1
|
Li M, Zhang Y, Xiang K, Su Z, Li X, Song H, Wu X, Mo D, Ren M, Yang S. Ant Colony-Inspired Adaptive Peptide Nanoregulators Remodeling the Endothelial Barrier to Alleviate Inflammatory Responses. ACS NANO 2025; 19:16829-16849. [PMID: 40277092 DOI: 10.1021/acsnano.5c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Endothelial barrier disruption exacerbates inflammation and tissue injury, posing dual challenges of reconstructing tight junctions and precisely regulating the local microenvironment. Traditional multidrug therapies often struggle with rapid drug leakage due to barrier dysfunction and limited synergy between therapeutic agents. Here, a strategy is proposed inspired by the "ant colony collaboration", developing an "all-in-one" conformationally adaptive peptide nanoregulator (VJP NPs) through the intelligent integration of three functional peptides. VJP NPs strategically harness the overexpression of vascular cell adhesion protein 1 (VCAM-1), enabling selective targeting of the inflamed endothelium under the guidance of the VHPK peptide while accumulating within the inflammatory microenvironment. The nanoregulators disassemble in response to high ROS levels, efficiently scavenging excess ROS. Simultaneously, they release the PMX peptide, competitively binding to the complement receptor C5aR to regulate the complement cascade. Furthermore, they release the JIP peptide to restore the endothelial barrier, reducing immune cell infiltration. As demonstrated in a mouse model of acute lung injury (ALI), VJP NPs markedly promote pulmonary vascular endothelial barrier repair, effectively attenuating inflammatory responses and alleviating tissue injury. This peptide-based nanoplatform boosts peptide delivery efficiency via a nanoprodrug strategy and amplifies synergistic therapeutic effects, highlighting its potential in endothelial barrier restoration and inflammation modulation.
Collapse
Affiliation(s)
- Meng Li
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Yining Zhang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Kai Xiang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Zhikang Su
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Xinyi Li
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Haoyue Song
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Xianghao Wu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Dingqiang Mo
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| | - Sheng Yang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biom-edical Engineering of Higher Education, Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
2
|
van de Veerdonk FL, Carvalho A, Wauters J, Chamilos G, Verweij PE. Aspergillus fumigatus biology, immunopathogenicity and drug resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01180-z. [PMID: 40316713 DOI: 10.1038/s41579-025-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Aspergillus fumigatus is a saprophytic fungus prevalent in the environment and capable of causing severe invasive infection in humans. This organism can use strategies such as molecule masking, immune response manipulation and gene expression alteration to evade host defences. Understanding these mechanisms is essential for developing effective diagnostics and therapies to improve patient outcomes in Aspergillus-related diseases. In this Review, we explore the biology and pathogenesis of A. fumigatus in the context of host biology and disease, highlighting virus-associated pulmonary aspergillosis, a newly identified condition that arises in patients with severe pulmonary viral infections. In the post-pandemic landscape, in which immunotherapy is gaining attention for managing severe infections, we examine the host immune responses that are critical for controlling invasive aspergillosis and how A. fumigatus circumvents these defences. Additionally, we address the emerging issue of azole resistance in A. fumigatus, emphasizing the urgent need for greater understanding in an era marked by increasing antimicrobial resistance. This Review provides timely insights necessary for developing new immunotherapeutic strategies against invasive aspergillosis.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Joost Wauters
- Medical Intensive Care, University Hospitals Leuven and Department for Clinical Infectious and Inflammatory Disorders, University Leuven, Leuven, Belgium
| | - George Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Paul E Verweij
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025; 21:250-264. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Cui CS, Lerskiatiphanich T, Li XX, Giri R, Liu N, Kumar V, Whittaker AK, Han FY, Clark RJ, Begun J, Lee JD, Woodruff TM. Colon-targeted complement C5a 1 receptor inhibition using pH-sensitive nanoparticles ameliorates experimental colitis. Br J Pharmacol 2025. [PMID: 40288760 DOI: 10.1111/bph.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND AND PURPOSE The complement system is associated with inflammatory bowel disease (IBD) pathology. Complement activation induces C5a production, which signals through the C5a1 receptor (C5aR1) to drive inflammatory responses that may underlie IBD. EXPERIMENTAL APPROACH We examined mucosal biopsies from ulcerative colitis patients and identified C5a1 receptor up-regulated in active lesions, supporting the C5a1 receptor as a target for therapeutic intervention. Cyclic peptide C5a1 receptor antagonists such as PMX205 are orally efficacious in preclinical colitis models; however, their clinical application may be limited by rapid metabolism. We therefore encapsulated PMX205 within pH-sensitive polymers to target drug for colon delivery following oral administration. KEY RESULTS PMX205 nanoparticles were non-toxic and released bioactive PMX205 in simulated colon fluid. In vivo imaging of Cy5-labelled nanoparticles demonstrated rapid entry and persistence in the mouse colon for up to 48 h. Next, we utilised the dextran sodium sulphate-induced colitis model to examine efficacy of the C5a1 receptor-antagonist formulation. We show that oral administration of PMX205 nanoparticles every 2 days from symptom onset significantly mitigated weight loss, clinical illness, colon length reduction and epithelial damage to a similar degree as C5a1 receptor-/- mice. Notably, unformulated PMX205 was markedly less effective in this dosing regimen. CONCLUSION AND IMPLICATIONS This novel colon-targeted formulation therefore offers a potent therapeutic strategy for translating C5a1 receptor antagonists for IBD conditions such as ulcerative colitis.
Collapse
Affiliation(s)
- Cedric S Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rabina Giri
- Mater Research Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ning Liu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
| | - Richard J Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jakob Begun
- Mater Research Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Tang T, Zhong W, Tang P, Dai R, Guo J, Gao Z. Linalool combats Saprolegnia parasitica infections through direct killing of microbes and modulation of host immune system. eLife 2025; 13:RP100393. [PMID: 40183210 PMCID: PMC11970904 DOI: 10.7554/elife.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.
Collapse
Affiliation(s)
- Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Puyu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Rongsi Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| |
Collapse
|
6
|
Gabilan C, Belliere J, Moranne O, Pfirmann P, Samson M, Delattre V, Thoreau B, Gueutin V, Boyer A, Leurs A, Astouati Q, Ronsin C, Quemeneur T, Ribes D, Karras A, Faguer S. Avacopan for anti-neutrophil cytoplasm antibodies-associated vasculitis: a multicentre real-world study. Rheumatology (Oxford) 2025; 64:2214-2219. [PMID: 39001799 DOI: 10.1093/rheumatology/keae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Avacopan, a selective C5aR1 inhibitor, recently emerged as a glucocorticoid (GCs) sparing agent in anti-neutrophil cytoplasm antibodies (ANCA)-associated vasculitis (AAV). We aim to evaluate the tolerance and efficacy of avacopan given outside randomized clinical trials or with severe kidney involvement. METHODS In this multicentre retrospective study, we reviewed the clinical charts of patients with AAV and contraindication to high dose of GCs who received avacopan 30 mg b.i.d plus standard-of-care regimen owing to the French early access program between 2020 and 2023. Efficacy and safety data were recorded using a standardized case report form. RESULTS Among the 31 patients (median age 72 years), 10 had a relapsing AAV, 20 had anti-myeloperoxidase antibodies and 30 had kidney vasculitis. Induction regimen included rituximab (n = 27), cyclophosphamide (n = 2) or both (n = 2). Five patients did not receive GCs. Despite rapid GCs tapering (which were withdrawn in 23 patients before month 3), 25 patients (81%) had a favourable outcome and no severe adverse event. The estimated glomerular filtration rate increased from 19 [15; 34] to 35 mL/min/1.73 m2 [23; 45] at month 12 (P < 0.05), independently of kidney biopsies findings. One patient developed refractory AAV and two had a relapse while receiving avacopan. At month 12, ANCA remained positive in 10/18 patients (55.5%). Two patients developed severe adverse events leading to a withdrawal of avacopan (hepatitis and age-related macular degeneration). CONCLUSIONS The GCs' sparing effect of avacopan was confirmed, even in patients with severe kidney vasculitis, but further studies are required to identify the optimal dosing of GCs when avacopan is used.
Collapse
Affiliation(s)
- Charlotte Gabilan
- Département de Néphrologie et Transplantation d'organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, French Intensive Care Renal Network, Toulouse, France
| | - Julie Belliere
- Département de Néphrologie et Transplantation d'organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, French Intensive Care Renal Network, Toulouse, France
- Faculté de Santé, Université Toulouse-3, Toulouse, France
- INSERM U1297, Institut des Maladies Cardiovasculaires et Métaboliques, Renal Fibrosis Lab, Toulouse, France
| | - Olivier Moranne
- Service de Néphrologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Pierre Pfirmann
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Maxime Samson
- Service de Médecine Interne, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Vincent Delattre
- Service de Néphrologie, Centre Hospitalier de Boulogne-sur-Mer, Boulogne-sur-Mer, France
| | - Benjamin Thoreau
- Service de Médecine Interne, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Victor Gueutin
- Centre Universitaire des Maladies Rénales, UNICAEN, CHU de Caen Normandie, Normandie Université, Caen, France
| | - Annabel Boyer
- Centre Universitaire des Maladies Rénales, UNICAEN, CHU de Caen Normandie, Normandie Université, Caen, France
| | - Amélie Leurs
- Service de Médecine Interne, Centre Hospitalier de Dunkerque, Dunkerque, France
| | - Quentin Astouati
- Univ. Lille, Inserm, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de référence des maladies autoimmunes systémiques rares du Nord, Nord-Ouest et Méditerranée (CeRAINOM), U1286-INFINITE, Institute for Translational Research in Inflammation, Lille, France
| | - Charles Ronsin
- Service de Néphrologie et Transplantation rénale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Thomas Quemeneur
- Service de Néphrologie et Médecine Interne, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - David Ribes
- Département de Néphrologie et Transplantation d'organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, French Intensive Care Renal Network, Toulouse, France
| | - Alexandre Karras
- Service de Néphrologie, Hôpital Européen-Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, French Intensive Care Renal Network, Toulouse, France
- Faculté de Santé, Université Toulouse-3, Toulouse, France
- INSERM U1297, Institut des Maladies Cardiovasculaires et Métaboliques, Renal Fibrosis Lab, Toulouse, France
| |
Collapse
|
7
|
Desai JV. mSphere of Influence: Complement activity beyond systemic circulation-implications in the context of infections. mSphere 2025; 10:e0053124. [PMID: 39918335 PMCID: PMC11934306 DOI: 10.1128/msphere.00531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Jigar V. Desai works in the field of immunology, studying the mucosal and systemic complement systems and their roles in regulating the immune response. In this mSphere of Influence article, he reflects on how the papers by the Kemper, Kulkarni, and Kasper laboratories made an impact on his ongoing work investigating the cell-intrinsic and extrinsic regulation of complement and studying its impacts on mucosal and systemic immunity.
Collapse
Affiliation(s)
- Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
8
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Lötsch F, Eder M, Omic H, Doberer K, Scharitzer M, Vossen MG, Muraközy G, Willinger B, Aigner C. Disseminated infection with Candida dubliniensis after ravulizumab and treatment with rezafungin - a case report. J Mycol Med 2025; 35:101545. [PMID: 40120217 DOI: 10.1016/j.mycmed.2025.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Affiliation(s)
- Felix Lötsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Haris Omic
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Scharitzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias G Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gabriella Muraközy
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Zhang L, Guo RB, Liu Y, Kong L, Zang J, Zhang ZX, Wang JH, Chen MH, Liu M, Yu Y, Li XT. Therapeutic effect of pH responsive Magainin II modified azithromycin plus curcumin micelles in different depth models of MRSA infection. Sci Rep 2025; 15:7383. [PMID: 40025264 PMCID: PMC11873114 DOI: 10.1038/s41598-025-92384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for serious infections in humans. The overuse of antibiotics has led to the evolution of resistance genes in bacteria. This study aimed to develop a pH-responsive micelle, loaded with therapy drugs and modified with antimicrobial peptides, to treat drug-resistant bacterial infections at varying depths. pH-responsive micelles containing azithromycin and curcumin, modified with Magainin II, were prepared using the thin-film dispersion method. The physicochemical properties of the micelles were characterized, and their targeting properties and therapeutic effects on bacterial infections were investigated both in vivo and in vitro across various depths. The micelles demonstrated excellent targeting of bacterial infection sites and released drugs in response to degradation at the disease site. The combination of curcumin and azithromycin effectively mitigated bacterial resistance through multiple mechanisms, enhancing the antibacterial effect while reducing the required azithromycin dosage and associated toxicity. In infection models of varying depths-skin, muscle, and lungs-the micelles exhibited strong antibacterial, anti-biofilm, and anti-inflammatory effects with low toxicity. These findings provide a promising strategy for addressing drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China.
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China.
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Shenyang, 110000, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D Port, Dalian, 116600, China.
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Shenyang, 110000, China.
| |
Collapse
|
11
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
12
|
Li ZH, Sun ZJ, Tang SCW, Zhao MH, Chen M, Chang DY. Finerenone Alleviates Over-Activation of Complement C5a-C5aR1 Axis of Macrophages by Regulating G Protein Subunit Alpha i2 to Improve Diabetic Nephropathy. Cells 2025; 14:337. [PMID: 40072066 PMCID: PMC11898422 DOI: 10.3390/cells14050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages. Over-activation of the MR was observed in patients with DN and was associated with DN prognosis. The renoprotective role of a new generation of non-steroidal selective mineralocorticoid receptor antagonist (MRA), finerenone, has been confirmed in DM and CKD patients. However, the mechanism by which finerenone improves renal inflammation in DN has yet to be completely understood. It was found in this research that the oral administration of finerenone attenuated the kidney injuries in established DN in db/db mice, and particularly improved the pathological changes in the renal tubulointerstitia. Specifically, finerenone inhibited the over-activation of the MR in macrophages, thereby reducing the expression of G protein subunit alpha i2 (GNAI2, Gnαi2), a key downstream component of the C5aR1 pathway. Animal experiments demonstrated that C5aR1 knockout alleviated renal injuries, confirming the critical pathogenic role of C5aR1 in DN. Moreover, finerenone mitigated inflammatory and chemotaxis responses by downregulating Gnαi2 in macrophages. These effects were reflected by reduced expressions of the pro-inflammatory chemokines CXCL15 and CCL2, the regulation of macrophage polarization and improvements in apoptosis. This study intends to understand the protective role of finerenone in DN, which is conducive to revealing the pathophysiological mechanism of DN and further optimizing the treatment of DN patients.
Collapse
Affiliation(s)
- Zi-Han Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
| | - Zi-Jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong 999077, China;
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China; (Z.-H.L.); (Z.-J.S.); (M.-H.Z.)
- Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing 100034, China
- Department of Nephrology, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
Epelbaum O, de Moraes AG, Olson JC, Lionakis MS. Invasive fungal infections in patients with liver disease: immunological and clinical considerations for the intensive care unit. Intensive Care Med 2025; 51:364-377. [PMID: 39961846 PMCID: PMC11903580 DOI: 10.1007/s00134-025-07797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025]
Abstract
Patients with liver disease in the intensive care unit (ICU) face a unique susceptibility to infection due to the complex immune dysfunction resulting from hepatic failure. Bacterial infections are commonly present in these patients upon arrival to the hospital, often being the primary reason for ICU admission. In contrast, invasive fungal infections (IFIs) afflict a smaller percentage of patients and are usually discovered in the course of the ICU stay. IFI diagnosis in the ICU, particularly in patients with liver disease, is often delayed or overlooked, contributing to the extremely high ICU mortality associated with IFI in these patients despite the availability of effective (and largely safe) antifungal therapy. Thus, to improve outcomes, it is crucial for intensive care clinicians to be vigilant for IFIs in patients with liver disease. This review aims to contribute to the intensive care literature in this regard. We begin with an overview of normal antifungal immunity followed by a summary of how it may become compromised in the setting of hepatic dysfunction. Next, a general discussion of IFIs in liver disease is presented and then the three most relevant fungal pathogens, namely Candida, Aspergillus, and Cryptococcus, are individually examined. This review concludes by highlighting key knowledge and practice gaps that require attention by the scientific and clinical communities in the coming years.
Collapse
Affiliation(s)
- Oleg Epelbaum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center, Valhalla, NY, USA.
| | - Alice Gallo de Moraes
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Jody C Olson
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Gaffar NR, Valand N, Venkatraman Girija U. Candidiasis: Insights into Virulence Factors, Complement Evasion and Antifungal Drug Resistance. Microorganisms 2025; 13:272. [PMID: 40005639 PMCID: PMC11858274 DOI: 10.3390/microorganisms13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Invasive fungal infections constitute a substantial global health burden, with invasive candidiasis representing approximately 70% of reported cases worldwide. The emergence of antifungal resistance among Candida species has further exacerbated this challenge to healthcare systems. Recent epidemiological studies have documented a concerning shift towards non-albicans Candida species, exhibiting reduced antifungal susceptibility, in invasive candidiasis cases. The complement system serves as a crucial first-line defence mechanism against Candida infections. These fungal pathogens can activate the complement cascade through three conventional pathways-classical, lectin, and alternative-in addition to activation through the coagulation system. While these pathways are initiated by distinct molecular triggers, they converge at C3 convertase formation, ultimately generating biologically active products and the membrane attack complex. Candida species have evolved sophisticated mechanisms to evade complement-mediated host defence, including the masking of cell wall components, proteolytic cleavage and inhibition of complement proteins, recruitment of complement regulators, and acquisition of host proteins. This review examines the intricate interplay between Candida species and the host complement system, with emphasis on complement evasion strategies. Furthermore, we highlight the importance of exploring the crosstalk between antifungal resistance and immune evasion strategies employed by Candida species. Understanding these interactions may facilitate the development of novel therapeutic approaches and strategies to overcome treatment failures in Candida species infections.
Collapse
Affiliation(s)
| | | | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
15
|
Zhu J, Zhang X, Li L, Yang H, Liu H, Wu D, Liu Z, Liu B, Shen T. C5a-C5aR1 axis mediates lung inflammation and fibrosis induced by single-walled carbon nanotubes via promoting neutrophils recruitment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117627. [PMID: 39752913 DOI: 10.1016/j.ecoenv.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
A mounting number of studies have been documenting strong pro-inflammatory and pro-fibrotic effects of carbon nanotube (CNT). However, the molecular mechanisms of single-walled CNT (SWCNT)-provoked lung injury remain to be elucidated. Here, we established a mice model of SWCNT-induced lung injury by intratracheal instillation and found that C5a-C5a receptor-1 (C5aR1) signaling was significantly activated along with abundant neutrophils recruitment in lungs at early phase post SWCNT administration, which were positively correlated with early lung inflammation and late pulmonary fibrosis. C5a-C5aR1 signaling activation and neutrophils recruitment were subsequently decreased in a time-dependent manner. Furthermore, inhibition of C5a-C5aR1 axis with C5aR1 antagonist PMX205 treatment not only dramatically reduced neutrophils recruitment and inflammatory cytokines secretion at early phase, but also effectively alleviated early lung inflammation and late pulmonary fibrosis induced by SWCNT exposure. In conclusion, our study provides novel insights into the underlying biological mechanism that C5a-C5aR1 axis regulates neutrophils recruitment-mediated lung injury induced by SWCNT, may help to develop therapeutic strategies for SWCNT-provoked lung injury.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lanlan Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hang Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Danyang Wu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Guglietta S, Li X, Saxena D. Role of Fungi in Tumorigenesis: Promises and Challenges. ANNUAL REVIEW OF PATHOLOGY 2025; 20:459-482. [PMID: 39854185 DOI: 10.1146/annurev-pathmechdis-111523-023524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers. Some fungal species can promote tumorigenesis by triggering the complement system. However, in immunocompromised patients, fungi can also inhibit this activation and establish life-threatening infections. Interestingly, the interaction of the fungi and bacteria can also induce unique host immune responses. Recent breakthroughs and advancements in high-throughput sequencing of the gut and tumor mycobiomes are highlighting novel diagnostic and therapeutic opportunities for cancer. We discuss the latest developments in the field of cancer and the mycobiome and the potential benefits and challenges of antifungal therapies.
Collapse
Affiliation(s)
- Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Charleston, South Carolina, USA
| | - Xin Li
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Yu SMW, King E, Fribourg M, Hartzell S, Tsou L, Gee L, D'Agati VD, Thurman JM, He JC, Cravedi P. A Newly Identified Protective Role of C5a Receptor 1 in Kidney Tubules against Toxin-Induced Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:126-142. [PMID: 39427763 PMCID: PMC11686444 DOI: 10.1016/j.ajpath.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Acute kidney injury (AKI) remains a major reason for hospitalization with limited therapeutic options. Although complement activation is implicated in AKI, the role of C5a receptor 1 (C5aR1) in kidney tubular cells is unclear. Herein, aristolochic acid nephropathy (AAN) and folic acid nephropathy (FAN) models were used to establish the role of C5aR1 in kidney tubules during AKI in germline C5ar1-/-, myeloid cell-specific, and kidney tubule-specific C5ar1 knockout mice. After aristolochic acid and folic acid injection, C5ar1-/- mice had increased AKI severity and a higher degree of tubular injury. Macrophage depletion in C5ar1-/- mice or myeloid cell-specific C5ar1 deletion did not affect the outcomes of aristolochic acid-induced AKI. RNA-sequencing data from renal tubular epithelial cells (RTECs) showed that C5ar1 deletion was associated with the down-regulation of mitochondrial metabolism and ATP production transcriptional pathways. Metabolic studies confirmed reduced mitochondrial membrane potential at baseline and increased mitochondrial oxidative stress after injury in C5ar1-/- RTECs. Moreover, C5ar1-/- RTECs had enhanced glycolysis, glucose uptake, and lactate production on injury, corroborated by metabolomics analysis of kidneys from AAN mice. Kidney tubule-specific C5ar1 knockout mice recapitulated exacerbated AKI observed in C5ar1-/- mice in AAN and FAN. These data indicate that C5aR1 signaling in kidney tubules exerts renoprotective effects against toxin-induced AKI by limiting overt glycolysis and maintaining mitochondrial function, thereby revealing a novel link between the complement system and tubular cell metabolism.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| | - Emily King
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Susan Hartzell
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Liam Tsou
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Logan Gee
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Joshua M Thurman
- Medicine-Renal Med Diseases/Hypertension, Colorado University, Aurora, Colorado
| | - John Cijiang He
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York; James J. Peters Department of Veterans Affairs Medical Center, New York, New York
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| |
Collapse
|
18
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
19
|
Steinbrink JM, Liu Y, Henao R, Tsalik EL, Ginsburg GS, Ramsburg E, Woods CW, McClain MT. Pathogen class-specific transcriptional responses derived from PBMCs accurately discriminate between fungal, bacterial, and viral infections. PLoS One 2024; 19:e0311007. [PMID: 39666613 PMCID: PMC11637350 DOI: 10.1371/journal.pone.0311007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 12/14/2024] Open
Abstract
Immune responses during acute infection often contain canonical elements which are shared across the responses to an array of agents within a given pathogen class (i.e., respiratory viral infection). Identification of these shared, canonical elements across similar infections offers the potential for impacting development of novel diagnostics and therapeutics. In this way, analysis of host gene expression patterns ('signatures') in white blood cells has been shown to be useful for determining the etiology of some acute viral and bacterial infections. In order to study conserved immune elements shared across the host response to related pathogens, we performed in vitro human PBMC challenges with common fungal pathogens (Candida albicans, Cryptococcus neoformans and gattii); four strains of influenza virus (Influenza A/Puerto Rico/08/34 [H1N1, PR8], A/Brisbane/59/2007 [H1N1], A/Solomon Islands/3/2006 [H1N1], and A/Wisconsin/67/2005 [H3N2]); and gram-negative (Escherichia coli) and gram-positive (Streptococcus pneumoniae) bacteria. Exposed human cells were then analyzed for differential gene expression utilizing Affymetrix microarrays. Analysis of pathogen exposure of PBMCs revealed strong, conserved gene expression patterns representing these canonical immune response elements to each broad pathogen class. A 41-gene multinomial signature was developed which correctly classified fungal, viral, or bacterial exposure with 94-98% accuracy. Furthermore, a 21-gene signature consisting of a subset of the discriminatory PBMC-derived genes was capable of accurately differentiating human patients with invasive candidiasis, acute viral infection, or bacterial infection (AUC 0.94, 0.83, and 0.96 respectively). These data reinforce the conserved nature of the genomic responses in human peripheral blood cells upon exposure to infectious agents and highlight the potential for in vitro models to augment our ability to develop novel diagnostic classifiers for acute infectious diseases, particularly devastating fungal infections.
Collapse
Affiliation(s)
- Julie M. Steinbrink
- Division of Infectious Diseases, Duke University, Durham, North Carolina, United States of America
| | - Yiling Liu
- Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Ricardo Henao
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Ephraim L. Tsalik
- Division of Infectious Diseases, Duke University, Durham, North Carolina, United States of America
- Danaher Diagnostics, United States of America
- Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Geoffrey S. Ginsburg
- All of Us Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Ramsburg
- Spark Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Woods
- Division of Infectious Diseases, Duke University, Durham, North Carolina, United States of America
- Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Micah T. McClain
- Division of Infectious Diseases, Duke University, Durham, North Carolina, United States of America
- Durham VA Health Care System, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024; 15:e0274824. [PMID: 39422509 PMCID: PMC11558994 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
21
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
22
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
23
|
Weerasinghe H, Stölting H, Rose AJ, Traven A. Metabolic homeostasis in fungal infections from the perspective of pathogens, immune cells, and whole-body systems. Microbiol Mol Biol Rev 2024; 88:e0017122. [PMID: 39230301 PMCID: PMC11426019 DOI: 10.1128/mmbr.00171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
SUMMARYThe ability to overcome metabolic stress is a major determinant of outcomes during infections. Pathogens face nutrient and oxygen deprivation in host niches and during their encounter with immune cells. Immune cells require metabolic adaptations for producing antimicrobial compounds and mounting antifungal inflammation. Infection also triggers systemic changes in organ metabolism and energy expenditure that range from an enhanced metabolism to produce energy for a robust immune response to reduced metabolism as infection progresses, which coincides with immune and organ dysfunction. Competition for energy and nutrients between hosts and pathogens means that successful survival and recovery from an infection require a balance between elimination of the pathogen by the immune systems (resistance), and doing so with minimal damage to host tissues and organs (tolerance). Here, we discuss our current knowledge of pathogen, immune cell and systemic metabolism in fungal infections, and the impact of metabolic disorders, such as obesity and diabetes. We put forward the idea that, while our knowledge of the use of metabolic regulation for fungal proliferation and antifungal immune responses (i.e., resistance) has been growing over the years, we also need to study the metabolic mechanisms that control tolerance of fungal pathogens. A comprehensive understanding of how to balance resistance and tolerance by metabolic interventions may provide insights into therapeutic strategies that could be used adjunctly with antifungal drugs to improve patient outcomes.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Helen Stölting
- Department of Biochemistry and Molecular Biology and the Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology and the Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Luo G, Zhang J, Wang T, Cui H, Bai Y, Luo J, Zhang J, Zhang M, Di L, Yuan Y, Xiong K, Yu X, Zhang Y, Shen C, Zhu C, Wang Y, Su C, Lu Y. A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe 2024; 32:1536-1551.e6. [PMID: 39084229 DOI: 10.1016/j.chom.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C. albicans blocks type I interferon (IFN-I) signaling via translocating an effector protein Cmi1 into host cells. Mechanistically, Cmi1 binds and inhibits TANK-binding kinase 1 (TBK1) to abrogate IFN-regulatory factor 3 (IRF3) phosphorylation, thereby suppressing the IFN-I cascade. Murine infection with a cmi1 mutant displays an exaggerated IFN-I response in both kidneys and bone-marrow-derived macrophages, leading to rapid fungal clearance and host survival. Remarkably, the lack of CMI1 compromises gut commensalism and increases IFN-I response in mouse colonic cells. These phenotypes of cmi1 are rescued by the depletion of IFN-I receptor. This work establishes the importance of TBK1 inhibition in fungal pathogenesis and reveals that a human commensal-pathogenic fungus significantly impacts host immunity during gut colonization and infection via delivering effector proteins into host cells.
Collapse
Affiliation(s)
- Gang Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jingkai Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Tianxu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Bai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jianchen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jinqiu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Linyan Di
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuncong Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangtai Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaling Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host-fungus interaction: from biological principles to therapeutic opportunities. J Leukoc Biol 2024; 116:469-486. [PMID: 38498599 DOI: 10.1093/jleuko/qiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Fungal infections present a significant global public health concern, impacting over 1 billion individuals worldwide and resulting in more than 3 million deaths annually. Despite considerable progress in recent years, the management of fungal infections remains challenging. The limited development of novel diagnostic and therapeutic approaches is largely attributed to our incomplete understanding of the pathogenetic mechanisms involved in these diseases. Recent research has highlighted the pivotal role of cellular metabolism in regulating the interaction between fungi and their hosts. In response to fungal infection, immune cells undergo complex metabolic adjustments to meet the energy demands necessary for an effective immune response. A comprehensive understanding of the metabolic circuits governing antifungal immunity, combined with the integration of individual host traits, holds the potential to inform novel medical interventions for fungal infections. This review explores recent insights into the immunometabolic regulation of host-fungal interactions and the infection outcome and discusses how the metabolic repurposing of immune cell function could be exploited in innovative and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caldeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
26
|
Bouwman HB, Guchelaar HJ. The efficacy and safety of eculizumab in patients and the role of C5 polymorphisms. Drug Discov Today 2024; 29:104134. [PMID: 39111540 DOI: 10.1016/j.drudis.2024.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Eculizumab is an orphan drug with indications for extremely rare autoimmune disorders. It is primarily prescribed for use in patients with paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome; but is also highly effective in the treatment of myasthenia gravis, among others. By binding to the C5 protein in the complement system, eculizumab effectively inhibits cellular hemolysis and autoimmune reactions. Despite this effective treatment, some patients reported no improvement in symptoms. Genetic sequencing revealed three distinct C5 mutations in the non-responders and these polymorphisms appeared to be most prevalent among Japanese, Korean and African populations. Here, we present an overview of the current and potential future applications of eculizumab, as well as the disadvantages of eculizumab treatment in patients with C5 polymorphisms.
Collapse
Affiliation(s)
| | - Henk-Jan Guchelaar
- Clinical Pharmacy and Toxicology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
27
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial responses and alters cellular signaling in an Alzheimer's disease mouse model. Nat Commun 2024; 15:7028. [PMID: 39147742 PMCID: PMC11327341 DOI: 10.1038/s41467-024-51163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heidi Y Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
28
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
29
|
Shim EH, Kim SH, Kim DJ, Jang YS. Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation. Immune Netw 2024; 24:e24. [PMID: 39246622 PMCID: PMC11377950 DOI: 10.4110/in.2024.24.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 09/10/2024] Open
Abstract
Complement C5a receptor (C5aR) signaling in immune cells has various functions, inducing inflammatory or anti-inflammatory responses based on the type of ligand present. The Co1 peptide (SFHQLPARSRPLP) has been reported to activate C5aR signaling in dendritic cells. We investigated the effect of C5aR signaling via the Co1 peptide on macrophages. In peritoneal macrophages, the interaction between C5aR and the Co1 peptide activated the mTOR pathway, resulting in the production of pro-inflammatory cytokines. Considering the close associations of mTOR signaling with IL-6 and TNF-α in macrophage training, our findings indicate that the Co1 peptide amplifies β-glucan-induced trained immunity. Overall, this research highlights a previously underappreciated aspect of C5aR signaling in trained immunity, and posits that the Co1 peptide is a potentially effective immunomodulator for enhancing trained immunity.
Collapse
Affiliation(s)
- Eun-Hyeon Shim
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sae-Hae Kim
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Doo-Jin Kim
- Department of Medicine, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Suk Jang
- Innovative Research and Education Center for Integrated Bioactive Materials and the Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
30
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
31
|
Cohen DG, Wingert RA. You shall not pass: how complement C5 mediated antifungal immunity blocks systemic candidiasis and preserves renal tissue barriers. Tissue Barriers 2024; 12:2257110. [PMID: 37794527 PMCID: PMC11262218 DOI: 10.1080/21688370.2023.2257110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The rising prevalence of fungal infections is a significant and growing public health threat, and this risk is further underscored by our incomplete understanding of why organs like the kidney are so susceptible to systemic candidiasis. To combat the high mortality of such infections, we urgently need to advance our understanding of fungal pathogenesis and how it articulates with human immune response. Now, a recent landmark study has illuminated a crucial role of the complement system in the response to candidiasis and determined the stepwise local response of phagocytes within the kidney during infection. These fundamental discoveries provide crucial insights that can be leveraged to improve the care and outcome for patients with fungal infections.
Collapse
Affiliation(s)
- Dorrian G. Cohen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
32
|
Kaden T, Alonso-Roman R, Akbarimoghaddam P, Mosig AS, Graf K, Raasch M, Hoffmann B, Figge MT, Hube B, Gresnigt MS. Modeling of intravenous caspofungin administration using an intestine-on-chip reveals altered Candida albicans microcolonies and pathogenicity. Biomaterials 2024; 307:122525. [PMID: 38489910 DOI: 10.1016/j.biomaterials.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Candida albicans is a commensal yeast of the human intestinal microbiota that, under predisposing conditions, can become pathogenic and cause life-threatening systemic infections (candidiasis). Fungal-host interactions during candidiasis are commonly studied using conventional 2D in vitro models, which have provided critical insights into the pathogenicity. However, microphysiological models with a higher biological complexity may be more suitable to mimic in vivo-like infection processes and antifungal drug efficacy. Therefore, a 3D intestine-on-chip model was used to investigate fungal-host interactions during the onset of invasive candidiasis and evaluate antifungal treatment under clinically relevant conditions. By combining microbiological and image-based analyses we quantified infection processes such as invasiveness and fungal translocation across the epithelial barrier. Additionally, we obtained novel insights into fungal microcolony morphology and association with the tissue. Our results demonstrate that C. albicans microcolonies induce injury to the epithelial tissue by disrupting apical cell-cell contacts and causing inflammation. Caspofungin treatment effectively reduced the fungal biomass and induced substantial alterations in microcolony morphology during infection with a wild-type strain. However, caspofungin showed limited effects after infection with an echinocandin-resistant clinical isolate. Collectively, this organ-on-chip model can be leveraged for in-depth characterization of pathogen-host interactions and alterations due to antimicrobial treatment.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, Jena, Germany; Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Bianca Hoffmann
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Marc T Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany.
| |
Collapse
|
33
|
Santos-Ribeiro D, Cunha C, Carvalho A. Humoral pathways of innate immune regulation in granuloma formation. Trends Immunol 2024; 45:419-427. [PMID: 38762333 DOI: 10.1016/j.it.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Li D, Wang L, Zhao Z, Bai C, Li X. Enhancing prognostic prediction of invasive candidiasis among cancer patients with a serum C5a-based scoring model. Support Care Cancer 2024; 32:356. [PMID: 38750396 DOI: 10.1007/s00520-024-08567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Invasive candidiasis poses a life-threatening risk, and early prognosis assessment is vital for timely interventions to reduce mortality. Serum C5a levels have recently been linked to prognosis, but confirmation in cancer patients is pending. METHODS We detected the concentrations of serum C5a in hospitalized cancer patients with invasive candidiasis from 2020 to 2023, and retrospectively analyzed the clinical data. RESULTS 372 cases were included in this study, with a 90-day mortality rate of 21.8%. Candida albicans (48.7%) remained the predominant pathogen, followed by Candida glabrata (25.5%), Candida tropicalis (12.4%), and Candida parapsilosis (8.3%). Gastrointestinal cancer was the most diagnosed pathology type (37.6%). Serum C5a demonstrated a noteworthy correlation with 90-day mortality, and employing a cutoff value of 36.7 ng/ml revealed significantly higher 90-day mortality in low-C5a patients (41.2%) compared to high-C5a patients (6.3%) (p < 0.001). We also identified no source control, no surgery, metastasis, or chronic renal failure independently correlated with the 90-day mortality. Based on this, a prognostic model combining C5a and clinical parameters was constructed, which performed better than models built solely on C5a or clinical parameters. Furthermore, we weighted scores to each parameter in the model and presented diagnostic sensitivity and specificity corresponding to different score points calculated by the model. CONCLUSION We constructed a prognostic scoring model including serum C5a and clinical parameters, which would contribute to precise prognosis assessment and benefit the outcome among cancer patients.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
35
|
Desai JV, Zarakas MA, Wishart AL, Roschewski M, Aufiero MA, Donkò A, Wigerblad G, Shlezinger N, Plate M, James MR, Lim JK, Uzel G, Bergerson JR, Fuss I, Cramer RA, Franco LM, Clark ES, Khan WN, Yamanaka D, Chamilos G, El-Benna J, Kaplan MJ, Staudt LM, Leto TL, Holland SM, Wilson WH, Hohl TM, Lionakis MS. BTK drives neutrophil activation for sterilizing antifungal immunity. J Clin Invest 2024; 134:e176142. [PMID: 38696257 PMCID: PMC11178547 DOI: 10.1172/jci176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
We describe a previously unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, patients who were treated with BTKi, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in patients who are susceptible.
Collapse
Affiliation(s)
- Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marissa A. Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew L. Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Mariano A. Aufiero
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Agnes Donkò
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Gustaf Wigerblad
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Markus Plate
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gulbu Uzel
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Ivan Fuss
- Mucosal Immunity Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Luis M. Franco
- Functional Immunogenomics Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Jamel El-Benna
- Centre de Recherche sur l’Inflammation, Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, Paris, France
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Thomas L. Leto
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
36
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
He J, Jiang P, Ma L, Liu F, Fu P, Du X, Xu Z, Xu J, Cheng L, Wang Z, Li C, Liu D. Intravenous immunoglobulin protects the integrity of the intestinal epithelial barrier and inhibits ferroptosis induced by radiation exposure by activating the mTOR pathway. Int Immunopharmacol 2024; 131:111908. [PMID: 38518594 DOI: 10.1016/j.intimp.2024.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Radiation exposure often leads to serious health problems in humans. The intestinal epithelium is sensitive to radiation damage, and radiation causes destruction of the intestinal epithelial barrier, which leads to radiation enteritis (RE), the loss of fluids, and the translocation of intestinal bacteria and toxins; radiation can even threaten survival. In this study, we aimed to explore the influence of IVIg on the integrity of the intestinal epithelial barrier after RE. Using a RE mouse model, we investigated the protective effects of intravenous immunoglobulin (IVIg) on the epithelial junctions of RE mice and validated these findings with intestinal organoids cultured in vitro. In addition, transmission electron microscopy (TEM), western blotting (WB) and immunostaining were used to further investigate changes in intestinal epithelial ferroptosis and related signaling pathways. When RE occurs, the intestinal epithelial barrier is severely damaged. IVIg treatment significantly ameliorated this damage to epithelial tight junctions both in vivo and in vitro. Notably, IVIg alleviated RE by inhibiting intestinal epithelial ferroptosis in RE mice. Mechanistically, IVIg promoted activation of the mTOR pathway and inhibited ferroptosis in the intestinal epithelium of mice. Rapamycin, which is a potent inhibitor of the mTOR protein, significantly abolished the protective effect of IVIg against radiation-induced damage to intestinal epithelial tight junctions. Overall, IVIg can prevent RE-induced damage to the intestinal epithelial barrier and inhibit ferroptosis by activating the mTOR pathway; this study provides a new treatment strategy for patients with RE caused by radiotherapy or accidental nuclear exposure.
Collapse
Affiliation(s)
- Jia He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Ping Fu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610041, China
| | - Jun Xu
- Shanghai RAAS Blood Products Co., Ltd., Shanghai 201401, China
| | - Lu Cheng
- Shanghai RAAS Blood Products Co., Ltd., Shanghai 201401, China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China.
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
38
|
Sahu SK, Maurya RK, Kulkarni HS. The Role of Complement Component C3 in Protection Against Pseudomonas Pneumonia-Induced Lung Injury. DNA Cell Biol 2024; 43:153-157. [PMID: 38324102 PMCID: PMC11002327 DOI: 10.1089/dna.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024] Open
Abstract
The complement system is a family of proteins that facilitate immune resistance by attacking microbes to decrease pathogen burden. As a result, deficiencies of certain complement proteins result in recurrent bacterial infections, and can also result in acute lung injury (ALI). We and others have shown that C3 is present in both immune and nonimmune cells, and modulates cellular functions such as metabolism, differentiation, cytokine production, and survival. Although the emerging roles of the complement system have implications for host responses to ALI, key questions remain vis-a-vis the lung epithelium. In this review, we summarize our recent article in which we reported that during Pseudomonas aeruginosa-induced ALI, lung epithelial cell-derived C3 operates independent of liver-derived C3. Specifically, we report the use of a combination of human cell culture systems and global as well as conditional knockout mouse models to demonstrate the centrality of lung epithelial cell-derived C3. We also summarize recent articles that have interrogated the role of intracellular and/or locally derived C3 in host defense. We propose that C3 is a highly attractive candidate for enhancing tissue resilience in lung injury as it facilitates the survival and function of the lung epithelium, a key cell type that promotes barrier function.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rahul K. Maurya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585572. [PMID: 38562863 PMCID: PMC10983919 DOI: 10.1101/2024.03.18.585572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
|
40
|
Desai JV, Lionakis MS. Evaluation of murine renal phagocyte-fungal interactions using intravital confocal microscopy and flow cytometry. STAR Protoc 2024; 5:102781. [PMID: 38113143 PMCID: PMC10770751 DOI: 10.1016/j.xpro.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Myeloid phagocytes are essential for antifungal host defense during systemic candidiasis. Here, we present a protocol for assessing phagocyte-fungal interactions in vivo in the kidney, the primary target organ of the murine systemic candidiasis model. We describe steps for intravital confocal microscopy and flow cytometry. We also detail a kidney tissue dissociation procedure to obtain highly pure functional phagocytes for utilization in downstream ex vivo fungal uptake and killing assays.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Yang Z, Wang X, Dong T, Zhao WJ, Li H. Impact of glucocorticoids and rapamycin on autophagy in Candida glabrata-infected macrophages from BALB/c mice. Front Immunol 2024; 15:1367048. [PMID: 38585259 PMCID: PMC10995521 DOI: 10.3389/fimmu.2024.1367048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Objective In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
42
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Li XX, Fung JN, Clark RJ, Lee JD, Woodruff TM. Cell-intrinsic C5a synergizes with Dectin-1 in macrophages to mediate fungal killing. Proc Natl Acad Sci U S A 2024; 121:e2314627121. [PMID: 38252818 PMCID: PMC10835034 DOI: 10.1073/pnas.2314627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.
Collapse
Affiliation(s)
- Xaria X. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| |
Collapse
|
44
|
Bromuro C, Posteraro B, Murri R, Fantoni M, Tumbarello M, Sanguinetti M, Dattilo R, Cauda R, Cassone A, Torosantucci A. Identification of two anti- Candida antibodies associated with the survival of patients with candidemia. mBio 2024; 15:e0276923. [PMID: 38088540 PMCID: PMC10790786 DOI: 10.1128/mbio.02769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Candidemia (bloodstream invasion by Candida species) is a major fungal disease in humans. Despite the recent progress in diagnosis and treatment, therapeutic options are limited and under threat of antimicrobial resistance. The disease mortality remains high (around 40%). In contrast with deep-seated invasive candidiasis, particularly that occurring in patients with hematologic malignancies and organ transplants, patients with candidemia are often not immunocompromised and therefore able to mount memory anticandidal immune responses, perhaps primed by Candida commensalism. We investigated antibody immunity in candidemia patients and report here on the ability of these patients to produce antibodies that react with Candida antigens. In particular, the patients with high titers of IgG reactive with two immunodominant, virulence-associated antigens (Als3 and MP65) had a higher 30-day survival. If confirmed by controlled, prospective clinical studies, our data could inform the development of antibody therapy to better treat a severe fungal infection such as candidiasis.
Collapse
Affiliation(s)
- Carla Bromuro
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rita Murri
- Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Massimo Fantoni
- Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Mario Tumbarello
- Dipartimento Biotecnologie Mediche, University of Siena, Siena, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rosanna Dattilo
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Cauda
- Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Università Cattolica del Sacro Cuore, Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonio Cassone
- Polo d'Innovazione della Genomica, Genetica e Biologia, Siena, Italy
| | | |
Collapse
|
45
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Abstract
Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited or acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcomes of infected individuals. This article describes reproducible density-gradient-centrifugation-based as well as positive and negative immunomagnetic selection protocols that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver, or the spleen. Mouse neutrophils isolated by these protocols can be used to examine several aspects of cellular function ex vivo, including pathogen binding, phagocytosis, and killing, neutrophil chemotaxis, oxidative burst, degranulation, and cytokine production, and for performing neutrophil adoptive transfer experiments. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. Basic Protocol 1: Isolation of Neutrophils from Mouse Bone Marrow Using Positive Immunomagnetic Separation Alternate Protocol 1: Purification of Neutrophils from Bone Marrow Using Negative Immunomagnetic Separation Alternate Protocol 2: Purification of Neutrophils from Bone Marrow Using Histopaque-Based Density Gradient Centrifugation Basic Protocol 2: Isolation of Neutrophils from Mouse Tissues Using Positive Immunomagnetic Separation Alternate Protocol 3: Isolation of Neutrophils from Mouse Tissues Using FACS.
Collapse
Affiliation(s)
- Andrew L Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Pechacek J, Lionakis MS. Host defense mechanisms against Candida auris. Expert Rev Anti Infect Ther 2023; 21:1087-1096. [PMID: 37753840 DOI: 10.1080/14787210.2023.2264500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Candida auris is a pathogen of growing public health concern given its rapid spread across the globe, its propensity for long-term skin colonization and healthcare-related outbreaks, its resistance to a variety of antifungal medications, and the high morbidity and mortality associated with invasive disease. Despite that, the host immune response mechanisms that operate during C. auris skin colonization and invasive infection remains poorly understood. AREAS COVERED In this manuscript, we review the available literature in the growing research field pertaining to C. auris host defenses and we discuss what is known about the ability of C. auris to thrive on mammalian skin, the role of lymphoid cell-mediated, IL-17-dependent defenses in controlling cutaneous colonization, and the contribution of myeloid phagocytes in curtailing systemic infection. EXPERT OPINION Understanding the mechanisms by which the host immune system responds to and controls colonization and infection with C. auris and developing a deeper knowledge of tissue-specific host-C. auris interactions and of C. auris immune-evading mechanisms may help devise improved strategies for decolonization, prognostication, prevention, vaccination, and/or directed antifungal treatment in vulnerable patient populations.
Collapse
Affiliation(s)
- Joseph Pechacek
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|