1
|
Malankhanova T, Liu Z, Xu E, Bryant N, Sung KW, Li H, Strader S, West AB. LRRK2 interactions with microtubules are independent of LRRK2-mediated Rab phosphorylation. EMBO Rep 2025:10.1038/s44319-025-00486-6. [PMID: 40425780 DOI: 10.1038/s44319-025-00486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Deregulated microtubules are common defects associated with neurodegenerative diseases. Recent cryo-electron microscopy studies in cell lines overexpressing Parkinson's disease-associated LRRK2 suggest microtubule surfaces may regulate kinase activity by stabilizing different LRRK2 conformations. In macrophages with high endogenous LRRK2 expression, we find that nocodazole treatment destabilizes microtubules and impairs LRRK2-mediated Rab phosphorylation. GTP supplementation restores nocodazole-reduced Rab phosphorylation, linking LRRK2 kinase action to cellular GTP levels. Chemical microtubule stabilization, and kinetically trapping LRRK2 to microtubule surfaces, has negligible effects on Rab phosphorylation. In contrast, trapping LRRK2 to LAMP1-positive membranes upregulates LRRK2-mediated Rab phosphorylation. Proximity-labeling proteomics and colocalization studies show that LRRK2 robustly interacts with both polymerized and free tubulin transiently and independently of LRRK2 kinase activity. Endogenous LRRK2 complexed with type I inhibitors in neurons and macrophages fails to stably interact with microtubules, whereas bulky N-terminal tags fused to LRRK2 promotes stable microtubule binding in cell lines. Collectively, these results show that tubulin isoforms and microtubules are transient LRRK2-interacting proteins non-essential for LRRK2-mediated Rab phosphorylation.
Collapse
Affiliation(s)
- Tuyana Malankhanova
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Zhiyong Liu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Enquan Xu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ki Woon Sung
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Parlar SC, Senkevich K, Yu E, Ruskey JA, Ahmad J, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Alcalay RN, Fon EA, Trempe JF, Gan-Or Z. LRRK2 rare-variant per-domain genetic burden in Parkinson's Disease: association confined to the kinase domain. NPJ Parkinsons Dis 2025; 11:102. [PMID: 40301370 PMCID: PMC12041573 DOI: 10.1038/s41531-025-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
LRRK2 variants are key genetic risk factors for Parkinson's Disease (PD). We conducted a per-domain rare coding variant burden analysis, including 8,888 PD cases and 69,412 controls. In meta-analysis, the Kinase domain was strongly associated with PD (Exonic: PFDR = 1.61 × 10-22, Non-synonymous: PFDR = 1.54 × 10-23, CADD > 20: PFDR = 3.09 × 10-24). Excluding the p.G2019S variant nullified this effect. Nominal associations were found in the ANK and Roc-COR domains, with potentially protective variants, p.R793M and p.Q1353K.
Collapse
Affiliation(s)
- Sitki Cem Parlar
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jamil Ahmad
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sharon Hassin-Baer
- Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- The Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel Aviv, Israel
| | | | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg, Saint Petersburg, Russia
| | - Anton Emelyanov
- First Pavlov State Medical University of St. Petersburg, Saint Petersburg, Russia
| | - Sofya Pchelina
- First Pavlov State Medical University of St. Petersburg, Saint Petersburg, Russia
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Division of Movement Disorders, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Kong D, Meng L, Lin P, Wu G. Advancements in PROTAC-based therapies for neurodegenerative diseases. Future Med Chem 2025; 17:591-605. [PMID: 39931801 PMCID: PMC11901405 DOI: 10.1080/17568919.2025.2463310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/11/2025] Open
Abstract
Neurodegenerative diseases are characterized by impairments in movement and cognitive functions. These disorders are frequently associated with the accumulation of misfolded protein aggregates, which present significant challenges for treatment with conventional small-molecule inhibitors. While FDA-approved amyloid-beta-directed antibodies, such as Lecanemab, have recently shown clinical success in modifying disease progression, there are currently no treatments capable of curing neurodegenerative diseases. Emerging technologies like proteolysis-targeting chimeras (PROTACs) offer additional promise by targeting disease-causing proteins for degradation, potentially opening new therapeutic avenues. Recent experiments have demonstrated that PROTACs can specifically target and degrade pathogenic proteins associated with neurodegenerative diseases, thereby offering potential therapeutic avenues. This review discusses the latest advances in employing PROTACs for treating neurodegenerative diseases and delves into the associated challenges and opportunities. Our goal is to provide researchers in drug development with new insights on creating novel PROTACs for therapeutic applications.
Collapse
Affiliation(s)
- Deyuan Kong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Liying Meng
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanzhao Wu
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Raig ND, Surridge KJ, Sanz-Murillo M, Dederer V, Krämer A, Schwalm MP, Elson L, Chatterjee D, Mathea S, Hanke T, Leschziner AE, Reck-Peterson SL, Knapp S. Type-II kinase inhibitors that target Parkinson's Disease-associated LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.17.613365. [PMID: 39554022 PMCID: PMC11565912 DOI: 10.1101/2024.09.17.613365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Aberrant increases in kinase activity of leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD). Numerous LRRK2-selective type-I kinase inhibitors have been developed and some have entered clinical trials. In this study, we present the first LRRK2-selective type-II kinase inhibitors. Targeting the inactive conformation of LRRK2 is functionally distinct from targeting the active-like conformation using type-I inhibitors. We designed these inhibitors using a combinatorial chemistry approach fusing selective LRRK2 type-I and promiscuous type-II inhibitors by iterative cycles of synthesis supported by structural biology and activity testing. Our current lead structures are selective and potent LRRK2 inhibitors. Through cellular assays, cryo-electron microscopy structural analysis, and in vitro motility assays, we show that our inhibitors stabilize the open, inactive kinase conformation. These new conformation-specific compounds will be invaluable as tools to study LRRK2's function and regulation, and expand the potential therapeutic options for PD.
Collapse
Affiliation(s)
- Nicolai D. Raig
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Katherine J. Surridge
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marta Sanz-Murillo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin P. Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andres E. Leschziner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Samara L. Reck-Peterson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
5
|
Caspy I, Wang Z, Bharat TA. Structural biology inside multicellular specimens using electron cryotomography. Q Rev Biophys 2025; 58:e6. [PMID: 39801355 PMCID: PMC7617309 DOI: 10.1017/s0033583525000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Collapse
Affiliation(s)
- Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
6
|
de Jager L, Jansen KI, Hoogebeen R, Akhmanova A, Kapitein LC, Förster F, Howes SC. StableMARK-decorated microtubules in cells have expanded lattices. J Cell Biol 2025; 224:e202206143. [PMID: 39387699 PMCID: PMC11471893 DOI: 10.1083/jcb.202206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Microtubules are crucial in cells and are regulated by various mechanisms like posttranslational modifications, microtubule-associated proteins, and tubulin isoforms. Recently, the conformation of the microtubule lattice has also emerged as a potential regulatory factor, but it has remained unclear to what extent different lattices co-exist within the cell. Using cryo-electron tomography, we find that, while most microtubules have a compacted lattice (∼41 Å monomer spacing), approximately a quarter of the microtubules displayed more expanded lattice spacings. The addition of the microtubule-stabilizing agent Taxol increased the lattice spacing of all microtubules, consistent with results on reconstituted microtubules. Furthermore, correlative cryo-light and electron microscopy revealed that the stable subset of microtubules labeled by StableMARK, a marker for stable microtubules, predominantly displayed a more expanded lattice spacing (∼41.9 Å), further suggesting a close connection between lattice expansion and microtubule stability. The coexistence of different lattices and their correlation with stability implicate lattice spacing as an important factor in establishing specific microtubule subsets.
Collapse
Affiliation(s)
- Leanne de Jager
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Stuart C. Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Rahman RA, Zaman B, Islam MS, Rashid MH. Molecular dynamics studies reveal the structural impacts of LRRK2 R1441C and LRRK2 D1994A mutations in Parkinson's disease. Biochem Biophys Rep 2024; 40:101866. [PMID: 39610832 PMCID: PMC11603123 DOI: 10.1016/j.bbrep.2024.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Parkinson's Disease (PD) is a continuingly deteriorating neurological ailment affecting over 8.5 million patients globally as of 2019, and the numbers are expected to keep rising. To aid in identifying therapeutic targets, molecular dynamics simulations are convenient and cost-effective methods for enriching our knowledge of the molecular pathophysiology of diseases. Many proteins and their corresponding mutations have been identified to contribute to this disease, of which Leucine-rich repeat kinase 2 (LRRK2) is accountable for a significant percentage. Several mutations involving the domains in LRRK2 have been studied, which are known to interfere with various enzymatic processes, ultimately leading to trademark features of PD like aggregation of protein inclusions called Lewy Bodies (LBs), mitochondrial dysfunctions, etc. The precise molecular mechanism of the mutations' pathophysiology is still unclear. This research article looks at the structural effects of mutations, namely the R1441C and D1994A mutations, on the surrounding residues in the protein, offering novel insights into pathophysiological changes at an atomistic level. Our results indicate a gain of electrostatic interactions with a stable αβ motif within the LRR-Roc linker, amongst other changes. This article also highlights the potential involvement and importance of the αβ motif in LRRK2 associated PD.
Collapse
Affiliation(s)
- Ramisha A. Rahman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| | - Bushra Zaman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Arkansas, United States
| | - Md Shariful Islam
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Chemistry and Biochemistry, New Mexico State University, New Mexico, United States
| | - Md Harunur Rashid
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Vaisar D, Ahn NG. Latent allosteric control of protein interactions by ATP-competitive kinase inhibitors. Curr Opin Struct Biol 2024; 89:102935. [PMID: 39395271 PMCID: PMC11884338 DOI: 10.1016/j.sbi.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Protein kinase inhibitors designed to compete with ATP as a primary mode of action turn out to have considerable effects that go beyond their interference of nucleotide binding. New research shows how kinase activation and sometimes noncatalytic functions of protein kinases can be controlled by allosteric properties of kinase inhibitors, communicating perturbations from the active site to distal regulatory regions.
Collapse
Affiliation(s)
- David Vaisar
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA.
| |
Collapse
|
9
|
Martinez Fiesco JA, Li N, Alvarez de la Cruz A, Metcalfe RD, Beilina A, Cookson MR, Zhang P. 14-3-3 binding maintains the Parkinson's associated kinase LRRK2 in an inactive state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624879. [PMID: 39605327 PMCID: PMC11601620 DOI: 10.1101/2024.11.22.624879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central player in cellular signaling and a significant contributor to Parkinson's disease (PD) pathogenesis. 14-3-3 proteins are essential regulators of LRRK2, modulating its activity. Here, we present the cryo- electron microscopy structure of the LRRK2:14-3-3 2 autoinhibitory complex, showing that a 14-3-3 dimer stabilizes an autoinhibited LRRK2 monomer by binding to key phosphorylation sites and the COR-A and COR-B subdomains within the Roc-COR GTPase domain of LRRK2. This interaction locks LRRK2 in an inactive conformation, restricting LRR domain mobility and preventing dimerization and oligomer formation. Our mutagenesis studies reveal that PD-associated mutations at the COR:14-3-3 interface and within the GTPase domain reduce 14-3-3 binding, diminishing its inhibitory effect on LRRK2. These findings provide a structural basis for understanding how LRRK2 likely remains dormant within cells, illuminate aspects of critical PD biomarkers, and suggest therapeutic strategies to enhance LRRK2-14-3-3 interactions to treat PD and related disorders.
Collapse
|
10
|
Qian X, Yao M, Xu J, Dong N, Chen S. From cancer therapy to cardiac safety: the role of proteostasis in drug-induced cardiotoxicity. Front Pharmacol 2024; 15:1472387. [PMID: 39611175 PMCID: PMC11602306 DOI: 10.3389/fphar.2024.1472387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced cardiotoxicity (DICT) poses a significant challenge in the prognosis of cancer patients, particularly with the use of antineoplastic agents like anthracyclines and targeted therapies such as trastuzumab. This review delves into the intricate interplay between drugs and proteins within cardiac cells, focusing on the role of proteostasis as a therapeutic target for mitigating cardiotoxicity. We explore the in vivo modeling of proteostasis, highlighting the complex intracellular environment and the emerging techniques for monitoring proteostasis. Additionally, we discuss how cardiotoxic drugs disrupt protein homeostasis through direct chemical denaturation, endoplasmic reticulum stress, unfolded protein response, chaperone dysfunction, impairment of the proteasome system, and dysregulation of autophagy. Finally, we provide insights into the applications of cardioprotective drugs targeting proteostasis to prevent cardiotoxicity and the adoption of structural proteomics to evaluate potential cardiotoxicity. By gaining a deeper understanding of the role of proteostasis underlying DICT, we can pave the way for the development of targeted therapeutic strategies to safeguard cardiac function while maximizing the therapeutic potential of antineoplastic drugs.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdong Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Sun S, Hodel M, Wang X, De Vicente J, Haritunians T, Debebe A, Hung CT, Ma C, Malique A, Nguyen HN, Agam M, Maloney MT, Goo MS, Kluss JH, Mishra R, Frein J, Foster A, Ballentine S, Pandey U, Kern J, Yang S, Mengesha E, Balasubramanian I, Arguello A, Estrada AA, Gao N, Peter I, McGovern DPB, Henry AG, Stappenbeck TS, Liu TC. Macrophage LRRK2 hyperactivity impairs autophagy and induces Paneth cell dysfunction. Sci Immunol 2024; 9:eadi7907. [PMID: 39514635 PMCID: PMC11730131 DOI: 10.1126/sciimmunol.adi7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
LRRK2 polymorphisms (G2019S/N2081D) that increase susceptibility to Parkinson's disease and Crohn's disease (CD) lead to LRRK2 kinase hyperactivity and suppress autophagy. This connection suggests that LRRK2 kinase inhibition, a therapeutic strategy being explored for Parkinson's disease, may also benefit patients with CD. Paneth cell homeostasis is tightly regulated by autophagy, and their dysfunction is a precursor to gut inflammation in CD. Here, we found that patients with CD and mice carrying hyperactive LRRK2 polymorphisms developed Paneth cell dysfunction. We also found that LRRK2 kinase can be activated in the context of interactions between genes (genetic autophagy deficiency) and the environment (cigarette smoking). Unexpectedly, lamina propria immune cells were the main intestinal cell types that express LRRK2, instead of Paneth cells as previously suggested. We showed that LRRK2-mediated pro-inflammatory cytokine release from phagocytes impaired Paneth cell function, which was rescued by LRRK2 kinase inhibition through activation of autophagy. Together, these data suggest that LRRK2 kinase inhibitors maintain Paneth cell homeostasis by restoring autophagy and may represent a therapeutic strategy for CD.
Collapse
Affiliation(s)
- Shengxiang Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miki Hodel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiang Wang
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | | | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anketse Debebe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount-Sinai, New York, NY 10029, USA
| | - Chen-Ting Hung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Atika Malique
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Maayan Agam
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | | | - Marisa S. Goo
- Denali Therapeutics, South San Francisco, CA 94080, USA
| | | | - Richa Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Frein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Foster
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Ballentine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Uday Pandey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin Kern
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shaohong Yang
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | - Nan Gao
- Department of Biological Sciences, Rutgers, State University of New Jersey, Newark, NJ 07102, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount-Sinai, New York, NY 10029, USA
| | - Dermot P. B. McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Watanabe R, Zyla D, Parekh D, Hong C, Jones Y, Schendel SL, Wan W, Castillon G, Saphire EO. Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography. Cell 2024; 187:5587-5603.e19. [PMID: 39293445 PMCID: PMC11455616 DOI: 10.1016/j.cell.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.
Collapse
Affiliation(s)
- Reika Watanabe
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dawid Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Connor Hong
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ying Jones
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN 37235, USA
| | - Guillaume Castillon
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Huang X, Wang Y, Xiang Y, Zhao Y, Pan H, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. Genetic Analysis of Neurite Outgrowth Inhibitor-Associated Genes in Parkinson's Disease: A Cross-Sectional Cohort Study. CNS Neurosci Ther 2024; 30:e70070. [PMID: 39354865 PMCID: PMC11445604 DOI: 10.1111/cns.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo-A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand-receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)-associated genes and PD from a signaling pathway perspective. METHODS We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo-associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype-phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. RESULTS Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo-associated genes might mitigate PD risk. However, common variants of Nogo-associated genes showed no association with PD development in two cohorts. Furthermore, genotype-phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+-induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. CONCLUSIONS Our preliminary investigation highlights the association of Nogo-associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications.
Collapse
Affiliation(s)
- Xiurong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
15
|
Hutchings J, Villa E. Expanding insights from in situ cryo-EM. Curr Opin Struct Biol 2024; 88:102885. [PMID: 38996624 DOI: 10.1016/j.sbi.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The combination of cryo-electron tomography and subtomogram analysis affords 3D high-resolution views of biological macromolecules in their native cellular environment, or in situ. Streamlined methods for acquiring and processing these data are advancing attainable resolutions into the realm of drug discovery. Yet regardless of resolution, structure prediction driven by artificial intelligence (AI) combined with subtomogram analysis is becoming powerful in understanding macromolecular assemblies. Automated and AI-assisted data mining is increasingly necessary to cope with the growing wealth of tomography data and to maximize the information obtained from them. Leveraging developments from AI and single-particle analysis could be essential in fulfilling the potential of in situ cryo-EM. Here, we highlight new developments for in situ cryo-EM and the emerging potential for AI in this process.
Collapse
Affiliation(s)
- Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Zhang X, Mahamid J. Protocol for subtomogram averaging of helical filaments in cryo-electron tomography. STAR Protoc 2024; 5:103272. [PMID: 39154345 PMCID: PMC11378235 DOI: 10.1016/j.xpro.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Helical filaments are essential macromolecular elements in cellular organization and dynamics. Recent advances in cryo-electron tomography allow faithful imaging of isolated or in-cell filaments. Here, we present a protocol to generate density maps at sub-nanometer resolution of helical filaments by subtomogram averaging, exemplified with isolated mumps virus nucleocapsids and their in-cell form as an extension of the protocol. We detail procedures from pre-processing of tilt-series movie frames to refinement of reconstructed averages for streamlined data processing of helical filaments. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Baden-Württemberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Baden-Württemberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Baden-Württemberg, Germany.
| |
Collapse
|
17
|
Shay TF, Jang S, Brittain TJ, Chen X, Walker B, Tebbutt C, Fan Y, Wolfe DA, Arokiaraj CM, Sullivan EE, Ding X, Wang TY, Lei Y, Chuapoco MR, Chou TF, Gradinaru V. Human cell surface-AAV interactomes identify LRP6 as blood-brain barrier transcytosis receptor and immune cytokine IL3 as AAV9 binder. Nat Commun 2024; 15:7853. [PMID: 39245720 PMCID: PMC11381518 DOI: 10.1038/s41467-024-52149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Adeno-associated viruses (AAVs) are foundational gene delivery tools for basic science and clinical therapeutics. However, lack of mechanistic insight, especially for engineered vectors created by directed evolution, can hamper their application. Here, we adapt an unbiased human cell microarray platform to determine the extracellular and cell surface interactomes of natural and engineered AAVs. We identify a naturally-evolved and serotype-specific interaction between the AAV9 capsid and human interleukin 3 (IL3), with possible roles in host immune modulation, as well as lab-evolved low-density lipoprotein receptor-related protein 6 (LRP6) interactions specific to engineered capsids with enhanced blood-brain barrier crossing in non-human primates after intravenous administration. The unbiased cell microarray screening approach also allows us to identify off-target tissue binding interactions of engineered brain-enriched AAV capsids that may inform vectors' peripheral organ tropism and side effects. Our cryo-electron tomography and AlphaFold modeling of capsid-interactor complexes reveal LRP6 and IL3 binding sites. These results allow confident application of engineered AAVs in diverse organisms and unlock future target-informed engineering of improved viral and non-viral vectors for non-invasive therapeutic delivery to the brain.
Collapse
Affiliation(s)
- Timothy F Shay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Seongmin Jang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tyler J Brittain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xinhong Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Beth Walker
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Claire Tebbutt
- Charles River Laboratories, High Peak Business Park, Buxton Road, Chinley, SK23 6FJ, UK
| | - Yujie Fan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Damien A Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Erin E Sullivan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaozhe Ding
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting-Yu Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yaping Lei
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Miguel R Chuapoco
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tsui-Fen Chou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
18
|
Tezuka T, Ishiguro M, Taniguchi D, Osogaguchi E, Shiba-Fukushima K, Ogata J, Ishii R, Ikeda A, Li Y, Yoshino H, Matsui T, Kaida K, Funayama M, Nishioka K, Kumazawa F, Matsubara T, Tsuda H, Saito Y, Murayama S, Imai Y, Hattori N. Clinical characteristics and pathophysiological properties of newly discovered LRRK2 variants associated with Parkinson's disease. Neurobiol Dis 2024; 199:106571. [PMID: 38901781 DOI: 10.1016/j.nbd.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most common gene responsible for familial Parkinson's disease (PD). The gene product of LRRK2 contains multiple protein domains, including armadillo repeat, ankyrin repeat, leucine-rich repeat (LRR), Ras-of-complex (ROC), C-terminal of ROC (COR), kinase, and WD40 domains. In this study, we performed genetic screening of LRRK2 in our PD cohort, detecting sixteen LRRK2 rare variants. Among them, we selected seven variants that are likely to be familial and characterized them in terms of LRRK2 protein function, along with clinical information and one pathological analysis. The seven variants were S1120P and N1221K in the LRR domain; I1339M, S1403R, and V1447M in the ROC domain; and I1658F and D1873H in the COR domain. The kinase activity of the LRRK2 variants N1221K, S1403R, V1447M, and I1658F toward Rab10, a well-known phosphorylation substrate, was higher than that of wild-type LRRK2. LRRK2 D1873H showed enhanced self-association activity, whereas LRRK2 S1403R and D1873H showed reduced microtubule-binding activity. Pathological analysis of a patient with the LRRK2 V1447M variant was also performed, which revealed Lewy pathology in the brainstem. No functional alterations in terms of kinase activity, self-association activity, and microtubule-binding activity were detected in LRRK2 S1120P and I1339M variants. However, the patient with PD carrying LRRK2 S1120P variant also had a heterozygous Glucosylceramidase beta 1 (GBA1) L444P variant. In conclusion, we characterized seven LRRK2 variants potentially associated with PD. Five of the seven variants in different LRRK2 domains exhibited altered properties in kinase activity, self-association, and microtubule-binding activity, suggesting that each domain variant may contribute to disease progression in different ways.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Ishiguro
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ehoto Osogaguchi
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Faculty of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Jun Ogata
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryota Ishii
- Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Aya Ikeda
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuanzhe Li
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Taro Matsui
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kenichi Kaida
- Division of Neurology, Anti-aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama 350-8550, Japan
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Fumihisa Kumazawa
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyasu Matsubara
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Drug Development for Parkinson's Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
19
|
Schiøtz OH, Kaiser CJO, Klumpe S, Morado DR, Poege M, Schneider J, Beck F, Klebl DP, Thompson C, Plitzko JM. Serial Lift-Out: sampling the molecular anatomy of whole organisms. Nat Methods 2024; 21:1684-1692. [PMID: 38110637 PMCID: PMC11399102 DOI: 10.1038/s41592-023-02113-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells. Application of the technique to multicellular organisms and tissues, however, is still limited by sample preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs subsequent preparation due to increased thinning times and the need for extraction procedures. Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the thickness of the final lamella, typically <300 nm. Here we introduce Serial Lift-Out, an enhanced lift-out technique that increases throughput and obtainable contextual information by preparing multiple sections from single transfers. We apply Serial Lift-Out to Caenorhabditis elegans L1 larvae, yielding a cryo-ET dataset sampling the worm's anterior-posterior axis, and resolve its ribosome structure to 7 Å and a subregion of the 11-protofilament microtubule to 13 Å, illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J O Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Dustin R Morado
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department for Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Matthias Poege
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David P Klebl
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher Thompson
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Jürgen M Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
20
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Held RG, Liang J, Brunger AT. Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2403136121. [PMID: 38923992 PMCID: PMC11228483 DOI: 10.1073/pnas.2403136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
22
|
Negi S, Khurana N, Duggal N. The misfolding mystery: α-synuclein and the pathogenesis of Parkinson's disease. Neurochem Int 2024; 177:105760. [PMID: 38723900 DOI: 10.1016/j.neuint.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) are characterized by the death of neurons in specific areas of the brain. One of the proteins that is involved in the pathogenesis of PD is α-synuclein (α-syn). α-Syn is a normal protein that is found in all neurons, but in PD, it misfolds and aggregates into toxic fibrils. These fibrils can then coalesce into pathological inclusions, such as Lewy bodies and Lewy neurites. The pathogenic pathway of PD is thought to involve a number of steps, including misfolding and aggregation of α-syn, mitochondrial dysfunction, protein clearance impairment, neuroinflammation and oxidative stress. A deeper insight into the structure of α-syn and its fibrils could aid in understanding the disease's etiology. The prion-like nature of α-syn is also an important area of research. Prions are misfolded proteins that can spread from cell to cell, causing other proteins to misfold as well. It is possible that α-syn may behave in a similar way, spreading from cell to cell and causing a cascade of misfolding and aggregation. Various post-translational alterations have also been observed to play a role in the pathogenesis of PD. These alterations can involve a variety of nuclear and extranuclear activities, and they can lead to the misfolding and aggregation of α-syn. A better understanding of the pathogenic pathway of PD could lead to the development of new therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Samir Negi
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India
| | - Navneet Duggal
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India.
| |
Collapse
|
23
|
Dederer V, Sanz Murillo M, Karasmanis EP, Hatch KS, Chatterjee D, Preuss F, Abdul Azeez KR, Nguyen LV, Galicia C, Dreier B, Plückthun A, Versees W, Mathea S, Leschziner AE, Reck-Peterson SL, Knapp S. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. J Biol Chem 2024; 300:107469. [PMID: 38876305 PMCID: PMC11284679 DOI: 10.1016/j.jbc.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Collapse
Affiliation(s)
- Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Eva P Karasmanis
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathryn S Hatch
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Kamal R Abdul Azeez
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Landon Vu Nguyen
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christian Galicia
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wim Versees
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Andres E Leschziner
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA.
| |
Collapse
|
24
|
Chen S, Basiashvili T, Hutchings J, Murillo MS, Suarez AV, Louro JA, Leschziner AE, Villa E. Cryo-electron tomography reveals the microtubule-bound form of inactive LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599606. [PMID: 38948781 PMCID: PMC11212993 DOI: 10.1101/2024.06.18.599606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2's kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tamar Basiashvili
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joshua Hutchings
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amalia Villagran Suarez
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaime Alegrio Louro
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andres E. Leschziner
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
25
|
Dudka W, Salo VT, Mahamid J. Zooming into lipid droplet biology through the lens of electron microscopy. FEBS Lett 2024; 598:1127-1142. [PMID: 38726814 DOI: 10.1002/1873-3468.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.
Collapse
Affiliation(s)
- Wioleta Dudka
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
26
|
Wang Y, Fan W, Zhang G, Zhao L, Li T, Zhang L, Hou T, Hong H, You Z, Sun Q, Li R, Liu C. LRRK2 is involved in heat exposure-induced acute lung injury and alveolar type II epithelial cell dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123643. [PMID: 38428793 DOI: 10.1016/j.envpol.2024.123643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Heat exposure induces excessive hyperthermia associated with systemic inflammatory response that leads to multiple organ dysfunction including acute lung injury. However, how heat impairs the lung remains elusive so far. We aimed to explore the underlying mechanism by focusing on leucine-rich repeat kinase 2 (LRRK2), which was associated with lung homeostasis. Both in vivo and in vitro models were induced by heat exposure. Firstly, heat exposure exerted core temperature (Tc) disturbance, pulmonary dysfunction, atelectasis, inflammation, impaired energy metabolism, and reduced surfactant proteins in the lung of mice. In addition, decreased LRRK2 expression and increased heat shock proteins (HSPs) 70 were observed with heat exposure in both the lung of mice and alveolar type II epithelial cells (AT2). Furthermore, LRRK2 inhibition aggravated heat exposure-initiated Tc dysregulation, injury in the lung and AT2 cells, and enhanced HSP70 expression. In conclusion, LRRK2 is involved in heat-induced acute lung injury and AT2 cell dysfunction.
Collapse
Affiliation(s)
- Yindan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lisha Zhao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ting Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Huihua Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhenqiang You
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
27
|
Pepe A, Groen J, Zurzolo C, Sartori-Rupp A. Correlative cryo-microscopy pipelines for in situ cellular studies. Methods Cell Biol 2024; 187:175-203. [PMID: 38705624 DOI: 10.1016/bs.mcb.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative cryo-microscopy pipelines combining light and electron microscopy and tomography in cryogenic conditions (cryoCLEM) on the same sample are powerful methods for investigating the structure of specific cellular targets identified by a fluorescent tag within their unperturbed cellular environment. CryoCLEM approaches circumvent one of the inherent limitations of cryo EM, and specifically cryo electron tomography (cryoET), of identifying the imaged structures in the crowded 3D environment of cells. Whereas several cryoCLEM approaches are based on thinning the sample by cryo FIB milling, here we present detailed protocols of two alternative cryoCLEM approaches for in situ studies of adherent cells at the single-cell level without the need for such cryo-thinning. The first approach is a complete cryogenic pipeline in which both fluorescence and electronic imaging are performed on frozen-hydrated samples, the second is a hybrid cryoCLEM approach in which fluorescence imaging is performed at room temperature, followed by rapid freezing and subsequent cryoEM imaging. We provide a detailed description of the two methods we have employed for imaging fluorescently labeled cellular structures with thickness below 350-500nm, such as cell protrusions and organelles located in the peripheral areas of the cells.
Collapse
Affiliation(s)
- Anna Pepe
- Membrane Traffic and Pathogenesis, Institut Pasteur, Paris, France
| | - Johannes Groen
- NanoImaging Core Facility, Institut Pasteur, Paris, France; Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, Paris, France
| | | |
Collapse
|
28
|
Wu S, Yang Y, Zhang M, Khan AU, Dai J, Ouyang J. Serpin peptidase inhibitor, clade E, member 2 in physiology and pathology: recent advancements. Front Mol Biosci 2024; 11:1334931. [PMID: 38469181 PMCID: PMC10927012 DOI: 10.3389/fmolb.2024.1334931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
Serine protease inhibitors (serpins) are the most numerous and widespread multifunctional protease inhibitor superfamily and are expressed by all eukaryotes. Serpin E2 (serpin peptidase inhibitor, clade E, member 2), a member of the serine protease inhibitor superfamily is a potent endogenous thrombin inhibitor, mainly found in the extracellular matrix and platelets, and expressed in numerous organs and secreted by many cell types. The multiple functions of serpin E2 are mainly mediated through regulating urokinase-type plasminogen activator (uPA, also known as PLAU), tissue-type plasminogen activator (tPA, also known as PLAT), and matrix metalloproteinase activity, and include hemostasis, cell adhesion, and promotion of tumor metastasis. The importance serpin E2 is clear from its involvement in numerous physiological and pathological processes. In this review, we summarize the structural characteristics of the Serpin E2 gene and protein, as well as its roles physiology and disease.
Collapse
Affiliation(s)
- Shutong Wu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Xinjin Branch of Chengdu Municipal Public Security Bureau, Chengdu, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, China
| | - Meiling Zhang
- Chengdu Municipal Public Security Bureau Wenjiang Branch, Chengdu, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Sharma PK, Weng JH, Manschwetus JT, Wu J, Ma W, Herberg FW, Taylor SS. Role of the leucine-rich repeat protein kinase 2 C-terminal tail in domain cross-talk. Biochem J 2024; 481:313-327. [PMID: 38305364 PMCID: PMC10903466 DOI: 10.1042/bcj20230477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.
Collapse
Affiliation(s)
- Pallavi Kaila Sharma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Jascha T. Manschwetus
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Hessen, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, Vermont
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Hessen, Germany
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| |
Collapse
|
30
|
McCafferty CL, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. Cell 2024; 187:563-584. [PMID: 38306982 DOI: 10.1016/j.cell.2024.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Biology spans a continuum of length and time scales. Individual experimental methods only glimpse discrete pieces of this spectrum but can be combined to construct a more holistic view. In this Review, we detail the latest advancements in volume electron microscopy (vEM) and cryo-electron tomography (cryo-ET), which together can visualize biological complexity across scales from the organization of cells in large tissues to the molecular details inside native cellular environments. In addition, we discuss emerging methodologies for integrating three-dimensional electron microscopy (3DEM) imaging with multimodal data, including fluorescence microscopy, mass spectrometry, single-particle analysis, and AI-based structure prediction. This multifaceted approach fills gaps in the biological continuum, providing functional context, spatial organization, molecular identity, and native interactions. We conclude with a perspective on incorporating diverse data into computational simulations that further bridge and extend length scales while integrating the dimension of time.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Research Group CryoEM Technology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Benjamin D Engel
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
31
|
Huang H, Lin L, Wu T, Wu C, Zhou L, Li G, Su F, Liang F, Guo W, Chen W, Jiang Q, Guan Y, Li X, Xu P, Zhang Y, Smith W, Pei Z. Phosphorylation of AQP4 by LRRK2 R1441G impairs glymphatic clearance of IFNγ and aggravates dopaminergic neurodegeneration. NPJ Parkinsons Dis 2024; 10:31. [PMID: 38296953 PMCID: PMC10831045 DOI: 10.1038/s41531-024-00643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Aquaporin-4 (AQP4) is essential for normal functioning of the brain's glymphatic system. Impaired glymphatic function is associated with neuroinflammation. Recent clinical evidence suggests the involvement of glymphatic dysfunction in LRRK2-associated Parkinson's disease (PD); however, the precise mechanism remains unclear. The pro-inflammatory cytokine interferon (IFN) γ interacts with LRRK2 to induce neuroinflammation. Therefore, we examined the AQP4-dependent glymphatic system's role in IFNγ-mediated neuroinflammation in LRRK2-associated PD. We found that LRRK2 interacts with and phosphorylates AQP4 in vitro and in vivo. AQP4 phosphorylation by LRRK2 R1441G induced AQP4 depolarization and disrupted glymphatic IFNγ clearance. Exogeneous IFNγ significantly increased astrocyte expression of IFNγ receptor, amplified AQP4 depolarization, and exacerbated neuroinflammation in R1441G transgenic mice. Conversely, inhibiting LRRK2 restored AQP4 polarity, improved glymphatic function, and reduced IFNγ-mediated neuroinflammation and dopaminergic neurodegeneration. Our findings establish a link between LRRK2-mediated AQP4 phosphorylation and IFNγ-mediated neuroinflammation in LRRK2-associated PD, guiding the development of LRRK2 targeting therapy.
Collapse
Affiliation(s)
- Heng Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Leping Zhou
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Wanli Smith
- Department of Psychiatry, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| |
Collapse
|
32
|
Zhang Z, Li C, Wang W, Dong Z, Liu G, Dong Y, Zhang Y. Towards full-stack deep learning-empowered data processing pipeline for synchrotron tomography experiments. Innovation (N Y) 2024; 5:100539. [PMID: 38089566 PMCID: PMC10711238 DOI: 10.1016/j.xinn.2023.100539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Synchrotron tomography experiments are transitioning into multifunctional, cross-scale, and dynamic characterizations, enabled by new-generation synchrotron light sources and fast developments in beamline instrumentation. However, with the spatial and temporal resolving power entering a new era, this transition generates vast amounts of data, which imposes a significant burden on the data processing end. Today, as a highly accurate and efficient data processing method, deep learning shows great potential to address the big data challenge being encountered at future synchrotron beamlines. In this review, we discuss recent advances employing deep learning at different stages of the synchrotron tomography data processing pipeline. We also highlight how applications in other data-intensive fields, such as medical imaging and electron tomography, can be migrated to synchrotron tomography. Finally, we provide our thoughts on possible challenges and opportunities as well as the outlook, envisioning selected deep learning methods, curated big models, and customized learning strategies, all through an intelligent scheduling solution.
Collapse
Affiliation(s)
- Zhen Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Chun Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gongfa Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
34
|
Zhu H, Tonelli F, Turk M, Prescott A, Alessi DR, Sun J. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 2023; 382:1404-1411. [PMID: 38127736 PMCID: PMC10786121 DOI: 10.1126/science.adi9926] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson's disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo-electron microscopy structures of Rab29-LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Martin Turk
- Cryo-EM and Tomography Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alan Prescott
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
35
|
Iannotta L, Emanuele M, Favetta G, Tombesi G, Vandewynckel L, Lara Ordóñez AJ, Saliou JM, Drouyer M, Sibran W, Civiero L, Nichols RJ, Athanasopoulos PS, Kortholt A, Chartier-Harlin MC, Greggio E, Taymans JM. PAK6-mediated phosphorylation of PPP2R2C regulates LRRK2-PP2A complex formation. Front Mol Neurosci 2023; 16:1269387. [PMID: 38169846 PMCID: PMC10759229 DOI: 10.3389/fnmol.2023.1269387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases. To investigate this, we used PhosTag gel electrophoresis with purified proteins and found that PAK6 phosphorylates the PP2A regulatory subunit PPP2R2C at position S381. While S381 phosphorylation did not affect PP2A holoenzyme formation, a S381A phosphodead PPP2R2C showed impaired binding to LRRK2. Also, PAK6 kinase activity changed PPP2R2C subcellular localization in a S381 phosphorylation-dependent manner. Finally, PAK6-mediated dephosphorylation of LRRK2 was unaffected by phosphorylation of PPP2R2C at S381, suggesting that the previously reported mechanism whereby PAK6-mediated phosphorylation of 14-3-3 proteins promotes 14-3-3-LRRK2 complex dissociation and consequent exposure of LRRK2 phosphosites for dephosphorylation is dominant. Taken together, we conclude that PAK6-mediated phosphorylation of PPP2R2C influences the recruitment of PPP2R2C to the LRRK2 complex and PPP2R2C subcellular localization, pointing to an additional mechanism in the fine-tuning of LRRK2 phosphorylation.
Collapse
Affiliation(s)
- Lucia Iannotta
- Department of Biology, University of Padova, Padua, Italy
- National Research Council, c/o Humanitas Research Hospital, Institute of Neuroscience, Rozzano, Italy
| | - Marco Emanuele
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Giulia Favetta
- Department of Biology, University of Padova, Padua, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, Padua, Italy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Laurine Vandewynckel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Jean-Michel Saliou
- University of Lille, CNRS, Inserm, CHU Lille, Institute Pasteur de Lille, US 41 – UAR 2014 – PLBS, Lille, France
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - William Sibran
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Laura Civiero
- Department of Biology, University of Padova, Padua, Italy
- IRCSS, San Camillo Hospital, Venice, Italy
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University West Campus, Isparta, Turkey
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padua, Italy
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
36
|
Sanz Murillo M, Villagran Suarez A, Dederer V, Chatterjee D, Alegrio Louro J, Knapp S, Mathea S, Leschziner AE. Inhibition of Parkinson's disease-related LRRK2 by type I and type II kinase inhibitors: Activity and structures. SCIENCE ADVANCES 2023; 9:eadk6191. [PMID: 38039358 PMCID: PMC10691770 DOI: 10.1126/sciadv.adk6191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.
Collapse
Affiliation(s)
- Marta Sanz Murillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Amalia Villagran Suarez
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Jaime Alegrio Louro
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
40
|
Reimer JM, Dickey AM, Lin YX, Abrisch RG, Mathea S, Chatterjee D, Fay EJ, Knapp S, Daugherty MD, Reck-Peterson SL, Leschziner AE. Structure of LRRK1 and mechanisms of autoinhibition and activation. Nat Struct Mol Biol 2023; 30:1735-1745. [PMID: 37857821 PMCID: PMC10643122 DOI: 10.1038/s41594-023-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Leucine Rich Repeat Kinase 1 and 2 (LRRK1 and LRRK2) are homologs in the ROCO family of proteins in humans. Despite their shared domain architecture and involvement in intracellular trafficking, their disease associations are strikingly different: LRRK2 is involved in familial Parkinson's disease while LRRK1 is linked to bone diseases. Furthermore, Parkinson's disease-linked mutations in LRRK2 are typically autosomal dominant gain-of-function while those in LRRK1 are autosomal recessive loss-of-function. Here, to understand these differences, we solved cryo-EM structures of LRRK1 in its monomeric and dimeric forms. Both differ from the corresponding LRRK2 structures. Unlike LRRK2, which is sterically autoinhibited as a monomer, LRRK1 is sterically autoinhibited in a dimer-dependent manner. LRRK1 has an additional level of autoinhibition that prevents activation of the kinase and is absent in LRRK2. Finally, we place the structural signatures of LRRK1 and LRRK2 in the context of the evolution of the LRRK family of proteins.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yu Xuan Lin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Robert G Abrisch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sebastian Mathea
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Elizabeth J Fay
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proc Natl Acad Sci U S A 2023; 120:e2309698120. [PMID: 37844218 PMCID: PMC10614619 DOI: 10.1073/pnas.2309698120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are responsible for late-onset autosomal dominant Parkinson's disease. LRRK2 has been implicated in a wide range of physiological processes including membrane repair in the endolysosomal system. Here, using cell-free systems, we report that purified LRRK2 directly binds acidic lipid bilayers with a preference for highly curved bilayers. While this binding is nucleotide independent, LRRK2 can also deform low-curvature liposomes into narrow tubules in a guanylnucleotide-dependent but Adenosine 5'-triphosphate-independent way. Moreover, assembly of LRRK2 into scaffolds at the surface of lipid tubules can constrict them. We suggest that an interplay between the membrane remodeling and signaling properties of LRRK2 may be key to its physiological function. LRRK2, via its kinase activity, may achieve its signaling role at sites where membrane remodeling occurs.
Collapse
Affiliation(s)
- Xinbo Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shujun Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
42
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
43
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
44
|
Zhu C, Herbst S, Lewis PA. Leucine-rich repeat kinase 2 at a glance. J Cell Sci 2023; 136:jcs259724. [PMID: 37698513 PMCID: PMC10508695 DOI: 10.1242/jcs.259724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.
Collapse
Affiliation(s)
- Christiane Zhu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
45
|
Watanabe R, Saphire EO. The in situ Structural Approach to Reveal the Filovirus Budding Mechanism. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:900-901. [PMID: 37613812 DOI: 10.1093/micmic/ozad067.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Reika Watanabe
- La Jolla Institute for Immunology, Center for Infectious Disease and Vaccine Research, La Jolla, CA, United States
| | - Erica Ollmann Saphire
- La Jolla Institute for Immunology, Center for Infectious Disease and Vaccine Research, La Jolla, CA, United States
| |
Collapse
|
46
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. MAPT rs17649553 T allele is associated with better verbal memory and higher small-world properties in Parkinson's disease. Neurobiol Aging 2023; 129:219-231. [PMID: 37413784 DOI: 10.1016/j.neurobiolaging.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Currently, over 90 genetic loci have been found to be associated with Parkinson's disease (PD) in genome-wide association studies, nevertheless, the effects of these genetic variants on the clinical features and brain structure of PD patients are largely unknown. This study investigated the effects of microtubule-associated protein tau (MAPT) rs17649553 (C>T), a genetic variant associated with reduced PD risk, on the clinical manifestations and brain networks of PD patients. We found MAPT rs17649553 T allele was associated with better verbal memory in PD patients. In addition, MAPT rs17649553 significantly shaped the topology of gray matter covariance network and white matter network. Both the network metrics in gray matter covariance network and white matter network were correlated with verbal memory, however, the mediation analysis showed that it was the small-world properties in white matter network that mediated the effects of MAPT rs17649553 on verbal memory. These results suggest that MAPT rs17649553 T allele is associated with higher small-world properties in structural network and better verbal memory in PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital Affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
47
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
48
|
Störmer E, Weng JH, Wu J, Bertinetti D, Kaila Sharma P, Ma W, Herberg FW, Taylor SS. Capturing the domain crosstalk in full length LRRK2 and LRRK2RCKW. Biochem J 2023; 480:BCJ20230126. [PMID: 37212165 PMCID: PMC10317166 DOI: 10.1042/bcj20230126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
LRRK2 is a multi-domain protein with three catalytically inert N-terminal domains (NtDs) and four C-terminal domains, including a kinase and a GTPase domain. LRRK2 mutations are linked to Parkinson's Disease. Recent structures of LRRK2RCKW and a full-length inactive LRRK2 (fl-LRRK2INACT) monomer revealed that the kinase domain drives LRRK2 activation. The LRR domain and also an ordered LRR- COR linker, wrap around the C-lobe of the kinase domain and sterically block the substrate binding surface in fl-LRRK2INACT. Here we focus on the crosstalk between domains. Our biochemical studies of GTPase and kinase activities of fl-LRRK2 and LRRK2RCKW reveal how mutations influence this crosstalk differently depending on the domain borders investigated. Furthermore, we demonstrate that removing the NtDs leads to altered intramolecular regulation. To further investigate the crosstalk, we used Hydrogen-Deuterium exchange Mass Spectrometry (HDX-MS) to characterize the conformation of LRRK2RCKW and Gaussian Accelerated Molecular Dynamics (GaMD) to create dynamic portraits of fl-LRRK2 and LRRK2RCKW. These models allowed us to investigate the dynamic changes in wild type and mutant LRRK2s. Our data show that the a3ROC helix, the Switch II motif in the ROC domain, and the LRR-ROC linker play crucial roles in mediating local and global conformational changes. We demonstrate how these regions are affected by other domains in fl-LRRK2 and LRRK2RCKW and show how unleashing of the NtDs as well as PD mutations lead to changes in conformation and dynamics of the ROC and kinase domains which ultimately impact kinase and GTPase activities. These allosteric sites are potential therapeutic targets.
Collapse
Affiliation(s)
- Eliza Störmer
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, U.S.A
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, U.S.A
| | | | | | - Wen Ma
- Department of Chemistry and Biochemistry, University of California, San Diego, U.S.A
| | | | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, U.S.A
| |
Collapse
|
49
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|