1
|
McCallin S, Drulis-Kawa Z, Ferry T, Pirnay JP, Nir-Paz R. Phages and phage-borne enzymes as new antibacterial agents. Clin Microbiol Infect 2025; 31:910-921. [PMID: 37866680 DOI: 10.1016/j.cmi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Persistent and resistant infections caused by bacteria are increasing in numbers and pose a treatment challenge to the medical community and public health. However, solutions with new agents that will enable effective treatment are lacking or delayed by complex development and authorizations. Bacteriophages are known as a possible solution for invasive infections for decades but were seldom used in the Western world. OBJECTIVES To provide an overview of the current status and emerging use of bacteriophage therapy and phage-based products, as well as touch on the socioeconomic and regulatory issues surrounding their development. SOURCES Peer-reviewed articles and authors' first-hand experience. CONTENT Although phage therapy is making a comeback since its early discovery, there are many hurdles to its current use. The lack of appropriate standardized bacterial susceptibility testing; lack of a simple business model and authorization for the need of many phages to treat a single species infection; and the lack of knowledge on predictable outcome measures are just a few examples. In this review, we explore the possible routes for phage use, either based on local specialty centres or by industry; the current status of phage therapy, which is mainly based on single-centre or single-bacterial cohorts, and emerging clinical trials; local country-level frameworks for phage utilization even without full authorization; and the use of phage-derived products as alternatives to antibiotics. We also explore what may be the current indications based on the possible availability of phages. IMPLICATIONS Although phages are emerging as a potential treatment for non-resolving and life-threatening infections, the models for their use and production still need to be defined by the medical community, regulatory bodies, and industry. Bacteriophages may have a great potential for infection treatment but many aspects still need to be defined before their routine use in the clinic.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland
| | - Zuzanna Drulis-Kawa
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Tristan Ferry
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Centre interrégional de référence pour la prise en charge des infections ostéoarticulaires complexes, CRIOAc Lyon, Hospices Civils de Lyon, Lyon, France; Infectious Diseases, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie, Inserm, Universite Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Jean-Paul Pirnay
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Ran Nir-Paz
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Israeli Phage Therapy Center of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Liu L, Mao P, Chen J, Li L, Wang Y, Song J, Chen Z, Ye C. Isolation, characterization and genomic analysis of the novel Listeria bacteriophage LMLPA3 as a potential antimicrobial in foods. Food Microbiol 2025; 128:104720. [PMID: 39952764 DOI: 10.1016/j.fm.2024.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Listeria monocytogenes (LM) is an opportunistic foodborne pathogen responsible for listeriosis in both humans and animals. The disease manifests in a variety of ways, including febrile gastroenteritis, septicemia, meningitis, and in some cases, preterm birth and spontaneous abortion. It is therefore crucial to develop effective strategies to control this bacterium. In this study, we isolated and characterized a novel Listeria phage, named LMLPA3. Morphological and genomic analyses revealed that phage LMLPA3 belongs to the class Caudovirales, family Herelleviridae, Myovirus-like. Phage LMLPA3 demonstrated remarkable stability across a range of pH values (4-10), temperatures (4-50 °C), and high NaCl concentrations (12% w/v). A total of 68 strains, comprising nine serotypes of L. monocytogenes and five other Listeria species, were found to be susceptible to lysis by phage LMLPA3. It is noteworthy that treatment with phage LMLPA3 resulted in a significant disruption of the biofilms formed by seven different serotype strains of L. monocytogenes, in comparison to the control. Furthermore, phage LMLPA3 effectively reduced the number of L. monocytogenes cells by 4 log10 CFU/mL and 2.9 log10 CFU/sample, respectively, in milk and on the surface of raw beef at an MOI of 10000. In light of these findings, it can be concluded that phage LMLPA3 has the potential to serve as an effective antimicrobial in the elimination of L. monocytogenes contamination in foodstuffs.
Collapse
Affiliation(s)
- Lingyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Department of Microbiology, School of Basic Medical Science, Guizhou Medical University, Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou Province, Guiyang, 550025, China
| | - Pan Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jinni Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lingling Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Zhenghong Chen
- Department of Microbiology, School of Basic Medical Science, Guizhou Medical University, Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou Province, Guiyang, 550025, China
| | - Changyun Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
3
|
Molina-López J, Simon-Olea B, Espinoza-Mellado MDR, Hernández-Chiñas U, Eslava-Campos CA, Balcázar JL, González-Villalobos E. Characterization of a new lytic bacteriophage (vB_KpnM_KP1) targeting Klebsiella pneumoniae strains associated with nosocomial infections. Virology 2025; 607:110526. [PMID: 40203466 DOI: 10.1016/j.virol.2025.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
A new bacteriophage, vB_KpnM_KP1, was identified and characterized, exhibiting a strong lytic effect on Klebsiella pneumoniae. Host range analysis revealed its effectiveness against 77.4% of clinical strains, achieving complete lysis of those associated with urinary tract infections (UTIs). Phage stability tests demonstrated that vB_KpnM_KP1 remained stable at neutral pH and across all tested temperatures. However, inactivation was observed at high ethanol concentrations and extreme pH levels. Transmission electron microscopy (TEM) analysis identified vB_KpnM_KP1 as a Myo-type phage with an icosahedral head and a contractile tail. Moreover, genome annotation of vB_KpnM_KP1 revealed a linear DNA genome of 174,802 bp, containing 307 open reading frames. Functional predictions suggest the presence of genes involved in DNA replication, transcription, morphogenesis, and cell lysis. Phylogenetic analysis classified vB_KpnM_KP1 within the Slopekvirus genus of the Straboviridae family, showing high sequence identity with phages that infect Enterobacter, Escherichia and Klebsiella species. These findings highlight the potential of phage vB_KpnM_KP1 as an alternative treatment for multidrug-resistant K. pneumoniae infections, particularly in UTIs, while offering valuable insights into its stability and genetic composition.
Collapse
Affiliation(s)
- José Molina-López
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico.
| | - Berenice Simon-Olea
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico; Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City, 11340, Mexico; Laboratorio de Biología Molecular División de Investigación, Departamento de Salud Pública, Facultad de Medicina UNAM, C.P. 04510, Mexico City, Mexico
| | - María Del Rosario Espinoza-Mellado
- Central de Instrumentación de Microscopía, Depto. Investigación, Instituto Politécnico Nacional-Escuela Nacional de Ciencias Biológicas (IPN-ENCB), Prolongación de Carpio y Plan de Ayala, Mexico City, 11340, Mexico
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | - Carlos Alberto Eslava-Campos
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Departamento de Salud Pública/División de Investigación, Facultad de Medicina, UNAM, C.P. 04510, Mexico City, Mexico; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, C.P. 06720, Mexico City, Mexico
| | | | - Edgar González-Villalobos
- Laboratorio de Biología Molecular División de Investigación, Departamento de Salud Pública, Facultad de Medicina UNAM, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Lesen D, Nillian E, Thung TY. Isolation, characterization, and application of a novel Vibrio parahaemolyticus bacteriophage from retail shrimp in Sarawak, Malaysia. Microb Pathog 2025; 203:107517. [PMID: 40154853 DOI: 10.1016/j.micpath.2025.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/25/2024] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Shrimp farming, a highly profitable sector in global aquaculture, has seen remarkable growth in recent years. This increasing demand and the expansion of farming operations, including in Sarawak, Malaysia, highlight the sector's potential. However, the industry faces significant challenges, particularly the prevalence of vibriosis, a bacterial infection caused by Vibrio species. Contamination of food products has also increased the risk of vibriosis in humans. The widespread use of antibiotics to combat this disease has led to the rapid emergence of antimicrobial resistance (AMR) bacteria. This study specifically focuses on the isolation and characterization of phage EniLVP02, a novel bacteriophage with the potential to combat V. parahaemolyticus infections. EniLVP02 was successfully isolated from shrimp purchased at a retail market and exhibited strong lytic activity against V. parahaemolyticus strains. Structural analysis categorized EniLVP02 within the Straboviridae family, belonging to the class Caudoviricetes. The phage displayed a narrow host range and lytic nature only towards V. parahaemolyticus strains isolated from the Telaga Air shrimp farm. Phage EniLVP02 exhibited long latent period of 120 min and large burst size of 144 phages per infected cells. Stability studies revealed EniLVP02's resilience across various pH (pH 4.0-9.0) and temperature (28 °C-65 °C) conditions, particularly at physiological temperatures. Comparative genome analyses indicated its distinct evolutionary relationship and low homology with other Vibriophages, suggesting its novelty. EniLVP02 demonstrated significant potential in biofilm prevention and destruction, with absorbance (OD600 nm) reduction from 0.592 ± 0.055 to 0.204± 0.016 and from 0.843± 0.003 to 0.174± 0.026 respectively. Moreover, in the treatment of V. parahaemolyticus-contaminated shrimp meat, EniLVP02 effectively inhibit bacterial concentrations by 75.2 % at room temperature and 16.2 % at 4 °C after 24 h. Genomic sequencing revealed low similarity between EniLVP02 with other phages, suggesting its novelty. Importantly, the absence of lysogeny-related, antibiotic resistance, and virulence genes in its genome supports EniLVP02's safety for therapeutic use. This study underscores the importance of exploring phages from retail food products for therapeutic applications and highlights the promising attributes of phage EniLVP02 in combating V. parahaemolyticus infections in aquaculture. Further investigations on its compatibility with other phages and application in diverse food matrices are warranted to assess its full potential.
Collapse
Affiliation(s)
- Dalene Lesen
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Elexson Nillian
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Tze Young Thung
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
5
|
Chen J, Feng J, Cui X, Huang L, Du B, Xia Y, Xue G, Feng Y, Ke Y, Zhao H, Cui J, Yan C, Gan L, Fan Z, Fu T, Xu Z, Yang Y, Yu Z, Zhao S, Wang Z, Kong Y, Jiang B, Wang M, Ling M, Yuan J. Genomic analysis and therapeutic efficacy evaluation of bacteriophage PK2420 for pneumonia caused by hypervirulent Klebsiella pneumoniae (K20 serotype). mSystems 2025; 10:e0163224. [PMID: 40237452 DOI: 10.1128/msystems.01632-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) strains are increasingly recognized for their aggressive nature, which leads to severe clinical outcomes. The emergence of multidrug-resistant strains constitutes a substantial challenge for clinical management. Phage therapy offers a potential solution to the antibiotic resistance crisis. A multidrug-resistant hvKp strain, K2420 (K20 serotype), was used to isolate bacteriophages from hospital sewage. Phage morphology, biological properties, and genome characteristics were analyzed using transmission electron microscopy, plaque assays, and whole-genome sequencing. Therapeutic safety and efficacy were assessed in an acute pneumonia murine model induced by intratracheal injection of K2420. Assessment parameters included bacterial load, phage titer, body temperature, cytokine levels, histopathological findings, and other relevant indicators. Phage PK2420, a member of the Autographiviridae family and Przondovirus genus, was identified. It rapidly lyses K. pneumoniae (K20 serotype), inhibits biofilm formation, and exhibits a burst size of 37.4 plaque-forming units/cell. The phage is stable at temperatures ranging from 0°C to 40°C and pH values between 6 and 9. Its genome, 41,155 bp in length, contains 46 coding sequences. The phage has no genes associated with antibiotic resistance, virulence, or lysogeny. In vivo, PK2420 substantially reduced K. pneumoniae bacterial loads, improved survival rates, and alleviated pneumonia severity without observable side effects. Phage PK2420 exhibits lytic activity against K. pneumoniae both in vitro and in murine models, providing a promising and safe option for the treatment of hvKp infections.IMPORTANCEOur investigation provides insights into the interaction mechanism among hypervirulent Klebsiella pneumoniae (hvKp) (K20 serotype), phage, and the host in a mouse pneumonia model, offering a valuable reference for future research on phage pharmacokinetics. This study demonstrated that bacteriophage PK2420 exhibits promising biosafety and therapeutic efficacy against hvKp-induced pulmonary infections and dissemination in a murine model. These findings suggest that phage PK2420 may be a potential option for the clinical treatment of hvKp infections.
Collapse
Affiliation(s)
- Jinfeng Chen
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yuyan Xia
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuo Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Kong
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Boyi Jiang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Mingxuan Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Mengyao Ling
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Liao H, Wen C, Huang D, Liu C, Gao T, Du Q, Yang QE, Jin L, Ju F, Yuan MM, Tang X, Yu P, Zhou S, Alvarez PJ, Friman VP. Harnessing phage consortia to mitigate the soil antibiotic resistome by targeting keystone taxa Streptomyces. MICROBIOME 2025; 13:127. [PMID: 40390128 DOI: 10.1186/s40168-025-02117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/17/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Antimicrobial resistance poses a substantial and growing threat to global health. While antibiotic resistance genes (ARGs) are tracked most closely in clinical settings, their spread remains poorly understood in non-clinical environments. Mitigating the spread of ARGs in non-clinical contexts such as soil could limit their enrichment in food webs. RESULTS Multi-omics (involving metagenomics, metatranscriptomics, viromics, and metabolomics) and direct experimentation show that targeting keystone bacterial taxa by phages can limit ARG maintenance and dissemination in natural soil environments. Based on the metagenomic analysis, we first show that phages from activated sludge can regulate soil microbiome composition and function in terms of reducing ARG abundances and changing the bacterial community composition. This effect was mainly driven by a reduction in the abundance and activity of Streptomyces genus, which is well known for encoding both antibiotic resistance and synthesis genes. To validate the significance of this keystone species for the loss of ARGs, we enriched phage consortia specific to Streptomyces and tested their effect on ARG abundances on 48 soil samples collected across China. We observed a consistent reduction in ARG abundances across all soils, confirming that Streptomyces-enriched phages could predictably change the soil microbiome resistome and mitigate the prevalence of ARGs. This study highlights that phages can be used as ecosystem engineers to control the spread of antibiotic resistance in the environment. CONCLUSION Our study demonstrates that some bacterial keystone taxa are critical for ARG maintenance and dissemination in soil microbiomes, and opens new ecological avenues for microbiome modification and resistome control. This study advances our understanding of how metagenomics-informed phage consortia can be used to predictably regulate soil microbiome composition and functioning by targeting keystone bacterial taxa. Video Abstract.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tian Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiyao Du
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Mengting Maggie Yuan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720, USA
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Pedro J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, 77005, USA
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Franklin HC, Makhlouf R, Ha AD, Bataglioli RA, Baker ZR, Murphy SA, Jirsa H, Heuler J, Southard T, Aylward FO, Hsu BB. A bacteriophage-conditional mouse model reveals the impact of phages within a conventionally colonized gut microbiota. Cell Host Microbe 2025; 33:745-758.e6. [PMID: 40300596 DOI: 10.1016/j.chom.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
The significance of bacteriophages in the gut microbiota remains poorly understood due, in part, to an absence of an animal model that allows for comparative study of conditions with or without phages while retaining the microbial diversity attained by conventional colonization. We describe a mouse model that uses a broadly available chemical compound, acriflavine, to preferentially deplete virulent phages from the gut without significantly impacting gut bacteria. We then show that gut phage density can be reconstituted by oral gavage. Using this bacteriophage-conditional (BaCon) mouse model, we reveal that while phages have comparatively minimal impact during equilibrium conditions, they increase the potency of ampicillin against commensal gut bacteria. Collectively, our work presents an animal model that can be leveraged to conditionally study the role of phages in complex, physiologically relevant systems and further identifies virulent gut phages as potential sources of bacterial variability during major perturbations.
Collapse
Affiliation(s)
- Hollyn C Franklin
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anh D Ha
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rogerio A Bataglioli
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zachary R Baker
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sydney A Murphy
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hannah Jirsa
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua Heuler
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Frank O Aylward
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bryan B Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Morgan CJ, Atkins H, Wolfe AJ, Brubaker L, Aslam S, Putonti C, Doud MB, Burnett LA. Phage Therapy for Urinary Tract Infections: Progress and Challenges Ahead. Int Urogynecol J 2025:10.1007/s00192-025-06136-8. [PMID: 40358692 DOI: 10.1007/s00192-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/08/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION AND HYPOTHESIS Urinary tract infection (UTI) treatment is a growing public health concern owing to increasing antimicrobial resistance. Phage therapy, an alternative or adjunctive treatment to antibiotics, has the potential to address this challenge. However, clinical use of phage therapy is hindered by knowledge gaps and inconsistent reporting. The objective was to review the current state of phage therapy for UTIs and highlight research priorities that can optimize phage clinical efficacy. METHODS Current literature on UTI phage therapy was examined, focusing on the lack of standardized phage susceptibility testing, phage characterization, and microbiological assessments during and after treatment. RESULTS Critical areas requiring further investigation include appropriate phage dosing, optimal routes of administration, and the dynamics of phage-host and phage-patient interactions. The influence of the urinary microbiome, including endogenous phages, on treatment outcomes also needs to be better understood. Suggested data collection and reporting standards should be developed and implemented to improve clinical impact of studies examining phage therapy for UTI. Randomized clinical trials are needed to establish efficacy and determine the best practices for clinical use. CONCLUSION Phage therapy is a promising alternative to antibiotics for managing UTIs, especially in the face of rising antimicrobial resistance. To fully realize its potential, however, future research must focus on standardized protocols, dosing strategies, and the role of the urinary microbiome, with an emphasis on rigorously conducted clinical trials. These steps are essential for integrating phage therapy into mainstream UTI treatment regimens.
Collapse
Affiliation(s)
- Chase J Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Haley Atkins
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Linda Brubaker
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Michael B Doud
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA.
| | - Lindsey A Burnett
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Guo Y, Liu Y, Xu S, Zhang R, Yu Z, He W. Phage diversity in human breast milk: a systematic review. Eur J Pediatr 2025; 184:334. [PMID: 40347294 PMCID: PMC12065748 DOI: 10.1007/s00431-025-06173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/12/2025]
Abstract
Breast milk is not sterile. The microbiome in human milk serves as a crucial source of early gut microbes for infants, directly impacting the host's health. This microbiome includes bacteria, viruses, archaea, and fungi. Bacteriophages, as key components of the virome, continually prey on bacterial hosts, thereby influencing the development of early gut microbial communities. Pertinent records from various databases, including EMBASE, Cochrane Library, PubMed, and Web of Science, were comprehensively reviewed against inclusion criteria up to March 24, 2025. A checklist was employed to assess the risk of bias in the selected studies. After screening a total of 635 records, we included 5 studies with 182 women and 251 samples. Seven families of bacteriophages were identified, primarily Herelleviridae, Myoviridae, Podoviridae, Siphoviridae, Caudoviridales, Microviridae, and Inoviridae. Their abundance varies at different stages of lactation and can be vertically transmitted through breastfeeding. However, due to the limited number of studies and methodological differences, it is not yet possible to determine which maternal and infant characteristics influence the abundance of these bacteriophages. CONCLUSION Human milk contains abundant bacteriophages that bind to specific bacterial hosts and are transmitted vertically from mother to infant, collectively shaping the infant's gut microbiome. Conducting more longitudinal studies on mother-infant pairs will help better determine the composition of bacteriophages in human milk and their functional impact on infant development. WHAT IS KNOWN • Human milk is a source of diverse microbes, including bacteriophages, that contribute to the establishment of the infant gut microbiome. • Bacteriophages can influence bacterial populations by infecting specific bacterial hosts. WHAT IS NEW • Human milk harbors abundant and diverse bacteriophages that are vertically transmitted from mother to infant. • Current evidence underscores the need for longitudinal studies to clarify the role of milk-derived bacteriophages in shaping infant gut microbiota and development.
Collapse
Affiliation(s)
- Yanping Guo
- Department of Pediatrics, Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, Guangdong, China
| | - Ying Liu
- Department of Pediatrics, Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, Guangdong, China
| | - Songzhou Xu
- Department of Pediatrics, Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, Guangdong, China
| | - Ruolin Zhang
- Department of Neonatology, Nanshan Maternity & Child Healthcare Hospital, 1 Wanxia Road, Nanshan District, Shenzhen, Guangdong, China
| | - Zhangbin Yu
- Department of Neonatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, China.
| | - Wanxiang He
- Department of Pediatrics, Peking University Shenzhen Hospital, No.1120 Lianhua Road, Futian District, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Askari S, Zomorodi AR, Aflakian F. Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: a comprehensive review. Microb Pathog 2025; 205:107684. [PMID: 40348206 DOI: 10.1016/j.micpath.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Mastitis, an inflammation of mammary tissue frequently associated with infection, is a prevalent disease among dairy animals. Bacterial intra-mammary infection is identified as a primary cause of bovine mastitis (BM). In dairy cattle, antimicrobials are used for mastitis treatment during the lactating phase and for dry cow therapy. Although self-curing can occur, the success of mastitis treatment depends on several factors, including the type of bacteria responsible for the infection, the effectiveness of the administered antibiotics, and the host's overall immune response. Moreover, the growing resistance of microorganisms to antibiotics has restricted the available treatment options for managing intramammary infections. In addition, the utilization of critically essential antimicrobials in animals raised for food production may elevate the risk of human infections that are challenging to treat. Therefore, it is crucial to have alternative treatments with equivalent or superior effectiveness as part of any stewardship program. These may include the application of nanotechnology, stem cell technology, photodynamic and laser radiation or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics. This review aims to discuss the potential of vaccination as an indirect strategy, along with nanotechnology, probiotics, stem cell therapy, antimicrobial peptides, photodynamic therapy, laser irradiation, and antibody treatments as direct approaches. These approaches are examined as possible alternative therapeutic options to antibiotic treatment for BM.
Collapse
Affiliation(s)
- Sepideh Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Committee of Medical Education Development, Education Development Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
11
|
Vennard CS, Oladeji SM, Sintim HO. Inhibitors of Cyclic Dinucleotide Phosphodiesterases and Cyclic Oligonucleotide Ring Nucleases as Potential Drugs for Various Diseases. Cells 2025; 14:663. [PMID: 40358186 PMCID: PMC12072042 DOI: 10.3390/cells14090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA3, cA4, cA6 could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.
Collapse
Affiliation(s)
- Christopher S. Vennard
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samson Marvellous Oladeji
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Zhao Y, Xiong C, Wang B, Li D, Liu J, Wei S, Hou Y, Zhou Y, Zheng R. The Discovery of Phages in the Substantia Nigra and Its Implication for Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2025; 8:0657. [PMID: 40308709 PMCID: PMC12041648 DOI: 10.34133/research.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/28/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025]
Abstract
Background: A century ago, a mystery between a virus and Parkinson's disease (PD) was described. Owing to the limitation of human brain biopsy and the challenge of electron microscopy in observing virions in human brain tissue, it has been difficult to study the viral etiology of PD. Recent discovery of virobiota reveals that viruses coexist with humans as symbionts. Newly developed transcriptomic sequencing and novel bioinformatic approaches for mining the encrypted virome in human transcriptome make it possible to study the relationship between symbiotic viruses and PD. Nevertheless, whether viruses exist in the human substantia nigra (SN) and whether symbiotic viruses underlie PD pathogenesis remain unknown. Methods: We collected current worldwide human SN transcriptomic datasets from the United States, the United Kingdom, the Netherlands, and Switzerland. We used bioinformatic approaches including viruSITE and the Viral-Track to identify the existence of viruses in the SN of patients. The comprehensive RNA sequencing-based virome analysis pipeline was used to characterize the virobiota in the SN. The Pearson's correlation analysis was used to examine the association between the viral RNA fragment counts (VRFCs) and PD-related human gene sequencing reads in the SN. The differentially expressed genes (DEGs) in the SN between PD patients and non-PD individuals were used to examine the molecular signatures of PD and also evaluate the impact of symbiotic viruses on the SN. Findings: We observed the existence of viruses in the human SN. A dysbiosis of virobiota was found in the SN of PD patients. A marked correlation between VRFC and PD-related human gene expression was detected in the SN of PD patients. These PD-related human genes correlated to VRFC were named as the virus-correlated PD-related genes (VPGs). We identified 3 bacteriophages (phages), including the Proteus phage VB_PmiS-Isfahan, the Escherichia phage phiX174, and the Lactobacillus phage Sha1, that might impair the gene expression of neural cells in the SN of PD patients. The Proteus phage VB_PmiS-Isfahan was a common virus in the SN of patients from the United Kingdom, the Netherlands, and Switzerland. VPGs and DEGs together highlighted that the phages might dampen dopamine biosynthesis and weaken the cGAS-STING function. Interpretation: This is the first study to discover the involvement of phages in PD pathogenesis. A lifelong low symbiotic viral load in the SN may be a contributor to PD pathogenesis. Our findings unlocked the black box between brain virobiota and PD, providing a novel insight into PD etiology from the perspective of phage-human symbiosis.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Changxian Xiong
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Daotong Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yujia Hou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences,
Peking University, Beijing, China
- Neuroscience Research Institute,
Peking University, Beijing, China
- Key Laboratory for Neuroscience of Ministry of Education,
Peking University, Beijing, China
- Key Laboratory for Neuroscience of National Health Commission,
Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
13
|
Pan T, Li Q. Mobile genetic elements in Klebsiella pneumoniae. J Bacteriol 2025:e0001225. [PMID: 40298401 DOI: 10.1128/jb.00012-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Klebsiella pneumoniae is a clinically important pathogenic bacteria that poses a serious threat to human health. In particular, the emergence of hypervirulent and multidrug-resistant K. pneumoniae has posed great challenges in clinical anti-infective therapy. In the K. pneumoniae genome, mobile genetic elements (MGEs), such as plasmids, prophages, transposons, and insertion sequences, enhance bacterial viability and adaptation by mediating the horizontal transfer of virulence genes, antibiotic resistance genes, and other adaptive genes. This paper reviews the types and characteristics of the main MGEs in K. pneumoniae, focusing on their effects on bacterial virulence and antibiotic resistance, with the aim of providing clues for developing infection control measures and new antibacterial drugs.
Collapse
Affiliation(s)
- Ting Pan
- School of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, China
| | - Qingrong Li
- School of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Silva MKDP, Nicoleti VYU, Rodrigues BDPP, Araujo ASF, Ellwanger JH, de Almeida JM, Lemos LN. Exploring deep learning in phage discovery and characterization. Virology 2025; 609:110559. [PMID: 40359589 DOI: 10.1016/j.virol.2025.110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Bacteriophages, or bacterial viruses, play diverse ecological roles by shaping bacterial populations and also hold significant biotechnological and medical potential, including the treatment of infections caused by multidrug-resistant bacteria. The discovery of novel bacteriophages using large-scale metagenomic data has been accelerated by the accessibility of deep learning (Artificial Intelligence), the increased computing power of graphical processing units (GPUs), and new bioinformatics tools. This review addresses the recent revolution in bacteriophage research, ranging from the adoption of neural network algorithms applied to metagenomic data to the use of pre-trained language models, such as BERT, which have improved the reconstruction of viral metagenome-assembled genomes (vMAGs). This article also discusses the main aspects of bacteriophage biology using deep learning, highlighting the advances and limitations of this approach. Finally, prospects of deep-learning-based metagenomic algorithms and recommendations for future investigations are described.
Collapse
Affiliation(s)
| | - Vitória Yumi Uetuki Nicoleti
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | | | | | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - James Moraes de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | - Leandro Nascimento Lemos
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Bröcker F, Willy C. [Potential of bacteriophage therapy in Germany: evidence and clinical relevance]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025:10.1007/s00103-025-04048-y. [PMID: 40293490 DOI: 10.1007/s00103-025-04048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Bacteriophage therapy (phage therapy) holds great potential in addressing the growing threat of infections caused by multidrug-resistant bacteria. Registry studies and systematic reviews indicate that phage treatments are effective in approximately 80-90% of antibiotic-resistant infections across various indications. In principle, the approximately 62,000 annual cases of infections caused by resistant or difficult-to-treat pathogens in Germany could be treated with phage therapy. Currently, several clinical trials are underway to assess the safety and efficacy of phage therapy for specific indications; however, no product has yet undergone a formal approval process. Furthermore, the timely applicability of phage therapy for individual cases is constrained by high production costs, limited capacities, and regulatory hurdles. The first market approvals in the USA and Europe are expected within the next three to five years, which could significantly strengthen the outlook for phage therapy. Concrete steps to accelerate the implementation of phage therapy in Germany to relieve the healthcare system include establishing a dedicated phage manufacturing facility, reducing regulatory barriers for compassionate use, promoting innovative technologies for production and diagnostics, and supporting clinical approval studies.
Collapse
Affiliation(s)
- Felix Bröcker
- Idorsia (Berlin) Pharmaceuticals GmbH, Magnusstr. 11, 12489, Berlin, Deutschland.
| | - Christian Willy
- Klinik für Unfallchirurgie und Orthopädie, Septisch-Rekonstruktive Chirurgie, Forschungs- und Behandlungszentrum Rekonstruktion von Defektwunden, Bundeswehrkrankenhaus Berlin, Scharnhorststraße 13, 10115, Berlin, Deutschland
| |
Collapse
|
16
|
Li P, Li Z, Peng W, Li X, Guo G, Chen L, Pang X, Chen M, Li J, Wei Y, Zheng Y, Zhang W. Antimicrobial potential of a novel K5-specific phage and its recombinant strains against Klebsiella pneumoniae in milk. J Dairy Sci 2025:S0022-0302(25)00272-3. [PMID: 40306415 DOI: 10.3168/jds.2024-25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/29/2025] [Indexed: 05/02/2025]
Abstract
The nutrient-rich composition of milk creates an optimal environment for bacterial proliferation, making the inhibition of microbial growth essential for maintaining dairy product quality and ensuring consumer safety. Klebsiella pneumoniae is an important contaminant of milk and a leading cause of bovine mastitis. Although the increasingly serious antibiotic resistance has led to a renewed interest in phage therapy, research on antimicrobial potential of Klebsiella phages in milk remains scarce. The K5 serotype of K. pneumoniae is a major concern due to its high virulence and prevalence in dairy farming operations. Despite its clinical and economic importance, the availability of phages specifically targeting this serotype remains substantially limited. Here, we successfully isolated and sequenced 2 K1-specific Klebsiella phages, P284 and P287, and one K5-specific Klebsiella phage P252. We identified the receptor-binding proteins with depolymerization activity in these phages. The phage library against K5 K. pneumoniae was enriched by phage genome modification. Specifically, we replaced the receptor-binding protein of K1-specific phage P284 with that of K5-specific phage P252, resulting in the generation of recombinant phages T and F, which exhibit specific lytic activity against K5 K. pneumoniae. Compared with phage P252, recombinant phages T and F exhibited better and more prolonged antibacterial potential in planktonic assay. In addition, all these K5-specific phages could significantly inhibit bacterial growth and reduce bacterial populations in milk at 4°C and 38°C. In summary, this study provided K5-specific phages with potential application in managing K. pneumoniae contamination and infection in the dairy industry.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhuojun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Wan Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Xiaoyue Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital, affiliated with Soochow University, Zhangjiagang, China
| | - Xiaoxiao Pang
- Department of Clinical Laboratory, Zhangjiagang Hospital, affiliated with Soochow University, Zhangjiagang, China
| | - Mianmian Chen
- College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Juan Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Yinglu Wei
- The third obstetrics department, Cangzhou Central Hospital, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, affiliated with Nanjing University of Chinese Medicine, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
17
|
Zhang G, Guo Z, Liu S, Yang Q, Yuan Y, Guo K, Wang W, Wang H, Feng J, Chen W, Sun Y, Wang S. Bacteriophage application in inhibiting corrosion- producing bacteria. BMC Microbiol 2025; 25:241. [PMID: 40269689 PMCID: PMC12016055 DOI: 10.1186/s12866-025-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
Sulfate-reducing bacteria (SRB) are a major cause of microbially-induced corrosion (MIC) and souring (MIS), leading to significant challenges in industries like oil recovery and wastewater treatment. Due to SRB's resistance to antimicrobial agents, bacteriophage (phage) therapy offers a promising alternative for SRB control. In this study, a novel lytic phage, SRB7757, targeting Desulfovibrio vulgaris, was isolated from sewage. SRB7757 inhibited sulfide production by 92.3% within 24 h and significantly reduced corrosion on metal specimens after 28 days, highlighting its potential in controlling MIC and MIS. Genome analysis revealed SRB7757 has a genome size of 142,573 bp, 217 ORFs, and 6 tRNAs, and belongs to the Chaseviridae family. SRB7757 exhibits a latent period of 4 h, a burst size of ~ 100 PFU/cell, and is stable between 4 °C and 60 °C across a pH range of 2.0-12.0. Two predicted lytic enzymes of SRB7757 demonstrated higher inactivation and biofilm removal rates.
Collapse
Affiliation(s)
- Guangming Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Shuo Liu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Yiming Yuan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Ke Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China
| | - Weixiao Wang
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Haina Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Ministry of Education, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
18
|
Berryhill BA, Gil-Gil T, Smith AP, Levin BR. The future of phage therapy in the USA. Trends Mol Med 2025:S1471-4914(25)00084-X. [PMID: 40268588 DOI: 10.1016/j.molmed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Fueled by the increasing abundance of antibiotic-resistant pathogens, there has been a resurrection in the use of bacterial viruses (bacteriophages or 'phage') for therapeutic applications. Phage therapy was used in the early 20th century to limited success, which we attribute to its haphazard employment. To avoid repeating the mistakes of the past, this Opinion first evaluates the historical reasons for the failure of phage therapy, analyzes the current state of the field, and ultimately makes recommendations for how to proceed with contemporary phage therapy. Despite many advances in phage biology, crucial gaps in our knowledge persist. Our recommendations require physicians, scientists, and public-policy leaders to cooperate to bridge the outstanding gaps around phage therapy to develop phage into a useful therapeutic tool.
Collapse
Affiliation(s)
- Brandon A Berryhill
- Department of Biology, Emory University, Atlanta, GA 30322, USA; Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
| | - Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | - Andrew P Smith
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Huang W, Khan Mirzaei M, Deng L. Comparative evaluation of long-term preservation methods for morphologically distinct bacteriophages. Microbiol Spectr 2025:e0144224. [PMID: 40237456 DOI: 10.1128/spectrum.01442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/23/2025] [Indexed: 04/18/2025] Open
Abstract
The rapid increase in antibiotic resistance has led to a renewed interest in phage therapy, which has created a need for the establishment of phage collections in order to preserve diverse phages and to reduce the delivery time to patients. However, there are currently no standard methods for the long-term preservation of phages. We assessed the stability of four different phages under distinct storage conditions, including different temperatures, storage solutions, concentrations, and with or without cryoprotectant. We found that the type of storage buffer has a significant impact on phage stability, followed by the storage temperature. Phages demonstrated higher viability in lysogeny broth (LB) than saline-magnesium (SM) buffer without gelatin. We also observed a higher sensitivity to freezing in tailed phages with longer tails, such as T4. Ultimately, we found that all four phages maintained high stability after snap freezing, followed by storage at -80°C using LB as a storage buffer without cryoprotectant. IMPORTANCE Phage therapy, which involves treating bacterial infections using bacteriophages (phage), has shown promise as an alternative to antibiotics and can offer a solution for treating infections caused by antibiotic-resistant bacteria. However, phages are not conventional drugs and can lose their viability when stored under unsuitable conditions. Their high diversity makes finding a standard storage method for long-term preservation challenging. Here, we studied the stability of phages under different storage conditions and identified key factors affecting their viability. We have also identified a specific storage condition that can effectively preserve a wide range of phage morphotypes for over 2 years.
Collapse
Affiliation(s)
- Wanqi Huang
- Technical University of Munich, TUM School of Life Sciences, Central Institute of Infection Prevention (ZIP), Freising, Germany
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Mohammadali Khan Mirzaei
- Technical University of Munich, TUM School of Life Sciences, Central Institute of Infection Prevention (ZIP), Freising, Germany
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Li Deng
- Technical University of Munich, TUM School of Life Sciences, Central Institute of Infection Prevention (ZIP), Freising, Germany
- Institute of Virology, Helmholtz Centre Munich - German Research Centre for Environmental Health, Neuherberg, Germany
| |
Collapse
|
20
|
Fujiki J, Nakamura T, Kreimeyer H, Llorente C, Fouts DE, Schnabl B. Insertion sequence-mediated phage resistance contributes to attenuated colonization of cytolytic Enterococcus faecalis variants in the gut. Microbiol Spectr 2025; 13:e0330324. [PMID: 40231830 PMCID: PMC12054073 DOI: 10.1128/spectrum.03303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Specific elimination of cytolytic Enterococcus faecalis from the intestinal microbiota by bacteriophages (phages) attenuates ethanol-induced liver disease in pre-clinical studies; however, other clinical phage therapy studies have reported the occurrence of phage-resistant variants. Here, we assessed phage resistance using a cytolytic E. faecalis clinical isolate, EF01. After infecting EF01 with ΦEf2.1 (Myoviridae) or ΦEf2.2 (Podoviridae), four host variants (R-EF01ΦEf2.1-A and R-EF01ΦEf2.1-B from infection with ΦEf2.1, and R-EF01ΦEf2.2-A and R-EF01ΦEf2.2-B from infection with ΦEf2.2) were isolated. Although isolate R-EF01ΦEf2.2 exhibited resistance to both phages, isolate R-EF01ΦEf2.1 demonstrated partial resistance only to ΦEf2.1. Whole-genome sequencing of these four isolates revealed an insertion sequence, IS256, -mediated disruption of xylA in R-EF01ΦEf2.1-A and R-EF01ΦEf2.1-B. In addition, a non-synonymous mutation in epaR, essential for the complete Enterococcus polysaccharide antigen (Epa), was identified in the R-EF01ΦEf2.2-A isolate. Furthermore, R-EF01ΦEf2.2 isolates exhibited IS256-associated chromosomal deletions and lacked galE, a gene involved in Epa biosynthesis. After gavaging mice with EF01 WT, R-EF01ΦEf2.1-A, R-EF01ΦEf2.2-A, and R-EF01ΦEf2.2-B isolates, colonization of R-EF01ΦEf2.2 isolates was significantly attenuated. R-EF01ΦEf2.2 isolates exhibited less resistance to the bile salt sodium deoxycholate and showed reduced adherence to intestinal cell monolayers, suggesting that phage-resistant variants with alterations in bacterial surface molecules, potentially including those involved in Epa biosynthesis, reduced pathogen fitness by attenuating gut colonization. In summary, IS256 is involved in phage resistance of a cytolytic E. faecalis clinical isolate, and certain phage resistance mechanisms could contribute to favorable clinical outcomes by promoting the swift elimination of phage-resistant variants in the treatment of alcohol-associated hepatitis. IMPORTANCE Phage therapy is a promising approach for precise editing of the gut microbiota. Notably, the specific elimination of cytolytic E. faecalis from the intestinal microbiota by phages attenuates ethanol-induced liver disease in pre-clinical studies. Despite the great promise of phage therapy, the occurrence of phage-resistant variants represents a concern for the successful development of phage-based therapies. In this context, we assessed phage resistance using a cytolytic E. faecalis clinical isolate. Isolated phage-resistant variants acquired mutations or deletions of Epa biosynthesis-related genes and exhibited attenuated colonization in the gut. These phage-resistant variants showed less resistance to bile salts and reduced adherence to intestinal cell monolayers. These results suggest that even if phage-resistant variants arise during phage therapy, certain mechanisms of phage resistance may contribute to the rapid elimination of phage-resistant variants promoting favorable clinical outcomes in the treatment of alcohol-associated hepatitis.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tomohiro Nakamura
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Laboratory of Small Animal Surgery, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Derrick E. Fouts
- Department of Human Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
21
|
Dusza I, Jama D, Skaradziński G, Śliwka P, Janek T, Skaradzińska A. Bacteriophages Improve the Effectiveness of Rhamnolipids in Combating the Biofilm of Candida albicans. Molecules 2025; 30:1772. [PMID: 40333731 PMCID: PMC12029421 DOI: 10.3390/molecules30081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Biofilms formed by Candida albicans pose therapeutic challenges due to their resistance to conventional antimicrobials, highlighting the need for more effective treatments. Rhamnolipids (RLs) are biosurfactants with diverse antimicrobial properties. Bacteriophages are viruses that target specific bacterial strains. Recent studies have shown that they may affect biofilm formation by fungi and yeasts. This study investigated the combined antimicrobial effects of RLs and bacteriophages against C. albicans biofilms, focusing on their anti-adhesive and inhibitory effects on biofilm development. RT-PCR assays were used to analyze gene modulation in C. albicans biofilm formation in response to RLs and bacteriophage treatments, while hyphae formation was examined using microscopy. The results showed that RLs-bacteriophage combinations significantly reduced biofilm formation compared to individual treatments. A combination of 200 mg/L RLs with bacteriophage BF9 led to a 94.8% reduction in biofilm formation. In a subsequent model, the same RL concentration with bacteriophage LO5/1f nearly eliminated biofilm formation (~96%). Gene expression analysis revealed downregulation of key biofilm-associated genes when Candida cells were treated with 200 mg/L RLs and four bacteriophages (BF17, LO5/1f, JG004, FD). These results show the potential of RL and bacteriophage combinations in combating C. albicans biofilms, presenting a promising therapeutic approach against resilient infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
22
|
Freeman KG, Mondal S, Macale LS, Podgorski J, White SJ, Silva BH, Ortiz V, Huet A, Perez RJ, Narsico JT, Ho MC, Jacobs-Sera D, Lowary TL, Conway JF, Park D, Hatfull GF. Structure and infection dynamics of mycobacteriophage Bxb1. Cell 2025:S0092-8674(25)00345-9. [PMID: 40239650 DOI: 10.1016/j.cell.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Mycobacteriophage Bxb1 is a well-characterized virus of Mycobacterium smegmatis with double-stranded DNA and a long, flexible tail. Mycobacteriophages show considerable potential as therapies for Mycobacterium infections, but little is known about the structural details of these phages or how they bind to and traverse the complex Mycobacterium cell wall. Here, we report the complete structure and atomic model of phage Bxb1, including the arrangement of immunodominant domains of both the capsid and tail tube subunits, as well as the assembly of the protein subunits in the tail-tip complex. The structure contains protein assemblies with 3-, 5-, 6-, and 12-fold symmetries, which interact to satisfy several symmetry mismatches. Cryoelectron tomography of phage particles bound to M. smegmatis reveals the structural transitions that occur for free phage particles to bind to the cell surface and navigate through the cell wall to enable DNA transfer into the cytoplasm.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudipta Mondal
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Lourriel S Macale
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer Podgorski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Simon J White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Benjamin H Silva
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Valery Ortiz
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronelito J Perez
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Joemark T Narsico
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Hakim TA, Zaki BM, Mohamed DA, Blasdel B, Gad MA, Fayez MS, El-Shibiny A. Novel strategies for vancomycin-resistant Enterococcus faecalis biofilm control: bacteriophage (vB_EfaS_ZC1), propolis, and their combined effects in an ex vivo endodontic model. Ann Clin Microbiol Antimicrob 2025; 24:24. [PMID: 40223105 PMCID: PMC11995525 DOI: 10.1186/s12941-025-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Endodontic treatment failures are predominantly attributed to Enterococcus faecalis (E. faecalis) infection, a Gram-positive coccus. E. faecalis forms biofilms, resist multiple antibiotics, and can withstand endodontic disinfection protocols. Vancomycin-resistant strains, in particular, are challenging to treat and are associated with serious medical complications. METHODS A novel phage, vB_EfaS_ZC1, was isolated and characterized. Its lytic activity against E. faecalis was assessed in vitro through time-killing and biofilm assays. The phage's stability under various conditions was determined. Genomic analysis was conducted to characterize the phage and its virulence. The phage, propolis, and their combination were evaluated as an intracanal irrigation solution against a 4-week E. faecalis mature biofilm, using an ex vivo infected human dentin model. The antibiofilm activity was analyzed using a colony-forming unit assay, field emission scanning electron microscopy, and confocal laser scanning microscopy. RESULTS The isolated phage, vB_EfaS_ZC1, a siphovirus with prolate capsid, exhibited strong lytic activity against Vancomycin-resistant strains. In vitro assays indicated its effectiveness in inhibiting planktonic growth and disrupting mature biofilms. The phage remained stable under wide range of temperatures (- 80 to 60 °C), tolerated pH levels from 4 to 11; however the phage viability significantly reduced after UV exposure. Genomic analysis strongly suggests the phage's virulence and suitability for therapeutic applications; neither lysogeny markers nor antibiotic resistance markers were identified. Phylogenetic analysis clustered vB_EfaS_ZC1 within the genus Saphexavirus. The phage, both alone and in combination with propolis, demonstrated potent antibiofilm effects compared to conventional root canal irrigation. CONCLUSION Phage vB_EfaS_ZC1 demonstrates a promising therapy, either individually or in combination with propolis, for addressing challenging endodontic infections caused by E. faecalis.
Collapse
Affiliation(s)
- Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Bishoy Maher Zaki
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Dalia A Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
- Department of Endodontics, Faculty of Dentistry, Sinai University, Kantara-Shark, Ismailia, Egypt
| | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310, Noville-Sur-Mehaigne, Belgium
| | - Mohamed A Gad
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
24
|
Xiao Y, Yue X, Zhang X, Yang Y, Zhang Y, Sun L. The role of bacteriophage in inflammatory bowel disease and its therapeutic potential. Crit Rev Microbiol 2025:1-15. [PMID: 40219702 DOI: 10.1080/1040841x.2025.2492154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Inflammatory bowel disease (IBD) refers to a group of chronic inflammatory disorders impacting the gastrointestinal (GI) tract. It represents a significant public health challenge due to its rising global incidence and substantial impact on patients' quality of life. Emerging research suggests a pivotal role of the human microbiome in IBD pathogenesis. Bacteriophages, integral components of the human microbiome, are indicated to influence the disease onset, progression, and therapeutic strategies. Here, we review the effect of bacteriophages on the pathogenesis of IBD and, more specifically, on the gut bacteria, the systemic immunity, and the susceptibility genes. Additionally, we explore the potential therapeutic use of the bacteriophages to modify gut microbiota and improve the health outcomes of IBD patients. This review highlights the potential of therapeutic bacteriophages in regulating gut microbiota and modulating the immune response to improve health outcomes in IBD patients. Future studies on personalized bacteriophage therapy and its integration into clinical practice could advance treatment strategies for IBD.
Collapse
Affiliation(s)
- Yuyang Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xinyu Yue
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xupeng Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yifei Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yibo Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Lang Sun
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Microbiology, Xiangya School of the Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Nick JA, Martiniano SL, Lovell VK, Vestal B, Poch K, Caceres SM, Rysavy NM, de Moura VC, Gilick JJ, Malcolm KC, Pacheco J, Amin AG, Chatterjee D, Daley CL, Kasperbauer S, Gross JE, Armantrout E, Cohen KA, Keck A, Vandalfsen JM, Magaret AS, Midamba N, Chapdu C, Gao A, Hill JE, Freeman KG, Cristinziano M, Guerrero C, Jacobs-Sera D, Lauer MJ, Viland M, Hatfull GF. Trial design of bacteriophage therapy for nontuberculous mycobacteria pulmonary disease in cystic fibrosis: The POSTSTAMP study. J Cyst Fibros 2025:S1569-1993(25)00765-9. [PMID: 40222858 DOI: 10.1016/j.jcf.2025.03.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Bacteriophages (phages) are viruses that selectively infect bacteria and have been utilized to treat Mycobacterium abscessus (Mab) with varying success. The POSTSTAMP study is an ongoing, multi-site phage therapy protocol for treatment-refractory pulmonary Mab disease in people with cystic fibrosis (pwCF). Participants (n = 10) are prospectively assessed while utilizing FDA investigational new drug (IND) approval for compassionate use. Participants are >6 years old, able to produce sputum, have been treated with guideline-based antibiotic therapy (GBT) for >12 months without culture conversion, and are currently receiving GBT with at least 3 and ≥ 80 % positive Mab cultures in the prior year. At enrollment, an isolate is assessed for the availability of lytic phage(s). Open-label phage therapy consists of 1 or 2 phages administered intravenously twice daily for 52 weeks. Participants without a phage match will be followed on GBT as a comparison group. Follow-up visits will occur monthly, with one follow-up visit at completion and intermittent visits for a year after phage therapy. Efficacy will be assessed by culture, standard clinical measures and a patient-reported quality-of-life instrument. Frequency of Mab detection 12 months prior to treatment will be compared with the 12-month period beginning 6 months after treatment initiation. Individual-level tests of difference in percent positive cultures within subjects will be used to identify "responders". Collectively and including all persons, a mixed-effect model will be used to test for a difference in frequency of Mab detection following treatment or without treatment. The trial will also test for markers of treatment failure and pathogen adaptation in participants who did not achieve microbiological response, and will monitor for safety and tolerance.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Silvia M Caceres
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - Jennifer J Gilick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica Pacheco
- Investigational Drug Services Pharmacy, National Jewish Health, Denver, CO 80206, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shannon Kasperbauer
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jane E Gross
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Emily Armantrout
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Keira A Cohen
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Allison Keck
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill M Vandalfsen
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amalia S Magaret
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nikita Midamba
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Claire Chapdu
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antao Gao
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z4, CA, USA
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z4, CA, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carlos Guerrero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maggie Viland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Cheng P, Li Z, Liu L, Li R, Zhou J, Luo X, Mu X, Sun J, Ma J, A X. Characterization of the novel cross-genus phage vB_SmaS_QH3 and evaluation of its antibacterial efficacy against Stenotrophomonas maltophilia. Front Microbiol 2025; 16:1570665. [PMID: 40291807 PMCID: PMC12023781 DOI: 10.3389/fmicb.2025.1570665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Bacteriophages, which are natural bacterial predators, demonstrate potential as safe and effective biological control agents against drug-resistant infections. This study aims to characterize the biological properties of the novel lytic phage vB_SmaS_QH3 and comprehensively evaluate its efficacy in preventing and controlling clinically multidrug resistance Stenotrophomonas maltophilia infections using both in vivo and in vitro models. Methods The phage was isolated from hospital sewage using the multidrug resistant S. maltophilia no. 3738 as the host. Transmission electron microscopy (TEM) was used to observe phage morphology, and the host range was determined via spot assays. Proliferation kinetics, including multiplicity of infection (MOI), adsorption rate, and one-step growth curves, were analyzed. Stability was assessed under various physicochemical conditions. Based on Illumina whole-genome sequencing data, bioinformatics tools were employed for gene annotation, functional prediction, and phylogenetic analysis. Antimicrobial activity was assessed using in vitro and in vivo models. Results A lytic phage vB_SmaS_QH3 was isolated from hospital sewage. TEM revealed that it belongs to the class Caudoviricetes, featuring an icosahedral head (62 ± 3 nm) and a non-contractile long tail (121 ± 5 nm). Although the phage has a narrow host range, it exhibits cross-genus infectivity, lysing S. maltophilia (11/81) and Pseudomonas aeruginosa (3/24). The optimal MOI for phage vB_SmaS_QH3 is 0.01, with an adsorption rate of 49.16% within 20 min, a latent period of 40 min, a lytic period of 50 min, and a burst size of 41.67 plaque-forming units/cell. The phage remained stable at 4-60°C, at pH 3-11, and in chloroform, but it was completely inactivated following 20-min exposure to UV irradiation. Genomic analysis showed a linear double-stranded DNA genome of 43,085 bp with a GC content of 54.2%, containing 54 predicted ORFs, and no virulence or antibiotic resistance genes were detected. In vitro, vB_SmaS_QH3 effectively inhibited bacterial growth within 9 h. In vivo, it significantly improved the survival rate of Galleria mellonella larvae infected with S. maltophilia, regardless of the treatment timing. Conclusion vB_SmaS_QH3 is a narrow host range lytic phage with a safe genome and excellent stability. It exhibits significant antibacterial activity both in vitro and in vivo, making it a promising candidate for therapeutic applications.
Collapse
Affiliation(s)
- Peng Cheng
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Lanmin Liu
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Ruizhe Li
- Qinghai University, School of Clinical Medicine, Xining, China
| | - Jianwu Zhou
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoqin Luo
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiaoming Mu
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Jingwei Sun
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Jideng Ma
- Qinghai University, School of Clinical Medicine, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xiangren A
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
27
|
Gleichsner A, Harden K, Salphine K, Sandel J, Bova M, Denapole B, Godlewski A, Acevedo S, Galarneau A, Zales M, Twumasi G, Voss S, Haynes F, Abdul-Wahhab R, Bu B, Favro A, Zergaw A, Maisha M, Oliva B, Kaur S, Kwatia A, Rufino A, Arzu C, Tyrrell L, Pena P, Valentine M. Genome Sequence of Microbacterium foliorum Phage KingKamren. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001483. [PMID: 40291053 PMCID: PMC12022796 DOI: 10.17912/micropub.biology.001483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
We report the discovery and genome sequence of a cluster EK bacteriophage, KingKamren, isolated from a soil sample collected in Plattsburgh, New York using the bacteria Microbacterium foliorum , B-24224. Its 54,721 bp genome contains 51 putative genes, 17 of which have predicted functions.
Collapse
Affiliation(s)
| | - Kamren Harden
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | - Jill Sandel
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Mikaela Bova
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | | | | | | | - Mazon Zales
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | - Sophia Voss
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Faith Haynes
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | - Banfy Bu
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Abigail Favro
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Amen Zergaw
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | - Bian Oliva
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | | - Amma Kwatia
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Ashley Rufino
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Cesia Arzu
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Luke Tyrrell
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | - Pamela Pena
- SUNY Plattsburgh, Plattsburgh, New York, United States
| | | |
Collapse
|
28
|
Fu SY, Chen XZ, Yi PC, Gao J, Wang WX, Gu SL, Gao JH, Liu DX, Xu HF, Zeng Y, Hu CM, Zheng Q, Chen W. Optimizing phage therapy for carbapenem-resistant Enterobacter cloacae bacteremia: insights into dose and timing. Antimicrob Agents Chemother 2025; 69:e0168324. [PMID: 40008877 PMCID: PMC11963603 DOI: 10.1128/aac.01683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The increase in multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) infections, particularly those resistant to carbapenems, underscores the urgent need for alternative therapies. Phage therapy, with its specific bactericidal action, offers a promising solution. However, there remains a shortage of well-characterized ECC-targeting phages, and dosing and timing optimization for ECC-specific phage cocktails is largely unexplored. In this study, we isolated and characterized three novel lytic phages with diverse genome sizes and host ranges. Notably, ФEBU8 demonstrated broad-spectrum activity, lysing both Enterobacter species and Acinetobacter baumannii. ФECL22 displayed stability across a wide temperature range (4-50°C), pH tolerance (6-10), and a burst size of 19 PFU/cell, with OmpA identified as its receptor. Our formulated phage cocktail, comprising ФEBU8, ФECL22, and ФECL30, effectively rescued mice with E. cloacae bacteremia in a dose-dependent manner, with a mid-dose regimen showing particularly strong efficacy. Immediate phage administration achieved full survival, whereas a combined prophylactic and therapeutic regimen ("-24 + 6") also resulted in 100% survival. These findings highlight the critical roles of dosing and timing in optimizing phage therapy for carbapenem-resistant Enterobacter infections, with prophylactic use providing a valuable window for delayed treatment and a promising strategy for combating severe bacterial infections.
Collapse
Affiliation(s)
- Shi-Yong Fu
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Zhen Chen
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng-Cheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Gao
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Xiao Wang
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuang-Lin Gu
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Han Gao
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Du-Xian Liu
- Department of Pathology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Han-Feng Xu
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zeng
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Zheng
- Department of Oncology, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Viebrock K, Knoke I, Huß L, Rasch D, Meinen S, Dietzel A, Krull R. Automation of a Capillary-Wave Microbioreactor Platform to Enhance Phage Sensitivity Screen Efficiency. Eng Life Sci 2025; 25:e70021. [PMID: 40236275 PMCID: PMC11997256 DOI: 10.1002/elsc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
To increase their throughput, reduce laboratory work and improve reproducibility, automation of bioprocesses is gaining in importance nowadays. This applies in particular to microbioreactors (MBRs), which can be easily integrated in highly parallelized and automated platforms and, therefore, be applied for screenings, cell-based assays, and bioprocess development. One promising pharmaceutical application for MBRs is the performance of phage sensitivity tests called phagograms in phage therapy. However, there is no automated and parallelized platform available so far that fulfills the requirements of phagograms. Therefore, a novel highly parallelizable capillary-wave microbioreactor (cwMBR) with a volume of 7 µL, which has already been successfully applied for phagograms, was extended by an in-house built platform for automated fluid addition in the single-digit nanoliter range. The cwMBR has a phage-repellent hydrophilic glass surface. Furthermore, a custom-made highly parallelizable device for biomass measurement in the lower microliter scale was developed and validated in the cwMBR. To prove the applicability of the platform for the generation of phagograms, a phagogram using Escherichia coli and automated phage addition was performed. The results indicate a clear lysis of the bacteria by the phages and thus confirm the applicability of performing automated phagograms in the highly parallelizable cwMBR platform.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Ilka Knoke
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Leon Huß
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Detlev Rasch
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| | - Sven Meinen
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute of MicrotechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Andreas Dietzel
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Institute of MicrotechnologyTechnische Universität BraunschweigBraunschweigGermany
| | - Rainer Krull
- Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
- Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
30
|
Kim H, Vu NT, Thapa Magar R, Oh EJ, Oh KH, Lee J, Kim L, Hwang IS, Oh CS. Characterization of novel Erwinia amylovora-specific phiEaSP1 phage and its application as phage cocktail for managing fire blight in apples. Microbiol Res 2025; 293:128087. [PMID: 39892321 DOI: 10.1016/j.micres.2025.128087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Erwinia amylovora (Ea) is a devastating bacterial pathogen that causes fire blight disease in Rosaceae family plants, including apples and pears. The use of bacteriophages is an alternative strategy to antibiotics for managing bacterial pathogens. In this study, the Ea-specific virulent phiEaSP1 phage was characterized, and its biocontrol efficacy against Ea was evaluated in apple seedlings. Genomic analyses revealed that phiEaSP1 belongs to the family Chaseviridae, subfamily Cleopatravirinae, and genus Loessnervirus. Most phiEaSP1 particles bound to the host cell surface within 5 min, and one virion made 68 progenies within 20 min of infection. The phage rapidly lysed Ea cells in vitro and maintained its lytic activity after incubation under different environmental conditions, including temperature, pH, and UV-A, as well as in the soil, with surfactants, and on apple seedlings. Receptor analysis using the Tn5 random mutant library of Ea TS3128 demonstrated that phiEaSP1 recognizes lipopolysaccharide as a receptor, whereas phiEaP-8 and phiEaP-21 recognize cellulose as a receptor. Protective efficacy against fire blight was tested on apple seedlings pretreated with the single phiEaSP1 or a phage cocktail containing phiEaSP1, phiEaP-8, and phiEaP-21. No or only weak symptoms were observed in the phage-treated seedlings. The application of a phage cocktail showed better control efficacy, indicating the potential of the phage cocktail, including phiEaSP1, as a preventive agent. Taken together, these results suggest that the use of a phage cocktail containing phiEaSP1 could be a potential strategy for the biocontrol of fire blight disease in apples.
Collapse
Affiliation(s)
- Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Trung Vu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Roniya Thapa Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Hoon Oh
- Crop Protection R&D Center, FarmHannong Co., Ltd, 39-23, Nonsan 33010, Republic of Korea
| | - Jiwon Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - LeeSeul Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Programs in Agricultural Genomics, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
31
|
Díaz-Guerrero MÁ, Castillo-Juárez I, Zurabian R, Valdez A, Kota K, Hoshiko Y, Ramesh E, Martínez-Vazquez M, Ceapă CD, Hernandez-Garnica M, Cadet F, García-Contreras R. Reviving the past for a healthier future: ancient molecules and remedies as a solution to the antibiotic crisis. Future Microbiol 2025; 20:429-441. [PMID: 40099865 PMCID: PMC11980515 DOI: 10.1080/17460913.2025.2476290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Options to combat bacterial infections are becoming scarce. We require innovative approaches to enhance the discovery of effective antimicrobials capable of combating bacteria resistant to multiple or all antibiotics. These methods should either directly eliminate resistant bacteria or indirectly influence their viability by inhibiting their virulence or reducing their resistance to antibiotics. One interesting approach is to analyze ancient remedies used to treat bacterial infections, formulate them, and test them against modern microbes. This field has recently been named "ancientbiotics." This approach allows us to leverage centuries of empirical knowledge accumulated, from traditional medicines across various ancient cultures worldwide. The strategy has already yielded promising formulations to combat the ESKAPE group of nosocomial pathogens. Additionally, molecular de-extinction, which involves genome analysis of extinct species to search for useful antimicrobials, such as peptides, offers another avenue. In this review, we compile the antimicrobial effects of ancient remedies and de-extinct molecules known to modern science and discuss possible new strategies to further harness the potential of past remedies and molecules to fight the rise of superbugs.
Collapse
Affiliation(s)
| | - Israel Castillo-Juárez
- Conahcyt-Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Rimma Zurabian
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Alejandra Valdez
- Laboratorio de Interacciones Microbianas, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI, CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Kokila Kota
- Department of Biology, Ramapo College of New Jersey, Mahwah, NJ, USA
| | - Yuki Hoshiko
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Ekaprana Ramesh
- Department of Biology, Ramapo College of New Jersey, Mahwah, NJ, USA
| | | | - Corina Diana Ceapă
- Laboratory of Microbiology, Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, France
| | | |
Collapse
|
32
|
Cordisco E, Serra DO. Moonlighting antibiotics: the extra job of modulating biofilm formation. Trends Microbiol 2025; 33:459-471. [PMID: 39828459 DOI: 10.1016/j.tim.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
The widespread use of antibiotics to treat bacterial infections has led to the common perception that their only function is to inhibit growth or kill bacteria. However, it has become clear that when antibiotics reach susceptible bacteria at non-lethal concentrations, they perform additional functions that significantly impact bacterial physiology, shaping both individual and collective behaviors. A key bacterial behavior influenced by sub-lethal antibiotic doses is biofilm formation, a multicellular, surface-associated mode of growth. This review explores different contexts in which natural and clinical antibiotics act as modulators of bacterial biofilm formation. We discuss cases that provide mechanistic insights into antibiotic modes of action, highlighting emerging common patterns and novel findings that pave the way for future research.
Collapse
Affiliation(s)
- Estefanía Cordisco
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, (2000) Rosario, Argentina
| | - Diego Omar Serra
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, (2000) Rosario, Argentina.
| |
Collapse
|
33
|
Pitton M, Valente LG, Oberhaensli S, Gözel B, Jakob SM, Sendi P, Fürholz M, Cameron DR, Que YA. Targeting Chronic Biofilm Infections With Patient-derived Phages: An In Vitro and Ex Vivo Proof-of-concept Study in Patients With Left Ventricular Assist Devices. Open Forum Infect Dis 2025; 12:ofaf158. [PMID: 40182131 PMCID: PMC11966103 DOI: 10.1093/ofid/ofaf158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Background Phage therapy is being reconsidered as a valuable approach to combat antimicrobial resistance. We recently established a personalized phage therapy pipeline in healthy volunteers, where therapeutic phages were isolated from individuals' skin microbiota. In this study, we aim to validate this pipeline in end-stage heart failure patients supported by left ventricular assist devices (LVADs), focusing on phages targeting Staphylococcus epidermidis, a common pathogen responsible for LVAD infections. Methods Over a 2.5-year period, 45 LVAD patients were consistently sampled at their driveline exit sites and foreheads. S epidermidis strains from patients' foreheads were used to amplify patient-specific phages. Newly isolated phages were characterized and tested against S epidermidis isolates (n = 42) from the patient cohort. The virulent phage vB_SepS_BE22, isolated from a patient with a driveline infection, was further tested for its bactericidal activity against S epidermidis biofilms ex vivo with rifampicin on driveline biofilms. Results S epidermidis was detected in 32 patients, 3 of whom had driveline infections. Phages were isolated from 8 patients, 6 of which were unique and exhibited narrow host ranges, infecting 19%-52% of S epidermidis strains. vB_SepS_BE22, isolated from patient ID25's microbiota, was the only phage that specifically killed S epidermidis clones linked to a patient's infection. vB_SepS_BE22 also reduced bacterial loads in exponential and stationary phase cultures, as well as in biofilms on drivelines when combined with rifampicin. Conclusions This study validated a personalized phage therapy approach, where phages from a patient's own microbiota can be used in chronic infection settings as therapeutic agents.
Collapse
Affiliation(s)
- Melissa Pitton
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Luca G Valente
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bülent Gözel
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David R Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Xiao Z, Sun H, Wei A, Zhao W, Jiang X. A Novel Framework for Predicting Phage-Host Interactions via Host Specificity-Aware Graph Autoencoder. IEEE J Biomed Health Inform 2025; 29:3069-3078. [PMID: 40030240 DOI: 10.1109/jbhi.2024.3500137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Due to the abuse of antibiotics, some pathogenic bacteria have developed resistance to most antibiotics, leading to the emergence of antibiotic-resistant superbugs. Therefore, researchers resort to phage therapy for bacterial infections. For phage therapy, the fundamental step is to accurately identify phage-host interactions. Although various methods have been proposed, the existing methods suffer from the following two shortcomings: 1) they fail to make full use of genetic information including both genome and protein sequence of phages; 2) host specificity of phages is not explicitly utilized when learning representations of phages and bacteria. In this paper, we present an efficient computational method called PHISGAE for predicting phage-host interactions, in which the host specificity is explicitly employed. Firstly, initial phage-phage connections are efficiently constructed via utilizing phage genome and protein sequence. Then, the refined heterogeneous network is derived by applying K-nearest neighbor strategy, keeping relatively more meaningful local semantics among phages and bacteria. Finally, a host specificity-aware graph autoencoder is proposed to learn high-quality representations of phages and bacteria for predicting phage-host interactions. Experimental results show that PHISGAE outperforms the state-of-the-art methods on predicting phage-host interactions at both species level and genus level (AUC values of 94.73% and 96.32%, respectively). Moreover, results of case study demonstrate that PHISGAE is able to identify candidate hosts with high probability for previously unseen phages identified from metagenomics, effectively predicting potential phage-host interactions in real-world applications.
Collapse
|
35
|
Lu Y, Geng W, Li L, Xie F, Zhang M, Xie H, Cai J. Enhanced antibacterial and antibiofilm activities of quaternized ultra-highly deacetylated chitosan against multidrug-resistant bacteria. Int J Biol Macromol 2025; 298:140052. [PMID: 39832600 DOI: 10.1016/j.ijbiomac.2025.140052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant (MDR) bacterial infections pose a severe threat to global public health and present significant challenges in the treatment of bacterial keratitis. The escalation of antimicrobial resistance (AMR) underscores the urgent need for alternative therapeutic strategies. In this study, we report the homogeneous synthesis of quaternized ultra-highly deacetylated chitosan (QUDCS) using a sequential acid-base combination approach. The optimized QUDCS-2 exhibits broad-spectrum antibacterial activity through a membrane-disruption mechanism driven by electrostatic, hydrogen bonding, and hydrophobic interactions, while maintaining low cytotoxicity and high selectivity. Compared to less deacetylated counterparts, QUDCS-2 demonstrates superior stability in enzyme-rich environments and effectively inhibits and eradicates mature biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, QUDCS-2 exhibits a remarkable ability to prevent the development of antimicrobial resistance. In a mouse keratitis model, QUDCS-2 shows excellent biocompatibility and significant antibacterial efficacy, providing strong support for its potential as a long-term, effective antimicrobial agent.
Collapse
Affiliation(s)
- Yiwen Lu
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Li
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Xie
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jie Cai
- Institute of Hepatobiliary Diseases, Transplant Center, Zhongnan Hospital, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Mu Y, Song Y, Tian X, Ding Z, Yao S, Li Y, Wang C, Wei D, Vollmer W, Zhang G, Feng J. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. MLIFE 2025; 4:143-154. [PMID: 40313983 PMCID: PMC12042119 DOI: 10.1002/mlf2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/21/2024] [Indexed: 05/03/2025]
Abstract
The escalating antibiotic resistance crisis poses a major global health threat. Bacteriophage therapy offers a promising alternative for combating multidrug-resistant infections. However, bacterial resistance to phages remains a significant hurdle. Innovative strategies are needed to overcome this challenge. In this study, we developed a phage cocktail based on our phage library, consisting of three phages that suppressed phage resistance of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp). This cocktail capitalized on dual instances of collateral sensitivity, thereby constraining the evolution of phage resistance. The first-layered collateral sensitivity arose from overlapping coverage between capsular polysaccharide (CPS) and lipopolysaccharide (LPS), rendering the bacteria resistant to CPS-binding phages but more susceptible to LPS-binding phages. The second-layered collateral sensitivity resulted from an O serotype switch (from O1 to O2), causing resistance to O1 antigen-binding phages but increasing susceptibility to phages that target the O2 antigen. This dual-layered collateral sensitivity phage cocktail effectively mitigated infection caused by CR-hvKp in mice. Our research highlights the importance of the collateral sensitivity mechanism in counteracting the evolution of phage resistance and offers a sophisticated strategy for configuring phage cocktails to eliminate bacterial resistance.
Collapse
Affiliation(s)
- Yongqi Mu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xueru Tian
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Zixuan Ding
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- School of Clinical and Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Shigang Yao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Dawei Wei
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Waldemar Vollmer
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Centre for Bacterial Cell Biology, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Hou X, Pu J, Li Y, Xie W, Zhang L, Deng H. Isolation, identification, and genome analysis of the novel Escherichia coli phage XH12 and enhancement of the antibacterial activity of its lysozyme by chimeric cationic peptides. Arch Virol 2025; 170:91. [PMID: 40146388 DOI: 10.1007/s00705-025-06274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 03/28/2025]
Abstract
Antibiotics are no longer adequate to address the threat of antibiotic resistance, especially in Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, and other Gram-negative pathogens that pose a serious threat to human health worldwide. The antibiotic resistance pandemic has brought about a need to search for new antimicrobials as alternatives that are effective and less prone to resistance. Phages and their lysozymes have become an attractive alternative to currently available antibiotics. However, Gram-negative bacteria have an outer membrane that acts as a strong barrier, so lysozymes are often used in combination with an outer membrane permeator or are modified to overcome the outer membrane barrier. To combat drug-resistant E. coli, in this study, we used the multidrug-resistant E. coli isolate Eco-3 as a host to isolate a lytic phage, XH12, from sewage. Phage XH12 was found to lyse 81% (30/37) of the E. coli isolates tested. The biological characteristics and genome sequence of phage XH12 were analyzed, and we found that lysozyme lys12 encoded by phage XH12, when combined with ethylenediaminetetraacetic acid (EDTA), exhibited antibacterial activity against E. coli. Two modified lysozymes were obtained by fusing cationic amino acid polypeptides to the C-terminus of lys12. The fusion lysozymes increased the antibacterial activity against E. coli in the extracellular space. This study of phage XH12 and its lysozyme provides basic information for further study of the treatment of multidrug-resistant E. coli infections.
Collapse
Affiliation(s)
- Xuhao Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jiaqi Pu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Yu Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Wenhai Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Limei Zhang
- Department of Endocrinology, Central Hospital of Zibo, Zibo, 255000, People's Republic of China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
- Department of Endocrinology, Central Hospital of Zibo, Zibo, 255000, People's Republic of China.
| |
Collapse
|
38
|
Theuretzbacher U, Jumde RP, Hennessy A, Cohn J, Piddock LJV. Global health perspectives on antibacterial drug discovery and the preclinical pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01167-w. [PMID: 40148602 DOI: 10.1038/s41579-025-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Antibacterial resistance is a global challenge that requires a coordinated international response. The current clinical pipeline largely consists of derivatives of established antibiotic classes, whereas the discovery and preclinical pipeline is diverse and innovative including new direct-acting agents with no cross-resistance with existing antibiotics. These novel compounds target pathways such as lipoprotein synthesis, lipopolysaccharide biosynthesis and transport, outer membrane assembly, peptidoglycan biosynthesis, fatty acid biosynthesis and isoprenoid biosynthesis. If these agents can be developed into safe, effective and affordable drugs, they could address a broad range of infections worldwide, benefiting large patient populations without geographical limitations. However, strategies such as indirect-acting or pathogen-specific treatments are likely to benefit small patient groups, primarily in high-income countries that have advanced health-care systems and diagnostic infrastructure. Although encouraging, the discovery and preclinical pipeline remains insufficiently robust to offset the high attrition rates typical of early-stage drug innovation and to meet global health needs.
Collapse
Affiliation(s)
| | - Ravindra P Jumde
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Alan Hennessy
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Jennifer Cohn
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland.
| |
Collapse
|
39
|
Rojero M, Weaver-Rosen M, Serwer P. Bypassing Evolution of Bacterial Resistance to Phages: The Example of Hyper-Aggressive Phage 0524phi7-1. Int J Mol Sci 2025; 26:2914. [PMID: 40243527 PMCID: PMC11988461 DOI: 10.3390/ijms26072914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The ideal bacteriophages (phages) for the treatment of bacterial disease (phage therapy) would bypass bacterial evolution to phage resistance. However, this feature (called a hyper-aggression feature) has never been observed to our knowledge. Here, we microbiologically characterize, fractionate, genomically classify, and perform electron microscopy of the newly isolated Bacillus thuringiensis phage 0524phi7-1, which we find to have this hyper-aggression feature. Even visible bacterial colonies are cleared. Phage 0524phi7-1 also has three other features classified under hyper-aggression (four-feature-hyper-aggressive phage). (1) Phage 0524phi7-1 forms plaques that, although sometimes beginning as semi-turbid, eventually clear. (2) Clear plaques continue to enlarge for days. No phage-resistant bacteria are detected in cleared zones. (3) Plaques sometimes have smaller satellite plaques, even in gels so concentrated that the implied satellite-generating phage motion is not bacterial host generated. In addition, electron microscopy reveals that phage 0524phi7-1 (1) is a myophage with an isometric, 91 nm-head (diameter) and 210 nm-long contractile tail, and (2) undergoes extensive aggregation, which inhibits typical studies of phage physiology. The genome is linear double-stranded DNA, which, by sequencing, is 157.103 Kb long: family, Herelleviridae; genus, tsarbombavirus. The data suggest the hypothesis that phage 0524phi7-1 undergoes both swimming and hibernation. Techniques are implied for isolating better phages for phage therapy.
Collapse
Affiliation(s)
- Maria Rojero
- Department of Microbiology, Immunology and Molecular Genetics, UT Health, San Antonio, TX 78229, USA;
| | - Meagan Weaver-Rosen
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA;
| |
Collapse
|
40
|
Malik S, Ahsan O, Muhammad K, Munawar N, Waheed Y. Phagetherapy updates: New frontiers against antibiotic resistance. Eur J Microbiol Immunol (Bp) 2025; 15:1-12. [PMID: 40094895 PMCID: PMC11925186 DOI: 10.1556/1886.2024.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Antibiotic resistance is a major problem in the healthcare industry, and it presents difficulties in managing bacterial diseases worldwide. The need to find alternative antibiotic-containing methods is thus a major area for the scientific community to work on. Bacteriophage therapy is an interesting alternative that has been used in scientific research for a long time to tackle antibiotic-resistant bacteria. The purpose of this review was to compile the latest data on bacteriophages, which are progressively being used as alternatives to antibiotics, and to identify the mechanisms associated with phage therapy. The results section delves into the growing challenges posed by antibiotics and explores the potential of bacteriophages as therapeutic alternatives. This study discusses how phages can decrease antibiotic resistance, highlighting their role in modulating microbiomes and addressing various complications. This study explored the intriguing question of whether bacteriophages can combat nonbacterial diseases and examined their indirect use in pest control. In addition, this study explores the application of the CRISPR-Cas system in combating antibiotic resistance and specifically addresses phage therapy for secondary bacterial infections in COVID-19. We will further discuss whether bacteriophages are a noteworthy alternative to antibiotics by considering the evolutionary trade-offs between phages and antibiotic resistance. This section concludes by outlining future perspectives and acknowledging limitations, particularly in the context of phage and CRISPR-Cas9-mediated phage therapy. The methodology adopted for this study is a comprehensive research strategy using the Google Scholar and PubMed databases, among others. In conclusion, phage therapy is a promising strategy for tackling antibiotic-resistant bacteria, contributing to improved food production and mitigating secondary health effects. However, effective regulation requires careful selection of phages in conjunction with antibiotics to ensure judicious control of the coevolutionary dynamics between phages and antibiotics.
Collapse
Affiliation(s)
- Shiza Malik
- 1Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Omar Ahsan
- 2Department of Medicine, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- 3Department of Biology, College of Science, UAE University, 15551, Al Ain, UAE
| | - Nayla Munawar
- 4Department of Chemistry, College of Science, UAE University, 15551, Al Ain, UAE
| | - Yasir Waheed
- 5NUST School of Health Sciences, National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan
- 6Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey
- 7Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Republic of Korea
- 8University of Economics and Human Sciences in Warsaw, Warsaw 01-043, Poland
| |
Collapse
|
41
|
Cho JH, Lee GM, Ko S, Kim Y, Kim D. Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. J Virol 2025; 99:e0190124. [PMID: 39950776 PMCID: PMC11915829 DOI: 10.1128/jvi.01901-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
Bovine mastitis, primarily caused by Staphylococcus aureus, significantly affects the dairy industry by reducing milk production and quality. The rise of antibiotic-resistant bacteria has prompted the need for alternative treatments. The three newly isolated bacteriophages, OPT-SA02, OPT-SC01, and OPT-SX11, were isolated from chicken fecal and sewage samples in South Korea. These bacteriophages were characterized via physiological and genomic analyses, identifying their therapeutic potential against S. aureus-induced mastitis. The bacteriophages were identified as members of the Herelleviridae family, exhibiting stability across broad pH (2-12) and temperature (37-70°C) ranges, as well as strong antibacterial activity at low multiplicity of infection (MOI) levels. Genomic analysis revealed that the conservation of lysis-related genes (holin and endolysin) is responsible for their lytic capabilities. Additionally, protein structural predictions revealed multi-domain structures in their endolysins, enhancing their lytic potential. These findings suggest that OPT-SA02, OPT-SC01, and OPT-SX11 show significant promise as alternative treatments for bovine mastitis.IMPORTANCEBovine mastitis, caused by pathogens such as Staphylococcus aureus and Staphylococcus xylosus, remains a major challenge in dairy farming, leading to significant economic losses and reduced milk quality. The increasing prevalence of antibiotic-resistant strains further complicates treatment, emphasizing the need for alternative strategies. This study identifies three newly isolated bacteriophages with effective antibacterial activity against these pathogens and provides comprehensive genomic and structural insights into their mechanisms. Genomic characterization revealed conserved lytic cassettes and genetic diversity within related bacteriophages, offering a deeper understanding of their evolutionary relationships and potential applications. Furthermore, protein structure analysis of the endolysin derived from these bacteriophages identified multi-domain architectures with preserved catalytic cores, underscoring their lytic efficacy against bacterial cell walls. These findings advance the understanding of the genetic and structural mechanisms of bacteriophage-mediated lysis and highlight their potential as sustainable tools for managing bovine mastitis and improving milk quality in dairy farming.
Collapse
Affiliation(s)
- Jae-hyun Cho
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Gyu Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seyoung Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Youngju Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
42
|
Gou Z, Yao P, Xiong L, Wang X, Yuan Q, Sun F, Cheng Y, Xia P. Potential of a phage cocktail in the treatment of multidrug-resistant Klebsiella pneumoniae pulmonary infection in mice. BMC Microbiol 2025; 25:151. [PMID: 40098144 PMCID: PMC11912671 DOI: 10.1186/s12866-025-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae, including carbapenem-resistant K. pneumoniae (CRKP), as one of the most common and notable superbugs, has long been a major threat to public health. As natural predators of bacteria, bacteriophages (or phages) can induce the lysis of bacterial cells. Herein, we report the isolation and characterization of two phages and their efficacy in the control of CRKP. Using the sequence type 11 (ST11) CRKP strain THR60 and its related strain THR60r as the host bacteria, phages GZ7 and GZ9 were isolated from hospital sewage, respectively. GZ7 is a myovirus with a head of 64 nm in diameter and a tail of 97 nm in length, and GZ9 is a siphovirus with a head of 67 nm in diameter and a tail of 175 nm in length. The host spectrum of a phage cocktail consisting of phages GZ7 and GZ9 was 82.4% (42/51 strains). An in vitro antibacterial activity assay demonstrated that the phage cocktail consisting of GZ7 and GZ9 effectively inhibited bacterial growth and suppressed the production of phage-resistant bacteria. In vivo experiment revealed that phage-treated mice exhibited lower K. pneumoniae burdens in the lungs compared to untreated control mice. Additionally, phage-treated mice experienced less body weight loss and had reduced levels of inflammatory cytokines in their lungs. Lung lesion conditions were significantly improved by phage therapy. Notably, the therapeutic effects of the GZ7 + GZ9 cocktail and GZ7 alone on mouse pulmonary infections were nearly equivalent. Therefore, phages GZ7 and GZ9 showed potential as alternatives to antibiotics for treating pneumonia caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Zong Gou
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yimei Cheng
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
43
|
Schieferecke AJ, Kuxhausen Ralph N, Schaffer DV. The Application of DNA Viruses to Biotechnology. Viruses 2025; 17:414. [PMID: 40143341 PMCID: PMC11946468 DOI: 10.3390/v17030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The delivery of biomolecules to target cells has been a longstanding challenge in biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells and modulate cellular processes. As such, they inherently possess requisite characteristics that have led to their extensive study, engineering, and development as biotechnological tools. Here, we overview the application of DNA viruses to biotechnology, with specific implications in basic research, health, biomanufacturing, and agriculture. For each application, we review how an increasing understanding of virology and technological methods to genetically manipulate DNA viruses has enabled advances in these fields. Additionally, we highlight the remaining challenges to unlocking the full biotechnological potential of DNA viral technologies. Finally, we discuss the importance of balancing continued technological progress with ethical and biosafety considerations.
Collapse
Affiliation(s)
- Adam J. Schieferecke
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; (N.K.R.); (D.V.S.)
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nadia Kuxhausen Ralph
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; (N.K.R.); (D.V.S.)
| | - David V. Schaffer
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; (N.K.R.); (D.V.S.)
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Olsen NS, Riber L. Metagenomics as a Transformative Tool for Antibiotic Resistance Surveillance: Highlighting the Impact of Mobile Genetic Elements with a Focus on the Complex Role of Phages. Antibiotics (Basel) 2025; 14:296. [PMID: 40149106 PMCID: PMC11939754 DOI: 10.3390/antibiotics14030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Extensive use of antibiotics in human healthcare as well as in agricultural and environmental settings has led to the emergence and spread of antibiotic-resistant bacteria, rendering many infections increasingly difficult to treat. Coupled with the limited development of new antibiotics, the rise of antimicrobial resistance (AMR) has caused a major health crisis worldwide, which calls for immediate action. Strengthening AMR surveillance systems is, therefore, crucial to global and national efforts in combating this escalating threat. This review explores the potential of metagenomics, a sequenced-based approach to analyze entire microbial communities without the need for cultivation, as a transformative and rapid tool for improving AMR surveillance strategies as compared to traditional cultivation-based methods. We emphasize the importance of monitoring mobile genetic elements (MGEs), such as integrons, transposons, plasmids, and bacteriophages (phages), in relation to their critical role in facilitating the dissemination of genetic resistance determinants via horizontal gene transfer (HGT) across diverse environments and clinical settings. In this context, the strengths and limitations of current bioinformatic tools designed to detect AMR-associated MGEs in metagenomic datasets, including the emerging potential of predictive machine learning models, are evaluated. Moreover, the controversial role of phages in AMR transmission is discussed alongside the potential of phage therapy as a promising alternative to conventional antibiotic treatment.
Collapse
Affiliation(s)
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark;
| |
Collapse
|
45
|
Elshamy AA, Kamal SK, Mahmoud MT, Elhasany AM, Shady AA, Mohamed SA, Abd-Elmaaboud HA, El-Awady NE, Mohamed RA, El-Mirghany SA, El-Hady SW, Abd-ElRahman MM, Aboshanab KM. Recent insights on phage therapy against multidrug-resistant Acinetobacter baumannii. AMB Express 2025; 15:44. [PMID: 40072684 PMCID: PMC11904003 DOI: 10.1186/s13568-025-01837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Acinetobacter baumannii is a prevalent clinical pathogen commonly found to be multidrug-resistant (MDR), causing serious to life-threatening infections, particularly hospital-acquired infections with limited therapeutic options. The MDR phenotype developed against this critical pathogen is increasingly developed globally, reaching a pan-drug-resistant phenotype conferring non-susceptibility to all antimicrobials used in its treatment according to the standard guidelines. Therefore, it is critical to develop innovative treatment approaches, such as phage therapy, considering the rise in drug-resistant A. baumannii infections. In this review, we highlight and discuss the up-to-date antimicrobial resistance of A. baumannii, the use of phages, their limitations, and future perspectives in treating A. baumannii infections. In addition, the combination of phages with antimicrobials, preclinical and clinical studies including pharmacokinetics and pharmacodynamics properties have been discussed.
Collapse
Affiliation(s)
- Ann A Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sandra K Kamal
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Aya M Elhasany
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Aya A Shady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | - Nour E El-Awady
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Rana A Mohamed
- Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | | | | | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
46
|
Zhu C, Diao Z, Yang Y, Liao J, Wang C, Li Y, Liang Z, Xu P, Liu X, Zhang Q, Gong L, Ma Q, Liang L, Lin Z. Recent advances and challenges in metal-based antimicrobial materials: a review of strategies to combat antibiotic resistance. J Nanobiotechnology 2025; 23:193. [PMID: 40059157 PMCID: PMC11892188 DOI: 10.1186/s12951-025-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Despite the availability of a series of classical antibiotic drugs, bacterial infections continue to represent a significant and urgent threat to global human health. The emergence of drug-resistant bacteria and the slow pace of antibiotic development have rendered current treatment methods inadequate in meeting the clinical demands of bacterial infections. Consequently, there is an increasingly urgent and vital need for the development of safe, efficient, and alternative novel antimicrobial agents in the medical and healthcare field. Over the past five years, there has been a notable expansion in the field of nanomedicine with regard to the prevention and control of infectious diseases. The objective of this article is to provide a comprehensive review of the latest research developments in the field of metal nanomaterials for medical antimicrobial therapy. We begin by delineating the gravity of the bacterial infection crisis, subsequently undertaking a comprehensive examination of the potential mechanisms through which nanoparticles may combat bacterial infections and the specific applications of these nanomaterials in the treatment of diverse infectious diseases. In conclusion, we eagerly anticipate the future development directions of metal nanomaterials in the field of antimicrobial therapy. We believe that with continuous technological advancements and innovations, this field will make even more outstanding contributions to safeguarding human health and well-being.
Collapse
Affiliation(s)
- Chuanda Zhu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenli Diao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100043, China
| | - Yuanyuan Yang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Liao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanglonghao Li
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichao Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengcheng Xu
- School of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xinyu Liu
- Beijing Life Science Academy, Beijing, 102200, China
| | - Qiang Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Qiang Ma
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan City, 063210, Hebei Province, China.
| | - Ling Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Zhiqiang Lin
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
47
|
Su J, Tan Y, Liu S, Zou H, Huang X, Chen S, Zhang H, Li S, Zeng H. Characterization of a novel lytic phage vB_AbaM_AB4P2 encoding depolymerase and its application in eliminating biofilms formed by Acinetobacter baumannii. BMC Microbiol 2025; 25:123. [PMID: 40057696 PMCID: PMC11889872 DOI: 10.1186/s12866-025-03854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Acinetobacter baumannii strains are a primary cause of hospital-acquired infections. This bacterium frequently causes biofilm-related infections, notably ventilator-associated pneumonia and catheter-related infections, which exhibit remarkable resistance to antibiotic treatment, posing a severe challenge in the prevention of A. baumannii infections. Therefore, strategies to eliminate the biofilm of A. baumannii in catheters are becoming increasingly important. Phages are capable of lysing bacteria and have a certain effect on the ablation of biofilms. METHODS Sewage treatment plant water was collected for the isolation of A. baumannii phages. The morphological, host range, one-step growth, temperature and pH stability, bactericidal activity, sequencing and genomic analysis were performed to characterize the isolated phage. The three-dimensional structure of the tail fiber protein was predicted by AlphaFold3. The efficacy of phage in clearing biofilms of A. baumannii from 24-well plates and PVC catheters was also evaluated. RESULTS In this study, A. baumannii lytic phage vB_AbaM_AB4P2 was isolated from sewage treatment plant water, showing a clear plaque with halo zone. One-step growth assays unveiled a 20-minute latent period and a burst size of 61 plaque forming unit/cell (PFU/cell). At the same time, phage AB4P2 exhibited remarkable stability at pH 3-11 and temperatures 30-70 °C. Its dsDNA genome is composed of 45,680 bp with a G + C content of 46.13%. Genomic and phylogenetic analysis situated phage AB4P2 as a new species of Caudoviricetes class. Its fiber protein possesses a pectin lyase-like domain that is linked to depolymerase activity, playing a crucial role in disrupting biofilms. Additionally, it also encodes a lysis cassette comprising endolysin, holin and Rz-like spanin, yet lacks any genes responsible for antibiotic resistance and virulence factors. Phage AB4P2 can completely inhibit A. baumannii growth for 16 h. In the 24-well plate and the polyvinyl chloride (PVC) catheter model experiments, phage AB4P2 achieved a significant biofilm ablation rate and effectively killed the live bacterial cells in the biofilm. CONCLUSIONS Phage AB4P2 had good environmental stability and strong ability to inhibit the growth of A. baumannii and destroy formed biofilms by A. baumannii. It exhibits promising potential for development as an alternative environmental disinfectant against A. baumannii in the hospital. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jianhui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Yujing Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Siyi Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Hongmei Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Shaoting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Waihuan West Road 100, Guangzhou City, Guangdong Province, 510006, China.
| |
Collapse
|
48
|
Zhang L, Adyari B, Ma C, Cao M, Gad M, Abdel-Gawad FK, Hu A. Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136767. [PMID: 39662352 DOI: 10.1016/j.jhazmat.2024.136767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems.
Collapse
Affiliation(s)
- Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen 361001, China
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Fagr Kh Abdel-Gawad
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development (C3SD-NRC), National Research Centre, Dokki, Giza 12622, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
49
|
Melton J, Augustus C, Dotson J, Camara A, Christian L, McClendon D, Severson M, Wills M, Burris D, Williams D, Williams V, Ganguly S. Genome Sequences of the Arthrobacter globiformis Phage BillyTP (Cluster AY) and Gordonia rubripertincta Phage MAnor (Cluster CT). MICROPUBLICATION BIOLOGY 2025; 2025. [PMID: 40110472 PMCID: PMC11920828 DOI: 10.17912/micropub.biology.001486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Phages BillyTP (Cluster AY) and MAnor (Cluster CT) were isolated from soil using Arthrobacter globiformis B-2979 and Gordonia rubripertincta NRRL B-16540, respectively, as hosts. The genome of BillyTP is 53,003 base pairs (bp) and contains 96 putative genes, while the genome of MAnor is 48,333 bp encoding 73 putative genes. BillyTP and MAnor are assigned to actinobacteriophage clusters AY and CT, respectively, based on gene content similarity (GCS) of at least 35%.
Collapse
|
50
|
Kim MK, Suh GA, Cullen GD, Perez Rodriguez S, Dharmaraj T, Chang THW, Li Z, Chen Q, Green SI, Lavigne R, Pirnay JP, Bollyky PL, Sacher JC. Bacteriophage therapy for multidrug-resistant infections: current technologies and therapeutic approaches. J Clin Invest 2025; 135:e187996. [PMID: 40026251 PMCID: PMC11870740 DOI: 10.1172/jci187996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacteriophage (phage) therapy has emerged as a promising solution to combat the growing crisis of multidrug-resistant (MDR) infections. There are several international centers actively engaged in implementation of phage therapy, and recent case series have reported encouraging success rates in patients receiving personalized, compassionate phage therapy for difficult-to-treat infections. Nonetheless, substantial hurdles remain in the way of more widespread adoption and more consistent success. This Review offers a comprehensive overview of current phage therapy technologies and therapeutic approaches. We first delineate the common steps in phage therapy development, from phage bank establishment to clinical administration, and examine the spectrum of therapeutic approaches, from personalized to fixed phage cocktails. Using the framework of a conventional drug development pipeline, we then identify critical knowledge gaps in areas such as cocktail design, formulation, pharmacology, and clinical trial design. We conclude that, while phage therapy holds promise, a structured drug development pipeline and sustained government support are crucial for widespread adoption of phage therapy for MDR infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gina A. Suh
- Division of Public Health, Infectious Diseases and Occupational Health, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Grace D. Cullen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Saumel Perez Rodriguez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Tony Hong Wei Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Zhiwei Li
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sabrina I. Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jessica C. Sacher
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Phage Directory, Atlanta, Georgia, USA
| |
Collapse
|