1
|
Manik MC, Darai N, Rungrotmongkol T, Duan L, Harada R, Shigeta Y, Hengphasatporn K, Vangnai AS. Rationally designed antimicrobial peptides with high selectivity and efficiency against phytopathogenic Ralstonia solanecearum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179354. [PMID: 40209588 DOI: 10.1016/j.scitotenv.2025.179354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt, poses a global threat to agriculture, necessitating urgent and sustainable solutions as traditional methods lose efficacy. This study developed WRF-13, a synthetic antimicrobial peptide (AMP) designed to mimic natural AMPs, exhibiting potent antibacterial and anti-biofilm activity with high specificity against R. solanacearum. Mechanistic studies, including microscopy and computational analyses, demonstrated that WRF-13 disrupts the bacterial membrane. WRF-13 remained stable across a wide pH (5-8) and temperature (25-50 °C) range, essential for field applications, and showed no detectable toxicity to mammalian or plant cells at elevated concentrations. Greenhouse trials confirmed its efficacy in reducing bacterial wilt severity up to 65 %, highlighting its potential to protect crops from R. solanacearum infection. Overall, this study highlights WRF-13 as a targeted solution for managing bacterial wilt and advancing sustainable agriculture.
Collapse
Affiliation(s)
- Melvalia Cristin Manik
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitchakan Darai
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand; Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Deng Q, Li Y, He W, Chen T, Liu N, Ma L, Qiu Z, Shang Z, Wang Z. A polyene macrolide targeting phospholipids in the fungal cell membrane. Nature 2025; 640:743-751. [PMID: 40108452 PMCID: PMC12003179 DOI: 10.1038/s41586-025-08678-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
The global spread of multidrug-resistant pathogenic fungi presents a serious threat to human health, necessitating the discovery of antifungals with unique modes of action1. However, conventional activity-based screening for previously undescribed antibiotics has been hampered by the high-frequency rediscovery of known compounds and the lack of new antifungal targets2. Here we report the discovery of a polyene antifungal antibiotic, mandimycin, using a phylogeny-guided natural-product discovery platform. Mandimycin is biosynthesized by the mand gene cluster, has evolved in a distinct manner from known polyene macrolide antibiotics and is modified with three deoxy sugars. It has demonstrated potent and broad-spectrum fungicidal activity against a wide range of multidrug-resistant fungal pathogens in both in vitro and in vivo settings. In contrast to known polyene macrolide antibiotics that target ergosterol, mandimycin has a unique mode of action that involves targeting various phospholipids in fungal cell membranes, resulting in the release of essential ions from fungal cells. This unique ability to bind multiple targets gives it robust fungicidal activity as well as the capability to evade resistance. The identification of mandimycin using the phylogeny-guided natural-product discovery strategy represents an important advancement in uncovering antimicrobial compounds with distinct modes of action, which could be developed to combat multidrug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Qisen Deng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yinchuan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenyan He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhuo Shang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| | - Zongqiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Theuretzbacher U, Jumde RP, Hennessy A, Cohn J, Piddock LJV. Global health perspectives on antibacterial drug discovery and the preclinical pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01167-w. [PMID: 40148602 DOI: 10.1038/s41579-025-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Antibacterial resistance is a global challenge that requires a coordinated international response. The current clinical pipeline largely consists of derivatives of established antibiotic classes, whereas the discovery and preclinical pipeline is diverse and innovative including new direct-acting agents with no cross-resistance with existing antibiotics. These novel compounds target pathways such as lipoprotein synthesis, lipopolysaccharide biosynthesis and transport, outer membrane assembly, peptidoglycan biosynthesis, fatty acid biosynthesis and isoprenoid biosynthesis. If these agents can be developed into safe, effective and affordable drugs, they could address a broad range of infections worldwide, benefiting large patient populations without geographical limitations. However, strategies such as indirect-acting or pathogen-specific treatments are likely to benefit small patient groups, primarily in high-income countries that have advanced health-care systems and diagnostic infrastructure. Although encouraging, the discovery and preclinical pipeline remains insufficiently robust to offset the high attrition rates typical of early-stage drug innovation and to meet global health needs.
Collapse
Affiliation(s)
| | - Ravindra P Jumde
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Alan Hennessy
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Jennifer Cohn
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland.
| |
Collapse
|
4
|
Wu Z, Famous M, Stoikidou T, Bowden FES, Dominic G, Huws SA, Godoy-Santos F, Oyama LB. Unravelling AMR dynamics in the rumenofaecobiome: Insights, challenges and implications for One Health. Int J Antimicrob Agents 2025; 66:107494. [PMID: 40120959 DOI: 10.1016/j.ijantimicag.2025.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global threat to human, animal and environmental health, exacerbated by horizontal gene transfer (HGT) via mobile genetic elements. This poses significant challenges that have a negative impact on the sustainability of the One Health approach, hindering its long-term viability and effectiveness in addressing the interconnectedness of global health. Recent studies on livestock animals, specifically ruminants, indicate that culturable ruminal bacteria harbour AMR genes with the potential for HGT. However, these studies have focused predominantly on using the faecobiome as a proxy to the rumen microbiome or using easily isolated and culturable bacteria, overlooking the unculturable population. These unculturable microbial groups could have a profound influence on the rumen resistome and AMR dynamics within livestock ecosystems, potentially holding critical insights for advanced understanding of AMR in One Health. In order to address this gap, this review of current research on the burden of AMR in livestock was undertaken, and it is proposed that combined study of the rumen microbiome and faecobiome, termed the 'rumenofaecobiome', should be performed to enhance understanding of the risks of AMR in ruminant livestock. This review discusses the complexities of the rumen microbiome and the risks of AMR transmission in this microbiome in a One Health context. AMR transmission dynamics and methodologies for assessing the risks of AMR in livestock are summarized, and future considerations for researching the impact of AMR in the rumen microbiome and the implications within the One Health framework are discussed.
Collapse
Affiliation(s)
- Ziming Wu
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| | - Mustasim Famous
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK; Department of Animal Science, Khulna Agricultural University, Khulna, Bangladesh
| | - Theano Stoikidou
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Freya E S Bowden
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Gama Dominic
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Sharon A Huws
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Fernanda Godoy-Santos
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Linda B Oyama
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Lawrence WS, Peel JE, de Winter R, Ling LL, Nitti AG, Peoples AJ, Shukla R, MacGillavry HD, Heine HS, Hensel ME, Whorton EB, Weingarth M, Lewis K, Hughes DE. Teixobactin: A Resistance-Evading Antibiotic for Treating Anthrax. ACS Infect Dis 2025; 11:727-737. [PMID: 40014033 DOI: 10.1021/acsinfecdis.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The antimicrobial resistance (AMR) crisis has been associated with millions of deaths. Of particular concern is the threat of bioweapons, exemplified by anthrax. Introduction of novel antibiotics helps mitigate AMR, but does not address the threat of bioweapons with engineered resistance. We reasoned that teixobactin, an antibiotic with no detectable resistance, is uniquely suited to address the challenge of weaponized anthrax. Teixobactin binds to immutable targets, precursors of cell wall polymers. Here we show that teixobactin is highly efficacious in a rabbit model of inhalation anthrax. Inhaling spores of Bacillus anthracis causes overwhelming morbidity and mortality. Treating rabbits with teixobactin after the onset of disease rapidly eliminates the pathogen from blood and tissues, normalizes body temperature, and prevents tissue damage. Teixobactin assembles into an irreversible supramolecular structure on the surface of B. anthracis membrane, likely contributing to its unusually high potency against anthrax. Antibiotics evading resistance provide a rational solution to both AMR and engineered bioweapons.
Collapse
Affiliation(s)
- William S Lawrence
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jennifer E Peel
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rosan de Winter
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Losee L Ling
- NovoBiotic Pharmaceuticals, LLC, Cambridge, Massachusetts 02138, United States
| | - Anthony G Nitti
- NovoBiotic Pharmaceuticals, LLC, Cambridge, Massachusetts 02138, United States
| | - Aaron J Peoples
- NovoBiotic Pharmaceuticals, LLC, Cambridge, Massachusetts 02138, United States
| | - Rhythm Shukla
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Henry S Heine
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida 32827, United States
| | - Martha E Hensel
- Department of Comparative Medicine and Research, University of Texas MD Anderson, Bastrop, Texas 78602, United States
| | - Elbert B Whorton
- Department of Epidemiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dallas E Hughes
- NovoBiotic Pharmaceuticals, LLC, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Cardona ST, Rahman ASMZ, Novomisky Nechcoff J. Innovative perspectives on the discovery of small molecule antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:19. [PMID: 40082593 PMCID: PMC11906701 DOI: 10.1038/s44259-025-00089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Antibiotics are essential to modern medicine, but multidrug-resistant (MDR) bacterial infections threaten their efficacy. Resistance evolution shortens antibiotic lifespans, limiting investment returns and slowing new approvals. Consequently, the WHO defines four innovation criteria: new chemical class, target, mode of action (MoA), and lack of cross-resistance. This review explores innovative discovery approaches, including AI-driven screening, metagenomics, and target-based strategies, to develop novel antibiotics that meet these criteria and combat MDR infections.
Collapse
Affiliation(s)
- Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
7
|
González-Fernández S, Blanco-Agudín N, Rodríguez D, Fernández-Vega I, Merayo-Lloves J, Quirós LM. Silver Nanoparticles: A Versatile Tool Against Infectious and Non-Infectious Diseases. Antibiotics (Basel) 2025; 14:289. [PMID: 40149100 PMCID: PMC11939477 DOI: 10.3390/antibiotics14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Silver nanoparticles possess remarkable properties that render them highly beneficial for medical applications in both infectious and non-infectious diseases. Among their most renowned attributes is their antimicrobial activity. They have demonstrated efficacy against a wide range of bacteria, fungi, protozoa, and viruses. Additionally, the antitumor and anti-diabetic properties of silver nanoparticles, along with their ability to promote wound healing and their application as biosensors, underscore their therapeutic potential for various non-infectious conditions. As silver nanoparticles are employed for medical purposes, their potential toxicity must be considered. While silver nanoparticles present a promising alternative in the therapeutic domain, further research is needed to elucidate their precise mechanisms of action, optimize their efficacy, and mitigate any potential health risks associated with their use.
Collapse
Affiliation(s)
- Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones Científicas, 33940 El Entrego, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - David Rodríguez
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
9
|
Maharramov E, Czikkely MS, Szili P, Farkas Z, Grézal G, Daruka L, Kurkó E, Mészáros L, Daraba A, Kovács T, Bognár B, Juhász S, Papp B, Lázár V, Pál C. Exploring the principles behind antibiotics with limited resistance. Nat Commun 2025; 16:1842. [PMID: 39984459 PMCID: PMC11845477 DOI: 10.1038/s41467-025-56934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
Antibiotics that target multiple cellular functions are anticipated to be less prone to bacterial resistance. Here we hypothesize that while dual targeting is crucial, it is not sufficient in preventing resistance. Only those antibiotics that simultaneously target membrane integrity and block another cellular pathway display reduced resistance development. To test the hypothesis, we focus on three antibiotic candidates, POL7306, Tridecaptin M152-P3 and SCH79797, all of which fulfill the above criteria. Here we show that resistance evolution against these antibiotics is limited in ESKAPE pathogens, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, while dual-target topoisomerase antibiotics are prone to resistance. We discover several mechanisms restricting resistance. First, de novo mutations result in only a limited elevation in resistance, including those affecting the molecular targets and efflux pumps. Second, resistance is inaccessible through gene amplification. Third, functional metagenomics reveal that mobile resistance genes are rare in human gut, soil and clinical microbiomes. Finally, we detect rapid eradication of bacterial populations upon toxic exposure to membrane targeting antibiotics. We conclude that resistance mechanisms commonly found in natural bacterial pathogens provide only limited protection to these antibiotics. Our work provides guidelines for the future development of antibiotics.
Collapse
Grants
- This work was supported by: National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation (CzM, LM) Cooperative Doctoral Program Scholarship of the Hungarian Ministry of Culture and Innovation (CzM, BB) The National Research, Development and Innovation Office, Hungary (NKFIH) grant FK-131961 (SJ) H2020-WIDESPREA-01-2016-2017-TeamingPhase2, GA:739593-HCEMM, EU’s Horizon 2020 research and innovation program under grant agreement No. 739593 (SJ) Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP-2021-EGA-05 funding scheme (SJ) Lendulet “Momentum” program of the Hungarian Academy of Sciences (grant agreement LP2022-12/2022) (VL) EMBO Installation Grant (grant number 5709_2024) (VL) National Laboratory for Health Security Grant RRF-2.3.1-21-2022-00006 (BP) The European Union’s Horizon 2020 Research and Innovation Programme no. 739593 (BP) National Research Development and Innovation Office grants: ‘Élvonal’ Programme KKP 129814 (BP) ERA-NET JPIAMR-ACTION (BP) National Laboratory of Biotechnology Grant 2022-2.1.1-NL-2022-00008 (CP, BP) National Research, Development and Innovation Office K146323 (CP) The European Research Council ERC-2023-ADG 101142626 FutureAntibiotics (CP)
Collapse
Affiliation(s)
- Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Eszter Kurkó
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Léna Mészáros
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Terézia Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Bence Bognár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
10
|
Sierra-Hernandez O, Saurith-Coronell O, Rodríguez-Macías J, Márquez E, Mora JR, Paz JL, Flores-Sumoza M, Mendoza-Mendoza A, Flores-Morales V, Marrero-Ponce Y, Barigye SJ, Martinez-Rios F. In Silico Identification of Potential Clovibactin-like Antibiotics Binding to Unique Cell Wall Precursors in Diverse Gram-Positive Bacterial Strains. Int J Mol Sci 2025; 26:1724. [PMID: 40004190 PMCID: PMC11855776 DOI: 10.3390/ijms26041724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The rise in multidrug-resistant bacteria highlights the critical need for novel antibiotics. This study explores clovibactin-like compounds as potential therapeutic agents targeting lipid II, a crucial component in bacterial cell wall synthesis, using in silico techniques. A total of 2624 clovibactin analogs were sourced from the PubChem database and screened using ProTox 3.0 software based on their ADME-Tox properties, prioritizing candidates with favorable pharmacokinetic profiles and minimal toxicity. Molecular docking protocols were then employed to assess the binding interactions of the selected compounds with lipid II. Our analysis identified Compound 22 as a particularly promising candidate, exhibiting strong binding affinity, stable complex formation, and high selectivity for the target. Binding energy analysis, conducted via molecular dynamics simulations, revealed a highly negative value of -25.50 kcal/mol for Compound 22, surpassing that of clovibactin and underscoring its potential efficacy. In addition, Compound 22 was prioritized due to its exceptional binding affinity to lipid II and its favorable ADME-Tox properties, suggesting a lower likelihood of adverse effects. These characteristics position Compound 22 as a promising candidate for further pharmacological development. While our computational results are encouraging, experimental validation is essential to confirm the efficacy and safety of these compounds. This study not only advances our understanding of clovibactin analogs but also contributes to the ongoing efforts to combat antimicrobial resistance through innovative antibiotic development.
Collapse
Affiliation(s)
- Olimpo Sierra-Hernandez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oscar Saurith-Coronell
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan Rodríguez-Macías
- Facultad de Ciencias de la Salud, Exactas y Naturales, Universidad Libre, Barranquilla 080001, Colombia;
| | - Edgar Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José Ramón Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Maryury Flores-Sumoza
- Programa de Química y Farmacia, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 N° 59-65, Barranquilla 080002, Colombia;
| | - Adel Mendoza-Mendoza
- Programa de Ingeniería Industrial, Universidad del Atlántico, Barranquilla 080001, Colombia;
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico;
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Stephen J. Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
| |
Collapse
|
11
|
Tian L, Qiang T, Xia J, Zhang B, Lu Q, Liu Y, Hu J, Kang K, Li J, Zhang J, Yang X, Wang Y, Zhang D, Gao H, Liang C. Kidney Targeting Smart Antibiotic Discovery: Multimechanism Pleuromutilins for Pyelonephritis Therapy. J Med Chem 2025; 68:3335-3355. [PMID: 39813601 DOI: 10.1021/acs.jmedchem.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity. To overcome these limitations, we modified lefamulin's C14 side chain via quaternization and incorporated rigid molecular fragments to enhance pharmacological properties. Introducing a quaternary ammonium group improved liver and kidney targeting via organic cation transporters (OCTs). Candidate 8i, a quaternized imidazo[4,5-c]pyridine pleuromutilin, demonstrated broad-spectrum activity against MDR bacteria, Mycoplasma and Chlamydophila at low doses. 8i targeted transport to infected kidneys, disrupted biofilms, damaged membranes, and inhibited protein synthesis by targeting 50S ribosomal subunit. It cleared rapidly, reducing long-term toxicity. Daily injections were an effective short-course treatment for systemic infections and pyelonephritis. This research presents a novel OCT-mediated, organ-targeted antibiotic design strategy to manage antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Juan Xia
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Boxin Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qi Lu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuting Liu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinrong Hu
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Kairui Kang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jialin Li
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiayun Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiuding Yang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yongbo Wang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dezhu Zhang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an 710025, China
| | - Hong Gao
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- Shaanxi Pioneer Biotech Co., Ltd., Xi'an 710021, China
| | - Chengyuan Liang
- Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Brunicardi JH, Small JJ, Padilla MSTL, Carrera Plancarte JI, Nowick JS. Potent Analogues of Clovibactin from Commercially Available Amino Acid Building Blocks. J Org Chem 2025; 90:2132-2136. [PMID: 39865672 PMCID: PMC11812013 DOI: 10.1021/acs.joc.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
This paper reports highly active analogues of clovibactin in which the rare, noncanonical amino acid d-hydroxyasparagine is replaced with the commercially available amino acid d-threonine. Sequential mutation of leucines 2, 7, and 8 to the more hydrophobic homologue cyclohexylalanine dramatically increases the antibiotic activity of d-Thr5-clovibactin. The resulting analogues (d-Cha2,d-Thr5-clovibactin, Cha7,d-Thr5-clovibactin, and Cha8,d-Thr5-clovibactin) are readily prepared by standard peptide synthesis techniques and exhibit excellent activity (≤1 μg/mL) against the Gram-positive, drug-resistant pathogens MRSA and VRE.
Collapse
Affiliation(s)
- Jackson
E. H. Brunicardi
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697, United States
| | - Jeramiah J. Small
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697, United States
- Department
of Molecular Biology and Biochemistry, University
of California—Irvine, Irvine, California 92697, United States
| | | | | | - James S. Nowick
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California—Irvine, Irvine, California 92697, United States
- Department
of Molecular Biology and Biochemistry, University
of California—Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Wang B, Lin P, Zhong Y, Tan X, Shen Y, Huang Y, Jin K, Zhang Y, Zhan Y, Shen D, Wang M, Yu Z, Wu Y. Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens. Nat Microbiol 2025; 10:332-347. [PMID: 39825096 DOI: 10.1038/s41564-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs. Of these, the 6 most effective were synthesized and tested against multidrug-resistant pathogens and demonstrated activity against carbapenem-resistant species Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. The most potent AMP, pep-19-mod, was validated in vivo, achieving over 95% reduction in bacterial loads in mouse models of thigh infection through both systemic and local administration. Our approach advances the automatic identification and optimization of AMPs.
Collapse
Affiliation(s)
- Beilun Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, China.
| | - Peijun Lin
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yuwei Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xiao Tan
- School of Computer Science and Engineering, Southeast University, Nanjing, China
- Department of Data Science and AI, Monash University, Melbourne, Victoria, Australia
| | - Yangyang Shen
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Kai Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yan Zhang
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Ying Zhan
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Dian Shen
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Meng Wang
- XAI Lab, College of Design and Innovation, Tongji University, Shanghai, China
| | - Zhou Yu
- Computer Science Department, Columbia University, New York, NY, USA.
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| |
Collapse
|
14
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
15
|
Tang Y, Yang C, Zhao J, Heng H, Peng M, Sun L, Dai L, Chan EWC, Chen S. LTX-315 is a novel broad-spectrum antimicrobial peptide against clinical multidrug-resistant bacteria. J Adv Res 2025:S2090-1232(24)00621-0. [PMID: 39793961 DOI: 10.1016/j.jare.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
INTRODUCTION Infections stemming from multidrug-resistant bacteria present a substantial threat to public health today. Discovering or synthesizing novel compounds is crucial to alleviate this pressing situation. OBJECTIVE The main purpose of this study is to verify the antibacterial activity of LTX-315 and explore its primary action mode. METHODS Through antibacterial phenotype assay screening, we obtained a potent compound named LTX-315 from diverse drug libraries, 10,926 compounds in total. Then, the bactericidal effect and its action mode were explored through biochemical and chemistry methods such as atime-killing curve, scanning electronic microscopy, isothermal titration calorimetry analysis, and nuclear magnetic resonance. Finally, the efficacy in vivo of LTX-315 against drug-resistant bacteria was proved through amice infection model. RESULTS In this study, LTX-315, an oncolytic peptide, was discovered to effectively eliminate gram-positive and gram-negative pathogens, even for those multidrug-resistant strains. Through strong electrostatic interactions, LTX-315 can bind to the membrane component phosphatidylglycerol (PG) with extremely high affinity (nanomolar level). Strikingly, in contrast to the typical electrostatic interactions of antibacterial peptides, the indole group of LTX-315, situated near the alkyl chain, exhibits significantly enhanced recognition and interaction with PG due to the hydrophobic effect of the alkyl chain. Furthermore, it exerts various impacts on cell membranes, including damaging integrity, increasing permeability, and decreasing membrane fluidity. Additionally, microscopy revealed significant cell disintegration. The influence, in turn, disrupts several physiological activities inside cells, such as increasing the reactive oxygen species level, ultimately leading to cell death. Finally, the efficacy of LTX-315 in vivo against multidrug-resistant and hypervirulent Klebsiella pneumoniae was demonstrated. CONCLUSION The unique mechanism of LTX-315 involves high-affinity binding to PG and subsequent membrane disruption, providing a novel approach against multidrug-resistant bacteria compared to conventional antibiotics. As a potential candidate, it shows promise in effectively treating bacterial infections, particularly those caused by drug-resistant bacteria, thereby addressing the escalating challenge of antibiotic resistance worldwide.
Collapse
Affiliation(s)
- Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiamin Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mingxiu Peng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China
| | - Liang Sun
- City University of Hong Kong, Shenzhen Research Institute, Nanshan, PR China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
16
|
Wan H, Zhong X, Yang S, Deng J, Song X, Liu Y, Li Y, Yin Z, Zhao X. Enhancing the Therapeutic Potential of Peptide Antibiotics Using Bacteriophage Mimicry Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411753. [PMID: 39587836 PMCID: PMC11744576 DOI: 10.1002/advs.202411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The rise of antibiotic resistance, coupled with a dwindling antibiotic pipeline, presents a significant threat to public health. Consequently, there is an urgent need for novel therapeutics targeting antibiotic-resistant pathogens. Nisin, a promising peptide antibiotic, exhibits potent bactericidal activity through a mechanism distinct from that of clinically used antibiotics. However, its cationic nature leads to hemolysis and cytotoxicity, which has limited its clinical application. Here, nanodelivery systems have been developed by mimicking the mechanisms bacteriophages use to deliver their genomes to host bacteria. These systems utilize bacteriophage receptor-binding proteins conjugated to loading modules, enabling efficient targeting of bacterial pathogens. Peptide antibiotics are loaded via dynamic covalent bonds, allowing for infection microenvironment-responsive payload release. These nanodelivery systems demonstrate remarkable specificity against target pathogens and effectively localize to bacteria-infected lungs in vivo. Notably, they significantly reduce the acute toxicity of nisin, rendering it suitable for intravenous administration. Additionally, these bacteriophage-mimicking nanomedicines exhibit excellent therapeutic efficacy in a mouse model of MRSA-induced pneumonia. The facile synthesis, potent antimicrobial performance, and favorable biocompatibility of these nanomedicines highlight their potential as alternative therapeutics for combating antibiotic-resistant pathogens. This study underscores the effectiveness of bacteriophage mimicry as a strategy for transforming peptide antibiotics into viable therapeutics.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xinyi Zhong
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Shinong Yang
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Jiarong Deng
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xu Song
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Yuanfeng Li
- Translational Medicine LaboratoryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhongqiong Yin
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Xinghong Zhao
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
17
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
18
|
Chen S, Qi H, Zhu X, Liu T, Fan Y, Su Q, Gong Q, Jia C, Liu T. Screening and identification of antimicrobial peptides from the gut microbiome of cockroach Blattella germanica. MICROBIOME 2024; 12:272. [PMID: 39709489 DOI: 10.1186/s40168-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The overuse of antibiotics has led to lethal multi-antibiotic-resistant microorganisms around the globe, with restricted availability of novel antibiotics. Compared to conventional antibiotics, evolutionarily originated antimicrobial peptides (AMPs) are promising alternatives to address these issues. The gut microbiome of Blattella germanica represents a previously untapped resource of naturally evolving AMPs for developing antimicrobial agents. RESULTS Using the in-house designed tool "AMPidentifier," AMP candidates were mined from the gut microbiome of B. germanica, and their activities were validated both in vitro and in vivo. Among filtered candidates, AMP1, derived from the symbiotic microorganism Blattabacterium cuenoti, demonstrated broad-spectrum antibacterial activity, low cytotoxicity towards mammalian cells, and a lack of hemolytic effects. Mechanistic studies revealed that AMP1 rapidly permeates the bacterial cell and accumulates intracellularly, resulting in a gradual and mild depolarization of the cell membrane during the initial incubation period, suggesting minimal direct impact on membrane integrity. Furthermore, observations from fluorescence microscopy and scanning electron microscopy indicated abnormalities in bacterial binary fission and compromised cell structure. These findings led to the hypothesis that AMP1 may inhibit bacterial cell wall synthesis. Furthermore, AMP1 showed potent antibacterial and wound healing effects in mice, with comparable performances of vancomycin. CONCLUSIONS This study exemplifies an interdisciplinary approach to screening safe and effective AMPs from natural biological tissues, and our identified AMP 1 holds promising potential for clinical application.
Collapse
Affiliation(s)
- Sizhe Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xingzhuo Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China
| | - Tianxiang Liu
- School of Science, Dalian Maritime University, Dalian, 116026, China
| | - Yuting Fan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China.
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, 116026, China.
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
19
|
Perrier F, Morice J, Gueulle S, Géry A, Riboulet-Bisson E, Garon D, Muller C, Desriac F. Assessing Normandy Soil Microbial Diversity for Antibacterial Activities Using Traditional Culture and iChip Methods. Microorganisms 2024; 12:2422. [PMID: 39770625 PMCID: PMC11679952 DOI: 10.3390/microorganisms12122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Uncultured microorganisms represent a promising and untapped source of antibacterial compounds, crucial in the fight against the significant threat of antimicrobial resistance (AMR). In this study, both traditional and isolation chip (iChip) cultivation techniques were employed to enhance the recovery of known and unknown microorganisms from soils located in Normandy, France. The isolates obtained were identified using 16S rDNA or ITS regions analysis and MALDI-TOF mass spectrometry and were screened for antibacterial activity. A total of 386 isolates, belonging to 6 microbial phyla and distributed across 65 genera, were recovered using both methods. In total, 11 isolates are potentially new bacterial species, and 34 were associated with 22 species described recently. The iChip method yielded a higher diversity of microorganisms (47 genera) than the traditional method (38 genera) and was particularly effective in enriching Actinomycetota. Antibacterial screening against target bacteria showed that 85 isolates (22%) exhibited antibacterial activity. The Streptomyces, Pseudomonas, and Bacillaceae taxa accounted for most antibacterial-producing bacteria with some presenting promising undescribed characteristics. Other active isolates were affiliated with less-known antibacterial producers such as Arthrobacter, Chryseobacterium, Delftia, Ensifer, Flavobacterium, Rahnella, and Stenotrophomonas, among others. These results highlight the potential of our microbial collection as a source of new antibacterial natural products.
Collapse
Affiliation(s)
- Fabien Perrier
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| | - Juliette Morice
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| | - Sabrina Gueulle
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| | - Antoine Géry
- Université de Caen Normandie, ToxEMAC-ABTE UR 4651, UFR des Sciences, Campus 1, F-14000 Caen, France; (A.G.); (D.G.)
| | - Eliette Riboulet-Bisson
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| | - David Garon
- Université de Caen Normandie, ToxEMAC-ABTE UR 4651, UFR des Sciences, Campus 1, F-14000 Caen, France; (A.G.); (D.G.)
| | - Cécile Muller
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| | - Florie Desriac
- Université de Caen Normandie, CBSA UR 4312, UFR des Sciences, Campus 1, F-14000 Caen, France; (J.M.); (S.G.); (E.R.-B.); (C.M.)
| |
Collapse
|
20
|
Tan H, Zhao W, Duan M, Zhao Y, Zhang Y, Xie H, Tong Q, Yang J. Native Cellular Membranes Facilitate Channel Activity of MscL by Enhancing Slow Collective Motions of Its Transmembrane Helices. J Am Chem Soc 2024; 146:31472-31485. [PMID: 39503730 DOI: 10.1021/jacs.4c07779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Mechanosensitive channels of large conductance (MscL) serve as a mechanoelectrical valve of cells in response to the membrane tension. The influence of membrane environments on the MscL channel activity and the underlying mechanism remains unclear. Herein, we developed a new sample preparation protocol that allows for the detection of high-quality 1H-detected solid-state NMR spectra of MscL in cellular membranes, enabling site-specific analysis of its dynamics. Dipolar order parameters and spin relaxation rates are measured for 51 residues of MscL in synthetic and native membranes. The dynamics data reveal that while MscL maintains a similar rigidity in both membrane environments, it exhibits enhanced slow collective motions in the native cellular membranes. Molecular dynamics simulations demonstrate the critical role of slow motions in the mechanosensitivity of MscL by promoting protein-membrane interactions. This study examines atomic-resolution dynamics of a membrane-protein in cellular membranes and provides novel insights into the functional significance of membrane-protein dynamics.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Mojie Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Qiong Tong
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
21
|
He Y, Deng J, Zhong X, Dai S, Song X, Zou Y, Ye G, Zhou X, Yin Z, Wan H, Zhao X. Engineered Hybrid Lantibiotic that Selectively Combats Infections Caused by Staphylococcus aureus. ACS Infect Dis 2024; 10:3891-3901. [PMID: 39512095 DOI: 10.1021/acsinfecdis.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rapid emergence of antibiotic-resistant strains of Staphylococcus aureus presents a substantial challenge to global public health, underscoring the urgent need for novel antibiotics with diverse mechanisms of action. In this study, we conducted mutagenesis on the C-terminal region of the lantibiotic ripcin C to enhance its antimicrobial efficacy against S. aureus. The resulting optimized variant, ripcin CP23A, demonstrated potent and selective antimicrobial activity, with a minimal inhibitory concentration of 2-4 mg/L against S. aureus. Beyond its strong antimicrobial properties, ripcin CP23A exhibited significant antibiofilm activity against methicillin-resistant S. aureus (MRSA). Mechanistic studies revealed that, in addition to targeting lipid II, ripcin CP23A disrupts bacterial membranes, a capability absent in ripcin C, which may contribute to its superior antimicrobial and antibiofilm effects. Moreover, ripcin CP23A displayed favorable biosafety and plasma stability profiles. Notably, in a mouse model of MRSA-induced mastitis, ripcin CP23A effectively reduced bacterial load, alleviated inflammation, and preserved the normal histomorphology of mammary glands. This study introduces ripcin CP23A as a promising antibiotic candidate for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Yongcheng He
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Dai
- Xinjiang Tycoon Group, Xinjiang, Changji 831199, China
| | - Xu Song
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
22
|
Walker AS, Clardy J. Primed for Discovery. Biochemistry 2024; 63:2705-2713. [PMID: 39497571 PMCID: PMC11542185 DOI: 10.1021/acs.biochem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Antibiotics are essential components of current medical practice, but their effectiveness is being eroded by the increasing emergence of antimicrobial-resistant infections. At the same time, the rate of antibiotic discovery has slowed, and our future ability to treat infections is threatened. Among Christopher T. Walsh's many contributions to science was his early recognition of this threat and the potential of biosynthesis─genes and mechanisms─to contribute solutions. Here, we revisit a 2006 review by Walsh and co-workers that highlighted a major challenge in antibiotic natural product discovery: the daunting odds for identifying new naturally occurring antibiotics. The review described strategies to mitigate the odds challenge. These strategies have been used extensively by the natural product discovery community in the years since and have resulted in some promising discoveries. Despite these advances, the rarity of novel antibiotic natural products remains a barrier to discovery. We compare the challenge of discovering natural product antibiotics to the process of identifying new prime numbers, which are also challenging to find and an essential, if underappreciated, element of modern life. We propose that inclusion of filters for functional compounds early in the discovery pipeline is key to natural product antibiotic discovery, review some recent advances that enable this, and discuss some remaining challenges that need to be addressed to make antibiotic discovery sustainable in the future.
Collapse
Affiliation(s)
- Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Kumar R, Breukink E, Weingarth M. Isolation and Molecular Characterization of the LTA Precursor Molecule Glc 2-DAG, a Potential Target for Antibiotics. Chembiochem 2024; 25:e202400543. [PMID: 39140470 DOI: 10.1002/cbic.202400543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Bacterial infections present a major global health threat, often displaying resistance to various antibiotics. Lipoteichoic acid (LTA) is a vital component of bacterial cell envelopes of Gram-positive bacteria, crucial for cell integrity, cell division, and host inflammation. Due to its essential role for bacteria, LTA and its biosynthesis are also attractive drug targets, however, there is only scant molecular knowledge on LTA and its precursor molecules in membranes. Here, we report the isolation and molecular characterization of diglucosyldiacylglycerol (Glc2-DAG), the glycolipid precursor molecule that anchors LTA in the bacterial plasma-membrane. Using a tailored growth medium and purification protocols, we isolated 13C-isotope labelled Glc2-DAG from bacteria, which can then be used for high-resolution NMR studies. Using solution-state and solid-state NMR, we show an in-depth molecular characterization of Glc2-DAG, including in native-like membranes. Our approach may help to identify antibiotics that directly target LTA precursor molecules, and it offers a tool for future investigations into the role of Glc2-DAG in bacterial physiology.
Collapse
Affiliation(s)
- Raj Kumar
- NMR Spectroscopy Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Markus Weingarth
- NMR Spectroscopy Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Adeiza SS. Clovibactin and Staphylococcus aureus: a new weapon against resistant strains. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc46. [PMID: 39553296 PMCID: PMC11565595 DOI: 10.3205/dgkh000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clovibactin is a new depsipeptide and highly efficacious against Sta p h y l o coccus (S.) aureus, including methicillin-resistant and vancomycin-resistant S. aureus, with no apparent resistance. Clovibactin outclasses current antibiotics such as vancomycin. Here, we discuss its efficacy, emphasize the need for new antibiotics owing to growing global antibiotic resistance, highlight its mode of action and possible benefits over current treatments. We also highlight the challenges involved in large-scale manufacturing and the status of continuing research to advance effective and less toxic derivatives.
Collapse
Affiliation(s)
- Shuaibu Suleiman Adeiza
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
- Department of Clinical Pharmacy and Pharmacy Practice, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
25
|
Melcrová A, Klein C, Roos WH. Membrane-Active Antibiotics Affect Domains in Bacterial Membranes as the First Step of Their Activity. NANO LETTERS 2024; 24:11800-11807. [PMID: 39145544 PMCID: PMC11440642 DOI: 10.1021/acs.nanolett.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The need to combat antimicrobial resistance is becoming more and more pressing. Here we investigate the working mechanism of a small cationic agent, N-alkylamide 3d, by conventional and high-speed atomic force microscopy. We show that N-alkylamide 3d interacts with the membrane of Staphylococcus aureus, where it changes the organization and dynamics of lipid domains. After this initial step, supramolecular structures of the antimicrobial agent attach on top of the affected membrane gradually, covering it entirely. These results demonstrate that lateral domains in the bacterial membranes might be affected by small antimicrobial agents more often than anticipated. At the same time, we show a new dual-step activity of N-alkylamide 3d that not only destroys the lateral membrane organization but also effectively covers the whole membrane with aggregates. This final step could render the membrane inaccessible from the outside and possibly prevent signaling and waste disposal of living bacteria.
Collapse
Affiliation(s)
- Adéla Melcrová
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Christiaan Klein
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| | - Wouter H. Roos
- Molecular
Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, 9712 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Guo Y, Xia Y, Liang Z, Yang S, Guo S, Sun L, Huo YX. Plasmid-Stabilizing Strains for Antibiotic-Free Chemical Fermentation. ACS Synth Biol 2024; 13:2820-2832. [PMID: 39120497 DOI: 10.1021/acssynbio.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Plasmid-mediated antibiotic-free fermentation holds significant industrial potential. However, the requirements for host elements and energy during plasmid inheritance often cause cell burden, leading to plasmid loss and reduced production. The stable maintenance of plasmids is primarily achieved through a complex mechanism, making it challenging to rationally design plasmid-stabilizing strains and characterize the associated genetic factors. In this study, we introduced a fluorescence-based high-throughput method and successfully screened plasmid-stabilizing strains from the genomic fragment-deletion strains of Escherichia coli MG1655 and Bacillus subtilis 168. The application of EcΔ50 in antibiotic-free fermentation increased the alanine titer 2.9 times. The enhanced plasmid stability in EcΔ50 was attributed to the coordinated deletion of genes involved in plasmid segregation and replication control, leading to improved plasmid maintenance and increased plasmid copy number. The increased plasmid stability of BsΔ44 was due to the deletion of the phage SPP1 surface receptor gene yueB, resulting in minimized sporulation, improved plasmid segregational stability and host adaptation. Antibiotic-free fermentation results showed that strain BsΔyueB exhibited a 61.99% higher acetoin titer compared to strain Bs168, reaching 3.96 g/L. When used for the fermentation of the downstream product, 2,3-butanediol, strain BsΔyueB achieved an 80.63% higher titer than Bs168, reaching 14.94 g/L using rich carbon and nitrogen feedstocks. Overall, our work provided a plasmid-stabilizing chassis for E. coli and B. subtilis, highlighting their potential for antibiotic-free fermentation of valuable products and metabolic engineering applications.
Collapse
Affiliation(s)
- Yingjie Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Zeyu Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Shenyan Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Hebei, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
- Tangshan Research Institute, Beijing Institute of Technology, 063611 Hebei, China
| |
Collapse
|
27
|
Brunicardi JH, Griffin JH, Ferracane MJ, Kreutzer AG, Small J, Mendoza AT, Ziller JW, Nowick JS. Structure-Activity Relationship Studies of the Peptide Antibiotic Clovibactin. J Org Chem 2024; 89:12479-12484. [PMID: 39178334 PMCID: PMC11382152 DOI: 10.1021/acs.joc.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/25/2024]
Abstract
Our laboratory reported the chemical synthesis and stereochemical assignment of the recently discovered peptide antibiotic clovibactin. The current paper reports an improved, gram-scale synthesis of the amino acid building block Fmoc-(2R,3R)-3-hydroxyasparagine-OH that enables structure-activity relationship studies of clovibactin. An alanine scan reveals that residues Phe1, d-Leu2, Ser4, Leu7, and Leu8 are important for antibiotic activity. The side-chain amide group of the rare d-Hyn5 residue is not essential to activity and can be replaced with a methyl group with a moderate loss of activity. An acyclic clovibactin analogue reveals that the macrolactone ring is essential to antibiotic activity. The enantiomer of clovibactin is active, albeit somewhat less so than clovibactin. A conformationally constrained clovibactin analogue retains moderate antibiotic activity, while a backbone N-methylated analogue is almost completely inactive. X-ray crystallography of these two analogues reveals that the macrolactone ring adopts a crown-like conformation that binds anions.
Collapse
Affiliation(s)
- Jackson
E. H. Brunicardi
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - James H. Griffin
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Michael J. Ferracane
- Department
of Chemistry, University of Redlands, Redlands, California 92373, United States
| | - Adam G. Kreutzer
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Jeramiah Small
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Ana-Teresa Mendoza
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - James S. Nowick
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
28
|
Madej-Knysak D, Adamek E, Kośmider L, Baran W. Application of Microbiological Screening Tests in Assessment of Environmental Exposure to Antibiotics: Preliminary Studies. J Xenobiot 2024; 14:1187-1200. [PMID: 39311146 PMCID: PMC11417730 DOI: 10.3390/jox14030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Contact of aquatic microbiocenoses with antibiotics present in the environment can cause the former to develop resistance to antimicrobial drugs. Therefore, the search for methods to detect antibiotics and drug-resistant microorganisms in the environment is important. The presented paper proposes a simple procedure to assess environmental exposure to antibiotics and the presence of non-susceptible microorganisms. Medium solutions with selected antibiotics and a microbial growth indicator were applied to test plates, and were inoculated with water samples from various ecosystems. After incubation, the susceptibility of the microorganisms to antibiotics was determined and presented in chronic microbial toxic concentration (MTC) values. It was confirmed that the presented procedure enables the assessment of the antibiotic susceptibility and adaptation potential of unselected microorganisms from different aquatic ecosystems. However, the MTC values depend on the inoculum volume, the density and seasonal activity of the microorganisms, the method of inoculum preparation, and the incubation time of the test plate. The described procedure may be practically applied as a screening test to identify the presence of drug-resistant microorganisms. Additionally, it may also be suitable as a method to assess environmental exposure to antibiotics. However, prior standardisation is required before implementing this procedure in quantitative studies.
Collapse
Affiliation(s)
| | | | | | - Wojciech Baran
- Department of General and Analytical Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.M.-K.); (E.A.); (L.K.)
| |
Collapse
|
29
|
Dutta A, Sharma P, Dass D, Yarlagadda V. Exploring the Darobactin Class of Antibiotics: A Comprehensive Review from Discovery to Recent Advancements. ACS Infect Dis 2024; 10:2584-2599. [PMID: 39028949 DOI: 10.1021/acsinfecdis.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The prevalence of antimicrobial resistance in Gram-negative bacteria poses a greater challenge due to their intrinsic resistance to many antibiotics. Recently, darobactins have emerged as a novel class of antibiotics originating from previously unexplored Gram-negative bacterial species such as Photorhabdus, Vibrio, Pseudoalteromonas and Yersinia. Darobactins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) class of antibiotics, exhibiting selective activity against Gram-negative bacteria. They target the β-barrel assembly machinery (BAM), which is crucial for the maturation and insertion of outer membrane proteins in Gram-negative bacteria. The dar operon in the producer's genome encodes for the synthesis of darobactins, which are characterized by a fused ring system connected via an alkyl-aryl ether linkage (C-O-C) and a C-C cross-link. The enzyme DarE, using the radical S-adenosyl-l-methionine (rSAM), facilitates the formation of these bonds. Biosynthetic manipulation of the darobactin gene cluster, along with its expression in a surrogate host, has enabled access to diverse darobactin analogues with variable antibiotic activities. Recently, two independent research groups successfully achieved the total synthesis of darobactin, employing Larock heteroannulation to construct the bicyclic structure. This paper presents a comprehensive review of darobactins, encompassing their discovery through to the most recent advancements.
Collapse
Affiliation(s)
- Akash Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Peehu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dharam Dass
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
30
|
Luo X, Hu C, Yin Q, Zhang X, Liu Z, Zhou C, Zhang J, Chen W, Yang Y. Dual-Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria-infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401793. [PMID: 38874469 PMCID: PMC11321617 DOI: 10.1002/advs.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Collapse
Affiliation(s)
- Xue‐Yue Luo
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Chun‐Mei Hu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Qi Yin
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Xiao‐Mei Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Zhen‐Zhen Liu
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Cheng‐Kai Zhou
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Jian‐Gang Zhang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Wei Chen
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| | - Yong‐Jun Yang
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchunJilin130062P. R. China
| |
Collapse
|
31
|
Yi S, Wei M, Li F, Liu X, Fan Q, Lu H, Wu Y, Liu Y, Tian J, Zhang M. In-situ enrichment of ARGs and their carriers in soil by hydroxamate siderophore: A promising biocontrol approach for source reduction. ENVIRONMENT INTERNATIONAL 2024; 190:108915. [PMID: 39084127 DOI: 10.1016/j.envint.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Pathogenic microorganisms with antibiotic resistance genes (ARGs) pose a serious threat to public health and soil ecology. Although new drugs and available antibacterial materials can kill ARG carriers but accidentally kill beneficial microorganisms. Therefore, the rapid enrichment and separation of ARGs and their carriers from soil is becoming an important strategy for controlling the diffusion of ARGs. Hydroxamate siderophore (HDS) has gained widespread attentions for its involvement in trace element transfer among microorganisms in the soil environment, we thus explored an in-situ trapping-enrichment method for ARGs and their carriers via a small molecular HDS secreted by Pseudomonas fluorescens HMP01. In this study, we demonstrate that HDS significantly in-situ traps and enriches certain ARGs, including chloramphenicol, MLS, rifamycin, and tetracycline resistance genes in the soil environment. The enrichment efficiencies were 1473-fold, 38-fold, 17-fold, and 5-fold, respectively, higher than those in the control group. Specifically, the primary enriched ARGs were rpoB, mphL, catB2, and tetA(60), and Bacillus, Rhizobium, Rossellomorea, and Agrobacterium were hosts for these ARGs. This enrichment was caused by the upregulation of chemotaxis genes (e.g., cheW, cheC, and cheD) and rapid biofilm formation within the enriched bacterial population. Notably, representative ARGs such as cat, macB, and rpoB were significantly reduced by 36%, 85.7%, and 72%, respectively, in the paddy soil after HDS enrichment. Our research sheds light on the potential application of siderophore as a rapping agent for the eco-friendly reduction of ARGs and their carriers in soil environments.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
32
|
Lewis K, Lee RE, Brötz-Oesterhelt H, Hiller S, Rodnina MV, Schneider T, Weingarth M, Wohlgemuth I. Sophisticated natural products as antibiotics. Nature 2024; 632:39-49. [PMID: 39085542 PMCID: PMC11573432 DOI: 10.1038/s41586-024-07530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 08/02/2024]
Abstract
In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.
Collapse
Affiliation(s)
- Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, USA.
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tubingen, Germany
- Controlling Microbes to Fight Infection-Cluster of Excellence, Tubingen, Germany
| | | | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Markus Weingarth
- Chemistry Department, Utrecht University, Utrecht, the Netherlands
| | - Ingo Wohlgemuth
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| |
Collapse
|
33
|
Pérez-Moreno AM, Torres P, Paris JL. Clovibactin: Discovery and antimicrobial mechanism of action. Allergy 2024; 79:2302-2304. [PMID: 38666369 DOI: 10.1111/all.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Pablo Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
34
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
35
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
36
|
Brüssow H. The antibiotic resistance crisis and the development of new antibiotics. Microb Biotechnol 2024; 17:e14510. [PMID: 38970161 PMCID: PMC11226406 DOI: 10.1111/1751-7915.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
The Global Burden of Disease report of 2019 estimated 14 million infection-related deaths, making it the second leading cause of death after ischaemic heart disease. Bacterial pathogens accounted for 7.7 million deaths and deaths attributable to bacterial antibiotic resistance amounted to 1.3 million, describing a clear demand for novel antibiotics. Antibiotic development had its golden age in 1930-1960. Following failures in the screening of chemical libraries for novel antibiotics at the beginning of this century, the high cost of launching new antibiotics (estimated at US$ 1.4 billion per registered drug) and difficulties in achieving a return of investment for novel antibiotics, pharmaceutical industry has mostly left the field. The current Lilliput review analyses the question whether scientific or economic hurdles prevented the registration of new antibiotics. Scientifically, substantial progress has been achieved over recent years to define the chemical properties needed to overcome the permeation barrier in Gram-negative pathogens; in extending the chemical space of antibiotic candidates by full modular synthesis of suitable molecules; by extending bioprospecting to previously 'unculturable' bacteria or unusual bacteria; by attacking bacterial targets on the outer bacterial membrane; and by looking for support from structural biology, genomics, molecular genetics, phylogenetic analyses and deep machine learning approaches. However, these research activities were mostly conducted by academic researchers and biotech companies with limited financial resources. It thus seems that the development of new antibiotics, frequently described as the drying of the pipeline, is less limited by lack of scientific insight than by lack of the mobilization of the monetary resources needed to bring these discoveries to the market despite recent financial push and pull efforts of the public sector.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Gu X, Sun W, Hu Z. Natural products from untapped sources as a potent reserve against antimicrobial resistance crisis. Chin J Nat Med 2024; 22:577-579. [PMID: 39059826 DOI: 10.1016/s1875-5364(24)60610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
38
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
39
|
Jekhmane S, Derks MGN, Maity S, Slingerland CJ, Tehrani KHME, Medeiros-Silva J, Charitou V, Ammerlaan D, Fetz C, Consoli NA, Cochrane RVK, Matheson EJ, van der Weijde M, Elenbaas BOW, Lavore F, Cox R, Lorent JH, Baldus M, Künzler M, Lelli M, Cochrane SA, Martin NI, Roos WH, Breukink E, Weingarth M. Host defence peptide plectasin targets bacterial cell wall precursor lipid II by a calcium-sensitive supramolecular mechanism. Nat Microbiol 2024; 9:1778-1791. [PMID: 38783023 PMCID: PMC11222147 DOI: 10.1038/s41564-024-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
Antimicrobial resistance is a leading cause of mortality, calling for the development of new antibiotics. The fungal antibiotic plectasin is a eukaryotic host defence peptide that blocks bacterial cell wall synthesis. Here, using a combination of solid-state nuclear magnetic resonance, atomic force microscopy and activity assays, we show that plectasin uses a calcium-sensitive supramolecular killing mechanism. Efficient and selective binding of the target lipid II, a cell wall precursor with an irreplaceable pyrophosphate, is achieved by the oligomerization of plectasin into dense supra-structures that only form on bacterial membranes that comprise lipid II. Oligomerization and target binding of plectasin are interdependent and are enhanced by the coordination of calcium ions to plectasin's prominent anionic patch, causing allosteric changes that markedly improve the activity of the antibiotic. Structural knowledge of how host defence peptides impair cell wall synthesis will likely enable the development of superior drug candidates.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Maik G N Derks
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Vicky Charitou
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Danique Ammerlaan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Céline Fetz
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Naomi A Consoli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Rachel V K Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Eilidh J Matheson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Mick van der Weijde
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Barend O W Elenbaas
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Francesca Lavore
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Moreno Lelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Kim MS, Jeong DE, Jang JP, Jang JH, Choi SK. Mining biosynthetic gene clusters in Paenibacillus genomes to discover novel antibiotics. BMC Microbiol 2024; 24:226. [PMID: 38937695 PMCID: PMC11210098 DOI: 10.1186/s12866-024-03375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied. RESULTS We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin. CONCLUSIONS This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.
Collapse
Grants
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
Collapse
Affiliation(s)
- Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
41
|
Cheng Z, He BB, Lei K, Gao Y, Shi Y, Zhong Z, Liu H, Liu R, Zhang H, Wu S, Zhang W, Tang X, Li YX. Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates. Nat Commun 2024; 15:4901. [PMID: 38851779 PMCID: PMC11162475 DOI: 10.1038/s41467-024-49215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 μg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 515832, China.
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
42
|
Turner RJ. The good, the bad, and the ugly of metals as antimicrobials. Biometals 2024; 37:545-559. [PMID: 38112899 PMCID: PMC11101337 DOI: 10.1007/s10534-023-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
We are now moving into the antimicrobial resistance (AMR) era where more antibiotic resistant bacteria are now the majority, a problem brought on by both misuse and over use of antibiotics. Unfortunately, the antibiotic development pipeline dwindled away over the past decades as they are not very profitable compounds for companies to develop. Regardless researchers over the past decade have made strides to explore alternative options and out of this we see revisiting historical infection control agents such as toxic metals. From this we now see a field of research exploring the efficacy of metal ions and metal complexes as antimicrobials. Such antimicrobials are delivered in a variety of forms from metal salts, alloys, metal complexes, organometallic compounds, and metal based nanomaterials and gives us the broad term metalloantimicrobials. We now see many effective formulations applied for various applications using metals as antimicrobials that are effective against drug resistant strains. The purpose of the document here is to step aside and begin a conversation on the issues of use of such toxic metal compounds against microbes. This critical opinion mini-review in no way aims to be comprehensive. The goal here is to understand the benefits of metalloantimicrobials, but also to consider strongly the disadvantages of using metals, and what are the potential consequences of misuse and overuse. We need to be conscious of the issues, to see the entire system and affect through a OneHealth vision.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
43
|
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M. Cellular Applications of DNP Solid-State NMR - State of the Art and a Look to the Future. Chemistry 2024; 30:e202400323. [PMID: 38451060 DOI: 10.1002/chem.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
44
|
Wang C, Ji Y, Huo X, Li X, Lu W, Zhang Z, Dong W, Wang X, Chen H, Tan C. Discovery of Salifungin as a Repurposed Antibiotic against Methicillin-Resistant Staphylococcus aureus with Limited Resistance Development. ACS Infect Dis 2024; 10:1576-1589. [PMID: 38581387 DOI: 10.1021/acsinfecdis.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Exploring novel antimicrobial drugs and strategies has become essential to the fight MRSA-associated infections. Herein, we found that membrane-disrupted repurposed antibiotic salifungin had excellent bactericidal activity against MRSA, with limited development of drug resistance. Furthermore, adding salifungin effectively decreased the minimum inhibitory concentrations of clinical antibiotics against Staphylococcus aureus. Evaluations of the mechanism demonstrated that salifungin disrupted the level of H+ and K+ ions using hydrophilic and lipophilic groups to interact with bacterial membranes, causing the disruption of bacterial proton motive force followed by impacting on bacterial the function of the respiratory chain and adenosine 5'-triphosphate, thereby inhibiting phosphatidic acid biosynthesis. Moreover, salifungin also significantly inhibited the formation of bacterial biofilms and eliminated established bacterial biofilms by interfering with bacterial membrane potential and inhibiting biofilm-associated gene expression, which was even better than clinical antibiotics. Finally, salifungin exhibited efficacy comparable to or even better than that of vancomycin in the MRSA-infected animal models. In conclusion, these results indicate that salifungin can be a potential drug for treating MRSA-associated infections.
Collapse
Affiliation(s)
- Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Yueyue Ji
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xingyu Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, Hubei, China
- Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| |
Collapse
|
45
|
Zhang M, Lin S, Han L, Zhang J, Liu S, Yang X, Wang R, Yang X, Yi Y. Safety and efficacy evaluation of halicin as an effective drug for inhibiting intestinal infections. Front Pharmacol 2024; 15:1389293. [PMID: 38783954 PMCID: PMC11111955 DOI: 10.3389/fphar.2024.1389293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Halicin, the first antibacterial agent discovered by artificial intelligence, exerts broad-spectrum antibacterial effects and has a unique structure. Our study found that halicin had a good inhibitory effect on clinical isolates of drug-resistant strains and Clostridium perfringens (C. perfringens). The safety of halicin was evaluated by acute oral toxicity, genotoxicity and subchronic toxicity studies. The results of acute toxicity test indicated that halicin, as a low-toxicity compound, had an LD50 of 2018.3 mg/kg. The results of sperm malformation, bone marrow chromosome aberration and cell micronucleus tests showed that halicin had no obvious genotoxicity. However, the results of the 90-day subchronic toxicity test indicated that the test rats exhibited weight loss and slight renal inflammation at a high dose of 201.8 mg/kg. Teratogenicity of zebrafish embryos showed that halicin had no significant teratogenicity. Analysis of intestinal microbiota showed that halicin had a significant effect on the intestinal microbial composition, but caused a faster recovery. Furthermore, drug metabolism experiments showed that halicin was poorly absorbed and quickly eliminated in vivo. Our study found that halicin had a good therapeutic effect on intestinal infection model of C. perfringens. These results show the feasibility of developing oral halicin as a clinical candidate drug for treating intestinal infections.
Collapse
Affiliation(s)
- Maolu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shuqian Lin
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Lianquan Han
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jiaming Zhang
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shaoning Liu
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Xiuzhen Yang
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
46
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
47
|
Rajguru V, Chatterjee S, Garde S, Reddy M. Crosslink cleaving enzymes: the smart autolysins that remodel the bacterial cell wall. Trends Microbiol 2024; 32:494-506. [PMID: 38072724 DOI: 10.1016/j.tim.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 05/12/2024]
Abstract
Peptidoglycan (PG) is a protective mesh-like polymer in bacterial cell walls that enables their survival in almost every ecological niche. PG is formed by crosslinking of several glycan strands through short peptides, conferring a characteristic structure and elasticity, distinguishing it from other polymeric exoskeletons. The significance of PG crosslink formation has been known for decades, as some of the most widely used antibiotics, namely β-lactams, target the enzymes that catalyze this step. However, the importance of crosslink hydrolysis in PG biology remained largely underappreciated. Recent advances demonstrate the functions of crosslink cleavage in diverse physiological processes, including an indispensable role in PG expansion during the cell cycle, thereby making crosslink cleaving enzymes an untapped target for novel drugs. Here, we elaborate on the fundamental roles of crosslink-specific endopeptidases and their regulation across the bacterial kingdom.
Collapse
Affiliation(s)
- Vaidehi Rajguru
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Stuti Chatterjee
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shambhavi Garde
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Yang Z, Arnoux M, Hazelard D, Hughes OR, Nabarro J, Whitwood AC, Fascione MA, Spicer CD, Compain P, Unsworth WP. Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis: unreactive and reactive lactams. Org Biomol Chem 2024; 22:2985-2991. [PMID: 38526035 DOI: 10.1039/d4ob00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
New methods are described that expand the scope of the Successive Ring Expansion (SuRE) with respect to synthetically challenging lactams. A protocol has been developed for use with 'unreactive' lactams, enabling SuRE reactions to be performed on subsrates that fail under previously established conditions. Ring expansion is also demonstarted on 'reactive' lactams derived from iminosugars for the first time. The new SuRE methods were used to prepare a diverse array of medium-sized and macrocyclic lactams and lactones, which were evaluted in an anti-bacterial assay against E. coli BW25113WT.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Marion Arnoux
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - Owen R Hughes
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Joe Nabarro
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Christopher D Spicer
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
50
|
Regen SL. Drug Design: Do Not Forget the Supramolecular Factor. Biochemistry 2024; 63:953-957. [PMID: 38545902 PMCID: PMC11025121 DOI: 10.1021/acs.biochem.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
A major challenge currently facing medicinal chemists is designing agents that can selectively destroy drug resistant fungi and bacteria that have begun to emerge. One factor that has been overlooked by virtually all drug discovery/development approaches is the supramolecular factor, in which aggregated forms of a drug candidate exhibit low selectivity in destroying targeted cells while the corresponding monomers exhibit high selectivity. This Perspective discusses how we were led to the supramolecular factor through fundamental studies with simple model systems, how we reasoned that the selectivity of monomers of the antifungal agent amphotericin B should be much greater than the selectivity of the corresponding aggregates, and how we confirmed this hypothesis using derivatives of amphotericin B. In a broader context, these findings provide a strong rationale for considering the supramolecular factor in the design of new drug candidates and the testing of virtually all of them.
Collapse
Affiliation(s)
- Steven L. Regen
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|