapped genes as potential drug targets. Bidirectional MR analysis supported a causal effect of 25OHD levels on MS risk, suggesting 25OHD supplementation could modulate MS risk. CONCLUSION This study reveals the complex relationship between 25OHD levels and MS, indicating that higher levels are not always advantageous and recommending moderation in supplementation. We identified SMARCA4 as a potential therapeutic target and detailed key pathways influencing this interaction.
Collapse
Affiliation(s)
- Xing-Hao Yu
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hui-Min Lu
- Department of Outpatient and Emergency, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Li
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, 213000, China
| | - Ming-Zhu Su
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
- Department of Good Clinical Practice, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, 213000, China
| | - Xiao-Min Li
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, 213000, China.
| | - Yi Jin
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|
8
|
Kores K, Lešnik S, Bren U. Computational Analysis of S1PR1 SNPs Reveals Drug Binding Modes Relevant to Multiple Sclerosis Treatment. Pharmaceutics 2024; 16:1413. [PMID: 39598537 PMCID: PMC11597183 DOI: 10.3390/pharmaceutics16111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) characterized by myelin and axonal damage with a globally rising incidence. While there is no known cure for MS, various disease-modifying treatments (DMTs) exist, including those targeting Sphingosine-1-Phosphate Receptors (S1PRs), which play important roles in immune response, CNS function, and cardiovascular regulation. This study focuses on understanding how nonsynonymous single nucleotide polymorphisms (rs1299231517, rs1323297044, rs1223284736, rs1202284551, rs1209378712, rs201200746, and rs1461490142) in the S1PR1's active site affect the binding of endogenous ligands, as well as different drugs used in MS management. Methods: Extensive molecular dynamics simulations and linear interaction energy (LIE) calculations were employed to predict binding affinities and potentially guide future personalized medicinal therapies. The empirical parameters of the LIE method were optimized using the binding free energies calculated from experimentally determined IC50 values. These optimized parameters were then applied to calculate the binding free energies of S1P to mutated S1PR1, which correlated well with experimental values, confirming their validity for assessing the impact of SNPs on S1PR1 binding affinities. Results: The binding free energies varied from the least favorable -8.2 kcal/mol for the wild type with ozanimod to the most favorable -16.7 kcal/mol for the combination of siponimod with the receptor carrying the F2055.42L mutation. Conclusions: We successfully demonstrated the differences in the binding modes, interactions, and affinities of investigated MS drugs in connection with SNPs in the S1PR1 binding site, resulting in several viable options for personalized therapies depending on the present mutations.
Collapse
Grants
- P2-0046, P1-0403, J1-2471, L2-3175, P2-0438, J1-4398, L2-4430, J3-4498, J7-4638, J1-421 4414, J3-4497, J4-4633, J1-50034, J7-50034, I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (S.L.)
| | - Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (S.L.)
- Institute of Environmental Protection and Sensors, IOS, Beloruska 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (S.L.)
- Institute of Environmental Protection and Sensors, IOS, Beloruska 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
9
|
Laviers H, Petzold A, Braithwaite T. How far should I manage acute optic neuritis as an ophthalmologist? A United Kingdom perspective. Eye (Lond) 2024; 38:2238-2245. [PMID: 38867071 PMCID: PMC11306244 DOI: 10.1038/s41433-024-03164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Optic neuritis (ON) is an inflammation of or around the optic nerve, frequently caused by infectious or immune-mediated inflammatory disorders. In the UK, its strongest association is with Multiple Sclerosis (MS), though the combined prevalence of other associated infectious and immune-mediated inflammatory diseases (I-IMID) is similar to that of MS-ON. Prompt identification and understanding of ON's underlying cause informs tailored management and prognosis. Several IMIDs linked to ON, such as aquaporin-4 antibody-associated optic neuritis (AQP4-ON), myelin oligodendrocyte glycoprotein antibody-associated optic neuritis (MOG-ON), and neuro-sarcoidosis, show remarkable response to corticosteroid treatment. Therefore, urgent investigation and treatment are crucial in cases 'atypical' for MS-ON. Following the 1992 Optic Neuritis Treatment Trial, clinical practice has evolved, with short-course high-dose corticosteroids considered safe and effective for most people. Timely recognition of patients who could benefit is critical to avoid irreversible vision loss. This review provides a practical guide and a summary of evidence on the investigation and management of acute optic neuritis. It reflects the knowledge and limitations of current evidence, framed through the neuro-ophthalmic perspective of clinical practice at multiple UK academic centres.
Collapse
Affiliation(s)
- Heidi Laviers
- The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Ophthalmology, King's College Hospital, London, UK
| | - Axel Petzold
- Neuro-ophthalmology Service, Moorfields Eye Hospital, London, UK
- Neuro-ophthalmology Service, The National Hospital for Neurology and Neurosurgery, London, UK
- Amsterdam University Medical Center (AUMC), Amsterdam, Netherlands
| | - Tasanee Braithwaite
- The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- The School of Immunology and Microbial Science and The School of Life Course and Population Sciences, King's College London, London, UK.
| |
Collapse
|
10
|
Jafarpour S, Banerjee AK, Khoshnood MM, Vogel BN, Boyd NK, Nguyen L, Partridge R, Santoro SL, Gombolay GY, Fisher KS, de Asua DR, Del Ortega MC, Franklin C, Rafii MS, Santoro JD. De novo variants in immune regulatory genes in Down syndrome regression disorder. J Neurol 2024; 271:5567-5576. [PMID: 38909119 PMCID: PMC11319504 DOI: 10.1007/s00415-024-12521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Down Syndrome Regression Disorder (DSRD) is a rare and poorly understood disorder of the central nervous system, characterized by acute or subacute neuropsychiatric symptoms in previously healthy individuals with Down syndrome (DS). Many patients exhibit immunotherapy-responsiveness, indicative of immune dysregulation as a potential underlying etiology. While hypotheses are emerging regarding the role of interferon signaling in DSRD and other autoimmune conditions associated with DS, it is unclear why a small subset of individuals with DS develop DSRD. The aim of this study was to investigate genes of immune regulation in persons with DSRD. METHODS This study included individuals with DSRD aged 10-30 years with trio exome sequencing performed during the diagnostic work up. Descriptive statistics and univariate analysis (Chi-square and Fisher's exact test) were used to describe and compare the characteristics of individuals with and without variants. RESULTS Forty-one individuals with DSRD had trio exome sequencing results. Eight (20%) had heterozygous de novo variants of immune regulatory genes, with four variants being pathogenic or likely pathogenic (UNC13D, XIAP, RNASEH2A, and DNASE1L3). All genes harboring pathogenic variants were associated with interferon type-1 inflammatory response. Individuals harboring variants were more likely to have a preceding trigger (p = 0.03, 95% CI 1.21-97.06), rapid clinical decline in less than 1 month (p = 0.01, 95% CI 1.67-52.06), and MRI abnormalities (p < 0.001, 95% CI 4.89-527.71). DISCUSSION A distinct subset of individuals with DSRD exhibited pathogenic variants in immune regulation genes associated with interferon-mediated inflammatory response, coinciding with previously established links between these genes and interferonopathies such as Aicardi-Goutieres syndrome. Our observations suggest that these variants might potentially contribute to the development of DSRD in individuals with DS.
Collapse
Affiliation(s)
- Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Abhik K Banerjee
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Los Angeles General Hospital, Los Angeles, CA, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | | | - Stephanie L Santoro
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Y Gombolay
- Division of Neurology, Department of Pediatrics, Emory School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kristen S Fisher
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Diego Real de Asua
- Adult Down Syndrome Outpatient Clinic, Department of Internal Medicine, Fundación de Investigación Biomédica, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Cathy Franklin
- Department of Psychiatry, Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA.
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Kugelman N, Staun-Ram E, Volkovitz A, Barnett-Griness O, Glass-Marmor L, Miller A. Familial vs sporadic multiple sclerosis in the Israeli population: Differences in ethnicity distribution and disease progression, with anticipation in successive generations. Mult Scler Relat Disord 2024; 87:105604. [PMID: 38718750 DOI: 10.1016/j.msard.2024.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) may cluster in families, an entity known as familial MS (FMS), possibly due to aggregation of genetic and environmental factors. Though previous studies have characterized FMS in different populations, no study to the best of our knowledge has yet characterized FMS in the unique Israeli population, which is comprised of relatively endogamous ethnicities. Our goal in this study was to compare demographic and clinical characteristics between FMS and sporadic MS (SMS), and to search for intra-familial patterns. METHODS In a retrospective study of 101 FMS patients and 508 SMS patients, ethnicity and sex distribution was assessed. Clinical aspects were compared between 172 paired FMS and SMS patients, matched for sex, age and ethnicity, and between generations of the FMS cohort. RESULTS Females comprised 75.3 % of FMS and 67.5 % of SMS patients (p = 0.1). Ethnic distribution was significantly different between FMS and SMS (p = 0.014), with the former comprising a higher proportion of Christian-Arabs (15.4% vs. 5.1 %, p = 0.004) and lower proportion of Jews (60% vs. 74.2 %, p = 0.016). Age at disease onset or diagnosis, frequency of positive Oligoclonal bands and comorbidity of other autoimmune/inflammatory disease or chronic diseases was comparable between FMS and SMS, yet motor symptoms at onset were more prevalent in FMS (34% vs. 20 %, p = 0.02). Annualized relapse rates throughout 10 years from onset were comparable. Among FMS, mean Expanded-Disability-Status-Scale (EDSS) and slope of deterioration in EDSS over 20 years from diagnosis were higher (p = 0.0004 and p = 0.023, respectively), time to EDSS ≥ 3 was shorter (7.1 vs. 12.1 years, HR 1.6, p = 0.036) and MS-Severity-Score (MSSS) was higher (3.84 vs. 2.95, p = 0.04), compared to SMS. Following adjustment for smoking, which tended to be higher among FMS patients (P = 0.06), mean EDSS and slope of deterioration in EDSS over 20 years remained significantly higher (p = 0.0006 and p = 0.025, respectively) in FMS, time to EDSS ≥ 3 tended to be higher (HR 1.5, p = 0.06), while MSSS was comparable. An inter-generational analysis of the total FMS cohort, as well as an intra-familial analysis, both adjusted for year of diagnosis, revealed significantly earlier age of onset (p < 0.0001 and p < 0.0001) and diagnosis (p = 0.001 and p < 0.0001) in the younger compared to the older generations, respectively. CONCLUSION In this Israeli cohort, the proportions of specific ethnicities differ between FMS and SMS, indicating that FMS has a population-specific prevalence pattern, and that further investigation for susceptibility genes is warranted. Disease progression is faster in FMS patients and anticipation is observed in families with multiple cases of MS. Closer surveillance and application of a pro-active induction or early highly-effective therapeutic strategy for FMS patients should be considered, to reduce high disease activity and fast disability progression.
Collapse
Affiliation(s)
- Netta Kugelman
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elsebeth Staun-Ram
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Volkovitz
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel
| | - Ofra Barnett-Griness
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Lea Glass-Marmor
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel
| | - Ariel Miller
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
13
|
Rau CN, Severin ME, Lee PW, Deffenbaugh JL, Liu Y, Murphy SP, Petersen-Cherubini CL, Lovett-Racke AE. MicroRNAs targeting TGF-β signaling exacerbate central nervous system autoimmunity by disrupting regulatory T cell development and function. Eur J Immunol 2024; 54:e2350548. [PMID: 38634287 PMCID: PMC11156541 DOI: 10.1002/eji.202350548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Transforming growth factor beta (TGF-β) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-β signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-β signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-β-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-β-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-β signaling may restore immune homeostasis in MS patients.
Collapse
Affiliation(s)
- Christina N Rau
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Mary E Severin
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Joshua L Deffenbaugh
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Shawn P Murphy
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Kronzer VL, Sparks JA, Raychaudhuri S, Cerhan JR. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat Rev Rheumatol 2024; 20:290-300. [PMID: 38538758 DOI: 10.1038/s41584-024-01096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) has an estimated heritability of nearly 50%, which is particularly high in seropositive RA. HLA alleles account for a large proportion of this heritability, in addition to many common single-nucleotide polymorphisms with smaller individual effects. Low-frequency and rare variants, such as those captured by next-generation sequencing, can also have a large role in heritability in some individuals. Rare variant discovery has informed the development of drugs such as inhibitors of PCSK9 and Janus kinases. Some 34 low-frequency and rare variants are currently associated with RA risk. One variant (19:10352442G>C in TYK2) was identified in five separate studies, and might therefore represent a promising therapeutic target. Following a set of best practices in future studies, including studying diverse populations, using large sample sizes, validating RA and serostatus, replicating findings, adjusting for other variants and performing functional assessment, could help to ensure the relevance of identified variants. Exciting opportunities are now on the horizon for genetics in RA, including larger datasets and consortia, whole-genome sequencing and direct applications of findings in the management, and especially treatment, of RA.
Collapse
Affiliation(s)
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Angulo-Aguado M, Carrillo-Martinez JC, Contreras-Bravo NC, Morel A, Parra-Abaunza K, Usaquén W, Fonseca-Mendoza DJ, Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population. Sci Rep 2024; 14:8497. [PMID: 38605121 PMCID: PMC11009356 DOI: 10.1038/s41598-024-57982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was considered a major public health burden worldwide. Multiple studies have shown that susceptibility to severe infections and the development of long-term symptoms is significantly influenced by viral and host factors. These findings have highlighted the potential of host genetic markers to identify high-risk individuals and develop target interventions to reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in Latin-American populations. Using a case-control design and a custom next-generation sequencing (NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID-19 severity and long-COVID, we analyzed 56 individuals with asymptomatic or mild COVID-19 and 56 severe and critical cases. In agreement with previous studies, our results support the association between several clinical variables, including male sex, obesity and common symptoms like cough and dyspnea, and severe COVID-19. Remarkably, thirteen genetic variants showed an association with COVID-19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36-86.51) located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05-69.45) located in CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27-4.94) in the IL10RB gene, were significantly associated with the presence of long-COVID. The results of the predictive model comparison showed that the mixed model, which incorporates genetic and non-genetic variables, outperforms clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin-America proposing a predictive model for COVID-19 severity and long-COVID based on genomic analysis. Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in specific populations. The methodology used allowed us to validate several genetic variants previously associated with COVID-19 severity and long-COVID. Finally, the integrated model illustrates the importance of considering genetic factors in precision medicine of infectious diseases.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Juan Camilo Carrillo-Martinez
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Nora Constanza Contreras-Bravo
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Adrien Morel
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | | | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Dora Janeth Fonseca-Mendoza
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia
| | - Oscar Ortega-Recalde
- School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Universidad Del Rosario, Bogotá, D.C, Colombia.
- Departamento de Morfología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| |
Collapse
|
16
|
Ziaei A, Solomon O, Casper TC, Waltz M, Weinstock-Guttman B, Aaen G, Wheeler Y, Graves J, Benson L, Gorman M, Rensel M, Mar S, Lotze T, Greenberg B, Chitnis T, Waldman AT, Krupp L, James JA, Hart J, Barcellos LF, Waubant E. Gene-environment interactions: Epstein-Barr virus infection and risk of pediatric-onset multiple sclerosis. Mult Scler 2024; 30:308-315. [PMID: 38332747 PMCID: PMC11093131 DOI: 10.1177/13524585231224685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Prior Epstein-Barr virus (EBV) infection is associated with an increased risk of pediatric-onset multiple sclerosis (POMS) and adult-onset multiple sclerosis (MS). It has been challenging to elucidate the biological mechanisms underlying this association. We examined the interactions between candidate human leukocyte antigen (HLA) and non-HLA variants and childhood EBV infection as it may provide mechanistic insights into EBV-associated MS. METHODS Cases and controls were enrolled in the Environmental and Genetic Risk Factors for Pediatric MS study of the US Network of Pediatric MS Centers. Participants were categorized as seropositive and seronegative for EBV-viral capsid antigen (VCA). The association between prior EBV infection and having POMS was estimated with logistic regression. Interactions between EBV serostatus, major HLA MS risk factors, and non-HLA POMS risk variants associated with response to EBV infection were also evaluated with logistic regression. Models were adjusted for sex, age, genetic ancestry, and the mother's education. Additive interactions were calculated using relative risk due to interaction (RERI) and attributable proportions (APs). RESULTS A total of 473 POMS cases and 702 controls contributed to the analyses. Anti-VCA seropositivity was significantly higher in POMS cases compared to controls (94.6% vs 60.7%, p < 0.001). There was evidence for additive interaction between childhood EBV infection and the presence of the HLA-DRB1*15 allele (RERI = 10.25, 95% confidence interval (CI) = 3.78 to 16.72; AP = 0.61, 95% CI = 0.47 to 0.75). There was evidence for multiplicative interaction (p < 0.05) between childhood EBV infection and the presence of DRB1*15 alleles (odds ratio (OR) = 3.43, 95% CI = 1.06 to 11.07). Among the pediatric MS variants also associated with EBV infection, we detected evidence for additive interaction (p = 0.02) between prior EBV infection and the presence of the GG genotype in risk variant (rs2255214) within CD86 (AP = 0.30, 95% CI = 0.03 to 0.58). CONCLUSION We report evidence for interactions between childhood EBV infection and DRB1*15 and the GG genotype of CD86 POMS risk variant. Our results suggest an important role of antigen-presenting cells (APCs) in EBV-associated POMS risk.
Collapse
Affiliation(s)
- Amin Ziaei
- University of California San Francisco, San Francisco, CA, USA/Department of Pathology & Laboratory Medicine, University of California, Irvine Medical Center (UCIMC), Orange, CA, USA
| | - Olivia Solomon
- Division of Epidemiology and Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | - Greg Aaen
- Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Yolanda Wheeler
- The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Leslie Benson
- Pediatric Multiple Sclerosis and Related Disorders Program, Boston Children's Hospital, Boston, MA, USA
| | - Mark Gorman
- Pediatric Multiple Sclerosis and Related Disorders Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Soe Mar
- Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Lotze
- Texas Children's Hospital, Houston, TX, USA
| | | | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy T Waldman
- Division of Child Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Krupp
- New York University Medical Center, New York, NY, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janace Hart
- University of California San Francisco, San Francisco, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology and Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
17
|
Hoeks C, Puijfelik FV, Koetzier SC, Rip J, Corsten CEA, Wierenga-Wolf AF, Melief MJ, Stinissen P, Smolders J, Hellings N, Broux B, van Luijn MM. Differential Runx3, Eomes, and T-bet expression subdivides MS-associated CD4 + T cells with brain-homing capacity. Eur J Immunol 2024; 54:e2350544. [PMID: 38009648 DOI: 10.1002/eji.202350544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Collapse
Affiliation(s)
- Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Fabiënne van Puijfelik
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cato E A Corsten
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Mehmood A, Song S, Du X, Yan H, Wang X, Guo L, Li B. mRNA expression profile reveals differentially expressed genes in splenocytes of experimental autoimmune encephalomyelitis model. Int J Exp Pathol 2023; 104:247-257. [PMID: 37427716 PMCID: PMC10500171 DOI: 10.1111/iep.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that can be used to investigate aetiology, pathogenesis, and treatment approaches for multiple sclerosis (MS). A novel integrated bioinformatics approach was used to understand the involvement of differentially expressed genes (DEGs) in the spleen of EAE mice through data mining of existing microarray and RNA-seq datasets. We screened differentially expressed mRNAs using mRNA expression profile data of EAE spleens taken from Gene Expression Omnibus (GEO). Functional and pathway enrichment analyses of DEGs were performed by Database for Annotation, Visualization, and Integrated Discovery (DAVID). Subsequently, the DEGs-encoded protein-protein interaction (PPI) network was constructed. The 784 DEGs in GSE99300 A.SW PP-EAE mice spleen mRNA profiles, 859 DEGs in GSE151701 EAE mice spleen mRNA profiles, and 646 DEGs in GSE99300 SJL/J PP-EAE mice spleen mRNA profiles were explored. Functional enrichment of 55 common DEGs among 3 sub-datasets revealed several immune-related terms, such as neutrophil extravasation, leucocyte migration, antimicrobial humoral immune response mediated by an antimicrobial peptide, toll-like receptor 4 bindings, IL-17 signalling pathway, and TGF-beta signalling pathway. In the screening of 10 hub genes, including MPO, ELANE, CTSG, LTF, LCN2, SELP, CAMP, S100A9, ITGA2B, and PRTN3, and in choosing and validating the 5 DEGs, including ANK1, MBOAT2, SLC25A21, SLC43A1, and SOX6, the results showed that SLC43A1 and SOX6 were significantly decreased in EAE mice spleen. Thus this study offers a list of genes expressed in the spleen that might play a key role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Shuang Song
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xiaochen Du
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Hongjing Yan
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Xuan Wang
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Li Guo
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| | - Bin Li
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Key Laboratory of Neurology of Hebei ProvinceShijiazhuangHebeiChina
| |
Collapse
|
20
|
Pasella M, Pisano F, Cannas B, Fanni A, Cocco E, Frau J, Lai F, Mocci S, Littera R, Giglio SR. Decision trees to evaluate the risk of developing multiple sclerosis. Front Neuroinform 2023; 17:1248632. [PMID: 37649987 PMCID: PMC10465164 DOI: 10.3389/fninf.2023.1248632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS. Methods This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors. Results The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease. Discussion Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease.
Collapse
Affiliation(s)
- Manuela Pasella
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Fabio Pisano
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Barbara Cannas
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Alessandra Fanni
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Mocci
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
| | - Roberto Littera
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Sabrina Rita Giglio
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| |
Collapse
|
21
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
22
|
Ortiz GG, Torres-Mendoza BMG, Ramírez-Jirano J, Marquez-Pedroza J, Hernández-Cruz JJ, Mireles-Ramirez MA, Torres-Sánchez ED. Genetic Basis of Inflammatory Demyelinating Diseases of the Central Nervous System: Multiple Sclerosis and Neuromyelitis Optica Spectrum. Genes (Basel) 2023; 14:1319. [PMID: 37510224 PMCID: PMC10379341 DOI: 10.3390/genes14071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Demyelinating diseases alter myelin or the coating surrounding most nerve fibers in the central and peripheral nervous systems. The grouping of human central nervous system demyelinating disorders today includes multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) as distinct disease categories. Each disease is caused by a complex combination of genetic and environmental variables, many involving an autoimmune response. Even though these conditions are fundamentally similar, research into genetic factors, their unique clinical manifestations, and lesion pathology has helped with differential diagnosis and disease pathogenesis knowledge. This review aims to synthesize the genetic approaches that explain the differential susceptibility between these diseases, explore the overlapping clinical features, and pathological findings, discuss existing and emerging hypotheses on the etiology of demyelination, and assess recent pathogenicity studies and their implications for human demyelination. This review presents critical information from previous studies on the disease, which asks several questions to understand the gaps in research in this field.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in Medicine Hospital, Civil University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Blanca M G Torres-Mendoza
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in Medicine Hospital, Civil University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - Jazmin Marquez-Pedroza
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
- Coordination of Academic Activities, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - José J Hernández-Cruz
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Mario A Mireles-Ramirez
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Erandis D Torres-Sánchez
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| |
Collapse
|
23
|
Fashina IA, McCoy CE, Furney SJ. In silico prioritisation of microRNA-associated common variants in multiple sclerosis. Hum Genomics 2023; 17:31. [PMID: 36991503 PMCID: PMC10061723 DOI: 10.1186/s40246-023-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have highlighted over 200 autosomal variants associated with multiple sclerosis (MS). However, variants in non-coding regions such as those encoding microRNAs have not been explored thoroughly, despite strong evidence of microRNA dysregulation in MS patients and model organisms. This study explores the effect of microRNA-associated variants in MS, through the largest publicly available GWAS, which involved 47,429 MS cases and 68,374 controls. METHODS We identified SNPs within the coordinates of microRNAs, ± 5-kb microRNA flanking regions and predicted 3'UTR target-binding sites using miRBase v22, TargetScan 7.0 RNA22 v2.0 and dbSNP v151. We established the subset of microRNA-associated SNPs which were tested in the summary statistics of the largest MS GWAS by intersecting these datasets. Next, we prioritised those microRNA-associated SNPs which are among known MS susceptibility SNPs, are in strong linkage disequilibrium with the former or meet a microRNA-specific Bonferroni-corrected threshold. Finally, we predicted the effects of those prioritised SNPs on their microRNAs and 3'UTR target-binding sites using TargetScan v7.0, miRVaS and ADmiRE. RESULTS We have identified 30 candidate microRNA-associated variants which meet at least one of our prioritisation criteria. Among these, we highlighted one microRNA variant rs1414273 (MIR548AC) and four 3'UTR microRNA-binding site variants within SLC2A4RG (rs6742), CD27 (rs1059501), MMEL1 (rs881640) and BCL2L13 (rs2587100). We determined changes to the predicted microRNA stability and binding site recognition of these microRNA and target sites. CONCLUSIONS We have systematically examined the functional, structural and regulatory effects of candidate MS variants among microRNAs and 3'UTR targets. This analysis allowed us to identify candidate microRNA-associated MS SNPs and highlights the value of prioritising non-coding RNA variation in GWAS. These candidate SNPs could influence microRNA regulation in MS patients. Our study is the first thorough investigation of both microRNA and 3'UTR target-binding site variation in multiple sclerosis using GWAS summary statistics.
Collapse
Affiliation(s)
- Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- SFI Centre for Research Training in Genomics Data Sciences, University of Galway, H91 TK33 Galway, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J. Furney
- Genomic Oncology Research Group, Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
24
|
Manuel AM, Dai Y, Jia P, Freeman LA, Zhao Z. A gene regulatory network approach harmonizes genetic and epigenetic signals and reveals repurposable drug candidates for multiple sclerosis. Hum Mol Genet 2023; 32:998-1009. [PMID: 36282535 PMCID: PMC9991005 DOI: 10.1093/hmg/ddac265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023] Open
Abstract
Multiple sclerosis (MS) is a complex dysimmune disorder of the central nervous system. Genome-wide association studies (GWAS) have identified 233 genetic variations associated with MS at the genome-wide significant level. Epigenetic studies have pinpointed differentially methylated CpG sites in MS patients. However, the interplay between genetic risk factors and epigenetic regulation remains elusive. Here, we employed a network model to integrate GWAS summary statistics of 14 802 MS cases and 26 703 controls with DNA methylation profiles from 140 MS cases and 139 controls and the human interactome. We identified differentially methylated genes by aggregating additive effects of differentially methylated CpG sites within promoter regions. We reconstructed a gene regulatory network (GRN) using literature-curated transcription factor knowledge. Colocalization of the MS GWAS and methylation quantitative trait loci (mQTL) was performed to assess the GRN. The resultant MS-associated GRN highlighted several single nucleotide polymorphisms with GWAS-mQTL colocalization: rs6032663, rs6065926 and rs2024568 of CD40 locus, rs9913597 of STAT3 locus, and rs887864 and rs741175 of CIITA locus. Moreover, synergistic mQTL and expression QTL signals were identified in CD40, suggesting gene expression alteration was likely induced by epigenetic changes. Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA) indicated that the GRN was enriched in T follicular helper cells (P-value = 0.0016). Drug target enrichment analysis of annotations from the Therapeutic Target Database revealed the GRN was also enriched with drug target genes (P-value = 3.89 × 10-4), revealing repurposable candidates for MS treatment. These candidates included vorinostat (HDAC1 inhibitor) and sivelestat (ELANE inhibitor), which warrant further investigation.
Collapse
Affiliation(s)
- Astrid M Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Leorah A Freeman
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Horton MK, Shim JE, Wallace A, Graves JS, Aaen G, Greenberg B, Mar S, Wheeler Y, Weinstock-Guttman B, Waldman A, Schreiner T, Rodriguez M, Tillema JM, Chitnis T, Krupp L, Casper TC, Rensel M, Hart J, Quach HL, Quach DL, Schaefer C, Waubant E, Barcellos LF. Rare and low-frequency coding genetic variants contribute to pediatric-onset multiple sclerosis. Mult Scler 2023; 29:505-511. [PMID: 36755464 PMCID: PMC10149552 DOI: 10.1177/13524585221150736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Rare genetic variants are emerging as important contributors to the heritability of multiple sclerosis (MS). Whether rare variants also contribute to pediatric-onset multiple sclerosis (POMS) is unknown. OBJECTIVE To test whether genes harboring rare variants associated with adult-onset MS risk (PRF1, PRKRA, NLRP8, and HDAC7) and 52 major histocompatibility complex (MHC) genes are associated with POMS. METHODS We analyzed DNA samples from 330 POMS cases and 306 controls from the US Network of Pediatric MS Centers and Kaiser Permanente Northern California for which Illumina ExomeChip genotypes were available. Using the gene-based method "SKAT-O," we tested the association between candidate genes and POMS risk. RESULTS After correction for multiple comparisons, one adult-onset MS gene (PRF1, p = 2.70 × 10-3) and two MHC genes (BRD2, p = 5.89 × 10-5 and AGER, p = 7.96 × 10-5) were significantly associated with POMS. Results suggest these are independent of HLA-DRB1*1501. CONCLUSION Findings support a role for rare coding variants in POMS susceptibility. In particular, rare minor alleles within PRF1 were more common among individuals with POMS compared to controls while the opposite was true for rare variants within significant MHC genes, BRD2 and AGER. These genes would not have been identified by common variant studies, emphasizing the merits of investigating rare genetic variation in complex diseases.
Collapse
Affiliation(s)
- Mary K Horton
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA/Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA
| | - Joan E Shim
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Amelia Wallace
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA/Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jennifer S Graves
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, USA/Department of Neurology, University of California, San Francisco, CA, USA
| | - Gregory Aaen
- Pediatric MS Center, Loma Linda University Children's Hospital, San Bernardino, CA, USA
| | - Benjamin Greenberg
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Soe Mar
- Pediatric-Onset Demyelinating Diseases and Autoimmune Encephalitis Center, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Yolanda Wheeler
- Alabama Center for Pediatric-Onset Demyelinating Disease, Children's Hospital of Alabama, Birmingham, AL, USA
| | | | - Amy Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Teri Schreiner
- Children's Hospital Colorado, University of Colorado, Denver, CO, USA
| | - Moses Rodriguez
- Mayo Clinic's Pediatric Multiple Sclerosis Center, Rochester, MN, USA
| | | | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Lauren Krupp
- Lourie Center for Pediatric Multiple Sclerosis, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - T Charles Casper
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary Rensel
- Mellen Center, Cleveland Clinic, Cleveland, OH, USA
| | - Janace Hart
- Regional Pediatric MS Center, Neurology, University of California, San Francisco, CA, USA
| | - Hong L Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA/Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA
| | - Diana L Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA/Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA
| | | | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA/Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA/Kaiser Permanente Division of Research, Oakland, CA, USA
| |
Collapse
|
26
|
Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, Shusta EV, Pasquier RD, Engelhardt B. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022; 145:4334-4348. [PMID: 35085379 PMCID: PMC10200307 DOI: 10.1093/brain/awac019] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 07/20/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the CNS are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis. To this end, we made use of human induced pluripotent stem cells derived from healthy controls and MS patients and differentiated them into brain microvascular endothelial cell (BMEC)-like cells as in vitro model of the BBB. MS-derived BMEC-like cells showed impaired junctional integrity, barrier properties and efflux pump activity when compared to healthy controls. Also, MS-derived BMEC-like cells displayed an inflammatory phenotype with increased adhesion molecule expression and immune cell interactions. Activation of Wnt/β-catenin signalling in MS-derived endothelial progenitor cells enhanced barrier characteristics and reduced the inflammatory phenotype. Our study provides evidence for an intrinsic impairment of BBB function in MS patients that can be modelled in vitro. Human iPSC-derived BMEC-like cells are thus suitable to explore the molecular underpinnings of BBB dysfunction in MS and will assist in the identification of potential novel therapeutic targets for BBB stabilization.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Marel Steinfort
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Celine Cibien
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Kinya Matsuo
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Sarah Guimbal
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
27
|
A Whole-Genome Sequencing Study Implicates GRAMD1B in Multiple Sclerosis Susceptibility. Genes (Basel) 2022; 13:genes13122392. [PMID: 36553660 PMCID: PMC9777893 DOI: 10.3390/genes13122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
While the role of common genetic variants in multiple sclerosis (MS) has been elucidated in large genome-wide association studies, the contribution of rare variants to the disease remains unclear. Herein, a whole-genome sequencing study in four affected and four healthy relatives of a consanguineous Italian family identified a novel missense c.1801T > C (p.S601P) variant in the GRAMD1B gene that is shared within MS cases and resides under a linkage peak (LOD: 2.194). Sequencing GRAMD1B in 91 familial MS cases revealed two additional rare missense and two splice-site variants, two of which (rs755488531 and rs769527838) were not found in 1000 Italian healthy controls. Functional studies demonstrated that GRAMD1B, a gene with unknown function in the central nervous system (CNS), is expressed by several cell types, including astrocytes, microglia and neurons as well as by peripheral monocytes and macrophages. Notably, GRAMD1B was downregulated in vessel-associated astrocytes of active MS lesions in autopsied brains and by inflammatory stimuli in peripheral monocytes, suggesting a possible role in the modulation of inflammatory response and disease pathophysiology.
Collapse
|
28
|
Hatchwell E, Smith EB, Jalilzadeh S, Bruno CD, Taoufik Y, Hendel-Chavez H, Liblau R, Brassat D, Martin-Blondel G, Wiendl H, Schwab N, Cortese I, Monaco MC, Imberti L, Capra R, Oksenberg JR, Gasnault J, Stankoff B, Richmond TA, Rancour DM, Koralnik IJ, Hanson BA, Major EO, Chow CR, Eis PS. Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies. Front Neurol 2022; 13:1016377. [PMID: 36588876 PMCID: PMC9795231 DOI: 10.3389/fneur.2022.1016377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.
Collapse
Affiliation(s)
- Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom,*Correspondence: Eli Hatchwell
| | | | | | | | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - David Brassat
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Luisa Imberti
- Centro di Ricerca Emato-Oncologica AIL (CREA) and Diagnostic Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ruggero Capra
- Lombardia Multiple Sclerosis Network, Brescia, Italy
| | - Jorge R. Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | | | | | - Igor J. Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Peggy S. Eis
- Population Bio, Inc., New York, NY, United States,Peggy S. Eis
| |
Collapse
|
29
|
Whole Exome Sequencing Study Identifies Novel Rare Risk Variants for Habitual Coffee Consumption Involved in Olfactory Receptor and Hyperphagia. Nutrients 2022; 14:nu14204330. [PMID: 36297015 PMCID: PMC9607528 DOI: 10.3390/nu14204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Habitual coffee consumption is an addictive behavior with unknown genetic variations and has raised public health issues about its potential health-related outcomes. We performed exome-wide association studies to identify rare risk variants contributing to habitual coffee consumption utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9, PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC (PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and may point to molecular mechanisms underlying health effects of habitual coffee consumption.
Collapse
|
30
|
Everest E, Ahangari M, Uygunoglu U, Tutuncu M, Bulbul A, Saip S, Duman T, Sezerman U, Reich DS, Riley BP, Siva A, Tahir Turanli E. Investigating the role of common and rare variants in multiplex multiple sclerosis families reveals an increased burden of common risk variation. Sci Rep 2022; 12:16984. [PMID: 36216875 PMCID: PMC9550807 DOI: 10.1038/s41598-022-21484-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Many multiple sclerosis (MS)-associated common risk variants as well as candidate low-frequency and rare variants have been identified; however, approximately half of MS heritability remains unexplained. We studied seven multiplex MS families, six of which with parental consanguinity, to identify genetic factors that increase MS risk. Candidate genomic regions were identified through linkage analysis and homozygosity mapping, and fully penetrant, rare, and low-frequency variants were detected by exome sequencing. Weighted sum score and polygenic risk score (PRS) analyses were conducted in MS families (24 affected, 17 unaffected), 23 sporadic MS cases, 63 individuals in 19 non-MS control families, and 1272 independent, ancestry-matched controls. We found that familial MS cases had a significantly higher common risk variation burden compared with population controls and control families. Sporadic MS cases tended to have a higher PRS compared with familial MS cases, suggesting the presence of a higher rare risk variation burden in the families. In line with this, score distributions among affected and unaffected family members within individual families showed that known susceptibility alleles can explain disease development in some high-risk multiplex families, while in others, additional genetic contributors increase MS risk.
Collapse
Affiliation(s)
- Elif Everest
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Mohammad Ahangari
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Ugur Uygunoglu
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Melih Tutuncu
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Alper Bulbul
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey
| | - Sabahattin Saip
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Taskin Duman
- Department of Neurology, Tayfur Ata Sokmen School of Medicine, Mustafa Kemal University, Alahan-Antakya, Hatay, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acibadem University, Atasehir, Istanbul, Turkey
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brien P Riley
- Department of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Aksel Siva
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Eda Tahir Turanli
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Atasehir, Istanbul, Turkey.
- Molecular and Translational Biomedicine Program, Graduate School of Natural and Applied Sciences, Acibadem University, Atasehir, Istanbul, Turkey.
| |
Collapse
|
31
|
Horjus J, van Mourik-Banda T, Heerings MAP, Hakobjan M, De Witte W, Heersema DJ, Jansen AJ, Strijbis EMM, de Jong BA, Slettenaar AEJ, Zeinstra EMPE, Hoogervorst ELJ, Franke B, Kruijer W, Jongen PJ, Visser LJ, Poelmans G. Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231911461. [PMID: 36232761 PMCID: PMC9570223 DOI: 10.3390/ijms231911461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models.
Collapse
Affiliation(s)
- Julia Horjus
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tineke van Mourik-Banda
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marco A. P. Heerings
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dorothea J. Heersema
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne J. Jansen
- Department of Neurology, Bravis Hospital, 4708 AE Bergen op Zoom, The Netherlands
| | - Eva M. M. Strijbis
- Department of Neurology, Amsterdam UMC, location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wiebe Kruijer
- Independent Life Science Consultant, 3831 CE Leusden, The Netherlands
| | - Peter J. Jongen
- MS4 Research Institute, 6522 KJ Nijmegen, The Netherlands
- Department of Community & Occupational Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Leo J. Visser
- Department of Neurology, St. Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
- Department of Care Ethics, University of Humanistic Studies, 3512 HD Utrecht, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
32
|
Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C. Genetics of multiple sclerosis: lessons from polygenicity. Lancet Neurol 2022; 21:830-842. [PMID: 35963264 DOI: 10.1016/s1474-4422(22)00255-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Large-scale mapping studies have identified 236 independent genetic variants associated with an increased risk of multiple sclerosis. However, none of these variants are found exclusively in patients with multiple sclerosis. They are located throughout the genome, including 32 independent variants in the MHC and one on the X chromosome. Most variants are non-coding and seem to act through cell-specific effects on gene expression and splicing. The likely functions of these variants implicate both adaptive and innate immune cells in the pathogenesis of multiple sclerosis, provide pivotal biological insight into the causes and mechanisms of multiple sclerosis, and some of the variants implicated in multiple sclerosis also mediate risk of other autoimmune and inflammatory diseases. Genetics offers an approach to showing causality for environmental factors, through Mendelian randomisation. No single variant is necessary or sufficient to cause multiple sclerosis; instead, each increases total risk in an additive manner. This combined contribution from many genetic factors to disease risk, or polygenicity, has important consequences for how we interpret the epidemiology of multiple sclerosis and how we counsel patients on risk and prognosis. Ongoing efforts are focused on increasing cohort sizes, increasing diversity and detailed characterisation of study populations, and translating these associations into an understanding of the biology of multiple sclerosis.
Collapse
Affiliation(s)
- An Goris
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Neuroimmunology, Leuven, Belgium.
| | - Marijne Vandebergh
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Neuroimmunology, Leuven, Belgium
| | - Jacob L McCauley
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janna Saarela
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway; Institute for Molecular Medicine Finland and Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Association of rare variants in genes of immune regulation with pediatric autoimmune CNS diseases. J Neurol 2022; 269:6512-6529. [PMID: 35960392 PMCID: PMC9372976 DOI: 10.1007/s00415-022-11325-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background There is a gap in the literature regarding genetic underpinnings of pediatric autoimmune CNS diseases. This study explored rare gene variants implicated in immune dysregulation within these disorders. Methods This was a single-center observational study of children with inflammatory CNS disorder who had genetic testing through next generation focused exome sequencing targeting 155 genes associated with innate or adaptive immunity. For in silico prediction of functional effects of single-nucleotide variants, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant were used, and Combined Annotation Dependent Depletion (CADD) scores were calculated. Identified genes were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results Of 54 patients, 42 (77.8%) carried variant(s), among which 12 (22.2%) had 3–8 variants. Eighty-eight unique single-nucleotide variants of 55 genes were identified. The most variants were detected in UNC13D, LRBA, LYST, NOD2, DOCK8, RNASEH2A, STAT5B, and AIRE. The majority of variants (62, 70.4%) had CADD > 10. KEGG pathway analysis revealed seven genes associated with primary immunodeficiency (Benjamini 1.40E − 06), six genes with NOD-like receptor signaling (Benjamini 4.10E − 04), five genes with Inflammatory Bowel Disease (Benjamini 9.80E − 03), and five genes with NF-kappa B signaling pathway (Benjamini 1.90E − 02). Discussion We observed a high rate of identification of rare and low-frequency variants in immune regulatory genes in pediatric neuroinflammatory CNS disorders. We identified 88 unique single-nucleotide variants of 55 genes with pathway analysis revealing an enrichment of NOD2-receptor signaling, consistent with involvement of the pathway within other autoinflammatory conditions and warranting further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11325-2.
Collapse
|
34
|
Guo MH, Sama P, LaBarre BA, Lokhande H, Balibalos J, Chu C, Du X, Kheradpour P, Kim CC, Oniskey T, Snyder T, Soghoian DZ, Weiner HL, Chitnis T, Patsopoulos NA. Dissection of multiple sclerosis genetics identifies B and CD4+ T cells as driver cell subsets. Genome Biol 2022; 23:127. [PMID: 35672799 PMCID: PMC9175345 DOI: 10.1186/s13059-022-02694-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune condition of the central nervous system with a well-characterized genetic background. Prior analyses of MS genetics have identified broad enrichments across peripheral immune cells, yet the driver immune subsets are unclear. Results We utilize chromatin accessibility data across hematopoietic cells to identify cell type-specific enrichments of MS genetic signals. We find that CD4 T and B cells are independently enriched for MS genetics and further refine the driver subsets to Th17 and memory B cells, respectively. We replicate our findings in data from untreated and treated MS patients and find that immunomodulatory treatments suppress chromatin accessibility at driver cell types. Integration of statistical fine-mapping and chromatin interactions nominate numerous putative causal genes, illustrating complex interplay between shared and cell-specific genes. Conclusions Overall, our study finds that open chromatin regions in CD4 T cells and B cells independently drive MS genetic signals. Our study highlights how careful integration of genetics and epigenetics can provide fine-scale insights into causal cell types and nominate new genes and pathways for disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02694-y.
Collapse
|
35
|
He D, Liu L, Shen D, Zou P, Cui L. The Effect of Peripheral Immune Cell Counts on the Risk of Multiple Sclerosis: A Mendelian Randomization Study. Front Immunol 2022; 13:867693. [PMID: 35619713 PMCID: PMC9128528 DOI: 10.3389/fimmu.2022.867693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a complex central nervous system (CNS) demyelinating disease, the etiology of which involves the interplay between genetic and environmental factors. We aimed to determine whether genetically predicted peripheral immune cell counts may have a causal effect on MS. Methods We used genetic variants strongly associated with cell counts of circulating leukocyte, lymphocyte, monocyte, neutrophil, eosinophil, and basophil, in addition to some subpopulations of T and B lymphocyte, as instrumental variables (IVs) to perform Mendelian randomization (MR) analyses. The effect of immune cell counts on MS risk was measured using the summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) genome-wide association studies (GWAS). Results Our findings indicated that higher leucocyte count [odds ratio (OR), 1.24; 95% confidence interval (CI), 1.07 - 1.43; p = 0.0039] and lymphocyte count (OR, 1.17; 95% CI, 1.01 – 1.35; p = 0.0317) were causally associated with MS susceptibility. In addition, we also found that increase of genetically predicted natural killer T (NKT) cell count is also associated with an increase MS risk (OR, 1.24; 95% CI, 1.06 - 1.45; p = 0.0082). Conclusions These findings show that the genetic predisposition to higher peripheral immune cell counts can exert a causal effect on MS risk, which confirms the crucial role played by peripheral immunity in MS. Particularly, the causal association between NKT cell count and MS underscores the relevance of exploring the functional roles of NKT cells in disease pathogenesis in future.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liyang Liu
- Peking Union Medical College M.D. Program, Peking Union Medical College, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Peng Zou
- Department of Cardiac Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS), Beijing, China
| |
Collapse
|
36
|
Beliën J, Goris A, Matthys P. Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Front Immunol 2022; 13:869447. [PMID: 35464427 PMCID: PMC9019710 DOI: 10.3389/fimmu.2022.869447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.
Collapse
Affiliation(s)
- Jarne Beliën
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Ingelfinger F, Gerdes LA, Kavaka V, Krishnarajah S, Friebel E, Galli E, Zwicky P, Furrer R, Peukert C, Dutertre CA, Eglseer KM, Ginhoux F, Flierl-Hecht A, Kümpfel T, De Feo D, Schreiner B, Mundt S, Kerschensteiner M, Hohlfeld R, Beltrán E, Becher B. Twin study reveals non-heritable immune perturbations in multiple sclerosis. Nature 2022; 603:152-158. [PMID: 35173329 PMCID: PMC8891021 DOI: 10.1038/s41586-022-04419-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system underpinned by partially understood genetic risk factors and environmental triggers and their undefined interactions1,2. Here we investigated the peripheral immune signatures of 61 monozygotic twin pairs discordant for MS to dissect the influence of genetic predisposition and environmental factors. Using complementary multimodal high-throughput and high-dimensional single-cell technologies in conjunction with data-driven computational tools, we identified an inflammatory shift in a monocyte cluster of twins with MS, coupled with the emergence of a population of IL-2 hyper-responsive transitional naive helper T cells as MS-related immune alterations. By integrating data on the immune profiles of healthy monozygotic and dizygotic twin pairs, we estimated the variance in CD25 expression by helper T cells displaying a naive phenotype to be largely driven by genetic and shared early environmental influences. Nonetheless, the expanding helper T cells of twins with MS, which were also elevated in non-twin patients with MS, emerged independent of the individual genetic makeup. These cells expressed central nervous system-homing receptors, exhibited a dysregulated CD25-IL-2 axis, and their proliferative capacity positively correlated with MS severity. Together, our matched-pair analysis of the extended twin approach allowed us to discern genetically and environmentally determined features of an MS-associated immune signature.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | | | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Neurologic Clinic and Policlinic, University Hospital Basel, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Reinhard Furrer
- Department of Mathematics, University of Zurich, Zurich, Switzerland
- Department of Computational Science, University of Zurich, Zurich, Switzerland
| | - Christian Peukert
- Department of Strategy, Globalization and Society, University of Lausanne, Lausanne, Switzerland
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Klara Magdalena Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | | | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Hone L, Giovannoni G, Dobson R, Jacobs BM. Predicting Multiple Sclerosis: Challenges and Opportunities. Front Neurol 2022; 12:761973. [PMID: 35211072 PMCID: PMC8860835 DOI: 10.3389/fneur.2021.761973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Determining effective means of preventing Multiple Sclerosis (MS) relies on testing preventive strategies in trial populations. However, because of the low incidence of MS, demonstrating that a preventive measure has benefit requires either very large trial populations or an enriched population with a higher disease incidence. Risk scores which incorporate genetic and environmental data could be used, in principle, to identify high-risk individuals for enrolment in preventive trials. Here we discuss the concepts of developing predictive scores for identifying individuals at high risk of MS. We discuss the empirical efforts to do so using real cohorts, and some of the challenges-both theoretical and practical-limiting this work. We argue that such scores could offer a means of risk stratification for preventive trial design, but are unlikely to ever constitute a clinically-helpful approach to predicting MS for an individual.
Collapse
Affiliation(s)
- Luke Hone
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Benjamin Meir Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
39
|
Clarelli F, Barizzone N, Mangano E, Zuccalà M, Basagni C, Anand S, Sorosina M, Mascia E, Santoro S, Guerini FR, Virgilio E, Gallo A, Pizzino A, Comi C, Martinelli V, Comi G, De Bellis G, Leone M, Filippi M, Esposito F, Bordoni R, Martinelli Boneschi F, D'Alfonso S. Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Front Genet 2022; 12:800262. [PMID: 35047017 PMCID: PMC8762330 DOI: 10.3389/fgene.2021.800262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10-4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases.
Collapse
Affiliation(s)
- Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Miriam Zuccalà
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Chiara Basagni
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Santosh Anand
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Eleonora Virgilio
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Antonio Gallo
- MS Center, I Division of Neurology, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Vittorio Martinelli
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Filippo Martinelli Boneschi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, MS Centre, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| |
Collapse
|
40
|
Saliutina M. Opportunities of multi-omics approach for the search for new diagnostic and therapeutic targets in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:57-62. [DOI: 10.17116/jnevro202212205157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Fallerini C, Picchiotti N, Baldassarri M, Zguro K, Daga S, Fava F, Benetti E, Amitrano S, Bruttini M, Palmieri M, Croci S, Lista M, Beligni G, Valentino F, Meloni I, Tanfoni M, Minnai F, Colombo F, Cabri E, Fratelli M, Gabbi C, Mantovani S, Frullanti E, Gori M, Crawley FP, Butler-Laporte G, Richards B, Zeberg H, Lipcsey M, Hultström M, Ludwig KU, Schulte EC, Pairo-Castineira E, Baillie JK, Schmidt A, Frithiof R, WES/WGS Working Group Within the HGI, GenOMICC Consortium, Mari F, Renieri A, Furini S. Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity. Hum Genet 2022; 141:147-173. [PMID: 34889978 PMCID: PMC8661833 DOI: 10.1007/s00439-021-02397-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
Collapse
Affiliation(s)
- Chiara Fallerini
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- grid.9024.f0000 0004 1757 4641University of Siena, DIISM-SAILAB, Siena, Italy ,grid.8982.b0000 0004 1762 5736Department of Mathematics, University of Pavia, Pavia, Italy
| | - Margherita Baldassarri
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Kristina Zguro
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| | - Sergio Daga
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Fava
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy ,grid.411477.00000 0004 1759 0844Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Benetti
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| | - Sara Amitrano
- grid.411477.00000 0004 1759 0844Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy ,grid.411477.00000 0004 1759 0844Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Maria Palmieri
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Susanna Croci
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Mirjam Lista
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Giada Beligni
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Floriana Valentino
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Ilaria Meloni
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Marco Tanfoni
- grid.9024.f0000 0004 1757 4641University of Siena, DIISM-SAILAB, Siena, Italy
| | - Francesca Minnai
- grid.429135.80000 0004 1756 2536Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Segrate, MI Italy
| | - Francesca Colombo
- grid.429135.80000 0004 1756 2536Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Segrate, MI Italy
| | - Enrico Cabri
- grid.4527.40000000106678902Pharmacogenomics Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maddalena Fratelli
- grid.4527.40000000106678902Pharmacogenomics Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Gabbi
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Mantovani
- grid.419425.f0000 0004 1760 3027Department of Medicine, Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Frullanti
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Marco Gori
- grid.9024.f0000 0004 1757 4641University of Siena, DIISM-SAILAB, Siena, Italy ,grid.503321.60000 0001 0561 3840Models and Algorithms for Artificial Intelligence (MAASAI) Research Group, Université Côte d’Azur, Inria, CNRS, I3S, Biot, France
| | - Francis P. Crawley
- Good Clinical Practice Alliance-Europe (GCPA) and Strategic Initiative for Developing Capacity in Ethical Review (SIDCER), Leuven, Belgium
| | - Guillaume Butler-Laporte
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC Canada
| | - Brent Richards
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC Canada ,grid.13097.3c0000 0001 2322 6764Department of Twin Research, King’s College London, London, UK
| | - Hugo Zeberg
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Miklos Lipcsey
- grid.8993.b0000 0004 1936 9457Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, CIRRUS, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- grid.8993.b0000 0004 1936 9457Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kerstin U. Ludwig
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Eva C. Schulte
- grid.411095.80000 0004 0477 2585Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany ,grid.6936.a0000000123222966Institute of Virology, Technical University Munich/Helmholtz Zentrum München, Munich, Germany
| | - Erola Pairo-Castineira
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK ,grid.4305.20000 0004 1936 7988Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG UK
| | - John Kenneth Baillie
- grid.4305.20000 0004 1936 7988MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK ,grid.4305.20000 0004 1936 7988Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG UK ,grid.418716.d0000 0001 0709 1919Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, H16 5SA UK
| | - Axel Schmidt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Robert Frithiof
- grid.8993.b0000 0004 1936 9457Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | - Francesca Mari
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy ,grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy ,grid.411477.00000 0004 1759 0844Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy. .,Medical Genetics, University of Siena, Siena, Italy. .,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy. .,Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, 53100, Siena, Italy.
| | - Simone Furini
- grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Nishihara H, Engelhardt B. Brain Barriers and Multiple Sclerosis: Novel Treatment Approaches from a Brain Barriers Perspective. Handb Exp Pharmacol 2022; 273:295-329. [PMID: 33237504 DOI: 10.1007/164_2020_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.
Collapse
|
43
|
Li M, Chen H, Yin P, Song J, Jiang F, Tang Z, Fan X, Xu C, Wang Y, Xue Y, Han B, Wang H, Li G, Zhong D. Identification and Clinical Validation of Key Extracellular Proteins as the Potential Biomarkers in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2021; 12:753929. [PMID: 34950135 PMCID: PMC8688859 DOI: 10.3389/fimmu.2021.753929] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers. Methods MS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs. Results We screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival. Conclusion IL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongping Chen
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Pengqi Yin
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jihe Song
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Fangchao Jiang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhanbin Tang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chen Xu
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yingju Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Xue
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Baichao Han
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haining Wang
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guozhong Li
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Di Zhong
- Department of Neurology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Ma Q, Caillier SJ, Muzic S, Wilson MR, Henry RG, Cree BAC, Hauser SL, Didonna A, Oksenberg JR. Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:e2111920118. [PMID: 34911760 PMCID: PMC8713784 DOI: 10.1073/pnas.2111920118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic changes have been consistently detected in different cell types in multiple sclerosis (MS). However, their contribution to MS pathogenesis remains poorly understood partly because of sample heterogeneity and limited coverage of array-based methods. To fill this gap, we conducted a comprehensive analysis of genome-wide DNA methylation patterns in four peripheral immune cell populations isolated from 29 MS patients at clinical disease onset and 24 healthy controls. We show that B cells from new-onset untreated MS cases display more significant methylation changes than other disease-implicated immune cell types, consisting of a global DNA hypomethylation signature. Importantly, 4,933 MS-associated differentially methylated regions in B cells were identified, and this epigenetic signature underlies specific genetic programs involved in B cell differentiation and activation. Integration of the methylome to changes in gene expression and susceptibility-associated regions further indicates that hypomethylated regions are significantly associated with the up-regulation of cell activation transcriptional programs. Altogether, these findings implicate aberrant B cell function in MS etiology.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Stacy J Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Shaun Muzic
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Bruce A C Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Stephen L Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
45
|
Graham BE, Plotkin B, Muglia L, Moore JH, Williams SM. Estimating prevalence of human traits among populations from polygenic risk scores. Hum Genomics 2021; 15:70. [PMID: 34903281 PMCID: PMC8670062 DOI: 10.1186/s40246-021-00370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
The genetic basis of phenotypic variation across populations has not been well explained for most traits. Several factors may cause disparities, from variation in environments to divergent population genetic structure. We hypothesized that a population-level polygenic risk score (PRS) can explain phenotypic variation among geographic populations based solely on risk allele frequencies. We applied a population-specific PRS (psPRS) to 26 populations from the 1000 Genomes to four phenotypes: lactase persistence (LP), melanoma, multiple sclerosis (MS) and height. Our models assumed additive genetic architecture among the polymorphisms in the psPRSs, as is convention. Linear psPRSs explained a significant proportion of trait variance ranging from 0.32 for height in men to 0.88 for melanoma. The best models for LP and height were linear, while those for melanoma and MS were nonlinear. As not all variants in a PRS may confer similar, or even any, risk among diverse populations, we also filtered out SNPs to assess whether variance explained was improved using psPRSs with fewer SNPs. Variance explained usually improved with fewer SNPs in the psPRS and was as high as 0.99 for height in men using only 548 of the initial 4208 SNPs. That reducing SNPs improves psPRSs performance may indicate that missing heritability is partially due to complex architecture that does not mandate additivity, undiscovered variants or spurious associations in the databases. We demonstrated that PRS-based analyses can be used across diverse populations and phenotypes for population prediction and that these comparisons can identify the universal risk variants.
Collapse
Affiliation(s)
- Britney E Graham
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian Plotkin
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Louis Muglia
- Burroughs Wellcome Fund, Research Triangle Park, NC, 27614, USA
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Williams
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Scenes, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
46
|
De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes. Proc Natl Acad Sci U S A 2021; 118:2112032118. [PMID: 34782469 DOI: 10.1073/pnas.2112032118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Insulin-dependent or type 1 diabetes (T1D) is a polygenic autoimmune disease. In humans, more than 60 loci carrying common variants that confer disease susceptibility have been identified by genome-wide association studies, with a low individual risk contribution for most variants excepting those of the major histocompatibility complex (MHC) region (40 to 50% of risk); hence the importance of missing heritability due in part to rare variants. Nonobese diabetic (NOD) mice recapitulate major features of the human disease including genetic aspects with a key role for the MHC haplotype and a series of Idd loci. Here we mapped in NOD mice rare variants arising from genetic drift and significantly impacting disease risk. To that aim we established by selective breeding two sublines of NOD mice from our inbred NOD/Nck colony exhibiting a significant difference in T1D incidence. Whole-genome sequencing of high (H)- and low (L)-incidence sublines (NOD/NckH and NOD/NckL) revealed a limited number of subline-specific variants. Treating age of diabetes onset as a quantitative trait in automated meiotic mapping (AMM), enhanced susceptibility in NOD/NckH mice was unambiguously attributed to a recessive missense mutation of Dusp10, which encodes a dual specificity phosphatase. The causative effect of the mutation was verified by targeting Dusp10 with CRISPR-Cas9 in NOD/NckL mice, a manipulation that significantly increased disease incidence. The Dusp10 mutation resulted in islet cell down-regulation of type I interferon signature genes, which may exert protective effects against autoimmune aggression. De novo mutations akin to rare human susceptibility variants can alter the T1D phenotype.
Collapse
|
47
|
Barizzone N, Cagliani R, Basagni C, Clarelli F, Mendozzi L, Agliardi C, Forni D, Tosi M, Mascia E, Favero F, Corà D, Corrado L, Sorosina M, Esposito F, Zuccalà M, Vecchio D, Liguori M, Comi C, Comi G, Martinelli V, Filippi M, Leone M, Martinelli-Boneschi F, Caputo D, Sironi M, Guerini FR, D’Alfonso S. An Investigation of the Role of Common and Rare Variants in a Large Italian Multiplex Family of Multiple Sclerosis Patients. Genes (Basel) 2021; 12:1607. [PMID: 34681001 PMCID: PMC8535321 DOI: 10.3390/genes12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Known multiple sclerosis (MS) susceptibility variants can only explain half of the disease's estimated heritability, whereas low-frequency and rare variants may partly account for the missing heritability. Thus, here we sought to determine the occurrence of rare functional variants in a large Italian MS multiplex family with five affected members. For this purpose, we combined linkage analysis and next-generation sequencing (NGS)-based whole exome and whole genome sequencing (WES and WGS, respectively). The genetic burden attributable to known common MS variants was also assessed by weighted genetic risk score (wGRS). We found a significantly higher burden of common variants in the affected family members compared to that observed among sporadic MS patients and healthy controls (HCs). We also identified 34 genes containing at least one low-frequency functional variant shared among all affected family members, showing a significant enrichment in genes involved in specific biological processes-particularly mRNA transport-or neurodegenerative diseases. Altogether, our findings point to a possible pathogenic role of different low-frequency functional MS variants belonging to shared pathways. We propose that these rare variants, together with other known common MS variants, may account for the high number of affected family members within this MS multiplex family.
Collapse
Affiliation(s)
- Nadia Barizzone
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (D.F.); (M.S.)
| | - Chiara Basagni
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| | - Ferdinando Clarelli
- Laboratory of Genetics of Neurological Complex Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.C.); (E.M.); (M.S.); (F.E.)
| | - Laura Mendozzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (L.M.); (C.A.); (D.C.); (F.R.G.)
| | - Cristina Agliardi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (L.M.); (C.A.); (D.C.); (F.R.G.)
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (D.F.); (M.S.)
| | - Martina Tosi
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| | - Elisabetta Mascia
- Laboratory of Genetics of Neurological Complex Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.C.); (E.M.); (M.S.); (F.E.)
| | - Francesco Favero
- Department of Translational Medicine, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (F.F.); (D.C.)
| | - Davide Corà
- Department of Translational Medicine, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (F.F.); (D.C.)
| | - Lucia Corrado
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| | - Melissa Sorosina
- Laboratory of Genetics of Neurological Complex Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.C.); (E.M.); (M.S.); (F.E.)
| | - Federica Esposito
- Laboratory of Genetics of Neurological Complex Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.C.); (E.M.); (M.S.); (F.E.)
| | - Miriam Zuccalà
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| | - Domizia Vecchio
- Department of Translational Medicine, IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (D.V.); (C.C.)
| | - Maria Liguori
- Institute of Biomedical Technologies, Bari Unit, National Research Council, 70126 Bari, Italy;
| | - Cristoforo Comi
- Department of Translational Medicine, IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (D.V.); (C.C.)
| | - Giancarlo Comi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.C.); (M.F.)
| | - Vittorio Martinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Massimo Filippi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (G.C.); (M.F.)
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maurizio Leone
- Dipartimento di Emergenza e Area Critica, UO Neurologia, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Filippo Martinelli-Boneschi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, 20122 Milan, Italy;
- Neurology Unit and MS Centre, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Domenico Caputo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (L.M.); (C.A.); (D.C.); (F.R.G.)
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy; (R.C.); (D.F.); (M.S.)
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (L.M.); (C.A.); (D.C.); (F.R.G.)
| | - Sandra D’Alfonso
- Department of Health Sciences, CAAD (Center for Translational Research on Autoimmune and Allergic Diseases), University of Eastern Piedmont, 28100 Novara, Italy; (C.B.); (M.T.); (L.C.); (M.Z.)
| |
Collapse
|
48
|
Jia X, Goes FS, Locke AE, Palmer D, Wang W, Cohen-Woods S, Genovese G, Jackson AU, Jiang C, Kvale M, Mullins N, Nguyen H, Pirooznia M, Rivera M, Ruderfer DM, Shen L, Thai K, Zawistowski M, Zhuang Y, Abecasis G, Akil H, Bergen S, Burmeister M, Chapman S, DelaBastide M, Juréus A, Kang HM, Kwok PY, Li JZ, Levy SE, Monson ET, Moran J, Sobell J, Watson S, Willour V, Zöllner S, Adolfsson R, Blackwood D, Boehnke M, Breen G, Corvin A, Craddock N, DiFlorio A, Hultman CM, Landen M, Lewis C, McCarroll SA, Richard McCombie W, McGuffin P, McIntosh A, McQuillin A, Morris D, Myers RM, O'Donovan M, Ophoff R, Boks M, Kahn R, Ouwehand W, Owen M, Pato C, Pato M, Posthuma D, Potash JB, Reif A, Sklar P, Smoller J, Sullivan PF, Vincent J, Walters J, Neale B, Purcell S, Risch N, Schaefer C, Stahl EA, Zandi PP, Scott LJ. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Mol Psychiatry 2021; 26:5239-5250. [PMID: 33483695 PMCID: PMC8295400 DOI: 10.1038/s41380-020-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.
Collapse
Affiliation(s)
- Xiaoming Jia
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Adam E Locke
- Division of Genomics & Bioinformatics, Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Duncan Palmer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Weiqing Wang
- Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Cohen-Woods
- Discipline of Psychology and Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA, Australia
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94611, USA
| | - Mark Kvale
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Niamh Mullins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hoang Nguyen
- Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, USA
| | - Margarita Rivera
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, Spain
| | - Douglas M Ruderfer
- Departments of Medicine, Psychiatry, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ling Shen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94611, USA
| | - Khanh Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94611, USA
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yongwen Zhuang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gonçalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sinéad Chapman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Melissa DelaBastide
- Division of Research, Cold Spring Harbor Laboratory, Cold Spring, Harbor, NY, 11797, USA
| | - Anders Juréus
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jun Z Li
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Eric T Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jennifer Moran
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Janet Sobell
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stanley Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Virginia Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rolf Adolfsson
- Departments of Clinical Sciences and Psychiatry, Umea University, Umea, Sweden
| | | | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gerome Breen
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR BRC for Mental Health, King's College London, London, UK
| | - Aiden Corvin
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nick Craddock
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Arianna DiFlorio
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Cathryn Lewis
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | | | - W Richard McCombie
- Division of Research, Cold Spring Harbor Laboratory, Cold Spring, Harbor, NY, 11797, USA
| | - Peter McGuffin
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrew McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Derek Morris
- Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Discipline of Biochemistry, Neuroimaging and Cognitive Genomics (NICOG) Centre, National University of Ireland Galway, Galway, Ireland
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Michael O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Roel Ophoff
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Marco Boks
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Rene Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Willem Ouwehand
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Michael Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Carlos Pato
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033, USA
- SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Michele Pato
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pamela Sklar
- Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jordan Smoller
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - John Vincent
- Molecular Neuropsychiatry and Development Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction & Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - James Walters
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Benjamin Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Neil Risch
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94611, USA
| | - Eli A Stahl
- Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
49
|
Shahi SK, Ali S, Jaime CM, Guseva NV, Mangalam AK. HLA Class II Polymorphisms Modulate Gut Microbiota and Experimental Autoimmune Encephalomyelitis Phenotype. Immunohorizons 2021; 5:627-646. [PMID: 34380664 PMCID: PMC8728531 DOI: 10.4049/immunohorizons.2100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS in which the interaction between genetic and environmental factors plays an important role in disease pathogenesis. Although environmental factors account for 70% of disease risk, the exact environmental factors associated with MS are unknown. Recently, gut microbiota has emerged as a potential missing environmental factor linked with the pathobiology of MS. Yet, how genetic factors, such as HLA class II gene(s), interact with gut microbiota and influence MS is unclear. In the current study, we investigated whether HLA class II genes that regulate experimental autoimmune encephalomyelitis (EAE) and MS susceptibility also influence gut microbiota. Previously, we have shown that HLA-DR3 transgenic mice lacking endogenous mouse class II genes (AE-KO) were susceptible to myelin proteolipid protein (91-110)-induced EAE, an animal model of MS, whereas AE-KO.HLA-DQ8 transgenic mice were resistant. Surprisingly, HLA-DR3.DQ8 double transgenic mice showed higher disease prevalence and severity compared with HLA-DR3 mice. Gut microbiota analysis showed that HLA-DR3, HLA-DQ8, and HLA-DR3.DQ8 double transgenic mice microbiota are compositionally different from AE-KO mice. Within HLA class II transgenic mice, the microbiota of HLA-DQ8 mice were more similar to HLA-DR3.DQ8 than HLA-DR3. As the presence of DQ8 on an HLA-DR3 background increases disease severity, our data suggests that HLA-DQ8-specific microbiota may contribute to disease severity in HLA-DR3.DQ8 mice. Altogether, our study provides evidence that the HLA-DR and -DQ genes linked to specific gut microbiota contribute to EAE susceptibility or resistance in a transgenic animal model of MS.
Collapse
Affiliation(s)
| | - Soham Ali
- Department of Pathology, University of Iowa, Iowa City, IA
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA;
- Graduate Program in Immunology, University of Iowa, Iowa City, IA; and
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
50
|
Liver kinase B1 rs9282860 polymorphism and risk for multiple sclerosis in White and Black Americans. Mult Scler Relat Disord 2021; 55:103185. [PMID: 34371271 DOI: 10.1016/j.msard.2021.103185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND We previously reported that the single nucleotide polymorphism (SNP) rs9282860 in serine threonine kinase 11 (STK11) gene which codes for liver kinase B1 (LKB1) has higher prevalence in White relapsing-remitting multiple sclerosis (RRMS) patients than controls. However it is not known if this SNP is a risk factor for MS in other populations. METHODS We assessed the prevalence of the STK11 SNP in samples collected from African American (AA) persons with MS (PwMS) and controls at multiple Veterans Affairs (VA) Medical Centers and from a network of academic MS centers. Genotyping was carried out using a specific Taqman assay. Comparisons of SNP frequencies were made using Fisher's exact test to determine significance and odds ratios. Group means were compared by appropriate t-tests based on normality and variance using SPSS V27. RESULTS There were no significant differences in average age at first symptom onset, age at diagnosis, disease duration, or disease severity between RRMS patients recruited from VAMCs versus non-VAMCs. The SNP was more prevalent in AA than White PwMS, however only in secondary progressive MS (SPMS) patients was that difference statistically significant. AA SPMS patients had higher STK11 SNP prevalence than controls; and in that cohort the SNP was associated with older age at symptom onset and at diagnosis. CONCLUSIONS The results suggest that the STK11 SNP represents a risk factor for SPMS in AA patients, and can influence both early (onset) and later (conversion to SPMSS) events.
Collapse
|