1
|
Zhang YQ, Cai X, Zhang Q, Yin MY, Guo Y, Li C, Ma G, Wang L, Chang H, Xiao X, Li SW, Li M. Schizophrenia-Related Synaptic Dysfunction and Abnormal Sensorimotor Gating in Akap11-Deficient Mice. Schizophr Bull 2025:sbaf055. [PMID: 40408419 DOI: 10.1093/schbul/sbaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
BACKGROUND AND HYPOTHESIS Large-scale whole exome sequencing (WES) analyses have implicated rare protein-truncating variants (PTVs) in the AKAP11 gene contributing to schizophrenia risk. Previous studies reported alterations of EEG characteristics and synaptic proteome in Akap11 mutant mice. We hypothesize that synaptic dysfunction contributes to AKAP11 deficiency in the pathogenesis of schizophrenia. STUDY DESIGN We generated an Akap11 knockout mouse and employed a series of behavioral evaluations, neuronal sparse labeling assays, electron microscopy, and immunoprecipitation mass spectrometry (IP-MS) to elucidate the impacts of Akap11 on schizophrenia-relevant phenotypes. STUDY RESULTS Our behavioral paradigm evaluations revealed that Akap11 deficient mice exhibited impaired prepulse inhibition and anxiety-like behaviors compared with their wild-type littermates. Neuronal sparse labeling assays indicated a significant reduction in the density of total and thin spines in Akap11 deficient mice, and ultrastructural analysis via electron microscopy disclosed marked alterations in synaptogenesis after suppressing Akap11, including the reduced density of typical synapses, synaptic vesicle density, and postsynaptic density (PSD) length. IP-MS identified 222 high-confidence interaction proteins of Akap11, encompassing synapses-related proteins (eg, Exoc4, Ncam1, Picalm, Vapb) and actin-related proteins (Actb, Diaph1), and enrichment analyses further showed that Akap11 may contribute to RNA splicing, extracellular matrix organization, axon guidance, post-NMDA receptor activation events, GPER1 signaling and PKA activation pathways. CONCLUSIONS Together, these findings delineated the synaptic and behavioral phenotypes in Akap11 deficient mice, shedding light on the potential mechanisms underlying the role of rare PTVs in schizophrenia and substantiating the significance of AKAP11 as a risk gene for this illness.
Collapse
Affiliation(s)
- Ya-Qi Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xin Cai
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qing Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mei-Yu Yin
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Cong Li
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guolan Ma
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lu Wang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Chang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao Xiao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Wu Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ming Li
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Nishizaki SS, Haghani NK, La GN, Mariano NAF, Uribe‐Salazar JM, Kaya G, Regester M, Andrews DS, Nordahl CW, Amaral DG, Dennis MY. m 6A-mRNA Reader YTHDF2 Identified as a Potential Risk Gene in Autism With Disproportionate Megalencephaly. Autism Res 2025; 18:966-982. [PMID: 39887636 PMCID: PMC12123175 DOI: 10.1002/aur.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Among autistic individuals, a subphenotype of disproportionate megalencephaly (ASD-DM) seen at three years of age is associated with co-occurring intellectual disability and poorer prognoses later in life. However, many of the genes contributing to ASD-DM have yet to be delineated. In this study, we identified additional ASD-DM candidate genes with the aim to better define the genetic etiology of this subphenotype of autism. We expanded the previously studied sample size of ASD-DM individuals ten fold by including probands from the Autism Phenome Project and Simons Simplex Collection, totaling 766 autistic individuals meeting the criteria for megalencephaly or macrocephaly and revealing 154 candidate ASD-DM genes harboring de novo protein-impacting variants. Our findings include 14 high confidence autism genes and seven genes previously associated with DM. Five impacted genes have previously been associated with both autism and DM, including CHD8 and PTEN. By performing functional network analysis, we expanded to additional candidate genes, including one previously implicated in ASD-DM (PIK3CA) as well as 184 additional genes connected with ASD or DM alone. Using zebrafish, we modeled a de novo tandem duplication impacting YTHDF2, encoding an N6-methyladenosine (m6A)-mRNA reader, in an ASD-DM proband. Testing zebrafish CRISPR knockdown led to reduced head/brain size, while overexpressing YTHDF2 resulted in increased head/brain size matching that of the proband. Single-cell transcriptomes of YTHDF2 gain-of-function larvae point to reduced expression of Fragile-X-syndrome-associated FMRP-target genes globally and in the developing brain, providing insight into the mechanism underlying autistic phenotypes. We additionally discovered a variant impacting a different gene encoding an m6A reader, YTHDC1, in our ASD-DM cohort. Though we highlight only two cases to date, our study provides support for the m6A-RNA modification pathway as potentially contributing to this severe form of autism.
Collapse
Affiliation(s)
- Sierra S. Nishizaki
- Genome CenterUniversity of CaliforniaDavisCAUSA
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Nicholas K. Haghani
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Gabriana N. La
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Natasha Ann F. Mariano
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
- Postbaccalaureate Research Education ProgramUniversity of CaliforniaDavisCaliforniaUSA
| | - José M. Uribe‐Salazar
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Gulhan Kaya
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Melissa Regester
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Derek Sayre Andrews
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Christine Wu Nordahl
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - David G. Amaral
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Megan Y. Dennis
- Genome CenterUniversity of CaliforniaDavisCAUSA
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
3
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin-16 regulates acoustic sensory gating in zebrafish through endocrine signaling. PLoS Biol 2025; 23:e3003164. [PMID: 40315416 PMCID: PMC12077787 DOI: 10.1371/journal.pbio.3003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/14/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin-16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin-16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin-16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1l (Stc1l), and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and underscore Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Stefani Gjorcheska
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Lindsey Barske
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
4
|
Dogra D, Phan VA, Zhang S, Gavrilovici C, DiMarzo N, Narang A, Ibhazehiebo K, Kurrasch DM. Modulation of NMDA receptor signaling and zinc chelation prevent seizure-like events in a zebrafish model of SLC13A5 epilepsy. PLoS Biol 2025; 23:e3002499. [PMID: 40208862 PMCID: PMC12047791 DOI: 10.1371/journal.pbio.3002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
SLC13A5 encodes a citrate transporter highly expressed in the brain and is important for regulating intra- and extracellular citrate levels. Mutations in this gene cause rare infantile epilepsy characterized by lifelong seizures, developmental delays, behavioral deficits, poor motor progression, and language impairments. SLC13A5 individuals respond poorly to treatment options; yet drug discovery programs are limited due to a paucity of animal models that phenocopy human symptoms. Here, we used CRISPR/Cas9 to create loss-of-function mutations in slc13a5a and slc13a5b, the zebrafish paralogs to human SLC13A5. slc13a5 mutant larvae showed cognitive dysfunction and sleep disturbances, consistent with SLC13A5 individuals. These mutants also exhibited fewer neurons and a concomitant increase in apoptosis across the optic tectum, a region important for sensory processing. Further, slc13a5 mutants displayed hallmark features of epilepsy, including an imbalance in glutamatergic and GABAergic excitatory-inhibitory gene expression, increased fosab expression, disrupted neurometabolism, and neuronal hyperexcitation as measured in vivo by extracellular field recordings and live calcium imaging. Mechanistically, we tested the involvement of NMDA signaling and zinc chelation in slc13a5 mutant epilepsy-like phenotypes. Slc13a5 protein co-localizes with excitatory NMDA receptors in wild-type zebrafish and NMDA receptor expression is upregulated in the brain of slc13a5 mutant larvae. Additionally, low levels of zinc are found in the plasma membrane of slc13a5 mutants. NMDA receptor suppression and ZnCl2 treatment in slc13a5 mutant larvae rescued neurometabolic and hyperexcitable calcium events, as well as behavioral defects. These data provide empirical evidence in support of the hypothesis that excess extracellular citrate over-chelates the zinc ions needed to regulate NMDA receptor function, leading to sustained channel opening and an exaggerated excitatory response that manifests as seizures. These data show the utility of slc13a5 mutant zebrafish for studying SLC13A5 epilepsy and open new avenues for drug discovery.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Van Anh Phan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sinan Zhang
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nadia DiMarzo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Hu B, Yin MY, Zhang CY, Shi Z, Wang L, Lei X, Li M, Li SW, Tuo QH. The INO80E at 16p11.2 locus increases risk of schizophrenia in humans and induces schizophrenia-like phenotypes in mice. EBioMedicine 2025; 114:105645. [PMID: 40088626 PMCID: PMC11957503 DOI: 10.1016/j.ebiom.2025.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Chromosome 16p11.2 is one of the most significant loci in the genome-wide association studies (GWAS) of schizophrenia. Despite several integrative analyses and functional genomics studies having been carried out to identify possible risk genes, their impacts in the pathogenesis of schizophrenia remain to be fully characterized. METHODS We performed expression quantitative trait loci (eQTL) and summary-data-based Mendelian randomization (SMR) analyses to identify schizophrenia risk genes in the 16p11.2 GWAS locus. We constructed a murine model with dysregulated expression of risk gene in the medial prefrontal cortex (mPFC) using stereotaxic injection of adeno-associated virus (AAV), followed by behavioural assessments, dendritic spine analyses and RNA sequencing. FINDINGS We identified significant associations between elevated INO80E mRNA expression in the frontal cortex and risk of schizophrenia. The mice overexpressing Ino80e in mPFC (Ino80e-OE) exhibited schizophrenia-like behaviours, including increased anxiety behaviour, anhedonia, and impaired prepulse inhibition (PPI) when compared with control group. The neuronal sparse labelling assay showed that the density of stubby spines in the pyramidal neurons of mPFC was significantly increased in Ino80e-OE mice compared with control mice. Transcriptomic analysis in the mPFC revealed significant alterations in the mRNA levels of schizophrenia-related genes and processes related to synapses upon overexpressing Ino80e. INTERPRETATION Our results suggest that upregulation of the Ino80e gene in mPFC may induce schizophrenia-like behaviours in mice, further supporting the hypothesis that INO80E is an authentic risk gene. FUNDING This project received support from the National Key Research and Development Program of China, National Natural Science Foundation of China, Key Research and Development Projects of Hunan Provincial Science and Technology Department, Science and Technology Innovation team of Hunan Province, etc.
Collapse
Affiliation(s)
- Bo Hu
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mei-Yu Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Pharmacy of School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lu Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoming Lei
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Qin-Hui Tuo
- Hunan Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
6
|
Moyer AJ, Barcus A, Capps MES, Chrabasz JA, Lalonde RL, Mosimann C, Thyme SB. Genetic context of transgene insertion can influence neurodevelopment in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640904. [PMID: 40093151 PMCID: PMC11908146 DOI: 10.1101/2025.02.28.640904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The Gal4/UAS system is used across model organisms to overexpress target genes in precise cell types and relies on generating transgenic Gal4 driver lines. In zebrafish, the Tg(elavl3:KalTA4) (HuC) Gal4 line drives robust expression in neurons. We observed an increased prevalence of swim bladder defects in Tg(elavl3:KalTA4) zebrafish larvae compared to wildtype siblings, which prompted us to investigate whether transgenic larvae display additional neurobehavioral phenotypes. Tg(elavl3:KalTA4) larvae showed alterations in brain activity, brain morphology, and behavior, including increased hindbrain size and reduced activity of the cerebellum. Bulk RNA-seq analysis revealed dysregulation of the transcriptome and suggested an increased ratio of neuronal progenitor cells compared to differentiated neurons. To understand whether these phenotypes derive from Gal4 toxicity or from positional effects related to transgenesis, we used economical low-pass whole genome sequencing to map the Tol2-mediated insertion site to chromosome eight. Reduced expression of the neighboring gene gadd45ga, a known cell cycle regulator, is consistent with increased proliferation and suggests a role for positional effects. Challenges with creating alternative pan-neuronal lines include the length of the elavl3 promoter (over 8 kb) and random insertion using traditional transgenesis methods. To facilitate the generation of alternative lines, we cloned five neuronal promoters (atp6v0cb, smaller elavl3, rtn1a, sncb, and stmn1b) ranging from 1.7 kb to 4.3 kb and created KalTA4 lines using Tol2 and the phiC31 integrase-based pIGLET system. Our study highlights the importance of using appropriate genetic controls and interrogating potential positional effects in new transgenic lines.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexia Barcus
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mary E S Capps
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jessica A Chrabasz
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Summer B Thyme
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Zolzaya S, Ihara D, Erkhembaatar M, Ochiai S, Isa A, Nishibe M, Bellier JP, Shimizu T, Kikkawa S, Nitta R, Katsuyama Y. Neuronal Populations Involved in Motor Function Show Prominent Expression of Sbno1 During Postnatal Brain Development. J Dev Biol 2025; 13:3. [PMID: 39982356 PMCID: PMC11843823 DOI: 10.3390/jdb13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Human genome studies have suggested that strawberry notch homologue 1 (SBNO1) is crucial for normal brain development, with mutations potentially contributing to neurodevelopmental disorders. In a previous study, we observed significant developmental abnormalities in the neocortex of Sbno1 as early as one week after birth. In the present study, we conducted an extensive analysis of Sbno1 postnatal expression in the brain of C57BL/6 mice using a newly developed in-house polyclonal antibody against Sbno1. We found that Sbno1 is expressed in all neurons, with certain neuronal populations exhibiting distinct dynamic changes (both temporal and spatial) in expression level. These findings suggest that the neuronal expression of Sbno1 is developmentally regulated after birth. They also indicate that while Sbno1 may play a general role across all neurons, it may also serve more specialized functions in certain neuronal types and/or for certain cellular activities related to particular neuronal pathways.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Dai Ihara
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Munkhsoyol Erkhembaatar
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Shinsuke Ochiai
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Ayaka Isa
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Mariko Nishibe
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Takahiro Shimizu
- Department of Physiology and Cell Biology, Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Kikkawa
- Department of Physiology and Cell Biology, Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryo Nitta
- Department of Physiology and Cell Biology, Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu Katsuyama
- Department of Anatomy, Division of Neuroanatomy, Shiga University of Medical Science, Otsu 520-2192, Japan; (S.Z.); (D.I.); (M.E.)
| |
Collapse
|
8
|
Dunn HA, Dhaliwal SK, Chang CT, Martemyanov KA. Distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, synaptic localization, and dimerization. J Biol Chem 2025; 301:108073. [PMID: 39675706 PMCID: PMC11758950 DOI: 10.1016/j.jbc.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs). However, little is known about ELFN1 organization and regulation, which likely govern and precede its ultimate trans-synaptic engagement with group III mGluRs. Herein, we report that the intracellular ELFN1 domain controls membrane trafficking and post-synaptic localization of ELFN1. We pinpoint a ∼30 amino acid juxtamembranous region required for membrane-targeting and discover that ELFN1 exists as an obligate homodimer prior to its trafficking to the membrane. We determine that ELFN1 homodimerization is not appreciably affected by the intracellular region and instead utilizes the extracellular leucine rich repeats (LRR) domain. We find that a single membrane-targeting motif located in one protomer is sufficient for effective trafficking of the ELFN1 homodimer. We further demonstrate that the closest ELFN1 homolog, synaptic adhesion molecule ELFN2, exhibits similar properties and participates in heterodimerization with ELFN1. This establishes distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, post-synaptic localization, and dimerization while indicating conservation of the mechanisms across the ELFN subfamily of cell adhesion molecules.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.
| | - Simran K Dhaliwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Chu-Ting Chang
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA.
| |
Collapse
|
9
|
McCarroll MN, Sisko E, Gong JH, Teng J, Taylor J, Myers-Turnbull D, Young D, Burley G, Pierce LX, Hibbs RE, Kokel D, Sello JK. A Multimodal, In Vivo Approach for Assessing Structurally and Phenotypically Related Neuroactive Molecules. ACS Chem Neurosci 2024; 15:4171-4184. [PMID: 39287508 PMCID: PMC11587515 DOI: 10.1021/acschemneuro.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
A recently reported behavioral screen in larval zebrafish for phenocopiers of known anesthetics and associated drugs yielded an isoflavone. Related isoflavones have also been reported as GABAA potentiators. From this, we synthesized a small library of isoflavones and incorporated an in vivo phenotypic approach to perform structure-behavior relationship studies of the screening hit and related analogs via behavioral profiling, patch-clamp experiments, and whole brain imaging. This revealed that analogs effect a range of behavioral responses, including sedation with and without enhancing the acoustic startle response. Interestingly, a subset of compounds effect sedation and enhancement of motor responses to both acoustic and light stimuli. Patch clamp recordings of cells with a human GABAA receptor confirmed that behavior-modulating isoflavones modify the GABA signaling. To better understand these molecules' nuanced effects on behavior, we performed whole brain imaging to reveal that analogs differentially effect neuronal activity. These studies demonstrate a multimodal approach to assessing activities of neuroactives.
Collapse
Affiliation(s)
- Matthew N. McCarroll
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Elizabeth Sisko
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jung Ho Gong
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jinfeng Teng
- Department
of Neurobiology, University of California, San Diego, California 92093, United States
| | - Jack Taylor
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
- UCSF
Weill Institute for Neurosciences Memory and Aging Center, University of California, San Francisco, California 94158, United States
| | - Douglas Myers-Turnbull
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Drew Young
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Grant Burley
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Lain X. Pierce
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Ryan E. Hibbs
- Department
of Neurobiology, University of California, San Diego, California 92093, United States
| | - David Kokel
- Institute
for Neurodegenerative Diseases, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Jason K. Sello
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Socrates AJ, Mullins N, Gur RC, Gur RE, Stahl E, O'Reilly PF, Reichenberg A, Jones H, Zammit S, Velthorst E. Polygenic risk of social isolation behavior and its influence on psychopathology and personality. Mol Psychiatry 2024; 29:3599-3606. [PMID: 38811692 PMCID: PMC11541194 DOI: 10.1038/s41380-024-02617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Social isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a genome-wide associations study (GWAS) was carried out to identify genetic variants that contribute specifically to social isolation behavior (SIB) in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP-based heritability estimate. Using the SIB GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with self-reported friendship scores, comprising items related to friendship quality and quantity, at age 12 and 18 to determine whether genetic predisposition manifests during childhood development. At age 18, friendship scores were associated with the SIB PRS, demonstrating that the genetic factors can predict related social traits in late adolescence. Linkage disequilibrium (LD) score correlation using the SIB GWAS demonstrated genetic correlations with autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), educational attainment, extraversion, and loneliness. However, no evidence of causality was found using a conservative Mendelian randomization approach between SIB and any of the traits in either direction. Genomic Structural Equation Modeling (SEM) revealed a common factor contributing to SIB, neuroticism, loneliness, MDD, and ASD, weakly correlated with a second common factor that contributes to psychiatric and psychotic traits. Our results show that SIB contributes a small heritable component, which is associated genetically with other social traits such as friendship as well as psychiatric disorders.
Collapse
Affiliation(s)
- Adam J Socrates
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA.
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine and the Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, 3400 Spruce, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine and the Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, 3400 Spruce, Philadelphia, PA, 19104, USA
| | - Eli Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Regeneron Genetics Centre, Tarrytown, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Hannah Jones
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2PR, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
| | - Stanley Zammit
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Eva Velthorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Department of Research, Mental Health Organization "GGZ Noord-Holland-Noord,", Heerhugowaard, The Netherlands
| |
Collapse
|
11
|
Choudhary A, Peles D, Nayak R, Mizrahi L, Stern S. Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophr Res 2024; 273:24-38. [PMID: 36443183 DOI: 10.1016/j.schres.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Schizophrenia (SCZ) is a complex, heritable and polygenic neuropsychiatric disease, which disables the patients as well as decreases their life expectancy and quality of life. Common and rare variants studies on SCZ subjects have provided >100 genomic loci that hold importance in the context of SCZ pathophysiology. Transcriptomic studies from clinical samples have informed about the differentially expressed genes (DEGs) and non-coding RNAs in SCZ patients. Despite these advancements, no causative genes for SCZ were found and hence SCZ is difficult to recapitulate in animal models. In the last decade, induced Pluripotent Stem Cells (iPSCs)-based models have helped in understanding the neural phenotypes of SCZ by studying patient iPSC-derived 2D neuronal cultures and 3D brain organoids. Here, we have aimed to provide a simplistic overview of the current progress and advancements after synthesizing the enormous literature on SCZ genetics and SCZ iPSC-based models. Although further understanding of SCZ genetics and pathophysiological mechanisms using these technological advancements is required, the recent approaches have allowed to delineate important cellular mechanisms and biological pathways affected in SCZ.
Collapse
Affiliation(s)
- Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
12
|
Funato Y, Mimura M, Nunomura K, Lin B, Fujii S, Haruta J, Miki H. Development of a high-throughput screening system targeting the protein-protein interactions between PRL and CNNM. Sci Rep 2024; 14:25432. [PMID: 39455715 PMCID: PMC11511866 DOI: 10.1038/s41598-024-76269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Phosphatase of regenerating liver (PRL) is an oncogenic protein that promotes tumor progression by directly binding to cyclin M (CNNM) membrane proteins and inhibiting their Mg2+ efflux activity. In this study, we have developed a high-throughput screening system to detect the interactions between PRL and CNNM proteins based on homogenous time-resolved fluorescence resonance energy transfer (HTR-FRET, HTRF). We optimized the tag sequences attached to the recombinant proteins of the CNNM4 CBS domains and PRL3 lacking the carboxyl terminal CAAX motif, and successfully detected the interaction by observing the FRET signal in the mixture of the tagged proteins and fluorophore-conjugated antibodies. Moreover, we performed compound library screening using this system and discovered several compounds that could efficiently inhibit the PRL-CNNM interaction. Characterization of one candidate compound revealed that it was relatively stable compared with thienopyridone, a known inhibitor of the PRL-CNNM interaction. The candidate compound can also inhibit PRL function in cells: suppression of CNNM-dependent Mg2+ efflux, and has sufficient in vitro drug metabolism and pharmacokinetic properties. Overall, these results demonstrate the effectiveness of this screening system for identifying novel inhibitors of the PRL-CNNM interaction, which could contribute to the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Mai Mimura
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shintarou Fujii
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Junichi Haruta
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
13
|
Jiang B, Li X, Li M, Zhou W, Zhao M, Wu H, Zhang N, Shen L, Wan C, He L, Huai C, Qin S. Genome-Wide and Exome-Wide Association Study Identifies Genetic Underpinning of Comorbidity between Myocardial Infarction and Severe Mental Disorders. Biomedicines 2024; 12:2298. [PMID: 39457610 PMCID: PMC11504245 DOI: 10.3390/biomedicines12102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Myocardial Infarction (MI) and severe mental disorders (SMDs) are two types of highly prevalent and complex disorders and seem to have a relatively high possibility of mortality. However, the contributions of common and rare genetic variants to their comorbidity arestill unclear. METHODS We conducted a combined genome-wide association study (GWAS) and exome-wide association study (EWAS) approach. RESULTS Using gene-based and gene-set association analyses based on the results of GWAS, we found the common genetic underpinnings of nine genes (GIGYF2, KCNJ13, PCCB, STAG1, HLA-C, HLA-B, FURIN, FES, and SMG6) and nine pathways significantly shared between MI and SMDs. Through Mendelian randomization analysis, we found that twenty-seven genes were potential causal genes for SMDs and MI. Based on the exome sequencing data of MI and SMDs patients from the UK Biobank, we found that MUC2 was exome-wide significant in the two diseases. The gene-set analyses of the exome-wide association study indicated that pathways related to insulin processing androgen catabolic process and angiotensin receptor binding may be involved in the comorbidity between SMDs and MI. We also found that six candidate genes were reported to interact with known therapeutic drugs based on the drug-gene interaction information in DGIdb. CONCLUSIONS Altogether, this study revealed the overlap of common and rare genetic underpinning between SMDs and MI and may provide useful insights for their mechanism study and therapeutic investigations.
Collapse
Affiliation(s)
- Bixuan Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Xiangyi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Mo Li
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Wei Zhou
- Ministry of Education—Shanghai Key Laboratory of Children’s Environmental Health & Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| | - Mingzhe Zhao
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China;
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; (B.J.); (X.L.); (H.W.); (N.Z.); (L.S.); (C.W.); (L.H.)
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610213, China
| |
Collapse
|
14
|
Stern S, Zhang L, Wang M, Wright R, Rosh I, Hussein Y, Stern T, Choudhary A, Tripathi U, Reed P, Sadis H, Nayak R, Shemen A, Agarwal K, Cordeiro D, Peles D, Hang Y, Mendes APD, Baul TD, Roth JG, Coorapati S, Boks MP, McCombie WR, Hulshoff Pol H, Brennand KJ, Réthelyi JM, Kahn RS, Marchetto MC, Gage FH. Monozygotic twins discordant for schizophrenia differ in maturation and synaptic transmission. Mol Psychiatry 2024; 29:3208-3222. [PMID: 38704507 PMCID: PMC11449799 DOI: 10.1038/s41380-024-02561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.
Collapse
Affiliation(s)
- Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Wright
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tchelet Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Patrick Reed
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hagit Sadis
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Diogo Cordeiro
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yuqing Hang
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ana P D Mendes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tithi D Baul
- Department of Psychiatry at the Boston Medical Center, Boston, MA, USA
| | - Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | | | - Hilleke Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Pamela Sklar Division of Psychiatric Genomics, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Department of Genetics, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - János M Réthelyi
- Molecular Psychiatry Research Group and Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
15
|
Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY. Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612570. [PMID: 39314374 PMCID: PMC11418993 DOI: 10.1101/2024.09.11.612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C, likely contributed to altered evolutionary brain features. The introduction of SRGAP2C in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring and that these larvae phenocopy "humanized" SRGAP2C larvae, including altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axonogenesis-, and vision-related genes. Through single-cell transcriptome analysis, we demonstrate a skewed balance of excitatory and inhibitory neurons that likely contribute to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also shows strong endogenous expression of srgap2 in microglia with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. Microglia cells expressing srgap2 were also detected in the developing eye together with altered expression of genes related to axonogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+SRGAP2C) and non-human primates (-SRGAP2C) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays a similar role altering microglia and the visual system in modern humans. Together, our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.
Collapse
Affiliation(s)
- José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - KaeChandra Weyenberg
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Brittany Radke
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Jia-Lin Shiu
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Wenzhu Zhang
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Cole Ingamells
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Nicholas K. Haghani
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Emily Xu
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Joseph Rosas
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Joel Miesfeld
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, WI, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Scott C. Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Soto DC, Uribe-Salazar JM, Kaya G, Valdarrago R, Sekar A, Haghani NK, Hino K, La GN, Mariano NAF, Ingamells C, Baraban AE, Turner TN, Green ED, Simó S, Quon G, Andrés AM, Dennis MY. Gene expansions contributing to human brain evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615256. [PMID: 39386494 PMCID: PMC11463660 DOI: 10.1101/2024.09.26.615256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.
Collapse
Affiliation(s)
- Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - José M. Uribe-Salazar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Gulhan Kaya
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Ricardo Valdarrago
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aarthi Sekar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Nicholas K. Haghani
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gabriana N. La
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Natasha Ann F. Mariano
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
- Postbaccalaureate Research Education Program, University of California, Davis, CA 95616, USA
| | - Cole Ingamells
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Aidan E. Baraban
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St Louis, MS, 63110, USA
| | - Eric D. Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,20892, USA
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Megan Y. Dennis
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
18
|
Bell JM, Turner EM, Biesemeyer C, Vanderbeck MM, Hendricks R, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. Biol Open 2024; 13:bio060580. [PMID: 39301848 PMCID: PMC11423914 DOI: 10.1242/bio.060580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammals, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. Our study demonstrates that mutation of foxg1a results in slower posterior lateral line primordium migration and delayed neuromast formation. In developing and regenerating neuromasts, we find that loss of Foxg1a function results in reduced hair cell numbers, as well as decreased proliferation of neuromast cells. Foxg1a specifically regulates the development and regeneration of Islet1-labeled hair cells. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration.
Collapse
Affiliation(s)
- Jon M. Bell
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Emily M. Turner
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Cole Biesemeyer
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
- Research Organisms, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Madison M. Vanderbeck
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Roe Hendricks
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- University of Missouri Kansas City, School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, MO 64110, USA
| |
Collapse
|
19
|
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci 2024; 25:611-624. [PMID: 39030273 DOI: 10.1038/s41583-024-00837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Yu M, Li W, Yu Y, Zhao Y, Xiao L, Lauschke VM, Cheng Y, Zhang X, Wang Y. Deep learning large-scale drug discovery and repurposing. NATURE COMPUTATIONAL SCIENCE 2024; 4:600-614. [PMID: 39169261 DOI: 10.1038/s43588-024-00679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Large-scale drug discovery and repurposing is challenging. Identifying the mechanism of action (MOA) is crucial, yet current approaches are costly and low-throughput. Here we present an approach for MOA identification by profiling changes in mitochondrial phenotypes. By temporally imaging mitochondrial morphology and membrane potential, we established a pipeline for monitoring time-resolved mitochondrial images, resulting in a dataset comprising 570,096 single-cell images of cells exposed to 1,068 United States Food and Drug Administration-approved drugs. A deep learning model named MitoReID, using a re-identification (ReID) framework and an Inflated 3D ResNet backbone, was developed. It achieved 76.32% Rank-1 and 65.92% mean average precision on the testing set and successfully identified the MOAs for six untrained drugs on the basis of mitochondrial phenotype. Furthermore, MitoReID identified cyclooxygenase-2 inhibition as the MOA of the natural compound epicatechin in tea, which was successfully validated in vitro. Our approach thus provides an automated and cost-effective alternative for target identification that could accelerate large-scale drug discovery and repurposing.
Collapse
Affiliation(s)
- Min Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | - Yunru Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lizhi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Yiyu Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China.
- Center for system biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
LaCoursiere CM, Ullmann JF, Koh HY, Turner L, Baker CM, Robens B, Shao W, Rotenberg A, McGraw CM, Poduri AH. Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. iScience 2024; 27:110172. [PMID: 39021799 PMCID: PMC11253282 DOI: 10.1016/j.isci.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes.
Collapse
Affiliation(s)
- Christopher Mark LaCoursiere
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeremy F.P. Ullmann
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyun Yong Koh
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neuroscience and Pediatrics, Division of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA
| | - Laura Turner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Cristina M. Baker
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Barbara Robens
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher M. McGraw
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annapurna H. Poduri
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
22
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder. Front Mol Neurosci 2024; 17:1401746. [PMID: 39050824 PMCID: PMC11266194 DOI: 10.3389/fnmol.2024.1401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background and aims SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab-/- survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, St. John’s University, Queens, NY, United States
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, United States
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
23
|
Freitas PHF, Johnson JS, Tiezzi F, Huang Y, Schinckel AP, Brito LF. Genomic predictions and GWAS for heat tolerance in pigs based on reaction norm models with performance records and data from public weather stations considering alternative temperature thresholds. J Anim Breed Genet 2024; 141:257-277. [PMID: 38009390 DOI: 10.1111/jbg.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Genetic improvement of livestock productivity has resulted in greater production of metabolic heat and potentially greater susceptibility to heat stress. Various studies have demonstrated that there is genetic variability for heat tolerance and genetic selection for more heat tolerant individuals is possible. The rate of genetic progress tends to be greater when genomic information is incorporated into the analyses as more accurate breeding values can be obtained for young individuals. Therefore, this study aimed (1) to evaluate the predictive ability of genomic breeding values for heat tolerance based on routinely recorded traits, and (2) to investigate the genetic background of heat tolerance based on single-step genome-wide association studies for economically important traits related to body composition, growth and reproduction in Large White pigs. Pedigree information was available for 265,943 animals and genotypes for 8686 animals. The studied traits included ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN) and weaning-to-estrus interval (IWE). The number of phenotypic records ranged from 6059 (WN) to 172,984 (TNB). Single-step genomic reaction norm predictions were used to calculate the genomic estimated breeding values for each individual. Predictions of breeding values for the validation population individuals were compared between datasets containing phenotypic records measured in the whole range of temperatures (WR) and datasets containing only phenotypic records measured when the weather station temperature was above 10°C (10C) or 15°C (15C), to evaluate the usefulness of these datasets that may better reflect the within-barn temperature. The use of homogeneous or heterogeneous residual variance was found to be trait-dependent, where homogeneous variance presented the best fit for MDP, BFT, OTW, TNB, NBA, WN and IBF, while the other traits (WW and IWE) had better fit with heterogeneous variance. The average prediction accuracy, dispersion and bias values considering all traits for WR were 0.36 ± 0.05, -0.07 ± 0.13 and 0.76 ± 0.10, respectively; for 10C were 0.39 ± 0.02, -0.05 ± 0.07 and 0.81 ± 0.05, respectively; and for 15C were 0.32 ± 0.05, -0.05 ± 0.11 and 0.84 ± 0.10, respectively. Based on the studied traits, using phenotypic records collected when the outside temperature (from public weather stations) was above 10°C provided better predictions for most of the traits. Forty-three and 62 candidate genomic regions were associated with the intercept (overall performance level) and slope term (specific biological mechanisms related to environmental sensitivity), respectively. Our results contribute to improve genomic predictions using existing datasets and better understand the genetic background of heat tolerance in pigs. Furthermore, the genomic regions and candidate genes identified will contribute to future genomic studies and breeding applications.
Collapse
Affiliation(s)
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, Indiana, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Yijian Huang
- Smithfield Premium Genetics, Rose Hill, North Carolina, USA
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
24
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
25
|
Bell JM, Biesemeyer C, Turner EM, Vanderbeck MM, McGraw HF. foxg1a is required for hair cell development and regeneration in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589268. [PMID: 38659824 PMCID: PMC11042177 DOI: 10.1101/2024.04.12.589268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanosensory hair cells located in the inner ear mediate the sensations of hearing and balance. If damaged, mammalian inner ear hair cells are unable to regenerate, resulting in permanent sensory deficits. Aquatic vertebrates like zebrafish (Danio rerio) have a specialized class of mechanosensory hair cells found in the lateral line system, allowing them to sense changes in water current. Unlike mammalian inner ear hair cells, lateral line hair cells can robustly regenerate following damage. In mammalian models, the transcription factor Foxg1 functions to promote normal development of the inner ear. Foxg1a is expressed in lateral line sensory organs in zebrafish larvae, but its function during lateral line development and regeneration has not been investigated. We find that loss of Foxg1a function results in reduced hair cell development and regeneration, as well as decreased cellular proliferation in the lateral line system. These data suggest that Foxg1 may be a valuable target for investigation of clinical hair cell regeneration. Summary statement Our work demonstrates a role for Foxg1a in developing and regenerating new sensory cells through proliferation.
Collapse
|
26
|
Umeda K, Tanaka K, Chowdhury G, Nasu K, Kuroyanagi Y, Yamasu K. Evolutionarily conserved roles of foxg1a in the developing subpallium of zebrafish embryos. Dev Growth Differ 2024; 66:219-234. [PMID: 38378191 PMCID: PMC11457518 DOI: 10.1111/dgd.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.
Collapse
Affiliation(s)
- Koto Umeda
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kaiho Tanaka
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Gazlima Chowdhury
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Department of Aquatic Environment and Resource ManagementSher‐e‐Bangla Agricultural UniversityDhakaBangladesh
| | - Kouhei Nasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Yuri Kuroyanagi
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
27
|
Sun W, Justice I, Green EM. Defining Biological and Biochemical Functions of Noncanonical SET Domain Proteins. J Mol Biol 2024; 436:168318. [PMID: 37863247 PMCID: PMC10957327 DOI: 10.1016/j.jmb.2023.168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Within the SET domain superfamily of lysine methyltransferases, there is a well-conserved subfamily, frequently referred to as the Set3 SET domain subfamily, which contain noncanonical SET domains carrying divergent amino acid sequences. These proteins are implicated in diverse biological processes including stress responses, cell differentiation, and development, and their disruption is linked to diseases including cancer and neurodevelopmental disorders. Interestingly, biochemical and structural analysis indicates that they do not possess catalytic methyltransferase activity. At the molecular level, Set3 SET domain proteins appear to play critical roles in the regulation of gene expression, particularly repression and heterochromatin maintenance, and in some cases, via scaffolding other histone modifying activities at chromatin. Here, we explore the common and unique functions among Set3 SET domain subfamily proteins and analyze what is known about the specific contribution of the conserved SET domain to functional roles of these proteins, as well as propose areas of investigation to improve understanding of this important, noncanonical subfamily of proteins.
Collapse
Affiliation(s)
- Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Isabella Justice
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
28
|
Habicher J, Sanvido I, Bühler A, Sartori S, Piccoli G, Carl M. The Risk Genes for Neuropsychiatric Disorders negr1 and opcml Are Expressed throughout Zebrafish Brain Development. Genes (Basel) 2024; 15:363. [PMID: 38540422 PMCID: PMC10969947 DOI: 10.3390/genes15030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
The immunoglobulin LAMP/OBCAM/NTM (IgLON) family of cell adhesion molecules comprises five members known for their involvement in establishing neural circuit connectivity, fine-tuning, and maintenance. Mutations in IgLON genes result in alterations in these processes and can lead to neuropsychiatric disorders. The two IgLON family members NEGR1 and OPCML share common links with several of them, such as schizophrenia, autism, and major depressive disorder. However, the onset and the underlying molecular mechanisms have remained largely unresolved, hampering progress in developing therapies. NEGR1 and OPCML are evolutionarily conserved in teleosts like the zebrafish (Danio rerio), which is excellently suited for disease modelling and large-scale screening for disease-ameliorating compounds. To explore the potential applicability of zebrafish for extending our knowledge on NEGR1- and OPCML-linked disorders and to develop new therapeutic strategies, we investigated the spatio-temporal expression of the two genes during early stages of development. negr1 and opcml are expressed maternally and subsequently in partially distinct domains of conserved brain regions. Other areas of expression in zebrafish have not been reported in mammals to date. Our results indicate that NEGR1 and OPCML may play roles in neural circuit development and function at stages earlier than previously anticipated. A detailed functional analysis of the two genes based on our findings could contribute to understanding the mechanistic basis of related psychiatric disorders.
Collapse
Affiliation(s)
- Judith Habicher
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Ilaria Sanvido
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| |
Collapse
|
29
|
Tang M, Wu X, Zhang W, Cui H, Zhang L, Yan P, Yang C, Wang Y, Chen L, Xiao C, Liu Y, Zou Y, Yang C, Zhang L, Yao Y, Liu Z, Li J, Jiang X, Zhang B. Epidemiological and Genetic Analyses of Schizophrenia and Breast Cancer. Schizophr Bull 2024; 50:317-326. [PMID: 37467357 PMCID: PMC10919785 DOI: 10.1093/schbul/sbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS While the phenotypic association between schizophrenia and breast cancer has been observed, the underlying intrinsic link is not adequately understood. We aim to conduct a comprehensive interrogation on both phenotypic and genetic relationships between schizophrenia and breast cancer. STUDY DESIGN We first used data from UK Biobank to evaluate a phenotypic association and performed an updated meta-analysis incorporating existing cohort studies. We then leveraged genomic data to explore the shared genetic architecture through a genome-wide cross-trait design. STUDY RESULTS Incorporating results of our observational analysis, meta-analysis of cohort studies suggested a significantly increased incidence of breast cancer among women with schizophrenia (RR = 1.30, 95% CIs = 1.14-1.48). A positive genomic correlation between schizophrenia and overall breast cancer was observed (rg = 0.12, P = 1.80 × 10-10), consistent across ER+ (rg = 0.10, P = 5.74 × 10-7) and ER- subtypes (rg = 0.09, P = .003). This was further corroborated by four local signals. Cross-trait meta-analysis identified 23 pleiotropic loci between schizophrenia and breast cancer, including five novel loci. Gene-based analysis revealed 27 shared genes. Mendelian randomization demonstrated a significantly increased risk of overall breast cancer (OR = 1.07, P = 4.81 × 10-10) for genetically predisposed schizophrenia, which remained robust in subgroup analysis (ER+: OR = 1.10, P = 7.26 × 10-12; ER-: OR = 1.08, P = 3.50 × 10-6). No mediation effect and reverse causality was found. CONCLUSIONS Our study demonstrates an intrinsic link underlying schizophrenia and breast cancer, which may inform tailored screening and management of breast cancer in schizophrenia.
Collapse
Affiliation(s)
- Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Kim TY, Roychaudhury A, Kim HT, Choi TI, Baek ST, Thyme SB, Kim CH. Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536. Transl Psychiatry 2024; 14:82. [PMID: 38331943 PMCID: PMC10853220 DOI: 10.1038/s41398-024-02806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | | | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
31
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
33
|
Zhou DY, Su X, Wu Y, Yang Y, Zhang L, Cheng S, Shao M, Li W, Zhang Z, Wang L, Lv L, Li M, Song M. Decreased CNNM2 expression in prefrontal cortex affects sensorimotor gating function, cognition, dendritic spine morphogenesis and risk of schizophrenia. Neuropsychopharmacology 2024; 49:433-442. [PMID: 37715107 PMCID: PMC10724213 DOI: 10.1038/s41386-023-01732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Genome-wide association studies (GWASs) have reported multiple single nucleotide polymorphisms (SNPs) associated with schizophrenia, yet the underlying molecular mechanisms are largely unknown. In this study, we aimed to identify schizophrenia relevant genes showing alterations in mRNA and protein expression associated with risk SNPs at the 10q24.32-33 GWAS locus. We carried out the quantitative trait loci (QTL) and summary data-based Mendelian randomization (SMR) analyses, using the PsychENCODE dorsolateral prefrontal cortex (DLPFC) expression QTL (eQTL) database, as well as the ROSMAP and Banner DLPFC protein QTL (pQTL) datasets. The gene CNNM2 (encoding a magnesium transporter) at 10q24.32-33 was identified to be a robust schizophrenia risk gene, and was highly expressed in human neurons according to single cell RNA-seq (scRNA-seq) data. We further revealed that reduced Cnnm2 in the mPFC of mice led to impaired cognition and compromised sensorimotor gating function, and decreased Cnnm2 in primary cortical neurons altered dendritic spine morphogenesis, confirming the link between CNNM2 and endophenotypes of schizophrenia. Proteomics analyses showed that reduced Cnnm2 level changed expression of proteins associated with neuronal structure and function. Together, these results identify a robust gene in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Dan-Yang Zhou
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Wuhan, Hubei, China
- Affiliated Wuhan Mental Health Center, Jianghan University, Wuhan, Hubei, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shumin Cheng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaohui Zhang
- Department of Psychiatry, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lu Wang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Ming Li
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
34
|
Hong X, Miao K, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Hu R, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. Association of psychological distress and DNA methylation: A 5-year longitudinal population-based twin study. Psychiatry Clin Neurosci 2024; 78:51-59. [PMID: 37793011 DOI: 10.1111/pcn.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
AIM To identify the psychological distress (PD)-associated 5'-cytosine-phosphate-guanine-3' sites (CpGs), and investigate the temporal relationship between dynamic changes in DNA methylation (DNAm) and PD. METHODS This study included 1084 twins from the Chinese National Twin Register (CNTR). The CNTR conducted epidemiological investigations and blood withdrawal twice in 2013 and 2018. These included twins were used to perform epigenome-wide association studies (EWASs) and to validate the previously reported PD-associated CpGs selected from previous EWASs in PubMed, Embase, and the EWAS catalog. Next, a cross-lagged study was performed to examine the temporality between changes in DNAm and PD in 308 twins who completed both 2013 and 2018 surveys. RESULTS The EWAS analysis of our study identified 25 CpGs. In the validation analysis, 741 CpGs from 29 previous EWASs on PD were selected for validation, and 101 CpGs were validated to be significant at a false discovery rate <0.05. The cross-lagged analysis found a unidirectional path from PD to DNAm at 14 CpGs, while no sites showed significance from DNAm to PD. CONCLUSIONS This study identified and validated PD-related CpGs in a Chinese twin population, and suggested that PD may be the cause of changes in DNAm over time. The findings provide new insights into the molecular mechanisms underlying PD pathophysiology.
Collapse
Affiliation(s)
- Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Ke Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Runhua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
35
|
Parvez S, Zhang T, Peterson RT. Scalable CRISPR Screens in Zebrafish Using MIC-Drop. Methods Mol Biol 2024; 2707:319-334. [PMID: 37668922 DOI: 10.1007/978-1-0716-3401-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
CRISPR-Cas9 is a powerful tool to interrogate gene function in a targeted and systematic manner. Although the technology has been scaled up for large-scale genetic screens in cell culture, similar scale screens in vivo have been extremely challenging due to the cost, labor, and time required to generate and keep track of thousands of mutant animals. We reported the development of Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform that makes large-scale reverse genetic screens possible in zebrafish. In this chapter, we provide a detailed protocol to conduct large-scale genetic screens using this novel platform.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Tejia Zhang
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
36
|
Jin DS, Neelakantan U, Lacadie CM, Chen T, Rooney B, Liu Y, Wu W, Wang Z, Papademetris X, Hoffman EJ. Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping: A pipeline for whole-brain structural and activity analyses. STAR Protoc 2023; 4:102647. [PMID: 37897734 PMCID: PMC10641303 DOI: 10.1016/j.xpro.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023] Open
Abstract
Here, we present Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping, a user-friendly pipeline for the registration and analysis of whole-brain images in larval zebrafish. We describe steps for pre-processing, registration, quantification, and visualization of whole-brain phenotypes in zebrafish mutants of genes associated with neurodevelopmental and neuropsychiatric disorders. By utilizing BioImage Suite Web, an open-source software package originally developed for processing human brain imaging data, we provide a highly accessible whole-brain mapping protocol developed for users with general computational proficiency. For complete details on the use and execution of this protocol, please refer to Weinschutz Mendes et al. (2023).1.
Collapse
Affiliation(s)
- David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Wang S, Raza SHA, Zhang K, Mei C, Alamoudi MO, Aloufi BH, Alshammari AM, Zan L. Selection signatures of Qinchuan cattle based on whole-genome sequences. Anim Biotechnol 2023; 34:1483-1491. [PMID: 35152846 DOI: 10.1080/10495398.2022.2033252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Qinchuan cattle has gradually improved in body shape and growth rate in the long-term breeding process from the draft cattle to beef cattle. As the head of the five local yellow cattle in China, the Qinchuan cattle has been designated as a specialized beef cattle breed. We investigated the selection signatures using whole genome sequencing data in Qinchuan cattle. Based on Fst, we detected hundreds of candidate genes under selection across Qinchuan, Red Angus, and Japanese Black cattle. Through protein-protein interaction analysis and functional annotation of candidate genes, the results revealed that KMT2E, LTBP1 and NIPBL were related to brain size, body characteristics, and limb development, respectively, suggesting that these potential genes may affect the growth and development traits in Qinchuan cattle. ARIH2, DACT1 and DNM2, et al. are related to meat quality. Meanwhile, TBXA2R can be used as a gene associated with reproductive function, and USH2A affect coat color. This provided a glimpse into the formation of breeds and molecular genetic breeding. Our findings will promote genome-assisted breeding to improve animal production and health.
Collapse
Affiliation(s)
- Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Muna O Alamoudi
- Department of Biology, Faculty of Science, University of Hail, Hail, Saudi Arabia
| | - Bandar H Aloufi
- Department of Biology, Faculty of Science, University of Hail, Hail, Saudi Arabia
| | | | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
39
|
Stachniak TJ, Argunsah AÖ, Yang JW, Cai L, Karayannis T. Presynaptic Kainate Receptors onto Somatostatin Interneurons Are Recruited by Activity throughout Development and Contribute to Cortical Sensory Adaptation. J Neurosci 2023; 43:7101-7118. [PMID: 37709538 PMCID: PMC10601374 DOI: 10.1523/jneurosci.1461-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Somatostatin (SST) interneurons produce delayed inhibition because of the short-term facilitation of their excitatory inputs created by the expression of metabotropic glutamate receptor 7 (mGluR7) and presynaptic GluK2-containing kainate receptors (GluK2-KARs). Using mice of both sexes, we find that as synaptic facilitation at layer (L)2/3 SST cell inputs increases during the first few postnatal weeks, so does GluK2-KAR expression. Removal of sensory input by whisker trimming does not affect mGluR7 but prevents the emergence of presynaptic GluK2-KARs, which can be restored by allowing whisker regrowth or by acute calmodulin activation. Conversely, late trimming or acute inhibition of Ca2+/calmodulin-dependent protein kinase II is sufficient to reduce GluK2-KAR activity. This developmental and activity-dependent regulation also produces a specific reduction of L4 GluK2-KARs that advances in parallel with the maturation of sensory processing in L2/3. Finally, we find that removal of both GluK2-KARs and mGluR7 from the synapse eliminates short-term facilitation and reduces sensory adaptation to repetitive stimuli, first in L4 of somatosensory cortex, then later in development in L2/3. The dynamic regulation of presynaptic GluK2-KARs potentially allows for flexible scaling of late inhibition and sensory adaptation.SIGNIFICANCE STATEMENT Excitatory synapses onto somatostatin (SST) interneurons express presynaptic, calcium-permeable kainate receptors containing the GluK2 subunit (GluK2-KARs), activated by high-frequency activity. In this study we find that their presence on L2/3 SST synapses in the barrel cortex is not based on a hardwired genetic program but instead is regulated by sensory activity, in contrast to that of mGluR7. Thus, in addition to standard synaptic potentiation and depression mechanisms, excitatory synapses onto SST neurons undergo an activity-dependent presynaptic modulation that uses GluK2-KARs. Further, we present evidence that loss of the frequency-dependent synaptic components (both GluK2-KARs and mGluR7 via Elfn1 deletion) contributes to a decrease in the sensory adaptation commonly seen on repetitive stimulus presentation.
Collapse
Affiliation(s)
- Tevye J Stachniak
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ali Ö Argunsah
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jenq-Wei Yang
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
40
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
41
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish autism models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.557316. [PMID: 37786701 PMCID: PMC10541574 DOI: 10.1101/2023.09.20.557316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background and Aims SYNGAP1 disorder is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab larvae are hyperactive compared to wild type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, with overall movement increasing with the number of mutant syngap1 alleles. Conclusions Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL USA
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL USA
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
42
|
Naito T, Yang H, Koh DHZ, Mahajan D, Lu L, Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat Commun 2023; 14:5867. [PMID: 37735529 PMCID: PMC10514280 DOI: 10.1038/s41467-023-41213-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Haoning Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
43
|
Xu J, Casanave R, Chitre AS, Wang Q, Nguyen KM, Blake C, Wagle M, Cheng R, Polesskaya O, Palmer AA, Guo S. Causal Genetic Loci for a Motivated Behavior Spectrum Harbor Psychiatric Risk Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556529. [PMID: 37732200 PMCID: PMC10508786 DOI: 10.1101/2023.09.06.556529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Behavioral diversity is critical for population fitness. Individual differences in risk-taking are observed across species, but underlying genetic mechanisms and conservation are largely unknown. We examined dark avoidance in larval zebrafish, a motivated behavior reflecting an approach-avoidance conflict. Brain-wide calcium imaging revealed significant neural activity differences between approach-inclined versus avoidance-inclined individuals. We used a population of ∼6,000 to perform the first genome-wide association study (GWAS) in zebrafish, which identified 34 genomic regions harboring many genes that are involved in synaptic transmission and human psychiatric diseases. We used CRISPR to study several causal genes: serotonin receptor-1b ( htr1b ), nitric oxide synthase-1 ( nos1 ), and stress-induced phosphoprotein-1 ( stip1 ). We further identified 52 conserved elements containing 66 GWAS significant variants. One encoded an exonic regulatory element that influenced tissue-specific nos1 expression. Together, these findings reveal new genetic loci and establish a powerful, scalable animal system to probe mechanisms underlying motivation, a critical dimension of psychiatric diseases.
Collapse
|
44
|
Costa CIS, da Silva Campos G, da Silva Montenegro EM, Wang JYT, Scliar M, Monfardini F, Zachi EC, Lourenço NCV, Chan AJS, Pereira SL, Engchuan W, Thiruvahindrapuram B, Zarrei M, Scherer SW, Passos-Bueno MR. Three generation families: Analysis of de novo variants in autism. Eur J Hum Genet 2023; 31:1017-1022. [PMID: 37280359 PMCID: PMC10474020 DOI: 10.1038/s41431-023-01398-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.
Collapse
Affiliation(s)
- Claudia I Samogy Costa
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Gabriele da Silva Campos
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Eduarda Morgana da Silva Montenegro
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaqueline Yu Ting Wang
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marília Scliar
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Frederico Monfardini
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elaine Cristina Zachi
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naila C V Lourenço
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ada J S Chan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio L Pereira
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
45
|
Campbell PD, Lee I, Thyme S, Granato M. Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation. Mol Psychiatry 2023; 28:3769-3781. [PMID: 37794116 PMCID: PMC10730408 DOI: 10.1038/s41380-023-02272-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Microdeletion of a 3Mb region encompassing 45 protein-coding genes at chromosome 22q11.2 (22q11.2DS) predisposes individuals to multiple neurodevelopmental disorders and is one of the greatest genetic risk factors for schizophrenia. Defective mitochondrial function has been hypothesized to contribute to 22q11.2DS pathogenesis; however, which of the six mitochondrial genes contribute to neurodevelopmental phenotypes and their underlying mechanisms remain unresolved. To systematically test 22q11.2DS genes for functional roles in neurodevelopment and behavior, we generated genetic mutants for each of the 37 conserved zebrafish orthologs and performed high throughput behavioral phenotyping using seven behavioral assays. Through this unbiased approach, we identified five single-gene mutants with partially overlapping behavioral phenotypes. Two of these genes, mrpl40 and prodha, encode for mitochondrial proteins and, similar to what we observed in mrpl40 and prodha mutants, pharmacologic inhibition of mitochondrial function during development results in microcephaly. Single mutant analysis shows that both mrpl40 and prodha mutants display aberrant neural stem and progenitor cell proliferation, with each gene regulating distinct cell populations. Finally, double mutants for both mrpl40 and prodha display aggravated behavioral phenotypes and neural stem and progenitor cell analysis reveals a previously unrecognized partially redundant role for mrpl40 and prodha in regulating radial glia-like cell proliferation. Combined, our results demonstrate a critical role for mitochondrial function in neural stem and progenitor cell populations in the developing vertebrate brain and provide compelling evidence that mitochondrial dysfunction during neurodevelopment is linked to brain volume and behavioral phenotypes observed in models of 22q11.2DS.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isaiah Lee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Pluimer BR, Harrison DL, Boonyavairoje C, Prinssen EP, Rogers-Evans M, Peterson RT, Thyme SB, Nath AK. Behavioral analysis through the lifespan of disc1 mutant zebrafish identifies defects in sensorimotor transformation. iScience 2023; 26:107099. [PMID: 37416451 PMCID: PMC10320522 DOI: 10.1016/j.isci.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
DISC1 is a genetic risk factor for multiple psychiatric disorders. Compared to the dozens of murine Disc1 models, there is a paucity of zebrafish disc1 models-an organism amenable to high-throughput experimentation. We conducted the longitudinal neurobehavioral analysis of disc1 mutant zebrafish across key stages of life. During early developmental stages, disc1 mutants exhibited abrogated behavioral responses to sensory stimuli across multiple testing platforms. Moreover, during exposure to an acoustic sensory stimulus, loss of disc1 resulted in the abnormal activation of neurons in the pallium, cerebellum, and tectum-anatomical sites involved in the integration of sensory perception and motor control. In adulthood, disc1 mutants exhibited sexually dimorphic reduction in anxiogenic behavior in novel paradigms. Together, these findings implicate disc1 in sensorimotor processes and the genesis of anxiogenic behaviors, which could be exploited for the development of novel treatments in addition to investigating the biology of sensorimotor transformation in the context of disc1 deletion.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Devin L. Harrison
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chanon Boonyavairoje
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric P. Prinssen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Randall T. Peterson
- Deparment of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Parvez S, Brandt ZJ, Peterson RT. Large-scale F0 CRISPR screens in vivo using MIC-Drop. Nat Protoc 2023; 18:1841-1865. [PMID: 37069311 PMCID: PMC10419324 DOI: 10.1038/s41596-023-00821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/26/2023] [Indexed: 04/19/2023]
Abstract
The zebrafish is a powerful model system for studying animal development, for modeling genetic diseases, and for large-scale in vivo functional genetics. Because of its ease of use and its high efficiency in targeted gene perturbation, CRISPR-Cas9 has recently gained prominence as the tool of choice for genetic manipulation in zebrafish. However, scaling up the technique for high-throughput in vivo functional genetics has been a challenge. We recently developed a method, Multiplexed Intermixed CRISPR Droplets (MIC-Drop), that makes large-scale CRISPR screening in zebrafish possible. Here, we outline the step-by-step protocol for performing functional genetic screens in zebrafish by using MIC-Drop. MIC-Drop uses multiplexed single-guide RNAs to generate biallelic mutations in injected zebrafish embryos, allowing genetic screens to be performed in F0 animals. Combining microfluidics and DNA barcoding enables simultaneous targeting of tens to hundreds of genes from a single injection needle, while also enabling retrospective and rapid identification of the genotype responsible for an observed phenotype. The primary target audiences for MIC-Drop are developmental biologists, zebrafish geneticists, and researchers interested in performing in vivo functional genetic screens in a vertebrate model system. MIC-Drop will also prove useful in the hands of chemical biologists seeking to identify targets of small molecules that cause phenotypic changes in zebrafish. By using MIC-Drop, a typical screen of 100 genes can be conducted within 2-3 weeks by a single user.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zachary J Brandt
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
48
|
Rutkove SB, Callegari S, Concepcion H, Mourey T, Widrick J, Nagy JA, Nath AK. Electrical impedance myography detects age-related skeletal muscle atrophy in adult zebrafish. Sci Rep 2023; 13:7191. [PMID: 37137956 PMCID: PMC10156759 DOI: 10.1038/s41598-023-34119-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
Age-related deficits in skeletal muscle function, termed sarcopenia, are due to loss of muscle mass and changes in the intrinsic mechanisms underlying contraction. Sarcopenia is associated with falls, functional decline, and mortality. Electrical impedance myography (EIM)-a minimally invasive, rapid electrophysiological tool-can be applied to animals and humans to monitor muscle health, thereby serving as a biomarker in both preclinical and clinical studies. EIM has been successfully employed in several species; however, the application of EIM to the assessment of zebrafish-a model organism amenable to high-throughput experimentation-has not been reported. Here, we demonstrated differences in EIM measures between the skeletal muscles of young (6 months of age) and aged (33 months of age) zebrafish. For example, EIM phase angle and reactance at 2 kHz showed significantly decreased phase angle (5.3 ± 2.1 versus 10.7 ± 1.5°; p = 0.001) and reactance (89.0 ± 3.9 versus 172.2 ± 54.8 ohms; p = 0.007) in aged versus young animals. Total muscle area, in addition to other morphometric features, was also strongly correlated to EIM 2 kHz phase angle across both groups (r = 0.7133, p = 0.01). Moreover, there was a strong correlation between 2 kHz phase angle and established metrics of zebrafish swimming performance, including turn angle, angular velocity, and lateral motion (r = 0.7253, r = 0.7308, r = 0.7857, respectively, p < 0.01 for all). In addition, the technique was shown to have high reproducibility between repeated measurements with a mean percentage difference of 5.34 ± 1.17% for phase angle. These relationships were also confirmed in a separate replication cohort. Together, these findings establish EIM as a fast, sensitive method for quantifying zebrafish muscle function and quality. Moreover, identifying the abnormalities in the bioelectrical properties of sarcopenic zebrafish provides new opportunities to evaluate potential therapeutics for age-related neuromuscular disorders and to interrogate the disease mechanisms of muscle degeneration.
Collapse
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Santiago Callegari
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Holly Concepcion
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Tyler Mourey
- Zebrafish Core Facility, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jeffrey Widrick
- Harvard Medical School, Boston, MA, 02215, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Anjali K Nath
- Harvard Medical School, Boston, MA, 02215, USA.
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
49
|
Hasani H, Sun J, Zhu SI, Rong Q, Willomitzer F, Amor R, McConnell G, Cossairt O, Goodhill GJ. Whole-brain imaging of freely-moving zebrafish. Front Neurosci 2023; 17:1127574. [PMID: 37139528 PMCID: PMC10150962 DOI: 10.3389/fnins.2023.1127574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
One of the holy grails of neuroscience is to record the activity of every neuron in the brain while an animal moves freely and performs complex behavioral tasks. While important steps forward have been taken recently in large-scale neural recording in rodent models, single neuron resolution across the entire mammalian brain remains elusive. In contrast the larval zebrafish offers great promise in this regard. Zebrafish are a vertebrate model with substantial homology to the mammalian brain, but their transparency allows whole-brain recordings of genetically-encoded fluorescent indicators at single-neuron resolution using optical microscopy techniques. Furthermore zebrafish begin to show a complex repertoire of natural behavior from an early age, including hunting small, fast-moving prey using visual cues. Until recently work to address the neural bases of these behaviors mostly relied on assays where the fish was immobilized under the microscope objective, and stimuli such as prey were presented virtually. However significant progress has recently been made in developing brain imaging techniques for zebrafish which are not immobilized. Here we discuss recent advances, focusing particularly on techniques based on light-field microscopy. We also draw attention to several important outstanding issues which remain to be addressed to increase the ecological validity of the results obtained.
Collapse
Affiliation(s)
- Hamid Hasani
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Jipeng Sun
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Shuyu I. Zhu
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Qiangzhou Rong
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Florian Willomitzer
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Oliver Cossairt
- Department of Computer Science, Northwestern University, Evanston, IL, United States
| | - Geoffrey J. Goodhill
- Departments of Developmental Biology and Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
50
|
Pandey S, Moyer AJ, Thyme SB. A single-cell transcriptome atlas of the maturing zebrafish telencephalon. Genome Res 2023; 33:658-671. [PMID: 37072188 PMCID: PMC10234298 DOI: 10.1101/gr.277278.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
The zebrafish telencephalon is composed of highly specialized subregions that regulate complex behaviors such as learning, memory, and social interactions. The transcriptional signatures of the neuronal cell types in the telencephalon and the timeline of their emergence from larva to adult remain largely undescribed. Using an integrated analysis of single-cell transcriptomes of approximately 64,000 cells obtained from 6-day-postfertilization (dpf), 15-dpf, and adult telencephalon, we delineated nine main neuronal cell types in the pallium and eight in the subpallium and nominated novel marker genes. Comparing zebrafish and mouse neuronal cell types revealed both conserved and absent types and marker genes. Mapping of cell types onto a spatial larval reference atlas created a resource for anatomical and functional studies. Using this multiage approach, we discovered that although most neuronal subtypes are established early in the 6-dpf fish, some emerge or expand in number later in development. Analyzing the samples from each age separately revealed further complexity in the data, including several cell types that expand substantially in the adult forebrain and do not form clusters at the larval stages. Together, our work provides a comprehensive transcriptional analysis of the cell types in the zebrafish telencephalon and a resource for dissecting its development and function.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| | - Anna J Moyer
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| |
Collapse
|