1
|
Morgan CJ, Atkins H, Wolfe AJ, Brubaker L, Aslam S, Putonti C, Doud MB, Burnett LA. Phage Therapy for Urinary Tract Infections: Progress and Challenges Ahead. Int Urogynecol J 2025:10.1007/s00192-025-06136-8. [PMID: 40358692 DOI: 10.1007/s00192-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/08/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION AND HYPOTHESIS Urinary tract infection (UTI) treatment is a growing public health concern owing to increasing antimicrobial resistance. Phage therapy, an alternative or adjunctive treatment to antibiotics, has the potential to address this challenge. However, clinical use of phage therapy is hindered by knowledge gaps and inconsistent reporting. The objective was to review the current state of phage therapy for UTIs and highlight research priorities that can optimize phage clinical efficacy. METHODS Current literature on UTI phage therapy was examined, focusing on the lack of standardized phage susceptibility testing, phage characterization, and microbiological assessments during and after treatment. RESULTS Critical areas requiring further investigation include appropriate phage dosing, optimal routes of administration, and the dynamics of phage-host and phage-patient interactions. The influence of the urinary microbiome, including endogenous phages, on treatment outcomes also needs to be better understood. Suggested data collection and reporting standards should be developed and implemented to improve clinical impact of studies examining phage therapy for UTI. Randomized clinical trials are needed to establish efficacy and determine the best practices for clinical use. CONCLUSION Phage therapy is a promising alternative to antibiotics for managing UTIs, especially in the face of rising antimicrobial resistance. To fully realize its potential, however, future research must focus on standardized protocols, dosing strategies, and the role of the urinary microbiome, with an emphasis on rigorously conducted clinical trials. These steps are essential for integrating phage therapy into mainstream UTI treatment regimens.
Collapse
Affiliation(s)
- Chase J Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Haley Atkins
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Linda Brubaker
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Michael B Doud
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, 9500 Gilman Dr, Mail Code 0116, La Jolla, CA, USA.
| | - Lindsey A Burnett
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, UC San Diego, 9300 Campus Point Dr, Mail Code 7433, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Wang J, He X, Li G. Separate Kingdoms, Same Conspiracies: Conserved Viral Strategies for Immune Evasion in Animal and Bacterial Hosts. MedComm (Beijing) 2025; 6:e70215. [PMID: 40351390 PMCID: PMC12064943 DOI: 10.1002/mco2.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Affiliation(s)
- Junyi Wang
- Laboratory of Allergy and Precision Medicine, Department of Respiratory MedicineChengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of ChengduChengduChina
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Department of Respiratory MedicineChengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of ChengduChengduChina
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Department of Respiratory MedicineChengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of ChengduChengduChina
| |
Collapse
|
3
|
Sabonis D, Avraham C, Chang RB, Lu A, Herbst E, Silanskas A, Vilutis D, Leavitt A, Yirmiya E, Toyoda HC, Ruksenaite A, Zaremba M, Osterman I, Amitai G, Kranzusch PJ, Sorek R, Tamulaitiene G. TIR domains produce histidine-ADPR as an immune signal in bacteria. Nature 2025:10.1038/s41586-025-08930-2. [PMID: 40307559 DOI: 10.1038/s41586-025-08930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Toll/interleukin-1 receptor (TIR) domains are central components of pattern recognition immune proteins across all domains of life1,2. In bacteria and plants, TIR-domain proteins recognize pathogen invasion and then produce immune signalling molecules exclusively comprising nucleotide moieties2-5. Here we show that the TIR-domain protein of the type II Thoeris defence system in bacteria produces a unique signalling molecule comprising the amino acid histidine conjugated to ADP-ribose (His-ADPR). His-ADPR is generated in response to phage infection and activates the cognate Thoeris effector by binding a Macro domain located at the C terminus of the effector protein. By determining the crystal structure of a ligand-bound Macro domain, we describe the structural basis for His-ADPR and its recognition and show its role by biochemical and mutational analyses. Our analyses furthermore reveal a family of phage proteins that bind and sequester His-ADPR signalling molecules, enabling phages to evade TIR-mediated immunity. These data demonstrate diversity in bacterial TIR signalling and reveal a new class of TIR-derived immune signalling molecules that combine nucleotide and amino acid moieties.
Collapse
Affiliation(s)
- Dziugas Sabonis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Renee B Chang
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ehud Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Deividas Vilutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hunter C Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
4
|
Qiao Y, Wei L, Su Y, Tan Q, Yang X, Li S. Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:5429-5456. [PMID: 40308645 PMCID: PMC12042967 DOI: 10.2147/ijn.s515893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in triggering innate and adaptive immune responses through type I interferon activation and immune cell recruitment, holding significant promise for cancer therapy. While STING activators targeting this pathway have been developed, their clinical application is hindered by challenges such as poor membrane permeability, rapid degradation, suboptimal pharmacokinetics, off-target biodistribution, and toxicity. Nanoparticle-based delivery systems offer a promising solution by enhancing the stability, circulation time, tumor accumulation, and intracellular release of STING activators. Furthermore, combining nanoparticle-delivered STING activators with radiotherapy, chemotherapy, phototherapy, and other immunotherapies enables synergistic antitumor effects through multimodal mechanisms, addressing resistance to monotherapies and reducing risks of recurrence and metastasis. This review outlines the immunomodulatory mechanisms of the cGAS-STING pathway, surveys current STING-targeted activators, and comprehensively discusses recent advances in nanoparticle-mediated delivery strategies for STING activation. Additionally, we explore combinatorial approaches that integrate STING-targeted nanotherapies with conventional and emerging treatments. Finally, we highlight the current status, prospects, and challenges of nanoparticle-based STING activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingyu Wei
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yinjie Su
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qinyuan Tan
- Department of Urology, The People’s Hospital of Jimo, Qingdao, People’s Republic of China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shengxian Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Zeng Z, Hu Z, Zhao R, Rao J, Mestre MR, Liu Y, Liu S, Feng H, Chen Y, He H, Chen N, Zheng J, Peng D, Luo M, She Q, Pinilla-Redondo R, Han W. Base-modified nucleotides mediate immune signaling in bacteria. Science 2025; 388:eads6055. [PMID: 39977546 DOI: 10.1126/science.ads6055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Signaling from pathogen sensing to effector activation is a fundamental principle of cellular immunity. Whereas cyclic (oligo)nucleotides have emerged as key signaling molecules, the existence of other messengers remains largely unexplored. In this study, we reveal a bacterial antiphage system that mediates immune signaling through nucleobase modification. Immunity is triggered by phage nucleotide kinases, which, combined with the system-encoded adenosine deaminase, produce deoxyinosine triphosphates (dITPs) as immune messengers. The dITP signal activates a downstream effector to mediate depletion of cellular nicotinamide adenine dinucleotide (oxidized form), resulting in population-level defense through the death of infected cells. To counteract immune signaling, phages deploy specialized enzymes that deplete cellular deoxyadenosine monophosphate, the precursor of dITP messengers. Our findings uncover a nucleobase modification-based antiphage signaling pathway, establishing noncanonical nucleotides as a new type of immune messengers in bacteria.
Collapse
Affiliation(s)
- Zhifeng Zeng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyu Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruiliang Zhao
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jikai Rao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mario Rodríguez Mestre
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yanqiu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shunhang Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Feng
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Yu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Nuo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Luo
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, Qingdao, China
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenyuan Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Wang L, Zheng R, Zhang L. Sequestering survival: sponge-like proteins in phage evasion of bacterial immune defenses. Front Immunol 2025; 16:1545308. [PMID: 40313938 PMCID: PMC12043709 DOI: 10.3389/fimmu.2025.1545308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
By executing abortive infection, bacterial immune defense systems recognize phage components and initiate the production of various second messengers that target specific downstream effectors responsible for nucleic acid degradation, membrane destruction, or metabolite depletion. Notably, the sponge-like proteins encoded by phages, such as Tad1, Tad2, and Acb2, can inhibit abortive infection by sequestering, rather than degrading, these bacterial second messengers. This interference disrupts the activation of the effectors involved in the immune response. Most significantly, sponge-like proteins can simultaneously encapsulate diverse signals, effectively preventing the cell suicide mechanisms triggered by different bacterial immune systems, such as the cyclic nucleotide-based antiphage signaling system (CBASS) and Thoeris. The discovery of these sponge-like proteins reveals a remarkable strategy for suppressing innate immunity, ensuring viral replication and propagation. This greatly enhances our understanding of the ongoing arms race between hosts and viruses.
Collapse
Affiliation(s)
- Lan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ruoqi Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Wei S, Wang A, Cai L, Ma R, Lu L, Li J, Zhang R. Proteomic Analysis of Marine Bacteriophages: Structural Conservation, Post-Translational Modifications, and Phage-Host Interactions. Environ Microbiol 2025; 27:e70099. [PMID: 40262907 PMCID: PMC12014285 DOI: 10.1111/1462-2920.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Marine bacteriophages, the most abundant biological entities in marine ecosystems, are essential in biogeochemical cycling. Despite extensive genomic data, many phage genes remain uncharacterised, creating a gap between genomic diversity and gene function knowledge. This gap limits our understanding of phage life cycles, assembly, and host interactions. In this study, we used mass spectrometry to profile the proteomes of 13 marine phages from diverse lifestyles and hosts. The analysis accurately annotated hypothetical genes, mapped virion protein arrangements, and revealed structural similarities among phages infecting the same host, particularly in tail fibre proteins. Protein structure comparisons showed conservation and variability in head and tail proteins, particularly in key domains involved in virion stabilisation and host recognition. For the first time, we identified post-translational modifications (PTMs) in marine phage proteins, which may enhance phage adaptability and help evade host immune systems. These findings suggest that phages optimise their infection strategies through structural variations and PTM modifications, improving their adaptability and host interactions.
Collapse
Affiliation(s)
- Shuzhen Wei
- State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education InstitutesInstitute for Advanced Study, Shenzhen UniversityShenzhenChina
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen UniversityXiamenChina
| | - Lanlan Cai
- Earth, Ocean and Atmospheric Sciences ThrustThe Hong Kong University of Science and Technology (Guangzhou)GuangzhouChina
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education InstitutesInstitute for Advanced Study, Shenzhen UniversityShenzhenChina
| | - Longfei Lu
- Fourth Institute of Oceanography, Ministry of Natural ResourcesBeihaiChina
| | - Jiangtao Li
- State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education InstitutesInstitute for Advanced Study, Shenzhen UniversityShenzhenChina
| |
Collapse
|
9
|
Sullivan AE, Nabhani A, Schinkel K, Dinh DM, Duncan ML, Ednacot EMQ, Hoffman CR, Izrailevsky DS, Kibby EM, Nagy TA, Nguyen CM, Tak U, Burroughs AM, Aravind L, Whiteley AT, Morehouse BR. A minimal CRISPR polymerase produces decoy cyclic nucleotides to detect phage anti-defense proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646047. [PMID: 40196609 PMCID: PMC11974786 DOI: 10.1101/2025.03.28.646047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bacteria use antiphage systems to combat phages, their ubiquitous competitors, and evolve new defenses through repeated reshuffling of basic functional units into novel reformulations. A common theme is generating a nucleotide-derived second messenger in response to phage that activates an effector protein to halt virion production. Phages respond with counter-defenses that deplete these second messengers, leading to an escalating arms race with the host. Here we discover a novel antiphage system we call Panoptes that detects phage infection by surveying the cytosol for phage proteins that antagonize the nucleotide-derived second messenger pool. Panoptes is a two-gene operon, optSE. OptS is predicted to synthesize a second messenger using a minimal CRISPR polymerase (mCpol) domain, a version of the polymerase domain found in Type III CRISPR systems (Cas10) that is distantly related to GGDEF and Thg1 tRNA repair polymerase domains. OptE is predicted to be a transmembrane effector protein that binds cyclic nucleotides. optSE potently restricted phage replication but mutant phages that had loss-of-function mutations in anti-CBASS protein 2 (Acb2) escaped defense. These findings were unexpected because Acb2 is a nucleotide "sponge" that antagonizes second messenger signaling. Using genetic and biochemical assays, we found that Acb2 bound the OptS-synthesized nucleotide, 2',3'-cyclic adenosine monophosphate (2',3'-c-di-AMP); however, 2',3'-c-di-AMP was synthesized constitutively by OptS and inhibited OptE. Nucleotide depletion by Acb2 released OptE toxicity thereby initiating abortive infection to halt phage replication. These data demonstrate a sophisticated immune strategy that hosts use to guard their second messenger pool and turn immune evasion against the virus.
Collapse
Affiliation(s)
- Ashley E. Sullivan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Kate Schinkel
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Dinh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Melissa L. Duncan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Eirene Marie Q. Ednacot
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | | | - Daniel S. Izrailevsky
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Christy M. Nguyen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Uday Tak
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin R. Morehouse
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Yirmiya E, Hobbs SJ, Leavitt A, Osterman I, Avraham C, Hochhauser D, Madhala B, Skovorodka M, Tan JMJ, Toyoda HC, Chebotar I, Itkin M, Malitsky S, Amitai G, Kranzusch PJ, Sorek R. Structure-guided discovery of viral proteins that inhibit host immunity. Cell 2025; 188:1681-1692.e17. [PMID: 39855193 DOI: 10.1016/j.cell.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/29/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Viruses encode proteins that inhibit host defenses, but sifting through the millions of available viral sequences for immune-modulatory proteins has been so far impractical. Here, we develop a process to systematically screen virus-encoded proteins for inhibitors that physically bind host immune proteins. Focusing on Thoeris and CBASS, bacterial defense systems that are the ancestors of eukaryotic Toll/interleukin-1 receptor (TIR) and cyclic GMP-AMP synthase (cGAS) immunity, we discover seven families of Thoeris and CBASS inhibitors, encompassing thousands of genes widespread in phages. Verified inhibitors exhibit extensive physical interactions with the respective immune protein counterpart, with all inhibitors blocking the active site of the immune protein. Remarkably, a phage-encoded inhibitor of bacterial TIR proteins can bind and inhibit distantly related human and plant immune TIRs, and a phage-derived inhibitor of bacterial cGAS-like enzymes can inhibit the human cGAS. Our results demonstrate that phages are a reservoir for immune-modulatory proteins capable of inhibiting bacterial, animal, and plant immunity.
Collapse
Affiliation(s)
- Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Carmel Avraham
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dina Hochhauser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Barak Madhala
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marharyta Skovorodka
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Joel M J Tan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hunter C Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Igor Chebotar
- High Performance Computing Section, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Gledhill A, Gooden GS, Aguazul J, Arora A, Blackledge AR, Bucks MH, Carby T, Cu A, Fulkerson J, Gachagua CW, Grogan E, Hanson HH, Johnston GN, Norman LS, Oak LM, Oller GJ, Parekh H, Patel S, Putnam S, Spalding G, Thomas J, Wallace P, Rinehart CA, King RA. Genome Sequences of Cluster E Mycobacteriophages Xandras and BigBubba. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001460. [PMID: 40161434 PMCID: PMC11953737 DOI: 10.17912/micropub.biology.001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Bacteriophages Xandras and BigBubba were isolated on Mycobacterium smegmatis mc 2 155 from enriched soil samples. Xandras' genome length is 75,179 bp with 144 predicted protein-coding genes and two tRNAs. BigBubba's genome length is 75,006 bp with 147 predicted protein-coding genes and two tRNAs. Each genome contains a cyclic oligonucleotide sequestering protein (CBASS antagonist).
Collapse
Affiliation(s)
- Ashley Gledhill
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Gabriel S. Gooden
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Janelle Aguazul
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Aanyaa Arora
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Ava R. Blackledge
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Michael H. Bucks
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Tessa Carby
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Andrew Cu
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Jacob Fulkerson
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Chealsea W. Gachagua
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Elly Grogan
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Haley H. Hanson
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Gillian N. Johnston
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Lola S. Norman
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Lindsey M. Oak
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Grant J. Oller
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Het Parekh
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Sakshi Patel
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Sydney Putnam
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Grant Spalding
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Jacob Thomas
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Patrick Wallace
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Claire A. Rinehart
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| | - Rodney A. King
- Biology Department, Western Kentucky University, Bowling Green, Kentucky, United States
| |
Collapse
|
12
|
Adler BA, Al-Shimary MJ, Patel JR, Armbruster EG, Colognori D, Charles EJ, Miller KV, Lahiri A, Cui ML, Oromí-Bosch A, Voelker A, Trinidad M, Lee J, Beurnier S, Boger R, Nomburg J, Barrangou R, Mutalik VK, Schoeniger JS, Pogliano JA, Savage DF, Doudna JA, Cress BF. CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d. Nat Microbiol 2025; 10:694-709. [PMID: 40011704 PMCID: PMC11879866 DOI: 10.1038/s41564-025-01935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bacteriophages constitute one of the largest reservoirs of genes of unknown function in the biosphere. Even in well-characterized phages, the functions of most genes remain unknown. Experimental approaches to study phage gene fitness and function at genome scale are lacking, partly because phages subvert many modern functional genomics tools. Here we leverage RNA-targeting dCas13d to selectively interfere with protein translation and to measure phage gene fitness at a transcriptome-wide scale. We find CRISPR Interference through Antisense RNA-Targeting (CRISPRi-ART) to be effective across phage phylogeny, from model ssRNA, ssDNA and dsDNA phages to nucleus-forming jumbo phages. Using CRISPRi-ART, we determine a conserved role of diverse rII homologues in subverting phage Lambda RexAB-mediated immunity to superinfection and identify genes critical for phage fitness. CRISPRi-ART establishes a broad-spectrum phage functional genomics platform, revealing more than 90 previously unknown genes important for phage fitness.
Collapse
Affiliation(s)
- Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David Colognori
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emeric J Charles
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kate V Miller
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Agnès Oromí-Bosch
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Angela Voelker
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sebastien Beurnier
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ron Boger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Jason Nomburg
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph S Schoeniger
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Joseph A Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Bae HW, Choi SY, Ki HJ, Cho YH. Pseudomonas aeruginosa as a model bacterium in antiphage defense research. FEMS Microbiol Rev 2025; 49:fuaf014. [PMID: 40240293 PMCID: PMC12035536 DOI: 10.1093/femsre/fuaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.
Collapse
Affiliation(s)
- Hee-Won Bae
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Hyeong-Jun Ki
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
14
|
Jungfer K, Moravčík Š, Garcia-Doval C, Knörlein A, Hall J, Jinek M. Mechanistic determinants and dynamics of cA6 synthesis in type III CRISPR-Cas effector complexes. Nucleic Acids Res 2025; 53:gkae1277. [PMID: 39817514 PMCID: PMC11734703 DOI: 10.1093/nar/gkae1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6). However, the molecular mechanisms dictating cOA product identity are poorly understood. Here we used cryoelectron microscopy to visualize the mechanism of cA6 biosynthesis by the Csm effector complex from Enterococcus italicus (EiCsm). We show that EiCsm synthesizes oligoadenylate nucleotides in 3'-5' direction using a set of conserved binding sites in the Cas10 Palm domains to determine the size of the nascent oligoadenylate chain. Our data also reveal that conformational dynamics induced by target RNA binding results in allosteric activation of Cas10 to trigger oligoadenylate synthesis. Mutations of a key structural element in Cas10 perturb cOA synthesis to favor cA3 and cA4 formation. Together, these results provide comprehensive insights into the dynamics of cOA synthesis in type III CRISPR-Cas systems and reveal key determinants of second messenger product selectivity, thereby illuminating potential avenues for their engineering.
Collapse
Affiliation(s)
- Kenny Jungfer
- Department of Biochemistry, University of Zurich, Winterthurerstrass 190, 8057 Zurich, Switzerland
| | - Štefan Moravčík
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Carmela Garcia-Doval
- Department of Biochemistry, University of Zurich, Winterthurerstrass 190, 8057 Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrass 190, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, Cury J, Feng Y, Bondy-Denomy J, Bernheim A. Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. Nucleic Acids Res 2025; 53:gkae1171. [PMID: 39657785 PMCID: PMC11724313 DOI: 10.1093/nar/gkae1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The co-evolution of prokaryotes, phages and mobile genetic elements (MGEs) has driven the diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences and are typically small, creating a challenge to detect anti-defense homologs across prokaryotic and phage genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired sequence. Here, we developed 'AntiDefenseFinder'-a free open-source tool and web service that detects 156 anti-defense systems of one or more proteins in any genomic sequence. Using this dataset, we identified 47 981 anti-defense systems distributed across prokaryotes and their viruses. We found that some genes co-localize in 'anti-defense islands', including Escherichia coli T4 and Lambda phages, although many appear standalone. Eighty-nine per cent anti-defense systems localize only or preferentially in MGE. However, >80% of anti-Pycsar protein 1 (Apyc1) resides in nonmobile regions of bacterial genomes. Evolutionary analysis and biochemical experiments revealed that Apyc1 likely originated in bacteria to regulate cyclic nucleotide (cNMP) signaling, but phage co-opted Apyc1 to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions and a deeper understanding of host-pathogen arms race.
Collapse
Affiliation(s)
- Florian Tesson
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Linlin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan W Rd, Haidian District, 100091 Beijing, China
| | - Matthew Johnson
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Rémi Planel
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 25-28 rue du Docteur Roux, 75015,Paris, France
| | - Jean Cury
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Aude Bernheim
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
16
|
Chang RB, Toyoda HC, Hobbs SJ, Richmond-Buccola D, Wein T, Burger N, Chouchani ET, Sorek R, Kranzusch PJ. A widespread family of viral sponge proteins reveals specific inhibition of nucleotide signals in anti-phage defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630793. [PMID: 39803557 PMCID: PMC11722364 DOI: 10.1101/2024.12.30.630793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse E. coli and Bacillus phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the Bacillus phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.1 Å crystal structure of Acb4 in complex with 3'3'-cGAMP reveals a tetrameric assembly that functions as a sponge to sequester CBASS signals and inhibit immune activation. We demonstrate Acb4 alone is sufficient to disrupt CBASS activation in vitro and enable immune evasion in vivo. Analyzing phages that infect diverse bacteria, we explain how Acb4 selectively targets nucleotide signals in host defense and avoids disruption of cellular homeostasis. Together, our results reveal principles of immune evasion protein evolution and explain a major mechanism phages use to inhibit host immunity.
Collapse
Affiliation(s)
- Renee B. Chang
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hunter C. Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Desmond Richmond-Buccola
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Edward T. Chouchani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Lead Contact
| |
Collapse
|
17
|
Peng J, Guo C, Yang C, Zhang L, Yang F, Huang X, Yu Y, Zhang T, Peng J. Phage therapy for bone and joint infections: A comprehensive exploration of challenges, dynamics, and therapeutic prospects. J Glob Antimicrob Resist 2024; 39:12-21. [PMID: 39168373 DOI: 10.1016/j.jgar.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES Bone and joint infections (BJI) pose formidable challenges in orthopaedics due to antibiotic resistance and the complexities of biofilm, complicating treatment. This comprehensive exploration addresses the intricate challenges posed by BJI and highlights the significant role of phage therapy as a non-antibiotic strategy. METHODS BJI, which encompass prosthetic joint infections, osteomyelitis, and purulent arthritis, are exacerbated by biofilm formation on bone and implant surfaces, hindering treatment efficacy. Gram-negative bacterial infections, characterized by elevated antibiotic resistance, further contribute to the clinical challenge. Amidst this therapeutic challenge, phage therapy emerges as a potential strategy, showing unique characteristics such as strict host specificity and biofilm disruption capabilities. RESULTS The review unveils the dynamics of phages, including their origins, lifecycle outcomes, and genomic characteristics. Animal studies, in vitro investigations, and clinical research provide compelling evidence of the efficacy of phages in treating Staphylococcus aureus infections, particularly in osteomyelitis cases. Phage lysins exhibit biofilm-disrupting capabilities, offering a meaningful method for addressing BJI. Recent statistical analyses reveal high clinical relief rates and a favourable safety profile for phage therapy. CONCLUSIONS Despite its promise, phage therapy encounters limitations, including a narrow host range and potential immunogenicity. The comprehensive analysis navigates these challenges and charts the future of phage therapy, emphasizing standardization, pharmacokinetics, and global collaboration. Anticipated strides in phage engineering and combination therapy hold promise for combating antibiotic-resistant BJI.
Collapse
Affiliation(s)
- Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Fuyin Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Xianpeng Huang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Yang Yu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China.
| |
Collapse
|
18
|
Murtazalieva K, Mu A, Petrovskaya A, Finn RD. The growing repertoire of phage anti-defence systems. Trends Microbiol 2024; 32:1212-1228. [PMID: 38845267 DOI: 10.1016/j.tim.2024.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 12/06/2024]
Abstract
The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Khalimat Murtazalieva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Andre Mu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aleksandra Petrovskaya
- Nencki Institute of Experimental Biology, Warsaw, Poland; University of Copenhagen, Copenhagen, Denmark
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| |
Collapse
|
19
|
Li D, Xiao Y, Fedorova I, Xiong W, Wang Y, Liu X, Huiting E, Ren J, Gao Z, Zhao X, Cao X, Zhang Y, Bondy-Denomy J, Feng Y. Single phage proteins sequester signals from TIR and cGAS-like enzymes. Nature 2024; 635:719-727. [PMID: 39478223 DOI: 10.1038/s41586-024-08122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication1-3. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad14 and Tad25 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides. Apart from binding to the Thoeris signals 1''-3'-gcADPR and 1''-2'-gcADPR, Tad1 also binds to numerous CBASS CDNs and CTNs with high affinity, inhibiting CBASS systems that use these molecules in vivo and in vitro. The hexameric Tad1 has six binding sites for CDNs or gcADPR, which are independent of the two high-affinity binding sites for CTNs. Tad2 forms a tetramer that also sequesters various CDNs in addition to gcADPR molecules, using distinct binding sites to simultaneously bind to these signals. Thus, Tad1 and Tad2 are both two-pronged inhibitors that, alongside anti-CBASS protein 2 (Acb26-8), establish a paradigm of phage proteins that use distinct binding sites to flexibly sequester a considerable breadth of cyclic nucleotides.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yu Xiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Iana Fedorova
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Weijia Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zirui Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xingyu Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xueli Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
20
|
Hobbs SJ, Kranzusch PJ. Nucleotide Immune Signaling in CBASS, Pycsar, Thoeris, and CRISPR Antiphage Defense. Annu Rev Microbiol 2024; 78:255-276. [PMID: 39083849 DOI: 10.1146/annurev-micro-041222-024843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Kou X, Yang X, Zheng R. Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections. Appl Environ Microbiol 2024; 90:e0135324. [PMID: 39345202 PMCID: PMC11497816 DOI: 10.1128/aem.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Traditional antibiotics have been effective in many cases. However, the rise in multidrug-resistant bacteria has diminished their therapeutic efficacy, signaling the dawn of an era beyond antibiotics. The challenge of multidrug resistance in Klebsiella pneumoniae is particularly critical, with increasing global mortality and resistance rates. Therefore, the development of alternative therapies to antibiotics is urgently needed. Phages, which are natural predators of bacteria, have inherent advantages. However, comprehensive information on K. pneumoniae phages is lacking in current literature. This review aims to analyze and summarize relevant studies, focusing on the present state of phage therapy for K. pneumoniae infections. This includes an examination of treatment methodologies, associated challenges, strategies, new phage technologies, clinical trial safety and efficacy, regulatory issues, and future directions for phage therapy development. Enhancing phage technology is crucial for addressing the evolving threat of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Xin Kou
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyu Yang
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
22
|
Wang Y, Wang C, Guan Z, Cao J, Xu J, Wang S, Cui Y, Wang Q, Chen Y, Yin Y, Zhang D, Liu H, Sun M, Jin S, Tao P, Zou T. DNA methylation activates retron Ec86 filaments for antiphage defense. Cell Rep 2024; 43:114857. [PMID: 39395169 DOI: 10.1016/j.celrep.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
Retrons are a class of multigene antiphage defense systems typically consisting of a retron reverse transcriptase, a non-coding RNA, and a cognate effector. Although triggers for several retron systems have been discovered recently, the complete mechanism by which these systems detect invading phages and mediate defense remains unclear. Here, we focus on the retron Ec86 defense system, elucidating its modes of activation and mechanisms of action. We identified a phage-encoded DNA cytosine methyltransferase (Dcm) as a trigger of the Ec86 system and demonstrated that Ec86 is activated upon multicopy single-stranded DNA (msDNA) methylation. We further elucidated the structure of a tripartite retron Ec86-effector filament assembly that is primed for activation by Dcm and capable of hydrolyzing nicotinamide adenine dinucleotide (NAD+). These findings provide insights into the retron Ec86 defense mechanism and underscore an emerging theme of antiphage defense through supramolecular complex assemblies.
Collapse
Affiliation(s)
- Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangshuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqi Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Hobbs SJ, Nomburg J, Doudna JA, Kranzusch PJ. Animal and bacterial viruses share conserved mechanisms of immune evasion. Cell 2024; 187:5530-5539.e8. [PMID: 39197447 PMCID: PMC11455605 DOI: 10.1016/j.cell.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Animal and bacterial cells sense and defend against viral infections using evolutionarily conserved antiviral signaling pathways. Here, we show that viruses overcome host signaling using mechanisms of immune evasion that are directly shared across the eukaryotic and prokaryotic kingdoms of life. Structures of animal poxvirus proteins that inhibit host cGAS-STING signaling demonstrate architectural and catalytic active-site homology shared with bacteriophage Acb1 proteins, which inactivate CBASS anti-phage defense. In bacteria, phage Acb1 proteins are viral enzymes that degrade host cyclic nucleotide immune signals. Structural comparisons of poxvirus protein-2'3'-cGAMP and phage Acb1-3'3'-cGAMP complexes reveal a universal mechanism of host nucleotide immune signal degradation and explain kingdom-specific additions that enable viral adaptation. Chimeric bacteriophages confirm that animal poxvirus proteins are sufficient to evade immune signaling in bacteria. Our findings identify a mechanism of immune evasion conserved between animal and bacterial viruses and define shared rules that explain host-virus interactions across multiple kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason Nomburg
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Boyd C, Seed K. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. Nucleic Acids Res 2024; 52:10431-10446. [PMID: 39149900 PMCID: PMC11417361 DOI: 10.1093/nar/gkae675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery and virion components results in inhibition of ICP1's lifecycle. PLEs are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
25
|
He L, Miguel-Romero L, Patkowski JB, Alqurainy N, Rocha EPC, Costa TRD, Fillol-Salom A, Penadés JR. Tail assembly interference is a common strategy in bacterial antiviral defenses. Nat Commun 2024; 15:7539. [PMID: 39215040 PMCID: PMC11364771 DOI: 10.1038/s41467-024-51915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Many bacterial immune systems recognize phage structural components to activate antiviral responses, without inhibiting the function of the phage component. These systems can be encoded in specific chromosomal loci, known as defense islands, and in mobile genetic elements such as prophages and phage-inducible chromosomal islands (PICIs). Here, we identify a family of bacterial immune systems, named Tai (for 'tail assembly inhibition'), that is prevalent in PICIs, prophages and P4-like phage satellites. Tai systems protect their bacterial host population from other phages by blocking the tail assembly step, leading to the release of tailless phages incapable of infecting new hosts. To prevent autoimmunity, some Tai-positive phages have an associated counter-defense mechanism that is expressed during the phage lytic cycle and allows for tail formation. Interestingly, the Tai defense and counter-defense genes are organized in a non-contiguous operon, enabling their coordinated expression.
Collapse
Affiliation(s)
- Lingchen He
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura Miguel-Romero
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nasser Alqurainy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alfred Fillol-Salom
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain.
| |
Collapse
|
26
|
Wang S, Kuang S, Song H, Sun E, Li M, Liu Y, Xia Z, Zhang X, Wang X, Han J, Rao VB, Zou T, Tan C, Tao P. The role of TIR domain-containing proteins in bacterial defense against phages. Nat Commun 2024; 15:7384. [PMID: 39191765 DOI: 10.1038/s41467-024-51738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Toll/interleukin-1 receptor (TIR) domain-containing proteins play a critical role in immune responses in diverse organisms, but their function in bacterial systems remains to be fully elucidated. This study, focusing on Escherichia coli, addresses how TIR domain-containing proteins contribute to bacterial immunity against phage attack. Through an exhaustive survey of all E. coli genomes available in the NCBI database and testing of 32 representatives of the 90% of the identified TIR domain-containing proteins, we found that a significant proportion (37.5%) exhibit antiphage activities. These defense systems recognize a variety of phage components, thus providing a sophisticated mechanism for pathogen detection and defense. This study not only highlights the robustness of TIR systems in bacterial immunity, but also draws an intriguing parallel to the diversity seen in mammalian Toll-like receptors (TLRs), enriching our understanding of innate immune mechanisms across life forms and underscoring the evolutionary significance of these defense strategies in prokaryotes.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sirong Kuang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haiguang Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuepeng Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ziwei Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiumin Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Tingting Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
27
|
Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, Cury J, Feng Y, Bondy-Denomy J, Bernheim A. Exploring the diversity of anti-defense systems across prokaryotes, phages, and mobile genetic elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608784. [PMID: 39229129 PMCID: PMC11370490 DOI: 10.1101/2024.08.21.608784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The co-evolution of prokaryotes, phages, and mobile genetic elements (MGEs) over the past billions of years has driven the emergence and diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences, and are typically small, creating a challenge to detect anti-defense homologs across the prokaryotic genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired genome or MGE. Here, we developed "AntiDefenseFinder" - a free open-source tool and web service that detects 156 anti-defense systems (of one or more proteins) in any genomic sequence. Using this dataset, we identified 47,981 anti-defense systems distributed across prokaryotes, phage, and MGEs. We found that some genes co-localize in "anti-defense islands", including E. coli T4 and Lambda phages, although many are standalone. Out of the 112 systems detected in bacteria, 100 systems localize only or preferentially in prophages, plasmids, phage satellites, integrons, and integrative and conjugative elements. However, over 80% of anti-Pycsar protein 1 (Apyc1) resides in non-mobile regions of bacteria. Evolutionary and functional analyses revealed that Apyc1 likely originated in bacteria to regulate cNMP signaling, but was co-opted multiple times by phages to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions, and a deeper understanding of host-pathogen arms race.
Collapse
Affiliation(s)
- Florian Tesson
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Linlin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Matthew Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rémi Planel
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Jean Cury
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aude Bernheim
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, Paris, France
| |
Collapse
|
28
|
Li S, Xu T, Meng X, Yan Y, Zhou Y, Duan L, Tang Y, Zhu L, Sun L. Ocr-mediated suppression of BrxX unveils a phage counter-defense mechanism. Nucleic Acids Res 2024; 52:8580-8594. [PMID: 38989624 PMCID: PMC11317158 DOI: 10.1093/nar/gkae608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
The burgeoning crisis of antibiotic resistance has directed attention to bacteriophages as natural antibacterial agents capable of circumventing bacterial defenses. Central to this are the bacterial defense mechanisms, such as the BREX system, which utilizes the methyltransferase BrxX to protect against phage infection. This study presents the first in vitro characterization of BrxX from Escherichia coli, revealing its substrate-specific recognition and catalytic activity. We demonstrate that BrxX exhibits nonspecific DNA binding but selectively methylates adenine within specific motifs. Kinetic analysis indicates a potential regulation of BrxX by the concentration of its co-substrate, S-adenosylmethionine, and suggests a role for other BREX components in modulating BrxX activity. Furthermore, we elucidate the molecular mechanism by which the T7 phage protein Ocr (Overcoming classical restriction) inhibits BrxX. Despite low sequence homology between BrxX from different bacterial species, Ocr effectively suppresses BrxX's enzymatic activity through high-affinity binding. Cryo-electron microscopy and biophysical analyses reveal that Ocr, a DNA mimic, forms a stable complex with BrxX, highlighting a conserved interaction interface across diverse BrxX variants. Our findings provide insights into the strategic counteraction by phages against bacterial defense systems and offer a foundational understanding of the complex interplay between phages and their bacterial hosts, with implications for the development of phage therapy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shen Li
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianhao Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinru Meng
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yujuan Yan
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Zhou
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Lei Duan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yulong Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Electron Microscopy Centre of Lanzhou University, Lanzhou 730000, China
| | - Litao Sun
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
29
|
Tian M, Li F, Pei H. The cGAS-STING Pathway: A New Therapeutic Target for Ischemia-Reperfusion Injury in Acute Myocardial Infarction? Biomedicines 2024; 12:1728. [PMID: 39200193 PMCID: PMC11352180 DOI: 10.3390/biomedicines12081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The innate immune system is the body's natural defense system, which recognizes a wide range of microbial molecules (such as bacterial DNA and RNA) and abnormal molecules within cells (such as misplaced DNA, self-antigens) to play its role. DNA released into the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway to initiate an immune response. Ischemia-reperfusion injury (IRI) after acute myocardial infarction refers to the phenomenon where myocardial tissue suffers further damage upon the restoration of blood flow. This issue is a significant clinical problem in the treatment of myocardial infarction, as it can diminish the effectiveness of reperfusion therapy and lead to further deterioration of cardiac function. Studies have found that the cGAS-STING signaling pathway is closely related to this phenomenon. Therefore, this review aims to describe the role of the cGAS-STING signaling pathway in ischemia-reperfusion injury after myocardial infarction and summarize the current development status of cGAS-STING pathway inhibitors and the application of nanomaterials to further elucidate the potential of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410083, China; (M.T.); (H.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410083, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410083, China; (M.T.); (H.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410083, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410083, China; (M.T.); (H.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410083, China
| |
Collapse
|
30
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
31
|
Roberts CG, Fishman CB, Banh DV, Marraffini LA. A bacterial TIR-based immune system senses viral capsids to initiate defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605636. [PMID: 39131286 PMCID: PMC11312562 DOI: 10.1101/2024.07.29.605636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Toll/interleukin-1 receptor (TIR) domains are present in immune systems that protect prokaryotes from viral (phage) attack. In response to infection, TIRs can produce a cyclic adenosine diphosphate-ribose (ADPR) signaling molecule, which activates an effector that depletes the host of the essential metabolite NAD+ to limit phage propagation. How bacterial TIRs recognize phage infection is not known. Here we describe the sensing mechanism for the staphylococcal Thoeris defense system, which consists of two TIR domain sensors, ThsB1 and ThsB2, and the effector ThsA. We show that the major capsid protein of phage Φ80α forms a complex with ThsB1 and ThsB2, which is sufficient for the synthesis of 1"-3' glycocyclic ADPR (gcADPR) and subsequent activation of NAD+ cleavage by ThsA. Consistent with this, phages that escape Thoeris immunity harbor mutations in the capsid that prevent complex formation. We show that capsid proteins from staphylococcal Siphoviridae belonging to the capsid serogroup B, but not A, are recognized by ThsB1/B2, a result that suggests that capsid recognition by Sau-Thoeris and other anti-phage defense systems may be an important evolutionary force behind the structural diversity of prokaryotic viruses. More broadly, since mammalian toll-like receptors harboring TIR domains can also recognize viral structural components to produce an inflammatory response against infection, our findings reveal a conserved mechanism for the activation of innate antiviral defense pathways.
Collapse
Affiliation(s)
- Cameron G. Roberts
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Chloe B. Fishman
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | | | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
32
|
Mets T, Kurata T, Ernits K, Johansson MJO, Craig SZ, Evora GM, Buttress JA, Odai R, Wallant KC, Nakamoto JA, Shyrokova L, Egorov AA, Doering CR, Brodiazhenko T, Laub MT, Tenson T, Strahl H, Martens C, Harms A, Garcia-Pino A, Atkinson GC, Hauryliuk V. Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems. Cell Host Microbe 2024; 32:1059-1073.e8. [PMID: 38821063 DOI: 10.1016/j.chom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.
Collapse
Affiliation(s)
- Toomas Mets
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Sophie Z Craig
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gabriel Medina Evora
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Roni Odai
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | | | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Alexander Harms
- ETH Zurich, Institute of Food, Nutrition and Health, 8092 Zürich, Switzerland
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Virus Centre, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Virus Centre, Lund University, Lund, Sweden; Science for Life Laboratory, Lund, Sweden.
| |
Collapse
|
33
|
Richmond-Buccola D, Hobbs SJ, Garcia JM, Toyoda H, Gao J, Shao S, Lee ASY, Kranzusch PJ. A large-scale type I CBASS antiphage screen identifies the phage prohead protease as a key determinant of immune activation and evasion. Cell Host Microbe 2024; 32:1074-1088.e5. [PMID: 38917809 PMCID: PMC11239291 DOI: 10.1016/j.chom.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Cyclic oligonucleotide-based signaling system (CBASS) is an antiviral system that protects bacteria from phage infection and is evolutionarily related to human cGAS-STING immunity. cGAS-STING signaling is initiated by the recognition of viral DNA, but the molecular cues activating CBASS are incompletely understood. Using a screen of 975 type I CBASS operon-phage challenges, we show that operons with distinct cGAS/DncV-like nucleotidyltransferases (CD-NTases) and CD-NTase-associated protein (Cap) effectors exhibit marked patterns of phage restriction. We find that some type I CD-NTase enzymes require a C-terminal AGS-C immunoglobulin (Ig)-like fold domain for defense against select phages. Escaper phages evade CBASS via protein-coding mutations in virion assembly proteins, and acquired resistance is largely operon specific. We demonstrate that the phage Bas13 prohead protease interacts with the CD-NTase EcCdnD12 and can induce CBASS-dependent growth arrest in cells. Our results define phage virion assembly as a determinant of type I CBASS immune evasion and support viral protein recognition as a putative mechanism of cGAS-like enzyme activation.
Collapse
Affiliation(s)
- Desmond Richmond-Buccola
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jasmine M Garcia
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hunter Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingjing Gao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy S Y Lee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana, Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Le S, Wei L, Wang J, Tian F, Yang Q, Zhao J, Zhong Z, Liu J, He X, Zhong Q, Lu S, Liang H. Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice. Nat Microbiol 2024; 9:1828-1841. [PMID: 38886583 DOI: 10.1038/s41564-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Bacteriophages have evolved diverse strategies to overcome host defence mechanisms and to redirect host metabolism to ensure successful propagation. Here we identify a phage protein named Dap1 from Pseudomonas aeruginosa phage PaoP5 that both modulates bacterial host behaviour and contributes to phage fitness. We show that expression of Dap1 in P. aeruginosa reduces bacterial motility and promotes biofilm formation through interference with DipA, a c-di-GMP phosphodiesterase, which causes an increase in c-di-GMP levels that trigger phenotypic changes. Results also show that deletion of dap1 in PaoP5 significantly reduces genome packaging. In this case, Dap1 directly binds to phage HNH endonuclease, prohibiting host Lon-mediated HNH degradation and promoting phage genome packaging. Moreover, PaoP5Δdap1 fails to rescue P. aeruginosa-infected mice, implying the significance of dap1 in phage therapy. Overall, these results highlight remarkable dual functionality in a phage protein, enabling the modulation of host behaviours and ensuring phage fitness.
Collapse
Affiliation(s)
- Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Leilei Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Fang Tian
- College of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qian Yang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jingru Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Zhuojun Zhong
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Jiazhen Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Xuesong He
- The ADA Forsyth Institute, Cambridge, MA, USA
| | - Qiu Zhong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Haihua Liang
- College of Medicine, Southern University of Science and Technology, Shenzhen, China.
- University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
35
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
36
|
Beamud B, Benz F, Bikard D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024; 32:804-819. [PMID: 38870898 DOI: 10.1016/j.chom.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Bacteriophages and other mobile genetic elements (MGEs) pose a significant threat to bacteria, subjecting them to constant attacks. In response, bacteria have evolved a sophisticated immune system that employs diverse defensive strategies and mechanisms. Remarkably, a growing body of evidence suggests that most of these defenses are encoded by MGEs themselves. This realization challenges our traditional understanding of bacterial immunity and raises intriguing questions about the evolutionary forces at play. Our review provides a comprehensive overview of the latest findings on the main families of MGEs and the defense systems they encode. We also highlight how a vast diversity of defense systems remains to be discovered and their mechanism of mobility understood. Altogether, the composition and distribution of defense systems in bacterial genomes only makes sense in the light of the ecological and evolutionary interactions of a complex network of MGEs.
Collapse
Affiliation(s)
- Beatriz Beamud
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| | - Fabienne Benz
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
37
|
Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel R, White MF. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat Microbiol 2024; 9:1579-1592. [PMID: 38589469 PMCID: PMC11153139 DOI: 10.1038/s41564-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.
Collapse
Affiliation(s)
- Larissa Krüger
- School of Biology, University of St Andrews, St Andrews, UK.
| | | | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Centre for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
38
|
Sprenger M, Siemers M, Krautwurst S, Papenfort K. Small RNAs direct attack and defense mechanisms in a quorum sensing phage and its host. Cell Host Microbe 2024; 32:727-738.e6. [PMID: 38579715 DOI: 10.1016/j.chom.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.
Collapse
Affiliation(s)
- Marcel Sprenger
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
| | - Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
39
|
Martínez M, Rizzuto I, Molina R. Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems. Int J Mol Sci 2024; 25:4929. [PMID: 38732145 PMCID: PMC11084316 DOI: 10.3390/ijms25094929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.
Collapse
Affiliation(s)
| | | | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
40
|
Boyd CM, Seed KD. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590561. [PMID: 38712175 PMCID: PMC11071384 DOI: 10.1101/2024.04.22.590561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
ICP1, a lytic bacteriophage of Vibrio cholerae, is parasitized by phage satellites, PLEs, which hijack ICP1 proteins for their own horizontal spread. PLEs' dependence on ICP1's DNA replication machinery, and virion components results in inhibition of ICP1's lifecycle. PLEs' are expected to depend on ICP1 factors for genome packaging, but the mechanism(s) PLEs use to inhibit ICP1 genome packaging is currently unknown. Here, we identify and characterize Gpi, PLE's indiscriminate genome packaging inhibitor. Gpi binds to ICP1's large terminase (TerL), the packaging motor, and blocks genome packaging. To overcome Gpi's negative effect on TerL, a component PLE also requires, PLE uses two genome packaging specifiers, GpsA and GpsB, that specifically allow packaging of PLE genomes. Surprisingly, PLE also uses mimicry of ICP1's pac site as a backup strategy to ensure genome packaging. PLE's pac site mimicry, however, is only sufficient if PLE can inhibit ICP1 at other stages of its lifecycle, suggesting an advantage to maintaining Gpi, GpsA, and GpsB. Collectively, these results provide mechanistic insights into another stage of ICP1's lifecycle that is inhibited by PLE, which is currently the most inhibitory of the documented phage satellites. More broadly, Gpi represents the first satellite-encoded inhibitor of a phage TerL.
Collapse
Affiliation(s)
- Caroline M. Boyd
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| | - Kimberley D. Seed
- Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
41
|
Cossart P, Hacker J, Holden DH, Normark S, Vogel J. Meeting report 'Microbiology 2023: from single cell to microbiome and host', an international interacademy conference in Würzburg. MICROLIFE 2024; 5:uqae008. [PMID: 38665235 PMCID: PMC11044969 DOI: 10.1093/femsml/uqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.
Collapse
Affiliation(s)
| | - Jörg Hacker
- German National Academy of Science Leopoldina, Jägerberg 1, D-06108 Halle, Germany
| | - David H Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Flowers Building, South Kensington Campus, Exhibition Road, Imperial College London, London SW7 2AZ, United Kingdom
| | - Staffan Normark
- Karolinska Institute, Tumor-och-cellbiologi, C1 Microbial Pathogenesis, 17177 Stockholm, Sweden
| | - Jörg Vogel
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str2/Gebaude D15; É. D-97080 Würzburg, Germany
| |
Collapse
|
42
|
Wenzl SJ, de Oliveira Mann CC. How enzyme-centered approaches are advancing research on cyclic oligo-nucleotides. FEBS Lett 2024; 598:839-863. [PMID: 38453162 DOI: 10.1002/1873-3468.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.
Collapse
Affiliation(s)
- Simon J Wenzl
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
43
|
Mayo-Muñoz D, Pinilla-Redondo R, Camara-Wilpert S, Birkholz N, Fineran PC. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 2024; 25:237-254. [PMID: 38291236 DOI: 10.1038/s41576-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
44
|
Agapov A, Baker KS, Bedekar P, Bhatia RP, Blower TR, Brockhurst MA, Brown C, Chong CE, Fothergill JL, Graham S, Hall JP, Maestri A, McQuarrie S, Olina A, Pagliara S, Recker M, Richmond A, Shaw SJ, Szczelkun MD, Taylor TB, van Houte S, Went SC, Westra ER, White MF, Wright R. Multi-layered genome defences in bacteria. Curr Opin Microbiol 2024; 78:102436. [PMID: 38368839 DOI: 10.1016/j.mib.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR-Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.
Collapse
Affiliation(s)
- Aleksei Agapov
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Kate S Baker
- Department of Genetics, University of Cambridge, CB2 3EH, UK
| | - Paritosh Bedekar
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Rama P Bhatia
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Michael A Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Cooper Brown
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | | | - Joanne L Fothergill
- Dept of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - James Pj Hall
- Dept of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB, UK
| | - Alice Maestri
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Stuart McQuarrie
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Anna Olina
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | | | - Mario Recker
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Anna Richmond
- ESI, Centre for Ecology and Conservation, University of Exeter, UK
| | - Steven J Shaw
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS6 7YB, UK
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Edze R Westra
- ESI, Centre for Ecology and Conservation, University of Exeter, UK.
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Rosanna Wright
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
45
|
Li Y, Wei Y, Guo X, Li X, Lu L, Hu L, He Z. Insertion sequence transposition activates antimycobacteriophage immunity through an lsr2-silenced lipid metabolism gene island. MLIFE 2024; 3:87-100. [PMID: 38827510 PMCID: PMC11139207 DOI: 10.1002/mlf2.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 06/04/2024]
Abstract
Insertion sequences (ISs) exist widely in bacterial genomes, but their roles in the evolution of bacterial antiphage defense remain to be clarified. Here, we report that, under the pressure of phage infection, the IS1096 transposition of Mycobacterium smegmatis into the lsr2 gene can occur at high frequencies, which endows the mutant mycobacterium with a broad-spectrum antiphage ability. Lsr2 functions as a negative regulator and directly silences expression of a gene island composed of 11 lipid metabolism-related genes. The complete or partial loss of the gene island leads to a significant decrease of bacteriophage adsorption to the mycobacterium, thus defending against phage infection. Strikingly, a phage that has evolved mutations in two tail-filament genes can re-escape from the lsr2 inactivation-triggered host defense. This study uncovered a new signaling pathway for activating antimycobacteriophage immunity by IS transposition and provided insight into the natural evolution of bacterial antiphage defense.
Collapse
Affiliation(s)
- Yakun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yuyun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
46
|
Costa AR, van den Berg DF, Esser JQ, Muralidharan A, van den Bossche H, Bonilla BE, van der Steen BA, Haagsma AC, Fluit AC, Nobrega FL, Haas PJ, Brouns SJJ. Accumulation of defense systems in phage-resistant strains of Pseudomonas aeruginosa. SCIENCE ADVANCES 2024; 10:eadj0341. [PMID: 38394193 PMCID: PMC10889362 DOI: 10.1126/sciadv.adj0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of Pseudomonas aeruginosa and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome. We show that many individual defense systems target specific phage genera and that defense systems with complementary phage specificities co-occur in P. aeruginosa genomes likely to provide benefits in phage-diverse environments. Overall, we show that phage-resistant phenotypes of P. aeruginosa with at least 19 phage defense systems exist in the populations of clinical, antibiotic-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Daan F. van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jelger Q. Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Aswin Muralidharan
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Halewijn van den Bossche
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Boris Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Baltus A. van der Steen
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Anna C. Haagsma
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Ad C. Fluit
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Stan J. J. Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
47
|
Patel PH, Taylor VL, Zhang C, Getz LJ, Fitzpatrick AD, Davidson AR, Maxwell KL. Anti-phage defence through inhibition of virion assembly. Nat Commun 2024; 15:1644. [PMID: 38388474 PMCID: PMC10884400 DOI: 10.1038/s41467-024-45892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
49
|
Cao X, Xiao Y, Huiting E, Cao X, Li D, Ren J, Fedorova I, Wang H, Guan L, Wang Y, Li L, Bondy-Denomy J, Feng Y. Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides. Mol Cell 2024; 84:375-385.e7. [PMID: 38103556 PMCID: PMC11102597 DOI: 10.1016/j.molcel.2023.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Cyclic-oligonucleotide-based anti-phage signaling system (CBASS) is a common immune system that uses cyclic oligonucleotide signals to limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins such as Acb2, which can sequester some cyclic dinucleotides (CDNs) and limit downstream effector activation. Here, we identified that Acb2 sequesters many CDNs produced by CBASS systems and inhibits stimulator of interferon genes (STING) activity in human cells. Surprisingly, the Acb2 hexamer also binds with high affinity to CBASS cyclic trinucleotides (CTNs) 3'3'3'-cyclic AMP-AMP-AMP and 3'3'3'-cAAG at a distinct site from CDNs. One Acb2 hexamer can simultaneously bind two CTNs and three CDNs. Phage-encoded Acb2 provides protection from type III-C CBASS that uses cA3 signaling molecules. Moreover, phylogenetic analysis of >2,000 Acb2 homologs encoded by diverse phages and prophages revealed that most are expected to bind both CTNs and CDNs. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.
Collapse
Affiliation(s)
- Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Xiao
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xujun Cao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA
| | - Dong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Iana Fedorova
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linlin Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA.
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
50
|
Yan Y, Zheng J, Zhang X, Yin Y. dbAPIS: a database of anti-prokaryotic immune system genes. Nucleic Acids Res 2024; 52:D419-D425. [PMID: 37889074 PMCID: PMC10767833 DOI: 10.1093/nar/gkad932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Anti-prokaryotic immune system (APIS) proteins, typically encoded by phages, prophages, and plasmids, inhibit prokaryotic immune systems (e.g. restriction modification, toxin-antitoxin, CRISPR-Cas). A growing number of APIS genes have been characterized and dispersed in the literature. Here we developed dbAPIS (https://bcb.unl.edu/dbAPIS), as the first literature curated data repository for experimentally verified APIS genes and their associated protein families. The key features of dbAPIS include: (i) experimentally verified APIS genes with their protein sequences, functional annotation, PDB or AlphaFold predicted structures, genomic context, sequence and structural homologs from different microbiome/virome databases; (ii) classification of APIS proteins into sequence-based families and construction of hidden Markov models (HMMs); (iii) user-friendly web interface for data browsing by the inhibited immune system types or by the hosts, and functions for searching and batch downloading of pre-computed data; (iv) Inclusion of all types of APIS proteins (except for anti-CRISPRs) that inhibit a variety of prokaryotic defense systems (e.g. RM, TA, CBASS, Thoeris, Gabija). The current release of dbAPIS contains 41 verified APIS proteins and ∼4400 sequence homologs of 92 families and 38 clans. dbAPIS will facilitate the discovery of novel anti-defense genes and genomic islands in phages, by providing a user-friendly data repository and a web resource for an easy homology search against known APIS proteins.
Collapse
Affiliation(s)
- Yuchen Yan
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | | | - Xinpeng Zhang
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|