1
|
Thakur P, Lackinger M, Diamantopoulou A, Rao S, Chen Y, Khalizova K, Ferng A, Mazur C, Kordasiewicz H, Shprintzen RJ, Markx S, Xu B, Gogos JA. An antisense oligonucleotide-based strategy to ameliorate cognitive dysfunction in the 22q11.2 Deletion Syndrome. eLife 2025; 13:RP103328. [PMID: 40420562 PMCID: PMC12113277 DOI: 10.7554/elife.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Adults and children with the 22q11.2 Deletion Syndrome demonstrate cognitive, social, and emotional impairments and high risk for schizophrenia. Work in mouse model of the 22q11.2 deletion provided compelling evidence for abnormal expression and processing of microRNAs. A major transcriptional effect of the microRNA dysregulation is upregulation of Emc10, a component of the ER membrane complex, which promotes membrane insertion of a subset of polytopic and tail-anchored membrane proteins. We previously uncovered a key contribution of EMC10 in mediating the behavioral phenotypes observed in 22q11.2 deletion mouse models. Here, we show that expression and processing of miRNAs is abnormal and EMC10 expression is elevated in neurons derived from 22q11.2 deletion carriers. Reduction of EMC10 levels restores defects in neurite outgrowth and calcium signaling in patient neurons. Furthermore, antisense oligonucleotide administration and normalization of Emc10 in the adult mouse brain not only alleviates cognitive deficits in social and spatial memory but remarkably sustains these improvements for over 2 months post-injection, indicating its therapeutic potential. Broadly, our study integrates findings from both animal models and human neurons to elucidate the translational potential of modulating EMC10 levels and downstream targets as a specific venue to ameliorate disease progression in 22q11.2 Deletion Syndrome.
Collapse
Affiliation(s)
- Pratibha Thakur
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Martin Lackinger
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia UniversityNew YorkUnited States
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Sneha Rao
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Yijing Chen
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Khakima Khalizova
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia UniversityNew YorkUnited States
| | - Annie Ferng
- Ionis Pharmaceuticals, IncCarlsbadUnited States
| | - Curt Mazur
- Ionis Pharmaceuticals, IncCarlsbadUnited States
| | | | | | - Sander Markx
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia UniversityNew YorkUnited States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia UniversityNew YorkUnited States
| | - Bin Xu
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia UniversityNew YorkUnited States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia UniversityNew YorkUnited States
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia UniversityNew YorkUnited States
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia UniversityNew YorkUnited States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Assoumou K, Papadogkonaki S, Muneta-Arrate I, Stoeber M. Mechanisms governing GPCR anterograde transport. FEBS Lett 2025. [PMID: 40426025 DOI: 10.1002/1873-3468.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of human membrane proteins. GPCRs recognize diverse extracellular stimuli and activate intracellular signaling cascades that regulate key physiological processes such as neurotransmission and cardiovascular function. The controlled transport of nascent GPCRs from the endoplasmic reticulum (ER) via the Golgi apparatus to the cell surface critically determines the cellular responsiveness to incoming ligands. Here, we present a comprehensive overview of the cellular mechanisms and motif-driven interactions with regulatory proteins that orchestrate GPCR folding, post-translational modifications, and vesicular transport along the secretory pathway. We highlight signaling cues that can modulate the anterograde transport and specialized mechanisms that deliver biosynthetic GPCRs to dendrites and axons in neurons. Furthermore, we discuss that many disease-causing GPCR mutants exhibit aberrant intracellular retention, which can be rescued by pharmacological strategies that stabilize misfolded GPCRs. Finally, we highlight insights into the agonist-driven signaling of biosynthetic GPCRs in secretory organelles. This review covers the complex roles of anterograde transport in controlling GPCR function and emerging possibilities to target the underlying mechanisms in disease.
Collapse
Affiliation(s)
- Kevin Assoumou
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Sofia Papadogkonaki
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | | | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
3
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Kim SA, Kim HG, Wijesinghe WCB, Min D, Yoon TY. Emerging Patterns in Membrane Protein Folding Pathways. Annu Rev Biophys 2025; 54:141-162. [PMID: 40327440 DOI: 10.1146/annurev-biophys-070524-100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Studies of membrane protein folding have progressed from simple systems such as bacteriorhodopsin to complex structures such as ATP-binding cassette transporters and voltage-gated ion channels. Advances in techniques such as single-molecule force spectroscopy and in vivo force profiling now allow for the detailed examination of membrane protein folding pathways at amino acid resolutions. These proteins navigate rugged energy landscapes partly shaped by the absence of hydrophobic collapse and the viscous nature of the lipid bilayer, imposing biophysical limitations on folding speeds. Furthermore, many transmembrane (TM) helices display reduced hydrophobicity to support functional requirements, simultaneously increasing the energy barriers for membrane insertion, a manifestation of the evolutionary trade-off between functionality and foldability. These less hydrophobic TM helices typically insert and fold as helical hairpins, following the protein synthesis direction from the N terminus to the C terminus, with assistance from endoplasmic reticulum (ER) chaperones like the Sec61 translocon and the ER membrane protein complex. The folding pathways of multidomain membrane proteins are defined by allosteric networks that extend across various domains, where mutations and folding correctors affect seemingly distant domains. A common evolutionary strategy is likely to be domain specialization, where N-terminal domains enhance foldability and C-terminal domains enhance functionality. Thus, despite inherent biophysical constraints, evolution has finely tuned membrane protein sequences to optimize foldability, stability, and functionality.
Collapse
Affiliation(s)
- Sang Ah Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
5
|
Ou X, Ma C, Sun D, Xu J, Wang Y, Wu X, Wang D, Yang S, Gao N, Song C, Li L. SecY translocon chaperones protein folding during membrane protein insertion. Cell 2025; 188:1912-1924.e13. [PMID: 39978345 DOI: 10.1016/j.cell.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The Sec translocon is vital for guiding membrane protein insertion into lipid bilayers. The insertion and folding processes of membrane proteins are poorly understood. Here, we report cryo-electron microscopy structures of multi-spanning membrane proteins inserting through the SecY channel, the Sec translocon in prokaryotes. The high-resolution structures illustrate how bulky amino acids pass the narrow channel restriction. Comparison of different translocation states reveals that the cytoplasmic and extracellular cavities of the channel create distinct environments for promoting the unfolding and folding of transmembrane segments (TMs), respectively. Released substrate TMs are either flexible or stabilized by an unexpected hydrophilic groove between TM3 and TM4 of SecY. Disruption of the groove causes global defects in the folding of the membrane proteome. These findings demonstrate that beyond its role as a passive protein-conducting channel, the SecY translocon actively serves as a chaperone, employing multiple mechanisms to promote membrane protein insertion and folding.
Collapse
Affiliation(s)
- Xiaomin Ou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinkun Xu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yang Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaofei Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dali Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Song Yang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; National Biomedical Imaging Center, Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China.
| | - Chen Song
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Juszkiewicz S, Peak-Chew SY, Hegde RS. Mechanism of chaperone recruitment and retention on mitochondrial precursors. Mol Biol Cell 2025; 36:ar39. [PMID: 39878680 PMCID: PMC7617541 DOI: 10.1091/mbc.e25-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation. During acute import stress, Hsp90 buffers precursor degradation, preserving proteins in an import-competent state until stress resolution. Unexpectedly, buffering by Hsp90 relies critically on a mitochondrial targeting signal (MTS), the absence of which greatly decreases precursor-Hsp90 interaction. Site-specific photo-cross-linking and biochemical reconstitution showed how the MTS directly engages co-chaperones of Hsc70 (St13 and Stip1) and Hsp90 (p23 and Cdc37) to facilitate chaperone retention on the mature domain. Thus, the MTS has a previously unappreciated role in regulating chaperone dynamics on mitochondrial precursors to buffer their degradation and maintain import competence, functions that may facilitate restoration of mitochondrial homeostasis after acute import stress.
Collapse
Affiliation(s)
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | | |
Collapse
|
7
|
Xiao S, Jiang S, Wen C, Wang H, Nie W, Zhao J, Zhang B. EMC2 promotes breast cancer progression and enhances sensitivity to PDK1/AKT inhibition by deubiquitinating ENO1. Int J Biol Sci 2025; 21:2629-2646. [PMID: 40303285 PMCID: PMC12035906 DOI: 10.7150/ijbs.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 05/02/2025] Open
Abstract
Breast cancer is the most common malignant tumor worldwide, causing 685,000 deaths in 2020, and this number continues to rise. Identifying the molecular mechanisms driving breast cancer progression and potential therapeutic targets are currently urgent issues. Our previous work and bioinformatics analysis shows that the expression of Endoplasmic Reticulum Membrane Protein Complex Subunit 2 (EMC2) is up-regulated in breast cancer and is correlated with shortened overall survival of patients. However, the mechanism of EMC2 in breast cancer is yet to be elucidated. In this study, we identified that EMC2 promotes breast cancer proliferation and metastasis by activating the PDK1/AKT (T308)/mTOR (S2448) signaling pathway and can serve as a candidate target for PDK1/AKT inhibition. Mechanistically, EMC2 serves as a "scaffold" protein to recruit the deubiquitinating enzyme (DUB) USP7 for ENO1 deubiquitylation to stabilize its expression, thereby initiating downstream B-MYB/PDK1/AKT (T308)/mTOR (S2448) signal cascade. Silencing EMC2 significantly weaken the proliferation/metastasis potential of breast cancer in vitro and in vivo, but made tumor cell sensitive to PDK1/AKT inhibition. Overexpression of EMC2 leads to exactly the opposite result. This study reveals the EMC2/USP7/ENO1/B-MYB protumorigenic axis in breast cancer and identifies EMC2 as a candidate target for PDK1/AKT inhibitory therapy.
Collapse
Affiliation(s)
- Shihan Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangxuan Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxu Wen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxiang Nie
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Bo Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Jennrich J, Farkas Á, Urlaub H, Schwappach B, Bohnsack KE. The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH. J Cell Sci 2025; 138:jcs263616. [PMID: 39976550 PMCID: PMC11959614 DOI: 10.1242/jcs.263616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 03/21/2025] Open
Abstract
The guided-entry of tail-anchored proteins (GET) pathway is a post-translational targeting route to the endoplasmic reticulum (ER). Upon glucose withdrawal, the soluble GET proteins re-localize to dynamic cytosolic foci, here termed GET bodies. Our data reveal that the pre-targeting complex components, Sgt2 and the Get4-Get5 heterodimer, and the Get3 ATPase play important roles in the assembly of these structures in Saccharomyces cerevisiae. More specifically, the TPR region of Sgt2 is required as a GET body scaffold. Systematic compositional analyses of GET bodies reveal their chaperone-rich nature and the presence of numerous proteins involved in metabolic processes. Temporal analyses of GET body assembly demonstrate the sequential recruitment of different chaperones, and we discover the requirement of Sis1 and Sti1 for maintaining the dynamic properties of these structures. In vivo, NADH derived from the oxidation of ethanol to acetaldehyde can induce GET body disassembly in a reaction depending on the alcohol dehydrogenase Adh2 and in vitro, addition of NADH resolves GET bodies. This suggests a mechanistic basis for their formation and disassembly in response to the metabolic shift caused by glucose withdrawal and re-addition.
Collapse
Affiliation(s)
- Jonas Jennrich
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Faßberg 11, 37077 Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Centre Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Carrillo Roas S, Yagita Y, Murphy P, Kurzbauer R, Clausen T, Zavodszky E, Hegde RS. Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase. Mol Cell 2025; 85:815-828.e10. [PMID: 39879985 DOI: 10.1016/j.molcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for the efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex. Epistasis analysis in cells and reconstitution studies in vitro show that the UBR4-KCMF1 complex acts downstream of a priming ubiquitin ligase that first mono-ubiquitinates orphans. UBR4 recognizes both the orphan and its mono-ubiquitin and builds a K48-linked poly-ubiquitin degradation signal. The discovery of a convergence point for multiple quality control pathways may explain why aneuploid cells are especially sensitive to loss of UBR4 or KCMF1 and identifies a potential vulnerability across many cancers.
Collapse
Affiliation(s)
| | - Yuichi Yagita
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Paul Murphy
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | | | | |
Collapse
|
10
|
Chen Z, Minor DL. Electrosome assembly: Structural insights from high voltage-activated calcium channel (CaV)-chaperone interactions. Biochem Soc Trans 2025; 53:BST20240422. [PMID: 39912874 DOI: 10.1042/bst20240422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Ion channels are multicomponent complexes (termed here as"electrosomes") that conduct the bioelectrical signals required for life. It has been appreciated for decades that assembly is critical for proper channel function, but knowledge of the factors that undergird this important process has been lacking. Although there are now exemplar structures of representatives of most major ion channel classes, there has been no direct structural information to inform how these complicated, multipart complexes are put together or whether they interact with chaperone proteins that aid in their assembly. Recent structural characterization of a complex of the endoplasmic membrane protein complex (EMC) chaperone and a voltage-gated calcium channel (CaV) assembly intermediate comprising the pore-forming CaVα1 and cytoplasmic CaVβ subunits offers the first structural view into the assembly of a member of the largest ion channel class, the voltagegated ion channel (VGIC) superfamily. The structure shows how the EMC remodels the CaVα1/CaVβ complex through a set of rigid body movements for handoff to the extracellular CaVα2δ subunit to complete channel assembly in a process that involves intersubunit coordination of a divalent cation and ordering of CaVα1 elements. These findings set a new framework for deciphering the structural underpinnings of ion channel biogenesis that has implications for understanding channel function, how drugs and disease mutations act, and for investigating how other membrane proteins may engage the ubiquitous EMC chaperone.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Department of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- California Institute for Quantitative Biomedical Research, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Kavli Institute for Fundamental Neuroscience, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720 CA 94720, U.S.A
| |
Collapse
|
11
|
Chen J, Zhou X, Yang Y, Li L. Protein translocation through α-helical channels and insertases. Structure 2025; 33:15-28. [PMID: 39591975 DOI: 10.1016/j.str.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.
Collapse
Affiliation(s)
- Jingxia Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xueyin Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuqi Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Long Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
12
|
Sorout N, Helms V. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon. J Mol Recognit 2025; 38:e3108. [PMID: 39394908 DOI: 10.1002/jmr.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.
Collapse
Affiliation(s)
- Nidhi Sorout
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| |
Collapse
|
13
|
Sergejevs N, Avci D, van de Weijer ML, Corey RA, Lemberg MK, Carvalho P. Topology surveillance of the lanosterol demethylase CYP51A1 by signal peptide peptidase. J Cell Sci 2024; 137:jcs262333. [PMID: 39513424 PMCID: PMC11827857 DOI: 10.1242/jcs.262333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP, encoded by HM13) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here, we identify the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalysed cleavage triggers CYP51A1 clearance by endoplasmic reticulum-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules, and we identify an amphipathic helix in the CYP51A1 N terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain potentially non-functional conformers.
Collapse
Affiliation(s)
- Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Dönem Avci
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael L. van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robin A. Corey
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Marius K. Lemberg
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
14
|
Wang H, Hegde RS. Identification of a factor that accelerates substrate release from the signal recognition particle. Science 2024; 386:996-1003. [PMID: 39607913 PMCID: PMC7617331 DOI: 10.1126/science.adp0787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
The eukaryotic signal recognition particle (SRP) cotranslationally recognizes the first hydrophobic segment of nascent secretory and membrane proteins and delivers them to a receptor at the endoplasmic reticulum (ER). How substrates are released from SRP at the ER to subsequently access translocation factors is not well understood. We found that TMEM208 can engage the substrate binding domain of SRP to accelerate release of its bound cargo. Without TMEM208, slow cargo release resulted in excessive synthesis of downstream polypeptide before engaging translocation factors. Delayed access to translocation machinery caused progressive loss of insertion competence, particularly for multipass membrane proteins, resulting in their impaired biogenesis. Thus, TMEM208 facilitates prompt cargo handover from the targeting to translocation machinery to minimize biogenesis errors and maintain protein homeostasis.
Collapse
Affiliation(s)
- Huping Wang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
15
|
Kalinin IA, Peled-Zehavi H, Barshap ABD, Tamari SA, Weiss Y, Nevo R, Fluman N. Features of membrane protein sequence direct post-translational insertion. Nat Commun 2024; 15:10198. [PMID: 39587101 PMCID: PMC11589881 DOI: 10.1038/s41467-024-54575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy. We demonstrate that evolution has refined the hydrophilicity and length of the C-terminal tails of these proteins to optimize cTM insertion. Alterations in the C-tail sequence disrupt cTM insertion in both E. coli and human, leading to protein defects, loss of function, and genetic diseases. In E. coli, we identify YidC, a member of the widespread Oxa1 family, as the insertase facilitating cTMs insertion, with C-tail mutations disrupting the productive interaction of cTMs with YidC. Thus, MP sequences are fine-tuned for effective collaboration with the cellular biogenesis machinery, ensuring proper membrane protein folding.
Collapse
Affiliation(s)
- Ilya A Kalinin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Peled-Zehavi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon B D Barshap
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai A Tamari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Weiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Fluman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
DiGuilio A, Cheng B, Zhong F, Jha R, Wan Y, Anghel S, Hu H, Shishkova E, Ji Z, Coon JJ, Keenan RJ. The prolyl isomerase FKBP11 is a secretory translocon accessory factor. Mol Biol Cell 2024; 35:ar135. [PMID: 39259761 PMCID: PMC11617091 DOI: 10.1091/mbc.e24-07-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Eukaryotic cells encode thousands of secretory and membrane proteins, many of which are cotranslationally translocated into the endoplasmic reticulum (ER). Nascent polypeptides entering the ER encounter a network of molecular chaperones and enzymes that facilitate their folding. A rate-limiting step for some proteins is the trans-to-cis isomerization of the peptide bond between proline and the residue preceding it. The human ER contains six prolyl isomerases, but the function, organization, and substrate range of these proteins is not clear. Here we show that the metazoan-specific, prolyl isomerase FKBP11 binds to ribosome-translocon complexes (RTCs) in the ER membrane, dependent on its single transmembrane domain and a conserved, positively charged region at its cytosolic C-terminus. High-throughput mRNA sequencing shows selective engagement with ribosomes synthesizing secretory and membrane proteins with long translocated segments, and functional analysis shows reduced stability of two such proteins, EpCAM and PTTG1IP, in cells depleted of FKBP11. We propose that FKBP11 is a translocon accessory factor that acts on a broad range of soluble secretory and transmembrane proteins during their synthesis at the ER.
Collapse
Affiliation(s)
- Amanda DiGuilio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Ben Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roshan Jha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yu Wan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
| | - S. Andrei Anghel
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Hong Hu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53515
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53506
| | - Robert J. Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Tang X, Wei W, Sun Y, Weaver TE, Nakayasu ES, Clair G, Snowball JM, Na CL, Apsley KS, Martin EP, Kotton DN, Alysandratos KD, Huo J, Molkentin JD, Gower WA, Lin X, Whitsett JA. EMC3 regulates trafficking and pulmonary toxicity of the SFTPCI73T mutation associated with interstitial lung disease. J Clin Invest 2024; 134:e173861. [PMID: 39405113 PMCID: PMC11601914 DOI: 10.1172/jci173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
The most common mutation in surfactant protein C gene (SFTPC), SFTPCI73T, causes interstitial lung disease with few therapeutic options. We previously demonstrated that EMC3, an important component of the multiprotein endoplasmic reticulum membrane complex (EMC), is required for surfactant homeostasis in alveolar type 2 epithelial (AT2) cells at birth. In the present study, we investigated the role of EMC3 in the control of SFTPCI73T metabolism and its associated alveolar dysfunction. Using a knock-in mouse model phenocopying the I73T mutation, we demonstrated that conditional deletion of Emc3 in AT2 cells rescued alveolar remodeling/simplification defects in neonatal and adult mice. Proteomic analysis revealed that Emc3 depletion reversed the disruption of vesicle trafficking pathways and rescued the mitochondrial dysfunction associated with I73T mutation. Affinity purification-mass spectrometry analysis identified potential EMC3 interacting proteins in lung AT2 cells, including Valosin Containing Protein (VCP) and its interactors. Treatment of SftpcI73T knock-in mice and SFTPCI73T expressing iAT2 cells derived from SFTPCI73T patient-specific iPSCs with the specific VCP inhibitor CB5083 restored alveolar structure and SFTPCI73T trafficking respectively. Taken together, the present work identifies the EMC complex and VCP in the metabolism of the disease-associated SFTPCI73T mutant, providing novel therapeutical targets for SFTPCI73T-associated interstitial lung disease.
Collapse
Affiliation(s)
- Xiaofang Tang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Sun
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Timothy E. Weaver
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cheng-Lun Na
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Karen S. Apsley
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily P. Martin
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Darrell N. Kotton
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiuzhou Huo
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffery D. Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William A. Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
McCann T, Sundaramurthi H, Walsh C, Virdi S, Alvarez Y, Sapetto-Rebow B, Collery RF, Carter SP, Moran A, Mulholland R, O'Connor JJ, Taylor MR, Rauch N, Starostik MR, English MA, Swaroop A, Geisler R, Reynolds AL, Kennedy BN. Emc1 is essential for vision and zebrafish photoreceptor outer segment morphogenesis. FASEB J 2024; 38:e70086. [PMID: 39360639 DOI: 10.1096/fj.202401977r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Inherited retinal diseases (IRDs) are a rare group of eye disorders characterized by progressive dysfunction and degeneration of retinal cells. In this study, we characterized the raifteirí (raf) zebrafish, a novel model of inherited blindness, identified through an unbiased ENU mutagenesis screen. A mutation in the largest subunit of the endoplasmic reticulum membrane protein complex, emc1 was subsequently identified as the causative raf mutation. We sought to elucidate the cellular and molecular phenotypes in the emc1-/- knockout model and explore the association of emc1 with retinal degeneration. Visual behavior and retinal electrophysiology assays demonstrated that emc1-/- mutants had severe visual impairments. Retinal histology and morphometric analysis revealed extensive abnormalities, including thinning of the photoreceptor layer, in addition to large gaps surrounding the lens. Notably, photoreceptor outer segments were drastically smaller, outer segment protein expression was altered and hyaloid vasculature development was disrupted. Transcriptomic profiling identified cone and rod-specific phototransduction genes significantly downregulated by loss of emc1. These data shed light on why emc1 is a causative gene in inherited retinal disease and how outer segment morphogenesis is regulated.
Collapse
Affiliation(s)
- Tess McCann
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ciara Walsh
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Sanamjeet Virdi
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems -Biological Information Processing, Eggenstein-Leopoldshafen, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Beata Sapetto-Rebow
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ross F Collery
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
- Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin, USA
| | - Stephen P Carter
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ailis Moran
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ruth Mulholland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Michael R Taylor
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nora Rauch
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Milton A English
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert Geisler
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems -Biological Information Processing, Eggenstein-Leopoldshafen, Germany
| | - Alison L Reynolds
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina RADS, da Silva RR, Lopes GS, Trinca V, Colón DF, Peixoto PM, Monesi N, Alberici LC, Ramos RGP, Espreafico EM. EMC1 Is Required for the Sarcoplasmic Reticulum and Mitochondrial Functions in the Drosophila Muscle. Biomolecules 2024; 14:1258. [PMID: 39456191 PMCID: PMC11506464 DOI: 10.3390/biom14101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.
Collapse
Affiliation(s)
- Carlos Antonio Couto-Lima
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Anhezini
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - Marcos Túlio Oliveira
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Roberto Augusto da Silva Molina
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo Ribeiro da Silva
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor Trinca
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - David Fernando Colón
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Pablo M. Peixoto
- Baruch College and Graduate Center, The City University of New York, New York, NY 10010, USA
| | - Nadia Monesi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Guelerman P. Ramos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
20
|
Page KR, Nguyen VN, Pleiner T, Tomaleri GP, Wang ML, Guna A, Hazu M, Wang TY, Chou TF, Voorhees RM. Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins. Mol Cell 2024; 84:3302-3319.e11. [PMID: 39173640 DOI: 10.1016/j.molcel.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/19/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.
Collapse
Affiliation(s)
- Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Vy N Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Wenzell NA, Tuch BB, McMinn DL, Lyons MJ, Kirk CJ, Taunton J. Global signal peptide profiling reveals principles of selective Sec61 inhibition. Nat Chem Biol 2024; 20:1154-1163. [PMID: 38519575 DOI: 10.1038/s41589-024-01592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins. Here we describe a fluorescence-based, pooled-cell screening platform to interrogate nearly all human SPs in parallel. We profiled two cotransins with distinct effects on cancer cells and discovered a small subset of SPs, including the oncoprotein human epidermal growth factor receptor 3 (HER3), with increased sensitivity to the more selective cotransin, KZR-9873. By comparing divergent mouse and human orthologs, we unveiled a position-dependent effect of arginine on SP sensitivity. Our multiplexed profiling platform reveals how cotransins can exploit subtle sequence differences to achieve SP discrimination.
Collapse
Affiliation(s)
- Nicole A Wenzell
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian B Tuch
- Kezar Life Sciences, South San Francisco, CA, USA
| | | | - Matthew J Lyons
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
23
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
24
|
Hegde RS, Keenan RJ. A unifying model for membrane protein biogenesis. Nat Struct Mol Biol 2024; 31:1009-1017. [PMID: 38811793 PMCID: PMC7616256 DOI: 10.1038/s41594-024-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Verhaegen M, Vermeire K. The endoplasmic reticulum (ER): a crucial cellular hub in flavivirus infection and potential target site for antiviral interventions. NPJ VIRUSES 2024; 2:24. [PMID: 40295816 PMCID: PMC11721386 DOI: 10.1038/s44298-024-00031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/30/2025]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne flavivirus and imposes a significant healthcare threat worldwide. At present no FDA-approved specific antiviral treatment is available, and the safety of a vaccine against DENV is still on debate. Following its entry into the host cell, DENV takes advantage of the cellular secretory pathway to produce new infectious particles. The key organelle of the host cell in DENV infections is the endoplasmic reticulum (ER) which supports various stages throughout the entire life cycle of flaviviruses. This review delves into the intricate interplay between flaviviruses and the ER during their life cycle with a focus on the molecular mechanisms underlying viral replication, protein processing and virion assembly. Emphasizing the significance of the ER in the flavivirus life cycle, we highlight potential antiviral targets in ER-related steps during DENV replication and summarize the current antiviral drugs that are in (pre)clinical developmental stage. Insights into the exploitation of the ER by DENV offer promising avenues for the development of targeted antiviral strategies, providing a foundation for future research and therapeutic interventions against flaviviruses.
Collapse
Affiliation(s)
- Marijke Verhaegen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
26
|
Lewis AJO, Zhong F, Keenan RJ, Hegde RS. Structural analysis of the dynamic ribosome-translocon complex. eLife 2024; 13:RP95814. [PMID: 38896445 PMCID: PMC11186639 DOI: 10.7554/elife.95814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61's lateral gate, widening Sec61's central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.
Collapse
Affiliation(s)
- Aaron JO Lewis
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | | |
Collapse
|
27
|
Alzayed NT, Alzuabi AH, Alqusaimi RA, El-Anany EA, Alholle A, Aboelanine AH, Omar S, Alsafi R, Elmonairy AA, Alali FJ, Alahmad A, Alsharhan H, Albash B, Marafi D. Tribal Founder EMC1 Variant in 5 Kuwaiti Families Expands Phenotypic Spectrum of EMC1-Related Disorder. Neurol Genet 2024; 10:e200156. [PMID: 38784058 PMCID: PMC11115761 DOI: 10.1212/nxg.0000000000200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
Background and Objectives The endoplasmic reticulum (ER) membrane protein complex is a conserved multisubunit transmembrane complex that enables energy-independent insertion of newly synthesized membrane proteins into ER membranes, mediating protein folding, phospholipid transfer from ER to mitochondria, and elimination of misfolded proteins. The first subunit of EMC (EMC1) is encoded by EMC1. Both monoallelic de novo and biallelic EMC1 variants have been identified to cause cerebellar atrophy, visual impairment, and psychomotor retardation (CAVIPMR) [OMIM #616875]. Eight families with biallelic EMC1 variants and CAVIPMR have been reported. Here, we describe 8 individuals from 5 Kuwaiti families from the same tribe, with the previously reported homozygous pathogenic missense EMC1 variant [c.245C>T:p.(Thr82Met)] and CAVIPMR. Methods Proband exome sequencing was performed in 3 families, while targeted molecular testing for EMC1 [c.245C>T:p.(Thr82Met)] variant was performed in the other 2 families based on strong clinical suspicion and tribal origin. Sanger sequencing confirmed variant segregation with disease in all families. Results We identified 8 individuals from 5 Kuwaiti families with the homozygous pathogenic EMC1 variant [c.245C>T:p.(Thr82Met)] previously reported in a Turkish family with CAVIPMR. The variant was absent from Kuwait Medical Genetic Center database, thus unlikely to represent a population founder allelic variant. The average age at symptom onset was 11 weeks, with all families reporting either visual abnormalities, hypotonia, and/or global developmental delay (GDD) as the presenting features. Shared clinical features included GDD (8/8), microcephaly (8/8), truncal hypotonia (8/8), visual impairment (7/7), and failure to thrive (7/7). Other common features included hyperreflexia (5/6; 83%), peripheral hypertonia (3/5; 60%), dysmorphism (3/6; 50%), epilepsy (4/8; 50%), and chorea (3/8; 36%). Brain imaging showed cerebellar atrophy in 4/7 (57%) and cerebral atrophy in 3/6 (50%) individuals. Discussion The presence of exact biallelic homozygous EMC1 variant in 5 Kuwaiti families from the same tribe suggests a tribal founder allelic variant. The clinical features in this study are consistent with the phenotypic spectrum of EMC1-associated CAVIPMR in previous reports. The presence of chorea, first noted in this study, further expands the phenotypic spectrum. Our findings emphasize the importance of targeted EMC1 variant [c.245C>T:p.(Thr82Met)] testing for infants from affected tribe who present with visual impairment, GDD, and hypotonia.
Collapse
Affiliation(s)
- Nada T Alzayed
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Abdullah H Alzuabi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Reem A Alqusaimi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ehab A El-Anany
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Abdullah Alholle
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ashraf H Aboelanine
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Sherief Omar
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Rasha Alsafi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Alaa A Elmonairy
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Fatemah J Alali
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ahmad Alahmad
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Hind Alsharhan
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Buthaina Albash
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Dana Marafi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| |
Collapse
|
28
|
Paul JW, Muratcioğlu S, Kuriyan J. A fluorescence-based sensor for calibrated measurement of protein kinase stability in live cells. Protein Sci 2024; 33:e5023. [PMID: 38801214 PMCID: PMC11129626 DOI: 10.1002/pro.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative Bioscience (QB3)University of CaliforniaBerkeleyCaliforniaUSA
| | - Serena Muratcioğlu
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John Kuriyan
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
29
|
Zhu Q, Zhu X, Zhang L. ER membrane complex (EMC): Structure, functions, and roles in diseases. FASEB J 2024; 38:e23539. [PMID: 38498340 DOI: 10.1096/fj.202302266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.
Collapse
Affiliation(s)
- Qi Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
30
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Li M, Zhang C, Xu Y, Li S, Huang C, Wu J, Lei M. Structural insights into human EMC and its interaction with VDAC. Aging (Albany NY) 2024; 16:5501-5525. [PMID: 38517390 PMCID: PMC11006472 DOI: 10.18632/aging.205660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved, multi-subunit complex acting as an insertase at the ER membrane. Growing evidence shows that the EMC is also involved in stabilizing and trafficking membrane proteins. However, the structural basis and regulation of its multifunctionality remain elusive. Here, we report cryo-electron microscopy structures of human EMC in apo- and voltage-dependent anion channel (VDAC)-bound states at resolutions of 3.47 Å and 3.32 Å, respectively. We discovered a specific interaction between VDAC proteins and the EMC at mitochondria-ER contact sites, which is conserved from yeast to humans. Moreover, we identified a gating plug located inside the EMC hydrophilic vestibule, the substrate-binding pocket for client insertion. Conformation changes of this gating plug during the apo-to-VDAC-bound transition reveal that the EMC unlikely acts as an insertase in the VDAC1-bound state. Based on the data analysis, the gating plug may regulate EMC functions by modifying the hydrophilic vestibule in different states. Our discovery offers valuable insights into the structural basis of EMC's multifunctionality.
Collapse
Affiliation(s)
- Mingyue Li
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Chunli Zhang
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Yuntao Xu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Shaobai Li
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Chenhui Huang
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Jian Wu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Lei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Sun K, Liu L, Jiang X, Wang H, Wang L, Yang Y, Liu W, Zhang L, Zhao X, Zhu X. The endoplasmic reticulum membrane protein complex subunit Emc6 is essential for rhodopsin localization and photoreceptor cell survival. Genes Dis 2024; 11:1035-1049. [PMID: 37692493 PMCID: PMC10492031 DOI: 10.1016/j.gendis.2023.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/17/2023] [Accepted: 03/29/2023] [Indexed: 09/12/2023] Open
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) is responsible for monitoring the biogenesis and synthetic quality of membrane proteins with tail-anchored or multiple transmembrane domains. The EMC subunit EMC6 is one of the core members of EMC and forms an enclosed hydrophilic vestibule in cooperation with EMC3. Despite studies demonstrating that deletion of EMC3 led to rhodopsin mislocalization in rod photoreceptors of mice, the precise mechanism leading to the failure of rhodopsin trafficking remains unclear. Here, we generated the first rod photoreceptor-specific knockout of Emc6 (RKO) and cone photoreceptor-specific knockout of Emc6 (CKO) mouse models. Deficiency of Emc6 in rod photoreceptors led to progressive shortening of outer segments (OS), impaired visual function, mislocalization and reduced expression of rhodopsin, and increased gliosis in rod photoreceptors. In addition, CKO mice displayed the progressive death of cone photoreceptors and abnormal localization of cone opsin protein. Subsequently, proteomics analysis of the RKO mouse retina illustrated that several cilium-related proteins, particularly anoctamin-2 (ANO2) and transmembrane protein 67 (TMEM67), were significantly down-regulated prior to OS degeneration. Detrimental rod photoreceptor cilia and mislocalized membrane disc proteins were evident in RKO mice. Our data revealed that in addition to monitoring the synthesis of rhodopsin-dominated membrane disc proteins, EMC6 also impacted rod photoreceptors' ciliogenesis by regulating the synthesis of membrane proteins associated with cilia, contributing to the mislocalization of membrane disc proteins.
Collapse
Affiliation(s)
- Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Heting Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaohui Zhao
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476000, China
| |
Collapse
|
33
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Giolito ML, Bigliani G, Meinero R, Taubas JV. Palmitoylation of CYSTM (CYSPD) proteins in yeast. J Biol Chem 2024; 300:105609. [PMID: 38159851 PMCID: PMC10840359 DOI: 10.1016/j.jbc.2023.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
A superfamily of proteins called cysteine transmembrane is widely distributed across eukaryotes. These small proteins are characterized by the presence of a conserved motif at the C-terminal region, rich in cysteines, that has been annotated as a transmembrane domain. Orthologs of these proteins have been involved in resistance to pathogens and metal detoxification. The yeast members of the family are YBR016W, YDL012C, YDR034W-B, and YDR210W. Here, we begin the characterization of these proteins at the molecular level and show that Ybr016w, Ydr034w-b, and Ydr210w are palmitoylated proteins. Protein S-acylation or palmitoylation, is a posttranslational modification that consists of the addition of long-chain fatty acids to cysteine residues. We provide evidence that Ybr016w, Ydr210w, and Ydr034w-b are localized to the plasma membrane and exhibit varying degrees of polarity toward the daughter cell, which is dependent on endocytosis and recycling. We suggest the names CPP1, CPP2, and CPP3 (C terminally palmitoylated protein) for YBR016W, YDR210W, and YDR034W-B, respectively. We show that palmitoylation is responsible for the binding of these proteins to the membrane indicating that the cysteine transmembrane on these proteins is not a transmembrane domain. We propose renaming the C-terminal cysteine-rich domain as cysteine-rich palmitoylated domain. Loss of the palmitoyltransferase Erf2 leads to partial degradation of Ybr016w (Cpp1), whereas in the absence of the palmitoyltransferase Akr1, members of this family are completely degraded. For Cpp1, we show that this degradation occurs via the proteasome in an Rsp5-dependent manner, but is not exclusively due to a lack of Cpp1 palmitoylation.
Collapse
Affiliation(s)
- María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Bigliani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rocío Meinero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
35
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
36
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
37
|
Wu H, Smalinskaitė L, Hegde RS. EMC rectifies the topology of multipass membrane proteins. Nat Struct Mol Biol 2024; 31:32-41. [PMID: 37957425 PMCID: PMC10803268 DOI: 10.1038/s41594-023-01120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 11/15/2023]
Abstract
Most eukaryotic multipass membrane proteins are inserted into the membrane of the endoplasmic reticulum. Their transmembrane domains (TMDs) are thought to be inserted co-translationally as they emerge from a membrane-bound ribosome. Here we find that TMDs near the carboxyl terminus of mammalian multipass proteins are inserted post-translationally by the endoplasmic reticulum membrane protein complex (EMC). Site-specific crosslinking shows that the EMC's cytosol-facing hydrophilic vestibule is adjacent to a pre-translocated C-terminal tail. EMC-mediated insertion is mostly agnostic to TMD hydrophobicity, favored for short uncharged C-tails and stimulated by a preceding unassembled TMD bundle. Thus, multipass membrane proteins can be released by the ribosome-translocon complex in an incompletely inserted state, requiring a separate EMC-mediated post-translational insertion step to rectify their topology, complete biogenesis and evade quality control. This sequential co-translational and post-translational mechanism may apply to ~250 diverse multipass proteins, including subunits of the pentameric ion channel family that are crucial for neurotransmission.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
38
|
Shi L, Ma H, Wang J, Ma M, Zhao H, Li Z, Wang JH, Wu S, Zhou Z, Dong MQ, Li Z. An EMC-Hpo-Yki axis maintains intestinal homeostasis under physiological and pathological conditions. Development 2023; 150:dev201958. [PMID: 38031990 DOI: 10.1242/dev.201958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.
Collapse
Affiliation(s)
- Lin Shi
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hubing Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinjun Wang
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shian Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
39
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
40
|
Li S, Yang M, Zhao R, Peng L, Liu W, Jiang X, He Y, Dai E, Zhang L, Yang Y, Shi Y, Zhao P, Yang Z, Zhu X. Defective EMC1 drives abnormal retinal angiogenesis via Wnt/β-catenin signaling and may be associated with the pathogenesis of familial exudative vitreoretinopathy. Genes Dis 2023; 10:2572-2585. [PMID: 37554197 PMCID: PMC10404869 DOI: 10.1016/j.gendis.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of Emc1, the largest subunit of EMC. Loss of Emc1 in ECs led to reduced vascular progression and vascular density, diminished tip cell sprouts, and vascular leakage. We then performed an unbiased transcriptomic analysis on human retinal microvascular endothelial cells (HRECs) and revealed a pivotal role of EMC1 in the β-catenin signaling pathway. Further in-vitro and in-vivo experiments proved that loss of EMC1 led to compromised β-catenin signaling activity through reduced expression of Wnt receptor FZD4, which could be restored by lithium chloride (LiCl) treatment. Driven by these findings, we screened genomic DNA samples from familial exudative vitreoretinopathy (FEVR) patients and identified one heterozygous variant in EMC1 that co-segregated with FEVR phenotype in the family. In-vitro expression experiments revealed that this variant allele failed to facilitate the expression of FZD4 on the plasma membrane and activate the β-catenin signaling pathway, which might be a main cause of FEVR. In conclusion, our findings reveal that variants in EMC1 gene cause compromised β-catenin signaling activity, which may be associated with the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| |
Collapse
|
41
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
42
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
43
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
44
|
Li X, Jiang Z, Su Y, Wang K, Jiang X, Sun K, Yang Y, Zhou Y, Zhu X, Zhang L. Deletion of Emc1 in photoreceptor cells causes retinal degeneration in mice. FEBS J 2023; 290:4356-4370. [PMID: 37098815 DOI: 10.1111/febs.16807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/27/2023]
Abstract
The endoplasmic reticulum membrane protein complex (EMC) plays a critical role in the synthesis of multipass membrane proteins. Genetic studies indicated that mutations in EMC1 gene were associated with retinal degeneration diseases; however, the role of EMC1 in photoreceptor has not been confirmed. Here, we show that Emc1 ablation in the photoreceptor cells of mice recapitulated the retinitis pigmentosa phenotypes, including an attenuated scotopic electroretinogram response and the progressive degeneration of rod cells and cone cells. Histopathological examination of tissues from rod-specific Emc1 knockout mice revealed mislocalized rhodopsin and irregularly arranged cone cells at the age of 2 months. Further immunoblotting analysis revealed decreased levels of membrane proteins and endoplasmic reticulum chaperones in 1-month-old rod-specific Emc1 knockout mice retinae, and this led us to speculate that the loss of membrane proteins is the main cause of the degeneration of photoreceptors. EMC1 most likely regulated the membrane protein levels at an earlier step in the biosynthetic process before the proteins translocated into the endoplasmic reticulum. The present study demonstrates the essential roles of Emc1 in photoreceptor cells, and reveals the mechanism through which EMC1 mutations are linked to retinitis pigmentosa.
Collapse
Affiliation(s)
- Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujing Su
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaifang Wang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
45
|
Marquez J, Aslam F, Khokha MK. Expanding EMC foldopathies: Topogenesis deficits alter the neural crest. Genesis 2023; 61:e23520. [PMID: 37318954 PMCID: PMC10524326 DOI: 10.1002/dvg.23520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER) membrane protein complex (EMC) is essential for the insertion of a wide variety of transmembrane proteins into the plasma membrane across cell types. Each EMC is composed of Emc1-7, Emc10, and either Emc8 or Emc9. Recent human genetics studies have implicated variants in EMC genes as the basis for a group of human congenital diseases. The patient phenotypes are varied but appear to affect a subset of tissues more prominently than others. Namely, craniofacial development seems to be commonly affected. We previously developed an array of assays in Xenopus tropicalis to assess the effects of emc1 depletion on the neural crest, craniofacial cartilage, and neuromuscular function. We sought to extend this approach to additional EMC components identified in patients with congenital malformations. Through this approach, we determine that EMC9 and EMC10 are important for neural crest development and the development of craniofacial structures. The phenotypes observed in patients and our Xenopus model phenotypes similar to EMC1 loss of function likely due to a similar mechanism of dysfunction in transmembrane protein topogenesis.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Faiza Aslam
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 2023; 222:e202212007. [PMID: 37199759 PMCID: PMC10200711 DOI: 10.1083/jcb.202212007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N. Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
47
|
Tipper DJ, Harley CA. Spf1 and Ste24: quality controllers of transmembrane protein topology in the eukaryotic cell. Front Cell Dev Biol 2023; 11:1220441. [PMID: 37635876 PMCID: PMC10456885 DOI: 10.3389/fcell.2023.1220441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
DNA replication, transcription, and translation in eukaryotic cells occur with decreasing but still high fidelity. In contrast, for the estimated 33% of the human proteome that is inserted as transmembrane (TM) proteins, insertion with a non-functional inverted topology is frequent. Correct topology is essential for function and trafficking to appropriate cellular compartments and is controlled principally by responses to charged residues within 15 residues of the inserted TM domain (TMD); the flank with the higher positive charge remains in the cytosol (inside), following the positive inside rule (PIR). Yeast (Saccharomyces cerevisiae) mutants that increase insertion contrary to the PIR were selected. Mutants with strong phenotypes were found only in SPF1 and STE24 (human cell orthologs are ATP13A1 and ZMPSte24) with, at the time, no known relevant functions. Spf1/Atp13A1 is now known to dislocate to the cytosol TM proteins inserted contrary to the PIR, allowing energy-conserving reinsertion. We hypothesize that Spf1 and Ste24 both recognize the short, positively charged ER luminal peptides of TM proteins inserted contrary to the PIR, accepting these peptides into their large membrane-spanning, water-filled cavities through interaction with their many interior surface negative charges. While entry was demonstrated for Spf1, no published evidence directly demonstrates substrate entry to the Ste24 cavity, internal access to its zinc metalloprotease (ZMP) site, or active withdrawal of fragments, which may be essential for function. Spf1 and Ste24 comprise a PIR quality control system that is conserved in all eukaryotes and presumably evolved in prokaryotic progenitors as they gained differentiated membrane functions. About 75% of the PIR is imposed by this quality control system, which joins the UPR, ERAD, and autophagy (ER-phagy) in coordinated, overlapping quality control of ER protein function.
Collapse
Affiliation(s)
- Donald J. Tipper
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Carol A. Harley
- i3S-Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Yagita Y, Zavodszky E, Peak-Chew SY, Hegde RS. Mechanism of orphan subunit recognition during assembly quality control. Cell 2023; 186:3443-3459.e24. [PMID: 37480851 PMCID: PMC10501995 DOI: 10.1016/j.cell.2023.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Cells contain numerous abundant molecular machines assembled from multiple subunits. Imbalances in subunit production and failed assembly generate orphan subunits that are eliminated by poorly defined pathways. Here, we determined how orphan subunits of the cytosolic chaperonin CCT are recognized. Several unassembled CCT subunits recruited the E3 ubiquitin ligase HERC2 using ZNRD2 as an adaptor. Both factors were necessary for orphan CCT subunit degradation in cells, sufficient for CCT subunit ubiquitination with purified factors, and necessary for optimal cell fitness. Domain mapping and structure prediction defined the molecular features of a minimal HERC2-ZNRD2-CCT module. The structural model, whose key elements were validated in cells using point mutants, shows why ZNRD2 selectively recognizes multiple orphaned CCT subunits without engaging assembled CCT. Our findings reveal how failures during CCT assembly are monitored and provide a paradigm for the molecular recognition of orphan subunits, the largest source of quality control substrates in cells.
Collapse
Affiliation(s)
- Yuichi Yagita
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
49
|
Koike Y, Takahata M, Nakajima M, Otomo N, Suetsugu H, Liu X, Endo T, Imagama S, Kobayashi K, Kaito T, Kato S, Kawaguchi Y, Kanayama M, Sakai H, Tsuji T, Miyamoto T, Inose H, Yoshii T, Kashii M, Nakashima H, Ando K, Taniguchi Y, Takeuchi K, Ito S, Tomizuka K, Hikino K, Iwasaki Y, Kamatani Y, Maeda S, Nakajima H, Mori K, Seichi A, Fujibayashi S, Kanchiku T, Watanabe K, Tanaka T, Kida K, Kobayashi S, Takahashi M, Yamada K, Takuwa H, Lu HF, Niida S, Ozaki K, Momozawa Y, Yamazaki M, Okawa A, Matsumoto M, Iwasaki N, Terao C, Ikegawa S. Genetic insights into ossification of the posterior longitudinal ligament of the spine. eLife 2023; 12:e86514. [PMID: 37461309 PMCID: PMC10353864 DOI: 10.7554/elife.86514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is an intractable disease leading to severe neurological deficits. Its etiology and pathogenesis are primarily unknown. The relationship between OPLL and comorbidities, especially type 2 diabetes (T2D) and high body mass index (BMI), has been the focus of attention; however, no trait has been proven to have a causal relationship. We conducted a meta-analysis of genome-wide association studies (GWASs) using 22,016 Japanese individuals and identified 14 significant loci, 8 of which were previously unreported. We then conducted a gene-based association analysis and a transcriptome-wide Mendelian randomization approach and identified three candidate genes for each. Partitioning heritability enrichment analyses observed significant enrichment of the polygenic signals in the active enhancers of the connective/bone cell group, especially H3K27ac in chondrogenic differentiation cells, as well as the immune/hematopoietic cell group. Single-cell RNA sequencing of Achilles tendon cells from a mouse Achilles tendon ossification model confirmed the expression of genes in GWAS and post-GWAS analyses in mesenchymal and immune cells. Genetic correlations with 96 complex traits showed positive correlations with T2D and BMI and a negative correlation with cerebral aneurysm. Mendelian randomization analysis demonstrated a significant causal effect of increased BMI and high bone mineral density on OPLL. We evaluated the clinical images in detail and classified OPLL into cervical, thoracic, and the other types. GWAS subanalyses identified subtype-specific signals. A polygenic risk score for BMI demonstrated that the effect of BMI was particularly strong in thoracic OPLL. Our study provides genetic insight into the etiology and pathogenesis of OPLL and is expected to serve as a basis for future treatment development.
Collapse
Affiliation(s)
- Yoshinao Koike
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Masahiro Nakajima
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic Surgery, Keio University School of MedicineNagoyaJapan
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Kazuyoshi Kobayashi
- Department of Orthopedics, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of MedicineSuitaJapan
| | - Satoshi Kato
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa UniversityKanazawaJapan
| | | | - Masahiro Kanayama
- Department of Orthopedics, Hakodate Central General HospitalHakodateJapan
| | - Hiroaki Sakai
- Department of Orthopaedic Surgery, Spinal Injuries CenterIizukaJapan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of MedicineNagoyaJapan
- Department of Spine and Spinal Cord Surgery, Fujita Health UniversityToyoakeJapan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of MedicineNagoyaJapan
- Department of Orthopedic Surgery, Kumamoto UniversityKumamotoJapan
| | - Hiroyuki Inose
- Department of Orthopaedic Surgery, Tokyo Medical and Dental UniversityTokyoJapan
| | - Toshitaka Yoshii
- Department of Orthopaedic Surgery, Tokyo Medical and Dental UniversityTokyoJapan
| | - Masafumi Kashii
- Department of Orthopaedic Surgery, Osaka University Graduate School of MedicineSuitaJapan
| | - Hiroaki Nakashima
- Department of Orthopedics, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Kei Ando
- Department of Orthopedics, Nagoya University Graduate School of MedicineNagoyaJapan
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of TokyoTokyoJapan
| | - Kazuhiro Takeuchi
- Department of Orthopaedic Surgery, National Okayama Medical CenterOkayamaJapan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
- Department of Orthopedic Surgery, Shimane University Faculty of MedicineIzumoJapan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima UniversityKagoshimaJapan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of FukuiFukuiJapan
| | - Kanji Mori
- Department of Orthopaedic Surgery, Shiga University of Medical ScienceOtsuJapan
| | - Atsushi Seichi
- Department of Orthopedics, Jichi Medical UniversityShimotsukeJapan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of MedicineUbeJapan
| | - Kei Watanabe
- Department of Orthopaedic Surgery, Niigata University Medical and Dental General HospitalNankokuJapan
| | - Toshihiro Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Kazunobu Kida
- Department of Orthopaedic Surgery, Kochi Medical SchoolNankokuJapan
| | - Sho Kobayashi
- Department of Orthopaedic Surgery, Hamamatsu University School of MedicineHamamatsuJapan
| | - Masahito Takahashi
- Department of Orthopaedic Surgery, Kyorin University School of MedicineTokyoJapan
| | - Kei Yamada
- Department of Orthopaedic Surgery, Kurume University School of MedicineObuJapan
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Department of Orthopedic Surgery, Shimane University Faculty of MedicineIzumoJapan
| | - Hsing-Fang Lu
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Million-Person Precision Medicine Initiative, China Medical University HospitalTaichungTaiwan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and GerontologyObuJapan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and GerontologyObuJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Tokyo Medical and Dental UniversityTokyoJapan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of MedicineNagoyaJapan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKENYokohamaJapan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKENTokyoJapan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of MedicineSapporoJapan
| |
Collapse
|
50
|
Abstract
Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of β-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain β-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|