1
|
Ahn Y, Kim J, Jung K, Lee DJ, Jung JY, Eom Y, Park S, Kim J, Kim H, Jo H, Hong S, O'Connell KS, Andreassen OA, Myung W, Won HH. Relationship Between Problematic Alcohol Use and Various Psychiatric Disorders: A Genetically Informed Study. Am J Psychiatry 2025:appiajp20240095. [PMID: 40329641 DOI: 10.1176/appi.ajp.20240095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
OBJECTIVE Problematic alcohol use (PAU) adversely affects the clinical course of psychiatric disorders. Genetic studies have suggested that genetic factors underlie the co-occurrence of PAU with psychiatric disorders. This study aimed to elucidate shared genetic architectures, prioritizing genes that disorders may have in common. METHODS Using genome-wide association data of PAU including 435,563 samples from people of European ancestry, this study investigated the genetic relationship between PAU and 11 psychiatric disorders using a bivariate causal mixture model (MiXeR). Local genetic correlation and colocalization analyses were conducted to identify the genomic regions significantly associated with PAU and each psychiatric disorder. Postanalysis included the false discovery rate (FDR) and transcriptome-wide association studies (TWASs), as well as summary-data-based Mendelian randomization to prioritize shared genes by integrating brain transcriptome data. RESULTS MiXeR analysis revealed a substantial polygenic overlap (39%-73%) between PAU and psychiatric disorders. Four bivariate genomic regions with high correlations suggest shared causal variants of PAU with major depression and schizophrenia. Within these regions, four and six genes for the PAU-major depression and PAU-schizophrenia pairs, respectively, were mapped by conjunctional FDR analysis. Furthermore, TTC12 and ANKK1 were identified as potential causal genes for PAU and these disorders. The findings were replicated in multi-ancestry analyses of colocalization and TWASs. CONCLUSIONS Despite the varying degrees of genetic overlap and directions of shared genetic effect correlations, these results imply the presence of shared genetic factors influencing the comorbidity of PAU and psychiatric disorders. Additionally, TTC12 and ANKK1, located near DRD2, may be causally associated with comorbid conditions.
Collapse
Affiliation(s)
- Yeeun Ahn
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Jaehyun Kim
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Kyeongmin Jung
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Dong June Lee
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Jin Young Jung
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Yewon Eom
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Sanghyeon Park
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Jaeyoung Kim
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Hyejin Kim
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Hyeonbin Jo
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Sanghoon Hong
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Kevin S O'Connell
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Ole A Andreassen
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Woojae Myung
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| | - Hong-Hee Won
- Department of Digital Health (Ahn, K. Jung, J.Y. Jung, Park, Jaeyoung Kim, H. Kim, Jo, Hong, Won) and Department of Health Sciences and Technology (Lee), Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea (Ahn, K. Jung, Park, Jaeyoung Kim, Myung); Department of Clinical Medical Sciences (Jaehyun Kim) and Department of Psychiatry (Eom, Myung), Seoul National University College of Medicine, Seoul, South Korea; Department of Medicine, Central Force for National Defense, Republic of Korea Army Personnel Command, Yongin, South Korea (Jaehyun Kim); Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea (Jaehyun Kim); Department of Psychiatry (J.Y. Jung) and Samsung Genome Institute (Won), Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea; Norwegian Center for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo (O'Connell, Andreassen); Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway (O'Connell, Andreassen)
| |
Collapse
|
2
|
Fernando MB, Fan Y, Zhang Y, Tokolyi A, Murphy AN, Kammourh S, Deans PJM, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams SE, Flaherty EK, Prytkova IA, Cao L, Knowles DA, Fang G, Slesinger PA, Brennand KJ. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Nature 2025:10.1038/s41586-025-08864-9. [PMID: 40205044 DOI: 10.1038/s41586-025-08864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations-sometimes affecting the same gene-will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, which encodes a presynaptic cell-adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain and are differentially affected by unique (non-recurrent) deletions1. We contrast the cell-type-specific effect of patient-specific mutations in NRXN1 using human-induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Through distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, to achieve individualized restoration of NRXN1 isoform repertoires by increasing wild-type and/or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Aleta N Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P J Michael Deans
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sadaf Ghorbani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah E Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin K Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya A Prytkova
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Knowles
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Metcalf K. Categorical misalignment: Making autism(s) in big data biobanking. SOCIAL STUDIES OF SCIENCE 2025; 55:209-237. [PMID: 39370865 PMCID: PMC11986076 DOI: 10.1177/03063127241288223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The opaque relationship between biology and behavior is an intractable problem for psychiatry, and it increasingly challenges longstanding diagnostic categorizations. While various big data sciences have been repeatedly deployed as potential solutions, they have so far complicated more than they have managed to disentangle. Attending to categorical misalignment, this article proposes one reason why this is the case: Datasets have to instantiate clinical categories in order to make biological sense of them, and they do so in different ways. Here, I use mixed methods to examine the role of the reuse of big data in recent genomic research on autism spectrum disorder (ASD). I show how divergent regimes of psychiatric categorization are innately encoded within commonly used datasets from MSSNG and 23andMe, contributing to a rippling disjuncture in the accounts of autism that this body of research has produced. Beyond the specific complications this dynamic introduces for the category of autism, this paper argues for the necessity of critical attention to the role of dataset reuse and recombination across human genomics and beyond.
Collapse
|
4
|
Lee PH, Jung JY, Sanzo BT, Duan R, Ge T, Waldman I, Smoller JW, Schwaba T, Tucker-Drob EM, Grotzinger AD. Transdiagnostic Polygenic Risk Models for Psychopathology and Comorbidity: Cross-Ancestry Analysis in the All of Us Research Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.26.25324720. [PMID: 40196240 PMCID: PMC11974969 DOI: 10.1101/2025.03.26.25324720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Psychiatric disorders exhibit substantial genetic overlap, raising questions about the utility of transdiagnostic genetic risk models. Using data from the All of Us Research Program (N=102,091), we evaluated common psychiatric genetic (CPG) factor-based polygenic risk scores (PRSs) compared to standard disorder-specific PRSs. The CPG PRS consistently outperformed disorder-specific scores in predicting individual disorder risk, explaining 1.07 to 24.6 times more phenotypic variance across 11 psychiatric conditions. Meanwhile, many disorder-specific PRSs retained independent but smaller contributions, highlighting the complementary nature of shared and disorder-specific genetic risk. While alternative multi-factor models improved model fit, the CPG PRS provided comparable or superior predictive performance across most disorders, including overall comorbidity burden. Cross-ancestry analyses however revealed notable limitations of European-centric GWAS datasets for other populations due to ancestral differences in genetic architecture. These findings underscore the potential value of transdiagnostic PRSs for psychiatric genetics while highlighting the need for more equitable genetic risk models.
Collapse
Affiliation(s)
- Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jae-Yoon Jung
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brandon T. Sanzo
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
| | - Rui Duan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Irwin Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Mass General Brigham and Harvard Medical School, Boston, MA, USA
- Stanly Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Schwaba
- Department of Psychology, Michigan State University, MI, USA
| | | | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado at Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado at Boulder, CO, USA
| |
Collapse
|
5
|
Paranjapye A, Ahmad RI, Su S, Waldman AJ, Philips-Cremins J, Zhang S, Korb E. Autism spectrum disorder risk genes have convergent effects on transcription and neuronal firing patterns in primary neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645337. [PMID: 40196547 PMCID: PMC11974841 DOI: 10.1101/2025.03.25.645337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Autism spectrum disorder (ASD) is a highly heterogenous neurodevelopmental disorder with numerous genetic risk factors. Notably, a disproportionate number of risk genes encode transcription regulators including transcription factors and proteins that regulate chromatin. Here, we tested the function of nine such ASD-linked transcription regulators by depleting them in primary cultured neurons. We then defined the resulting gene expression disruptions using RNA-sequencing and tested effects on neuronal firing using multielectrode array recordings. We identified shared gene expression signatures across many ASD risk genes that converged on disruption of critical synaptic genes. Fitting with this, we detected drastic disruptions to neuronal firing throughout neuronal maturation. Together, these findings provide evidence that multiple ASD-linked transcriptional regulators disrupt transcription of synaptic genes and have convergent effects on neuronal firing that may contribute to enhanced ASD risk.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - RIli Ahmad
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven Su
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Abraham J. Waldman
- Department of Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Philips-Cremins
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Besterman AD, Alnor MA, Castaño M, DeLisi LE, Grice DE, Lohoff FW, Middeldorp CM, Müller DJ, Quattrone D, Nurnberger J, Nurmi EL, Ross DA, Soda T, Schulze TG, Trost B, Vilella E, Yap CX, Zai G, Moreno-De-Luca D. Psychiatric Genetics in Clinical Practice: Essential Knowledge for Mental Health Professionals. Am J Psychiatry 2025:appiajp20240295. [PMID: 40134266 DOI: 10.1176/appi.ajp.20240295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
OBJECTIVE The authors provide recommendations on incorporating recent advances in psychiatric genetics into clinical practice for mental health clinicians. METHOD The International Society for Psychiatric Genetics Education Committee met monthly to come to a consensus on priority topics in psychiatric genetics. Topics were then assigned to small teams of subspecialty experts to summarize the current knowledge base and create an illustrative clinical case. Topics included, familial aggregation, common and rare genetic variants, epigenetics, gene-environment interactions, pharmacogenomics, genetic counseling, and ethical and social implications. Each section was reviewed and revised by all committee members and then finalized by the Committee Chair. RESULTS Key findings highlight the importance of understanding the genetic architecture of psychiatric disorders, the potential applications of genetic information in risk assessment, diagnosis, treatment selection, and patient education, as well as the ethical and social considerations surrounding the use of genetic data. The committee emphasizes the need for a nuanced approach that integrates genetic factors with environmental and experiential factors in a holistic model of care. CONCLUSION As psychiatric genetics continues to evolve rapidly, mental health clinicians must stay informed about the latest findings and their clinical implications. Ongoing education, collaboration with genetics professionals, and effective communication strategies are crucial to harness the power of genetics while avoiding potential pitfalls such as genetic determinism and stigma. The committee recommends a balanced perspective that recognizes the complex interplay of genetic and non-genetic factors in shaping mental health outcomes.
Collapse
Affiliation(s)
- Aaron D Besterman
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Mohamed A Alnor
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Mauricio Castaño
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Lynn E DeLisi
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Dorothy E Grice
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Falk W Lohoff
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Christel M Middeldorp
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Daniel J Müller
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Diego Quattrone
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - John Nurnberger
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Erika L Nurmi
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - David A Ross
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Takahiro Soda
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Thomas G Schulze
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Brett Trost
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Elisabet Vilella
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Chloe X Yap
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Gwyneth Zai
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| | - Daniel Moreno-De-Luca
- University of California San Diego Department of Psychiatry, Rady Children's Hospital San Diego, and Rady Children's Institute for Genomic Medicine, San Diego (Besterman); School of Medicine, University of Khartoum, Khartoum, Sudan and American Center for Psychiatry and Neurology, UAE (Alnor); Department of Mental Health and Human Behaviour, University of Caldas, Manizales, Caldas, Colombia (Castaño); Cambridge Health Alliance and Harvard Medical School, Cambridge, MA (DeLisi); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Grice); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (Lohoff); Department of Child and Youth Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, Amsterdam Public Health Research Institute, The Netherlands (Middeldorp); Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, Canada and Department of Psychiatry, University of Toronto, Canada (Müller); Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K., and Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Psychiatry Section, University of Palermo, Palermo, Italy (Quattrone); Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis (Nurnberger); Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (Nurmi); Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton (Ross); Center for Autism and Neurodevelopment, Department of Psychiatry, University of Florida College of Medicine, Gainesville (Soda); Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany (Schulze); Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada (Trost); Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, CIBERSAM-Instituto de Salud Carlos III. Reus, Spain (Vilella); Department of Psychiatry, University of Oxford, and Mater Research Institute, Faculty of Medicine, University of Queensland and Metro South Addiction and Mental Health Service, Brisbane, Australia (Yap); Neurogenetics Section, Molecular Brain Sciences Department, Centre for Addiction and Mental Health, Department of Psychiatry and Institute of Medical Science, University of Toronto, Ontario, Canada (Zai); Precision Medicine in Autism (PRISMA) Group, Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; University of Alberta; Alberta Health Services; CASA Mental Health; Edmonton, AB, Canada (Moreno-De-Luca)
| |
Collapse
|
7
|
Uffelmann E, Price AL, Posthuma D, Peyrot WJ. Estimating Disorder Probability Based on Polygenic Prediction Using the BPC Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.01.12.24301157. [PMID: 38260678 PMCID: PMC10802765 DOI: 10.1101/2024.01.12.24301157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polygenic Scores (PGSs) summarize an individual's genetic propensity for a given trait in a single value based on SNP effect sizes derived from Genome-Wide Association Study (GWAS) results. Methods have been developed that apply Bayesian approaches to improve the prediction accuracy of PGSs through optimization of estimated effect sizes. While these methods are generally well-calibrated for continuous traits (implying the predicted values are, on average, equal to the true trait values), they are not well-calibrated for binary disorder traits in ascertained samles. This is a problem because well-calibrated PGSs are needed to reliably compute the absolute disorder probability for an individual to facilitate future clinical implementation. Here, we introduce the Bayesian polygenic score Probability Conversion (BPC) approach, which computes an individual's predicted disorder probability using GWAS summary statistics, an existing Bayesian PGS method (e.g., PRScs, SBayesR), the individual's genotype data, and a prior disorder probability (which can be specified flexibly, based on e.g., literature, small reference samples, or prior elicitation). The BPC approach transforms the PGS to its underlying liability scale, computes the variances of the PGS in cases and controls, and applies Bayes' Theorem to compute the absolute disorder probability; it is practical in its application as it does not require a tuning sample with both genotype and phenotype data. We applied the BPC approach to extensive simulated data and empirical data of nine disorders. The BPC approach yielded well-calibrated results that were consistently better than the results of another recently published approach.
Collapse
|
8
|
Lin Y, Wang C, Chen R, Zhang H, Zhao D. Is There a Core Deficit in Autism Spectrum Disorder? An Analysis of CPEP-3 Assessment Data from 543 Children With Autism. J Autism Dev Disord 2025:10.1007/s10803-025-06796-x. [PMID: 40106124 DOI: 10.1007/s10803-025-06796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Identifying a "core deficit" is essential for early detection and intervention in developmental disorders among children. However, the presence of a core deficit within autism spectrum disorder (ASD) continues to be unclear. Therefore, the purpose of this study was to examine the possibility of the core deficit in autism spectrum disorders. This study evaluated 543 children diagnosed with ASD by using Chinese version of the Psychoeducational Profile-Third Edition (CPEP-3). Structural equation modeling (SEM) was used to construct single-factor models (assuming the presence of a core deficit) and a multi-factor model (assuming the absence of core deficits) based on the assessed data, and then to compare the fit of the two types of models. Assessments revealed developmental delays and adaptive challenges among the children with ASD. The single-factor model assuming the "motor" domain as the "core deficit" showed a superior fit (CFI = 0.86, AIC = 356.47, ECVI = 0.66) than other single-factor models. The multi-factor model, which assumes no core deficit, provided a better fit and greater predictive accuracy (CFI = 0.87, AIC = 351.94, ECVI = 0.65) than all single-factor models. ASD is characterized by widespread developmental delays and adaptive challenges. While motor impairment may serve as an effective predictor of these issues, it does not fully account for the diverse and complex symptomatology observed in children with ASD. The symptoms in these children likely arise from multiple factors, which are not adequately explained by a single core deficit model.
Collapse
Affiliation(s)
- Yunqiang Lin
- College of Child Development and Education, Zhejiang Normal University, No.1108, Gengwen Road, Ningwei Town, Xiaoshan District, Hangzhou City, 311231, Zhejiang Province, China.
| | - Chenglong Wang
- College of Child Development and Education, Zhejiang Normal University, No.1108, Gengwen Road, Ningwei Town, Xiaoshan District, Hangzhou City, 311231, Zhejiang Province, China
| | - Rongdi Chen
- Zhejiang Provincial Special Education Guidance Center, Hangzhou, China
| | - Hongxia Zhang
- College of Child Development and Education, Zhejiang Normal University, No.1108, Gengwen Road, Ningwei Town, Xiaoshan District, Hangzhou City, 311231, Zhejiang Province, China
| | - Dingwei Zhao
- College of Child Development and Education, Zhejiang Normal University, No.1108, Gengwen Road, Ningwei Town, Xiaoshan District, Hangzhou City, 311231, Zhejiang Province, China
| |
Collapse
|
9
|
Bast L, Yao S, Martínez-López JA, Memic F, French H, Valiukonyte M, Karlsson R, Wen J, Song J, Zhang R, Abrantes A, Koopmans F, Österholm AM, Rosoklija G, Mann JJ, Stankov A, Trencevska I, Dwork A, Stockmeier CA, Love MI, Giusti-Rodriguez P, Smit AB, Sullivan PF, Hjerling-Leffler J. Transcriptomic and genetic analysis suggests a role for mitochondrial dysregulation in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.25323827. [PMID: 40162239 PMCID: PMC11952597 DOI: 10.1101/2025.03.14.25323827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schizophrenia is an often devastating disorder characterized by persistent and idiopathic cognitive deficits, delusions and hallucinations. Schizophrenia has been associated with impaired nervous system development and an excitation/inhibition imbalance in the prefrontal cortex. On a molecular level, schizophrenia is moderately heritable and genetically complex. Hundreds of risk genes have been identified, spanning a heterogeneous landscape dominated by loci that confer relatively small risk. Bioinformatic analyses of genetic associations point to a limited set of neurons, mainly excitatory cortical neurons, but other analyses suggest the importance of astrocytes and microglia. To understand different cell type roles in schizophrenia and reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia, our study integrated genetic analysis with single nucleus RNA-seq of 536,618 nuclei from postmortem samples of dorsal prefrontal cortex (Brodmann Area 8/9) of 43 cases with schizophrenia and 42 neurotypical controls. We found no significant difference in cell type abundance. Gene expression in excitatory layer 2-3 intra-telencephalic neurons had the greatest number of differentially expressed transcripts and, together with excitatory deep layer intra-telencephalic neurons, conferred most of the genetic risk for schizophrenia. Most differential expression of genes was found in specific cell types and was dominated by down-regulated transcripts. Down-regulated transcripts were enriched in gene sets including transmembrane transport, mitochondrial function, protein folding, and cell-cell signaling whereas up-regulated transcripts were enriched in gene sets related to RNA processing, including RNA splicing in neurons. Co-regulation network analysis identified 40 schizophrenia-relevant programs across 13 cell types. A gene program largely shared between neuronal subtypes, astrocytes, and oligodendrocytes was significantly enriched for schizophrenia risk, supporting an aetiological role for perturbed protein modification, ion transport, and mitochondrial function. These results were largely consistent with cell-type expression quantitative trait locus and transcriptome-wide association analyses. Moreover, single-cell RNA sequencing results, most prominently mitochondrial dysfunction, had multiple points of convergence with proteomic and long-read RNA sequencing results from samples from the same donors. Our study integrates genetic analysis with transcriptomics to reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia.
Collapse
Affiliation(s)
- Lisa Bast
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - José A. Martínez-López
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Present address: Department of Engineering, Universidad Loyola Andalucía, Seville, Spain
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hayley French
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Milda Valiukonyte
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyue Zhang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Anthony Abrantes
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Present address: Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin, US
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-May Österholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gorazd Rosoklija
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
| | - J. John Mann
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Aleksandar Stankov
- Institute for Forensic Medicine and Criminalistics, School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Iskra Trencevska
- School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Andrew Dwork
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig A. Stockmeier
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
10
|
Bergstedt J, Kõiv K, Jangmo A, Haram M, Jaholkowski PP, Treur JL, Brikell I, Chang Z, Larsson H, Magnusson PKE, McIntosh AM, Lewis CM, Lee BK, Sønderby IE, Lu Y, Sullivan PF, Valdimarsdóttir UA, Andreassen O, Tesli M, Lehto K, Fang F. Association of Polygenic Risk for Psychiatric Disorders with Cardiometabolic Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.11.25323757. [PMID: 40162248 PMCID: PMC11952624 DOI: 10.1101/2025.03.11.25323757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
IMPORTANCE Clinical diagnoses of psychiatric disorders are associated with cardiometabolic diseases (CMDs) such as type 2 diabetes and ischemic heart diseases. Studying how genetic liability for psychiatric disorders relate to CMD risk will offer novel insight into the relationship between psychiatric disorders and CMDs. OBJECTIVE To evaluate the associations between psychiatric polygenic risk scores (PRSs) and clinically diagnosed CMDs while accounting for cross-disorder pleiotropy. DESIGN SETTING AND PARTICIPANTS This study computed PRSs for attention deficit-hyperactivity disorder (ADHD), major depressive disorder (MDD), anxiety disorder, post-traumatic stress disorder (PTSD), bipolar disorder, and schizophrenia. The analysis was conducted in three population-based Northern European cohorts: the Swedish Twin Registry (STR, N=17,378 genotyped samples), the Estonian Biobank (EstBB, N=208,383), and the Norwegian Mother, Father and Child Cohort Study (MoBa, N=129,398). Associations between psychiatric PRSs and clinical diagnoses of 10 major CMDs (including metabolic diseases such as hyperlipidemia, obesity, and type 2 diabetes, and cardiovascular diseases such as hypertensive disease, arteriosclerosis, ischemic heart disease, heart failure, thromboembolic disease, cerebrovascular disease, and arrhythmias) were estimated using models that mutually adjusted for all psychiatric PRSs. Supplementary analyses were performed by additionally controlling for self-reported body mass index (BMI). A discordant twin-pair analysis was conducted in the STR (N=70,619) to assess the association between self-reported lifetime MDD and subsequent CMD risk while adjusting for familial factors shared between monozygotic and dizygotic co-twins. MAIN OUTCOMES AND MEASURES Psychiatric PRSs were constructed based on both all available genetic risk variants and genome-wide significant risk variants from large-scale GWASs. Clinical diagnoses of psychiatric disorders and CMDs were ascertained through electronic health records (with primary care records used exclusively in the EstBB). Lifetime self-reported MDD in the STR was assessed via the Composite International Diagnostic Interview Short Form. RESULTS PRSs for ADHD and MDD were associated with increased risk of all CMDs. The ADHD PRS showed stronger associations with metabolic disease, whereas the MDD PRS showed stronger associations with cardiovascular diseases. PRSs for anxiety disorder, PTSD, and bipolar disorder showed only limited associations with CMDs, while increased levels of schizophrenia PRSs were associated with decreased risk of CMDs. These associations remained after adjustment for BMI. Finally, twins endorsing lifetime MDD were found to have an increased risk of subsequent CMD diagnoses compared to their unexposed co-twins. CONCLUSIONS AND RELEVANCE PRSs for ADHD and MDD showed robust associations with risk of CMDs and self-reported MDD was associated with subsequent CMD risk even after adjusting for familial factors shared between co-twins. These findings provide robust evidence for genetic overlap between ADHD and MDD with CMDs.
Collapse
Affiliation(s)
- Jacob Bergstedt
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kadri Kõiv
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andreas Jangmo
- Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Haram
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Jorien L Treur
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zheng Chang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew M McIntosh
- Centre for Clinical Brain Sciences, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Genomics and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Brian K Lee
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Ida E Sønderby
- Center for Precision Psychiatry, University of Oslo, Oslo, Norway
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Unnur A Valdimarsdóttir
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre of Public Health Sciences, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ole Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Center for Precision Psychiatry, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Martin Tesli
- Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Center for Precision Psychiatry, University of Oslo, Oslo, Norway
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Sampaio IW, Tassi E, Bellani M, Benedetti F, Nenadić I, Phillips ML, Piras F, Yatham L, Bianchi AM, Brambilla P, Maggioni E. A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework. Artif Intell Med 2025; 161:103063. [PMID: 39837135 DOI: 10.1016/j.artmed.2024.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025]
Abstract
The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We used deep autoencoders in an anomaly detection framework, combined for the first time with a confounder removal step that integrates training and external validation. The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus, and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs. Our generalizable framework enabled the identification of brain deviating patterns differing between the subject and the group levels, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.
Collapse
Affiliation(s)
- Inês Won Sampaio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emma Tassi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Francesco Benedetti
- Division of Neuroscience, Unit of Psychiatry and Clinical Psychobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Eleonora Maggioni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Yoshihara M, Coschiera A, Bachmann JA, Pucci M, Li H, Bhagat S, Murakawa Y, Weltner J, Jouhilahti EM, Swoboda P, Sahlén P, Kere J. Transcriptional enhancers in human neuronal differentiation provide clues to neuronal disorders. EMBO Rep 2025; 26:1212-1237. [PMID: 39948187 PMCID: PMC11893885 DOI: 10.1038/s44319-025-00372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 03/12/2025] Open
Abstract
Genome-wide association studies (GWASs) have identified thousands of variants associated with complex phenotypes, including neuropsychiatric disorders. To better understand their pathogenesis, it is necessary to identify the functional roles of these variants, which are largely located in non-coding DNA regions. Here, we employ a human mesencephalic neuronal cell differentiation model, LUHMES, with sensitive and high-resolution methods to discover enhancers (NET-CAGE), perform DNA conformation analysis (Capture Hi-C) to link enhancers to their target genes, and finally validate selected interactions. We expand the number of known enhancers active in differentiating human LUHMES neurons to 47,350, and find overlap with GWAS variants for Parkinson's disease and schizophrenia. Our findings reveal a fine-tuned regulation of human neuronal differentiation, even between adjacent developmental stages; provide a valuable resource for further studies on neuronal development, regulation, and disorders; and emphasize the importance of exploring the vast regulatory potential of non-coding DNA and enhancers.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - Andrea Coschiera
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jörg A Bachmann
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mariangela Pucci
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden
| | - Shruti Bhagat
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jere Weltner
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
| | - Pelin Sahlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine Huddinge (MedH), Biosciences and Nutrition Unit, Karolinska Institutet, Stockholm, Sweden.
- Folkhälsan Research Centre, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Gong W, Guo P, Liu L, Yan R, Liu S, Wang S, Xue F, Zhou X, Sun X, Yuan Z. Genomics-driven integrative analysis highlights immune-related plasma proteins for psychiatric disorders. J Affect Disord 2025; 370:124-133. [PMID: 39491680 DOI: 10.1016/j.jad.2024.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified numerous variants associated with psychiatric disorders. However, it remains largely unknown on how GWAS risk variants contribute to psychiatric disorders. METHODS Through integrating two largest, publicly available, independent protein quantitative trait loci datasets of plasma protein and nine large-scale GWAS summary statistics of psychiatric disorders, we first performed proteome-wide association study (PWAS) to identify psychiatric disorders-associated plasma proteins, followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, we conducted Mendelian randomization (MR) and Bayesian colocalization (COLOC) analyses, with both discovery and parallel replication datasets, to further identify protein-disorder pairs with putatively causal relationships. We finally prioritized the potential drug targets using Drug Gene Interaction Database. RESULTS PWAS totally identified 112 proteins, which were significantly enriched in biological processes relevant to immune regulation and response to stimulus including regulation of immune system process (adjusted P = 1.69 × 10-7) and response to external stimulus (adjusted P = 4.13 × 10-7), and viral infection related pathways, including COVID-19 (adjusted P = 2.94 × 10-2). MR and COLOC analysis further identified 26 potentially causal protein-disorder pairs in both discovery and replication analysis. Notably, eight protein-coding genes were immune-related, such as IRF3, CSK, and ACE, five among 16 druggable genes were reported to interact with drugs, including ACE, CSK, PSMB4, XPNPEP1, and MICB. CONCLUSIONS Our findings highlighted the immunological hypothesis and identified potentially causal plasma proteins for psychiatric disorders, providing biological insights into the pathogenesis and benefit the development of preventive or therapeutic drugs for psychiatric disorders.
Collapse
Affiliation(s)
- Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Shuai Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
| | - Xiubin Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China.
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Tanabe M, Saito Y, Takasaki A, Nakano K, Yamamoto S, Suzuki C, Kawamura N, Hattori A, Oikawa M, Nagashima S, Yanagi S, Yamaguchi T, Fukuda T. Role of immature choroid plexus in the pathology of model mice and human iPSC-derived organoids with autism spectrum disorder. Cell Rep 2025; 44:115133. [PMID: 39731733 DOI: 10.1016/j.celrep.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear. Here, we find that ChP-specific CAMDI-knockout mice develop an immature ChP alongside decreased multiciliogenesis and expression of differentiation marker genes following disruption of the cerebrospinal fluid barrier. These mice exhibit ASD-like behaviors, including anxiety and impaired socialization. Additionally, the administration of metformin, an FDA-approved drug, before the social critical period achieves ChP maturation and restores social behaviors. Furthermore, both the ASD model mice and organoids derived from patients with ASD developed an immature ChP. These results propose the involvement of an immature ChP in the pathogenesis of ASD and suggest the targeting of functional maturation of the ChP as a therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Motoi Tanabe
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuga Saito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Takasaki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Nakano
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shunta Yamamoto
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chikako Suzuki
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nao Kawamura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Aki Hattori
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Tomoyuki Yamaguchi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshifumi Fukuda
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
15
|
Yao S, Harder A, Darki F, Chang YW, Li A, Nikouei K, Volpe G, Lundström JN, Zeng J, Wray NR, Lu Y, Sullivan PF, Hjerling-Leffler J. Connecting genomic results for psychiatric disorders to human brain cell types and regions reveals convergence with functional connectivity. Nat Commun 2025; 16:395. [PMID: 39755698 DOI: 10.1038/s41467-024-55611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability. Using functional MRI connectivity, we further confirmed the significance of the central and lateral amygdala, hippocampal body, and prefrontal cortex in distinguishing schizophrenia cases from controls. Our findings underscore the value of single-cell transcriptomics in understanding the polygenicity of psychiatric disorders and suggest a promising alignment of genomic, transcriptomic, and brain imaging modalities for identifying common biological targets.
Collapse
Affiliation(s)
- Shuyang Yao
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arvid Harder
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fahimeh Darki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ang Li
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Kasra Nikouei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
17
|
Qiu M, Zhang C, Zhang H, Chen H, Lei Y, Li P, Zhang S. Retrospective evaluation of novel serum inflammatory biomarkers in first-episode psychiatric disorders: diagnostic potential and immune dysregulation. Front Psychiatry 2024; 15:1442954. [PMID: 39722850 PMCID: PMC11668741 DOI: 10.3389/fpsyt.2024.1442954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background This study assessed the diagnostic capabilities of eight inflammatory biomarkers in first-episode schizophrenia (SCZ), bipolar disorder (BD), and depression (D), examining their differential expression across these psychiatric disorders. The markers studied include neutrophils/lymphocyte ratio (NLR), aggregate index of systemic inflammation (AISI), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), lymphocytes/high-density lipoprotein (HDL) ratio (LHR), monocytes/HDL ratio (MHR), neutrophils/HDL ratio (NHR), and platelets/HDL ratio (PHR). Methods We conducted a retrospective observational study involving 335 individuals with SCZ, 68 with BD, 202 with D, and 282 healthy controls (C) to evaluate hematologic parameters from untreated patients and controls. Results Significant differences in biomarker levels were found between patient groups and controls. Logistic regression analysis indicated that NHR and MHR (p < 0.001), as well as LHR and NLR (p < 0.01), were predictive factors for SCZ. MHR was a predictive factor for BD (p < 0.05). NHR (p < 0.01) and MHR (p < 0.001) were predictive factors for distinguishing between D and C. The area under the curve (AUC) value of the NHR + MHR + NLR composite index model for the SCZ group was 0.846 (p < 0.001). In the BD group, the AUC value for the MHR was 0.816 (p < 0.001). The D group's combined AUC value of NHR + MHR was 0.824 (p < 0.001). Conclusion This study highlights the diagnostic value of inflammatory biomarkers in distinguishing SCZ, BD, and D based on their differential expression.
Collapse
Affiliation(s)
- Min Qiu
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| | - Chenkai Zhang
- Department of Clinical Laboratory, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Haiqing Zhang
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| | - Hao Chen
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| | - Yingjia Lei
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| | - Ping Li
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| | - Shaochuan Zhang
- Department of Clinical Laboratory, The Mental Health Center of Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory JT, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Stimulating Wnt signaling reveals context-dependent genetic effects on gene regulation in primary human neural progenitors. Nat Neurosci 2024; 27:2430-2442. [PMID: 39349663 PMCID: PMC11633645 DOI: 10.1038/s41593-024-01773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Gene regulatory effects have been difficult to detect at many non-coding loci associated with brain-related traits, likely because some genetic variants have distinct functions in specific contexts. To explore context-dependent gene regulation, we measured chromatin accessibility and gene expression after activation of the canonical Wnt pathway in primary human neural progenitors (n = 82 donors). We found that TCF/LEF motifs and brain-structure-associated and neuropsychiatric-disorder-associated variants were enriched within Wnt-responsive regulatory elements. Genetically influenced regulatory elements were enriched in genomic regions under positive selection along the human lineage. Wnt pathway stimulation increased detection of genetically influenced regulatory elements/genes by 66%/53% and enabled identification of 397 regulatory elements primed to regulate gene expression. Stimulation also increased identification of shared genetic effects on molecular and complex brain traits by up to 70%, suggesting that genetic variant function during neurodevelopmental patterning can lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Jessica T Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA.
| |
Collapse
|
19
|
Sullivan EL, Bogdan R, Bakhireva L, Levitt P, Jones J, Sheldon M, Croff JM, Thomason M, Lo JO, MacIntyre L, Shrivastava S, Cioffredi LA, Edlow AG, Howell BR, Chaiyachati BH, Lashley-Simms N, Molloy K, Lam C, Stoermann AM, Trinh T, Ambalavanan N, Neiderhiser JM. Biospecimens in the HEALthy Brain and Child Development (HBCD) Study: Rationale and protocol. Dev Cogn Neurosci 2024; 70:101451. [PMID: 39326174 PMCID: PMC11460495 DOI: 10.1016/j.dcn.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. The longitudinal collection of biological samples from over 7000 birthing parents and their children within the HBCD study enables research on pre- and postnatal exposures (e.g., substance use, toxicants, nutrition), and biological processes (e.g., genetics, epigenetic signatures, proteins, metabolites) on neurobehavioral developmental outcomes. The following biosamples are collected from the birthing parent: 1) blood (i.e., whole blood, serum, plasma, buffy coat, and dried blood spots) during pregnancy, 2) nail clippings during pregnancy and one month postpartum, 3) urine during pregnancy, and 4) saliva during pregnancy and at in-person postnatal assessments. The following samples are collected from the child at in-person study assessments: 1) saliva, 2) stool, and 3) urine. Additionally, placenta tissue, cord blood, and cord tissue are collected by a subset of HBCD sites. Here, we describe the rationale for the collection of these biospecimens, their current and potential future uses, the collection protocol, and collection success rates during piloting. This information will assist research teams in the planning of future studies utilizing this collection of biological samples.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Departments of Psychiatry and Behavioral Neuroscience, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA.
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, Saint Louis, MO, USA.
| | - Ludmila Bakhireva
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Joseph Jones
- United States Drug Testing Laboratories, Des Plaines, IL, USA
| | | | - Julie M Croff
- Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Moriah Thomason
- Department of Child and Adolescent Psychiatry & Department of Population Health, New York University Langone Health, New York City, NY, USA
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Leigh MacIntyre
- McGill University, Montreal, QC, Canada; Lasso Informatics, Montreal, QC, Canada
| | | | - Leigh-Anne Cioffredi
- Dept of Pediatrics, Larner College of Medicine at the University of Vermont, Burlington, VT, USA; Vermont Children's Hospital, Burlington, VT, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Barbara H Chaiyachati
- Dept of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; PolicyLab & Clinical Futures, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nicole Lashley-Simms
- Department of Psychological & Brain Sciences, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kelly Molloy
- Departments of Psychiatry and Behavioral Neuroscience, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| | - Cris Lam
- University of California, San Diego, San Diego, CA, USA
| | | | - Thanh Trinh
- University of California, San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
20
|
Dong P, Song L, Bendl J, Misir R, Shao Z, Edelstien J, Davis DA, Haroutunian V, Scott WK, Acker S, Lawless N, Hoffman GE, Fullard JF, Roussos P. A multi-regional human brain atlas of chromatin accessibility and gene expression facilitates promoter-isoform resolution genetic fine-mapping. Nat Commun 2024; 15:10113. [PMID: 39578476 PMCID: PMC11584674 DOI: 10.1038/s41467-024-54448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Brain region- and cell-specific transcriptomic and epigenomic features are associated with heritability for neuropsychiatric traits, but a systematic view, considering cortical and subcortical regions, is lacking. Here, we provide an atlas of chromatin accessibility and gene expression profiles in neuronal and non-neuronal nuclei across 25 distinct human cortical and subcortical brain regions from 6 neurotypical controls. We identified extensive gene expression and chromatin accessibility differences across brain regions, including variation in alternative promoter-isoform usage and enhancer-promoter interactions. Genes with distinct promoter-isoform usage across brain regions were strongly enriched for neuropsychiatric disease risk variants. Moreover, we built enhancer-promoter interactions at promoter-isoform resolution across different brain regions and highlighted the contribution of brain region-specific and promoter-isoform-specific regulation to neuropsychiatric disorders. Including promoter-isoform resolution uncovers additional distal elements implicated in the heritability of diseases, thereby increasing the power to fine-map risk genes. Our results provide a valuable resource for studying molecular regulation across multiple regions of the human brain and underscore the importance of considering isoform information in gene regulation.
Collapse
Affiliation(s)
- Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Liting Song
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Misir
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Edelstien
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Davis
- Brain Endowment Bank, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - William K Scott
- Brain Endowment Bank, Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Susanne Acker
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Nathan Lawless
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
21
|
Magnusson K, Turkiewicz A, Dell'Isola A, Englund M. Shared genetic factors between osteoarthritis and cardiovascular disease may underlie common etiology. Nat Commun 2024; 15:9569. [PMID: 39500867 PMCID: PMC11538479 DOI: 10.1038/s41467-024-53812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis is one of the most common musculoskeletal diseases and increases the risk of severe cardiovascular disease, like heart attack and stroke. In some individuals, osteoarthritis and cardiovascular disease will co-occur. This co-occurrence might be due to shared risk factors, for example high age, lifestyle factors and/or a shared genetic liability for the two diseases. Here, we show that the correlation between osteoarthritis and cardiovascular disease can be explained by shared genetic factors, independent of high age and body weight, and also likely independent of lifestyle factors, like smoking and physical activity level. Findings suggest that genetic factors that are shared for osteoarthritis and cardiovascular disease may contribute to both diseases. Thus, the prevailing idea that osteoarthritis is predominantly a risk factor for cardiovascular disease is challenged. Our findings imply that the current diagnostic boundaries between these diseases may need to be re-evaluated.
Collapse
Affiliation(s)
- Karin Magnusson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Remissgatan 4, 222 42, Lund, Sweden.
- Norwegian Institute of Public Health, Cluster for Health Services Research, Sandakerveien 24C, 0473, Oslo, Norway.
| | - Aleksandra Turkiewicz
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Remissgatan 4, 222 42, Lund, Sweden
| | - Andrea Dell'Isola
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Remissgatan 4, 222 42, Lund, Sweden
| | - Martin Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Remissgatan 4, 222 42, Lund, Sweden
| |
Collapse
|
22
|
Repetto L, Chen J, Yang Z, Zhai R, Timmers PRHJ, Feng X, Li T, Yao Y, Maslov D, Timoshchuk A, Tu F, Twait EL, May-Wilson S, Muckian MD, Prins BP, Png G, Kooperberg C, Johansson Å, Hillary RF, Wheeler E, Pan L, He Y, Klasson S, Ahmad S, Peters JE, Gilly A, Karaleftheri M, Tsafantakis E, Haessler J, Gyllensten U, Harris SE, Wareham NJ, Göteson A, Lagging C, Ikram MA, van Duijn CM, Jern C, Landén M, Langenberg C, Deary IJ, Marioni RE, Enroth S, Reiner AP, Dedoussis G, Zeggini E, Sharapov S, Aulchenko YS, Butterworth AS, Mälarstig A, Wilson JF, Navarro P, Shen X. The genetic landscape of neuro-related proteins in human plasma. Nat Hum Behav 2024; 8:2222-2234. [PMID: 39210026 DOI: 10.1038/s41562-024-01963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.
Collapse
Affiliation(s)
- Linda Repetto
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Jiantao Chen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xiao Feng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Li
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Yao
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Denis Maslov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Timoshchuk
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Fengyu Tu
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Emma L Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bram P Prins
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Grace Png
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Lu Pan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Department of Epidemiology and Medical Statistics, Division of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Sofia Klasson
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah E Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Sodbo Sharapov
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Biostatistics Unit-Population and Medical Genomics Programme, Genomics Research Centre, Fondazione Human Technopole, Milan, Italy
| | - Yurii S Aulchenko
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Emerging Science and Innovation, Pfizer Worldwide Research, Development and Medical, Cambridge, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China.
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Pérez-Gutiérrez AM, Carmona R, Loucera C, Cervilla JA, Gutiérrez B, Molina E, Lopez-Lopez D, Pérez-Florido J, Zarza-Rebollo JA, López-Isac E, Dopazo J, Martínez-González LJ, Rivera M. Mutational landscape of risk variants in comorbid depression and obesity: a next-generation sequencing approach. Mol Psychiatry 2024; 29:3553-3566. [PMID: 38806690 DOI: 10.1038/s41380-024-02609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Major depression (MD) and obesity are complex genetic disorders that are frequently comorbid. However, the study of both diseases concurrently remains poorly addressed and therefore the underlying genetic mechanisms involved in this comorbidity remain largely unknown. Here we examine the contribution of common and rare variants to this comorbidity through a next-generation sequencing (NGS) approach. Specific genomic regions of interest in MD and obesity were sequenced in a group of 654 individuals from the PISMA-ep epidemiological study. We obtained variants across the entire frequency spectrum and assessed their association with comorbid MD and obesity, both at variant and gene levels. We identified 55 independent common variants and a burden of rare variants in 4 genes (PARK2, FGF21, HIST1H3D and RSRC1) associated with the comorbid phenotype. Follow-up analyses revealed significantly enriched gene-sets associated with biological processes and pathways involved in metabolic dysregulation, hormone signaling and cell cycle regulation. Our results suggest that, while risk variants specific to the comorbid phenotype have been identified, the genes functionally impacted by the risk variants share cell biological processes and signaling pathways with MD and obesity phenotypes separately. To the best of our knowledge, this is the first study involving a targeted sequencing approach toward the study of the comorbid MD and obesity. The framework presented here allowed a deep characterization of the genetics of the co-occurring MD and obesity, revealing insights into the mutational and functional profile that underlies this comorbidity and contributing to a better understanding of the relationship between these two disabling disorders.
Collapse
Affiliation(s)
- Ana M Pérez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Rosario Carmona
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Jorge A Cervilla
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Psychiatry, Faculty of Medicine, University of Granada, Granada, Spain
| | - Blanca Gutiérrez
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Psychiatry, Faculty of Medicine, University of Granada, Granada, Spain
| | - Esther Molina
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Daniel Lopez-Lopez
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Javier Pérez-Florido
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Juan Antonio Zarza-Rebollo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Elena López-Isac
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| | - Luis Javier Martínez-González
- Genomics Unit, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain.
- Institute of Neurosciences "Federico Olóriz", Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria, Ibs Granada, Granada, Spain.
| |
Collapse
|
24
|
Ioannou KI, Constantinidou A, Chatzittofis A. Genetic testing in psychiatry, the perceptions of healthcare workers and patients: a mini review. Front Public Health 2024; 12:1466585. [PMID: 39450380 PMCID: PMC11499203 DOI: 10.3389/fpubh.2024.1466585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background Genetic testing in psychiatry has gained attention, raising questions about its application and impact. Understanding stakeholders' perspectives, including healthcare providers and patients, is vital for informed policy development. The aim of this systematic review was to focus on the perceptions and concerns of patients and healthcare workers in psychiatry regarding the use of genetic testing. Methods We conducted a systematic review following PRISMA guidelines, for the period 1/2/2014, to 1/1/2024, via PubMed and Embase databases identifying 50 articles in total. After excluding duplicates (n = 12), 38 articles went through screening. After careful full-text article assessment for eligibility and applying the inclusion and exclusion criteria, only fifteen (n = 15) of the articles were included. Results Among 15 selected studies involving 3,156 participants (2,347 healthcare professionals; 809 patients), thematic analysis identified four primary themes: Organizational-implementation concerns, Ethical Considerations, Concerns on changes in clinical praxis, and Legal implications. Despite these concerns, seven out of eleven studies indicated that healthcare workers viewed genetic testing in psychiatry positively. Patients' perspectives varied, with two of the four studies reflecting positive attitudes. No pervasive negative sentiment was observed. Conclusion Our review highlights the multidimensional perspectives of healthcare professionals and patients surrounding the application of genetic testing in psychiatry. These considerations need to be addressed to facilitate the implementation of genetic testing in clinical praxis in psychiatry. Further research is needed for validation of the results and to guide policies and clinicians in the integration of genetic testing into mental healthcare practice.
Collapse
Affiliation(s)
| | | | - Andreas Chatzittofis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Clinical Sciences and Psychiatry, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Liu Z, Sun YH, Ren Y, Perez JM, Scott D, Tamminga C. Upregulated solute-carrier family genes in the hippocampus of schizophrenia can be rescued by antipsychotic medications. Schizophr Res 2024; 272:39-50. [PMID: 39182310 DOI: 10.1016/j.schres.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND HYPOTHESIS Our previous studies have found that functional changes in the hippocampal circuit from dentate gyrus (DG) to cornu ammonis 3 and 1 (CA3, CA1) are highly associated with schizophrenia (SZ). However, no studies have explored the genetic expression across the three and two human hippocampal subfields (DG-CA3-CA1 and CA3-CA1) between subjects with SZ and healthy controls (CT). STUDY DESIGN We matched cohorts between CT (n = 13) and SZ (n = 13). Among SZ, 6 subjects were on antipsychotics (AP) while 7 were off AP. We combined RNA-seq data from all three and two hippocampal subfields and performed differentially expressed gene analyses across DG-CA3-CA1 and CA3-CA1 affected by either SZ or AP. STUDY RESULTS We found that differentially expressed genes (DEGs) from effects of SZ and AP across DG-CA3-CA1 and CA3-CA1 were highly associated with gene ontology terms related to hormonal and immune signaling, cellular mitosis and apoptosis, ion and amino acid transports, and protein modification and degradation. Additionally, we found that multiple genes related to solute-carrier family and immune signaling were significantly upregulated across DG-CA3-CA1 and CA3-CA1 in patients with SZ relative to CT, and AP consistently and robustly repressed the expression of these upregulated genes in the DG-CA3-CA1 and CA3-CA1 from subjects with SZ. CONCLUSIONS Together, these data suggest that the upregulated solute-carrier family genes in the hippocampus might have important roles in the pathophysiology of SZ, and that AP may reduce the symptoms of psychosis in SZ via rescuing the solute-carrier gene expression.
Collapse
Affiliation(s)
- Zhengshan Liu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - Yue Ren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - Jessica Marie Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Daniel Scott
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
26
|
Ormel J, Vos M, Laceulle OM, Vrijen C, van der Laan CM, Nolte IM, Hartman CA. Distal-to-proximal etiologically relevant variables associated with the general (p) and specific factors of psychopathology. J Child Psychol Psychiatry 2024; 65:1340-1354. [PMID: 38503697 DOI: 10.1111/jcpp.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The general factor of psychopathology, often denoted as p, captures the common variance among a broad range of psychiatric symptoms. Specific factors are co-modeled based on subsets of closely related symptoms. This paper investigated the extent to which wide-ranging genetic, personal, and environmental etiologically relevant variables are associated with p and specific psychopathology factors. METHODS Using data from four waves (ages 11-19) of TRAILS, we modeled a bifactor model of p and four specific factors [internalizing, externalizing, ADHD, Autism Spectrum Disorder (ASD)]. Next, we examined the associations of 19 etiologically relevant variables with these psychology factors using path models that organized the variables according to the distal-to-proximal risk principle. RESULTS Collectively, the etiologically relevant factors, including temperament traits, accounted for 55% of p's variance, 46% in ADHD, 35% in externalizing, 19% in internalizing, and 7% in ASD. The low 7% is due to insufficient unique variance in ASD indicators that load more strongly on p. Excluding temperament, variables accounted for 29% variance in p, 9% ADHD, 14% EXT, 7% INT, and 4% ASD. Most etiologically relevant factors were generic, predicting p. In addition, we identified effects on specific factors in addition to effects on p (e.g., parental SES, executive functioning); only effects on specific factors (e.g., parental rejection); opposite effects on different factors [e.g., diurnal cortisol (high INT but low EXT, p); developmental delay (high ASD and p but low EXT)]. Frustration, family functioning, parental psychopathology, executive functioning, and fearfulness had strong effects on p. CONCLUSIONS (1) Strong generic effects on p suggest that etiologically relevant factors and psychopathology tend to cluster in persons. (2) While many factors predict p, additional as well as opposite effects on specific factors indicate the relevance of specific psychopathology factors in understanding mental disorder. (3) High frustration, neurodevelopmental problems, and a disadvantaged family environment primarily characterize p.
Collapse
Affiliation(s)
- Jonah Ormel
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Melissa Vos
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| | - Odilia M Laceulle
- Department of Developmental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Vrijen
- Department of Developmental Psychology, University of Groningen, Groningen, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
28
|
Liang X, Wen J, Qu C, Zhang N, Dai Z, Zhang H, Luo P, Meng M, Liu Z, Fan F, Cheng Q. Inhibitory neuron links the causal relationship from air pollution to psychiatric disorders: a large multi-omics analysis. JOURNAL OF BIG DATA 2024; 11:127. [DOI: 10.1186/s40537-024-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/13/2024] [Indexed: 01/12/2025]
Abstract
AbstractPsychiatric disorders are severe health challenges that exert a heavy public burden. Air pollution has been widely reported as related to psychiatric disorder risk, but their casual association and pathological mechanism remained unclear. Herein, we systematically investigated the large genome-wide association studies (6 cohorts with 1,357,645 samples), single-cell RNA (26 samples with 157,488 cells), and bulk-RNAseq (1595 samples) datasets to reveal the genetic causality and biological link between four air pollutants and nine psychiatric disorders. As a result, we identified ten positive genetic correlations between air pollution and psychiatric disorders. Besides, PM2.5 and NO2 presented significant causal effects on schizophrenia risk which was robust with adjustment of potential confounders. Besides, transcriptome-wide association studies identified the shared genes between PM2.5/NO2 and schizophrenia. We then discovered a schizophrenia-derived inhibitory neuron subtype with highly expressed shared genes and abnormal synaptic and metabolic pathways by scRNA analyses and confirmed their abnormal level and correlations with the shared genes in schizophrenia patients in a large RNA-seq cohort. Comprehensively, we discovered robust genetic causality between PM2.5, NO2, and schizophrenia and identified an abnormal inhibitory neuron subtype that links schizophrenia pathology and PM2.5/NO2 exposure. These discoveries highlight the schizophrenia risk under air pollutants exposure and provide novel mechanical insights into schizophrenia pathology, contributing to pollutant-related schizophrenia risk control and therapeutic strategies development.
Graphical Abstract
Collapse
|
29
|
Sampaio IW, Tassi E, Bellani M, Benedetti F, Nenadic I, Phillips M, Piras F, Yatham L, Bianchi AM, Brambilla P, Maggioni E. A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611239. [PMID: 39282436 PMCID: PMC11398360 DOI: 10.1101/2024.09.04.611239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We employed deep autoencoders in an anomaly detection framework, combined with a confounder removal step integrating training and external validation. The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs. Our generalizable framework enabled the identification of subject- and group-level brain normative-deviating patterns, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.
Collapse
Affiliation(s)
- Inês Won Sampaio
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emma Tassi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Francesco Benedetti
- Division of Neuroscience, Unit of Psychiatry and Clinical Psychobiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Lakshmi Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
30
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci 2024; 25:611-624. [PMID: 39030273 DOI: 10.1038/s41583-024-00837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Garcia MF, Retallick-Townsley K, Pruitt A, Davidson E, Dai Y, Fitzpatrick SE, Sen A, Cohen S, Livoti O, Khan S, Dossou G, Cheung J, Deans PJM, Wang Z, Huckins L, Hoffman E, Brennand K. Dynamic convergence of autism disorder risk genes across neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609190. [PMID: 39229156 PMCID: PMC11370590 DOI: 10.1101/2024.08.23.609190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Kayla Retallick-Townsley
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - April Pruitt
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Davidson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Dai
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Sarah E Fitzpatrick
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Annabel Sen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sophie Cohen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Olivia Livoti
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Suha Khan
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Grace Dossou
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Jen Cheung
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - P J Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Zuoheng Wang
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Laura Huckins
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ellen Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
33
|
Xu L, Li L, Wang Q, Pan B, Zheng L, Lin Z. Effect of pharmacogenomic testing on the clinical treatment of patients with depressive disorder: A randomized clinical trial. J Affect Disord 2024; 359:117-124. [PMID: 38762035 DOI: 10.1016/j.jad.2024.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Pharmacotherapy is one of the primary treatment modalities for depression. However, there is considerable variability in the individual response to antidepressant medications. Personalized medicine guided by pharmacogenomic testing may hold promise in addressing this issue. METHODS In this study, 665 depressive patients were randomly enrolled into two groups: the pharmacogenomic testing group (n = 333) and the control group (n = 332). In the testing group, participants underwent pharmacogenomic testing, and clinicians customized the treatment plan with the result, while the control group relied solely on clinicians' experience. The primary outcomes were the proportion of remission and response, assessed with Hamilton Depression Rating Scale (HDRS). The secondary outcomes included changes in HDRS scores over time and frequency of adverse drug reactions by the participants. RESULTS At week 8, the pharmacogenomic testing group showed significantly higher remission rates (24.0 % v.s. 15.1 %; RR = 1.117; P = 0.007) and response rates (39.3 % v.s. 25.7 %; RR = 1.225; P < 0.001) compared to the control group. By week 12, the pharmacogenomic testing group continued to demonstrate significant advantages in remission (31.0 % v.s. 20.0 %; RR = 1.159; P = 0.003) and response (48.7 % v.s. 37.3 %; RR = 1.224; P = 0.006). Additionally, adverse drug reactions were less frequent in the pharmacogenomic testing group. LIMITATIONS This study is not blind to clinicians and it's a single-center study. CONCLUSIONS Pharmacogenomic testing-guided drug therapy can provide greater assistance in the treatment of depression.
Collapse
Affiliation(s)
- Lei Xu
- Department of Geriatric Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liyin Li
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiutang Wang
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Pan
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Zheng
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Chaney S, Marks S, Wynter R. 'Almost nothing is firmly established': A History of Heredity and Genetics in Mental Health Science. Wellcome Open Res 2024; 9:208. [PMID: 39221444 PMCID: PMC11362721 DOI: 10.12688/wellcomeopenres.20628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background For more than a century, scientists have tried to find the key to causation of mental ill health in heredity and genetics. The difficulty of finding clear and actionable answers in our genes has not stopped them looking. This history offers important context to understanding mental health science today. Methods This article explores the main themes in research on genetics and inheritance in psychiatry from the second half of the nineteenth century to the present day, to address the question: what is the history of genetics as a causative explanation in mental health science? We take a critical historical approach to the literature, interrogating primary and secondary material for the light it brings to the research question, while considering the social and historical context. Results We begin with the statistics gathered in asylums and used to 'prove' the importance of heredity in mental ill health. We then move through early twentieth century Mendelian models of mental inheritance, the eugenics movement, the influence of social psychiatry, new classifications and techniques of the postwar era, the Human Genome Project and Genome Wide Association Studies (GWAS) and epigenetics. Setting these themes in historical context shows that this research was often popular because of wider social, political and cultural issues, which impacted the views of scientists just as they did those of policymakers, journalists and the general public. Conclusions We argue that attempting to unpick this complex history is essential to the modern ethics of mental health and genetics, as well as helping to focus our efforts to better understand causation in mental ill-health.For a succinct timeline of the history of psychiatric genetics, alongside the history of other proposed causes for mental ill-health, visit: https://historyofcauses.co.uk/.
Collapse
Affiliation(s)
- Sarah Chaney
- Centre for the History of the Emotions, Queen Mary University of London, London, England, UK
| | - Sarah Marks
- School of Historical Studies, Birkbeck University of London, London, England, UK
| | - Rebecca Wynter
- School of Historical Studies, Universiteit van Amsterdam, Amsterdam, North Holland, The Netherlands
| |
Collapse
|
35
|
Ormond C, Ryan NM, Hedman AM, Cannon TD, Sullivan PF, Gill M, Hultman C, Heron EA, Johansson V, Corvin A. Whole genome sequencing study of identical twins discordant for psychosis. Transl Psychiatry 2024; 14:313. [PMID: 39080272 PMCID: PMC11289105 DOI: 10.1038/s41398-024-02982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Monozygotic (MZ) twins are often thought to have identical genomes, but recent work has shown that early post-zygotic events can result in a spectrum of DNA variants that are different between MZ twins. Such variants may explain phenotypic discordance and contribute to disease etiology. Here we performed whole genome sequencing in 17 pairs of MZ twins discordant for a psychotic disorder (schizophrenia, schizoaffective disorder or bipolar disorder). We examined various classes of rare variants that are discordant within a twin pair. We identified four genes harboring rare, predicted deleterious missense variants that were private to an affected individual in the cohort. Variants in FOXN1 and FLOT2 would have been categorized as damaging from recent schizophrenia and bipolar exome sequencing studies. Additionally, we identified four rare genic copy number variants (CNVs) private to an affected sample, two of which overlapped genes that have shown evidence for association with schizophrenia or bipolar disorder. One such CNV was a 3q29 duplication previously implicated in autism and developmental delay. We have performed the largest MZ twin study for discordant psychotic phenotypes to date. These findings warrant further investigation using other analytical approaches.
Collapse
Affiliation(s)
- Cathal Ormond
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Anna M Hedman
- Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick F Sullivan
- Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Christina Hultman
- Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Viktoria Johansson
- Department of Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Psychiatry Unit, Umeå University, Umeå, Sweden
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Hui J, Zhang N, Kang M, Gou Y, Liu C, Zhou R, Liu Y, Wang B, Shi P, Cheng S, Yang X, Pan C, Zhang F. Micronutrient-Associated Single Nucleotide Polymorphism and Mental Health: A Mendelian Randomization Study. Nutrients 2024; 16:2042. [PMID: 38999789 PMCID: PMC11243241 DOI: 10.3390/nu16132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
PURPOSE Previous studies have demonstrated the link between micronutrients and mental health. However, it remains uncertain whether this connection is causal. We aim to investigate the potential causal effects of micronutrients on mental health based on linkage disequilibrium score (LDSC) regression and Mendelian randomization (MR) analysis. METHODS Utilizing publicly available genome-wide association study (GWAS) summary datasets, we performed LDSC and MR analysis to identify candidate micronutrients with potential causal effects on mental health. Single nucleotide polymorphisms (SNPs) significantly linked with candidate micronutrients with a genome-wide significance level (p < 5 × 10-8) were selected as instrumental variables (IVs). To estimate the causal effect of candidate micronutrients on mental health, we employed inverse variance weighted (IVW) regression. Additionally, two sensitivity analyses, MR-Egger and weighted median, were performed to validate our results. RESULTS We found evidence supporting significant causal associations between micronutrients and mental health. LDSC detected several candidate micronutrients, including serum iron (genetic correlation = -0.134, p = 0.032) and vitamin C (genetic correlation = -0.335, p < 0.001) for attention-deficit/hyperactivity disorder (ADHD), iron-binding capacity (genetic correlation = 0.210, p = 0.037) for Alzheimer's disease (AD), and vitamin B12 (genetic correlation = -0.178, p = 0.044) for major depressive disorder (MDD). Further MR analysis suggested a potential causal relationship between vitamin B12 and MDD (b = -0.139, p = 0.009). There was no significant heterogeneity or pleiotropy, indicating the validity of the findings. CONCLUSION In this study, we identified underlying causal relationships between micronutrients and mental health. Notably, more research is necessary to clarify the underlying biological mechanisms by which micronutrients affect mental health.
Collapse
Affiliation(s)
- Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meijuan Kang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifan Gou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chen Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruixue Zhou
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
37
|
Gurguis CI, Kimm TS, Pigott TA. Perspective: the evolution of hormones and person perception-a quantitative genetic framework. Front Psychol 2024; 15:1395974. [PMID: 38952835 PMCID: PMC11215136 DOI: 10.3389/fpsyg.2024.1395974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Evolutionary biology provides a unifying theory for testing hypotheses about the relationship between hormones and person perception. Person perception usually receives attention from the perspective of sexual selection. However, because person perception is one trait in a suite regulated by hormones, univariate approaches are insufficient. In this Perspectives article, quantitative genetics is presented as an important but underutilized framework for testing evolutionary hypotheses within this literature. We note tacit assumptions within the current literature on psychiatric genetics, which imperil the interpretation of findings thus far. As regulators of a diverse manifold of traits, hormones mediate tradeoffs among an array of functions. Hormonal pleiotropy also provides the basis of correlational selection, a process whereby selection on one trait in a hormone-mediated suite generates selection on the others. This architecture provides the basis for conflicts between sexual and natural selection within hormone-mediated suites. Due to its role in person perception, psychiatric disorders, and reproductive physiology, the sex hormone estrogen is highlighted as an exemplar here. The implications of this framework for the evolution of person perception are discussed. Empirical quantification of selection on traits within hormone-mediated suites remains an important gap in this literature with great potential to illuminate the fundamental nature of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher I. Gurguis
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States
| | | | | |
Collapse
|
38
|
Frei O, Hindley G, Shadrin AA, van der Meer D, Akdeniz BC, Hagen E, Cheng W, O'Connell KS, Bahrami S, Parker N, Smeland OB, Holland D, de Leeuw C, Posthuma D, Andreassen OA, Dale AM. Improved functional mapping of complex trait heritability with GSA-MiXeR implicates biologically specific gene sets. Nat Genet 2024; 56:1310-1318. [PMID: 38831010 PMCID: PMC11759099 DOI: 10.1038/s41588-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/24/2024] [Indexed: 06/05/2024]
Abstract
While genome-wide association studies are increasingly successful in discovering genomic loci associated with complex human traits and disorders, the biological interpretation of these findings remains challenging. Here we developed the GSA-MiXeR analytical tool for gene set analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage disequilibrium across variants and allowing the quantification of partitioned heritability and fold enrichment for small gene sets. We validated the method using extensive simulations and sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including schizophrenia, GSA-MiXeR prioritizes gene sets with greater biological specificity compared to standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic signaling for schizophrenia. Such biologically relevant gene sets, often with fewer than ten genes, are more likely to provide insights into the pathobiology of complex diseases and highlight potential drug targets.
Collapse
Affiliation(s)
- Oleksandr Frei
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Guy Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Bayram C Akdeniz
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Espen Hagen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dominic Holland
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Sawada T, Barbosa AR, Araujo B, McCord AE, D’Ignazio L, Benjamin KJM, Sheehan B, Zabolocki M, Feltrin A, Arora R, Brandtjen AC, Kleinman JE, Hyde TM, Bardy C, Weinberger DR, Paquola ACM, Erwin JA. Recapitulation of Perturbed Striatal Gene Expression Dynamics of Donors' Brains With Ventral Forebrain Organoids Derived From the Same Individuals With Schizophrenia. Am J Psychiatry 2024; 181:493-511. [PMID: 37915216 PMCID: PMC11209846 DOI: 10.1176/appi.ajp.20220723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.
Collapse
Affiliation(s)
- Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Laura D’Ignazio
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J. M. Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonna Sheehan
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Michael Zabolocki
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Apuā C. M. Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Deng YT, Wu BS, Yang L, He XY, Kang JJ, Liu WS, Li ZY, Wu XR, Zhang YR, Chen SD, Ge YJ, Huang YY, Feng JF, Zhu Y, Dong Q, Mao Y, Cheng W, Yu JT. Large-scale whole-exome sequencing of neuropsychiatric diseases and traits in 350,770 adults. Nat Hum Behav 2024; 8:1194-1208. [PMID: 38589703 DOI: 10.1038/s41562-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Ying Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
42
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Alex A Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Kim A, Zhang Z, Legros C, Lu Z, de Smith A, Moore JE, Mancuso N, Gazal S. Inferring causal cell types of human diseases and risk variants from candidate regulatory elements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307556. [PMID: 38798383 PMCID: PMC11118635 DOI: 10.1101/2024.05.17.24307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The heritability of human diseases is extremely enriched in candidate regulatory elements (cRE) from disease-relevant cell types. Critical next steps are to infer which and how many cell types are truly causal for a disease (after accounting for co-regulation across cell types), and to understand how individual variants impact disease risk through single or multiple causal cell types. Here, we propose CT-FM and CT-FM-SNP, two methods that leverage cell-type-specific cREs to fine-map causal cell types for a trait and for its candidate causal variants, respectively. We applied CT-FM to 63 GWAS summary statistics (average N = 417K) using nearly one thousand cRE annotations, primarily coming from ENCODE4. CT-FM inferred 81 causal cell types with corresponding SNP-annotations explaining a high fraction of trait SNP-heritability (~2/3 of the SNP-heritability explained by existing cREs), identified 16 traits with multiple causal cell types, highlighted cell-disease relationships consistent with known biology, and uncovered previously unexplored cellular mechanisms in psychiatric and immune-related diseases. Finally, we applied CT-FM-SNP to 39 UK Biobank traits and predicted high confidence causal cell types for 2,798 candidate causal non-coding SNPs. Our results suggest that most SNPs impact a phenotype through a single cell type, and that pleiotropic SNPs target different cell types depending on the phenotype context. Altogether, CT-FM and CT-FM-SNP shed light on how genetic variants act collectively and individually at the cellular level to impact disease risk.
Collapse
Affiliation(s)
- Artem Kim
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zixuan Zhang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Come Legros
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam de Smith
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill E Moore
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Garofano JS, Borden L, Van Eck K, Ostrander R, Parrish C, Grados M, Chiappini EA, Reynolds EK. Subtypes of Depressed Youth Admitted for Inpatient Psychiatric Care: A Latent Profile Analysis. Res Child Adolesc Psychopathol 2024; 52:713-725. [PMID: 38109023 DOI: 10.1007/s10802-023-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Depressed youth frequently present with comorbid symptoms. Comorbidity is related to a poorer prognosis, including treatment resistance, academic problems, risk of suicide, and overall impairment. Studies examining the latent structure of depression support the notion of multiple presentations of depressed youth; however, it is unclear how these presentations are represented among acutely impaired youth. Participants (n = 457) in this naturalistic study were admitted to a psychiatric inpatient unit (Mean age = 14.33 years, SD = 1.94;76% female;46.6% Black/African-American). Selected subscales from the parent-report Behavior Assessment System for Children, Second Edition, were utilized as indicators in a latent profile analysis. Subgroups were validated based on their relationships with meaningful clinical correlates (e.g., family factors, discharge diagnosis) and further described by their associations with demographic variables. A five-class model provided the best balance of fit and parsimony. Subtypes of depressed youth included Predominantly Depressed (39.1%), Oppositional (28.2%), Severely Disruptive (12.3%), Anxious-Oppositional (11.6%), and Anxious-Withdrawn (8.8%). Comorbid symptoms were present in four of the five classes (60.9% of sample). High levels of externalizing symptoms were a prominent clinical feature associated with three classes (52.1% of the sample). Construct validity of the respective classes was demonstrated by differential association with clinical correlates, family characteristics, and demographics. Findings suggest that depressed youth presenting for acute inpatient psychiatric care displayed varied clinical presentations. The identified latent groups aligned with existing research reflecting comorbidity with anxiety, inattention, and externalizing disorders. Findings underscore the need for an increased clinical appreciation of comorbidity and encourage more targeted and effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Jeffrey S Garofano
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lindsay Borden
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn Van Eck
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Rick Ostrander
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carisa Parrish
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Children's Mercy/ University of Missouri, Kansas City, MO, USA
| | - Marco Grados
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika A Chiappini
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth K Reynolds
- Division of Child & Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Asgel Z, Kouakou MR, Koller D, Pathak GA, Cabrera-Mendoza B, Polimanti R. Unraveling COVID-19 relationship with anxiety disorders and symptoms using genome-wide data. J Affect Disord 2024; 352:333-341. [PMID: 38382819 PMCID: PMC10939738 DOI: 10.1016/j.jad.2024.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND There is still a limited understanding of the dynamics contributing to the comorbidity of COVID-19 and anxiety outcomes. METHODS To dissect the pleiotropic mechanisms contributing to COVID-19/anxiety comorbidity, we used genome-wide data from UK Biobank (up to 420,531 participants), FinnGen Project (up to 329,077 participants), Million Veteran Program (175,163 participants), and COVID-19 Host Genetics Initiative (up to 122,616 cases and 2,475,240 controls). Specifically, we assessed global and local genetic correlation and genetically inferred effects linking COVID-19 outcomes (infection, hospitalization, and severe respiratory symptoms) to anxiety disorders and symptoms. RESULTS We observed a strong genetic correlation of anxiety disorder with COVID-19 positive status (rg = 0.35, p = 2×10-4) and COVID-19 hospitalization (rg = 0.31, p = 7.2×10-4). Among anxiety symptoms, "Tense, sore, or aching muscles during worst period of anxiety" was genetically correlated with COVID-19 positive status (rg = 0.33, p = 0.001), while "Frequent trouble falling or staying asleep during worst period of anxiety" was genetically correlated with COVID-19 hospitalization (rg = 0.24, p = 0.004). Through a latent causal variable analysis, we observed that COVID-19 outcomes have statistically significant genetic causality proportion (gcp) on anxiety symptoms (e.g., COVID-19 positive status→"Recent easy annoyance or irritability" │gcp│ = 0.18, p = 6.72×10-17). Conversely, anxiety disorders appear to have a possible causal effect on COVID-19 (│gcp│ = 0.38, p = 3.17×10-9). Additionally, we also identified multiple loci with evidence of local genetic correlation between anxiety and COVID-19. These appear to be related to genetic effects shared with lung function, brain morphology, alcohol and tobacco use, and hematologic parameters. CONCLUSIONS This study provided insights into the pleiotropic mechanisms linking COVID-19 and anxiety outcomes, suggesting differences between dynamics related to anxiety disorders and those related to anxiety symptoms.
Collapse
Affiliation(s)
- Zeynep Asgel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manuela R Kouakou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dora Koller
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
47
|
Veeneman RR, Vermeulen JM, Bialas M, Bhamidipati AK, Abdellaoui A, Munafò MR, Denys D, Bezzina CR, Verweij KJH, Tadros R, Treur JL. Mental illness and cardiovascular health: observational and polygenic score analyses in a population-based cohort study. Psychol Med 2024; 54:931-939. [PMID: 37706306 DOI: 10.1017/s0033291723002635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Individuals with serious mental illness have a markedly shorter life expectancy. A major contributor to premature death is cardiovascular disease (CVD). We investigated associations of (genetic liability for) depressive disorder, bipolar disorder and schizophrenia with a range of CVD traits and examined to what degree these were driven by important confounders. METHODS We included participants of the Dutch Lifelines cohort (N = 147 337) with information on self-reported lifetime diagnosis of depressive disorder, bipolar disorder, or schizophrenia and CVD traits. Employing linear mixed-effects models, we examined associations between mental illness diagnoses and CVD, correcting for psychotropic medication, demographic and lifestyle factors. In a subsample (N = 73 965), we repeated these analyses using polygenic scores (PGSs) for the three mental illnesses. RESULTS There was strong evidence that depressive disorder diagnosis is associated with increased arrhythmia and atherosclerosis risk and lower heart rate variability, even after confounder adjustment. Positive associations were also found for the depression PGSs with arrhythmia and atherosclerosis. Bipolar disorder was associated with a higher risk of nearly all CVD traits, though most diminished after adjustment. The bipolar disorder PGSs did not show any associations. While the schizophrenia PGSs was associated with increased arrhythmia risk and lower heart rate variability, schizophrenia diagnosis was not. All mental illness diagnoses were associated with lower blood pressure and a lower risk of hypertension. CONCLUSIONS Our study shows widespread associations of (genetic liability to) mental illness (primarily depressive disorder) with CVD, even after confounder adjustment. Future research should focus on clarifying potential causal pathways between mental illness and CVD.
Collapse
Affiliation(s)
- R R Veeneman
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - J M Vermeulen
- Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M Bialas
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - A K Bhamidipati
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - A Abdellaoui
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - D Denys
- Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - C R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - K J H Verweij
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - R Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - J L Treur
- Genetic Epidemiology, Department of Psychiatry, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Huckins LM, Brennand K, Bulik CM. Dissecting the biology of feeding and eating disorders. Trends Mol Med 2024; 30:380-391. [PMID: 38431502 DOI: 10.1016/j.molmed.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Feeding and eating disorders (FEDs) are heterogenous and characterized by varying patterns of dysregulated eating and weight. Genome-wide association studies (GWASs) are clarifying their underlying biology and their genetic relationship to other psychiatric and metabolic/anthropometric traits. Genetic research on anorexia nervosa (AN) has identified eight significant loci and uncovered genetic correlations implicating both psychiatric and metabolic/anthropometric risk factors. Careful explication of these metabolic contributors may be key to developing effective and enduring treatments for devastating, life-altering, and frequently lethal illnesses. We discuss clinical phenomenology, genomics, phenomics, intestinal microbiota, and functional genomics and propose a path that translates variants to genes, genes to pathways, and pathways to metabolic outcomes to advance the science and eventually treatment of FEDs.
Collapse
Affiliation(s)
- Laura M Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kristen Brennand
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
49
|
Garro-Núñez D, Picado-Martínez MJ, Espinoza-Campos E, Ugalde-Araya D, Macaya G, Raventós H, Chavarría-Soley G. Systematic exploration of a decade of publications on psychiatric genetics in Latin America. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32960. [PMID: 37860990 DOI: 10.1002/ajmg.b.32960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Psychiatric disorders have a great impact in terms of mortality, morbidity, and disability across the lifespan. Considerable effort has been devoted to understanding their complex and heterogeneous genetic architecture, including diverse ancestry populations. Our aim was to review the psychiatric genetics research published with Latin American populations from 2010 to 2019, and classify it according to country of origin, type of analysis, source of funding, and other variables. We found that most publications came from Brazil, Mexico, and Colombia. Also, local funds are generally not large enough for genome-wide studies in Latin America, with the exception of Brazil and Mexico; larger studies are often done in collaboration with international partners, mostly funded by US agencies. In most of the larger studies, the participants are individuals of Latin American ancestry living in the United States, which limits the potential for exploring the complex gene-environment interaction. Family studies, traditionally strong in Latin America, represent about 30% of the total research publications. Scarce local resources for research in Latin America have probably been an important limitation for conducting bigger and more complex studies, contributing to the reduced representation of these populations in global psychiatric genetics studies. Increasing diversity must be a goal to improve generalizability and applicability in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Daniela Ugalde-Araya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Macaya
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Henriette Raventós
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Chavarría-Soley
- Biology School, Universidad de Costa Rica, San José, Costa Rica
- Center for Research in Cellular and Molecular Biology, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
50
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|