1
|
Paisana E, Cascão R, Alvoeiro M, Félix F, Martins G, Guerreiro C, Roque R, Cruz R, Pacheco TR, Amado AC, Ferro F, Lopes Machado A, Vilariça AS, Hasmucrai D, Alves P, Faria CC. Immunotherapy in lung cancer brain metastases. NPJ Precis Oncol 2025; 9:130. [PMID: 40328894 PMCID: PMC12056043 DOI: 10.1038/s41698-025-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Brain metastases (BM) occur frequently in lung cancer, particularly in non-small cell lung cancer (NSCLC) patients and remain a significant cause of morbidity and mortality. Standard therapies have limited efficacy due to poor crossing of the blood-brain barrier and the distinct features between BM and the primary tumor. This review explores the immune landscape of brain metastatic disease, emerging immunotherapeutic strategies, and promising biomarkers in NSCLC patients.
Collapse
Affiliation(s)
- Eunice Paisana
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal
| | - Rita Cascão
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal
| | - Magda Alvoeiro
- Thoracic Surgery Department, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Francisco Félix
- Thoracic Surgery Department, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Guilherme Martins
- Neurological Imaging Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Carla Guerreiro
- Neurological Imaging Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Rafael Roque
- Laboratory of Neuropathology, Neurology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Rafael Cruz
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal
- Pathology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa R Pacheco
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal
- Oncology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
- Clínica Universitária de Oncologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cristina Amado
- Radiation Oncology Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Filipa Ferro
- Department of Pulmonary Oncology, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Andrea Lopes Machado
- Department of Pulmonary Oncology, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Ana Sofia Vilariça
- Department of Pulmonary Oncology, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Direndra Hasmucrai
- Department of Pulmonary Oncology, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Paula Alves
- Department of Pulmonary Oncology, Hospital Pulido Valente, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
| | - Claudia C Faria
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal.
- Neurosurgery Department, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal.
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Yin J, Sun W, Xiong H, Yao W, Liu X, Jiang H, Wang X. Photoactivated in-situ engineered-bacteria as an efficient H 2S generator to enhance photodynamic immunotherapy via remodeling the tumor microenvironment. Biomaterials 2025; 322:123388. [PMID: 40344882 DOI: 10.1016/j.biomaterials.2025.123388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Based on the unique biological advantages of bacteria and their derivatives, biosynthetic nanomaterials have been widely used in the field of tumor therapy. Although conventional bacterial treatments demonstrate potential in activating tumor immunity, their efficacy in inhibiting tumor growth remains constrained. In this study, a photoactivated hydrogen sulfide (H2S) generator was successfully prepared by in-situ engineering of bacteria, after Pt/MoS2 nanocomposites were in-situ generated by Escherichia coli (E. coli) and loaded with photosensitizer Ce6. This engineered-bacteria has been proved to have good tumor targeting ability and can enhance the effect of photodynamic therapy in the hypoxic tumor microenvironment. While reactive oxygen species (ROS) is effectively released, the fragmentation of bacteria can accelerate the release of abundant H2S, and promote tumor-specific H2S gas therapy, which can effectively remodel the tumor microenvironment and promote the activation of anti-tumor immunotherapy. This engineered bacteria not only improves the tumor specificity and effectiveness of H2S treatment, but also provides a new idea for nanomaterials in bacterial-mediated synergistic cancer treatment.
Collapse
Affiliation(s)
- Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
3
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
4
|
Shovlin S, Young LS, Varešlija D. Hormonal and neuronal interactions shaping the brain metastatic microenvironment. Cancer Lett 2025; 624:217739. [PMID: 40288563 DOI: 10.1016/j.canlet.2025.217739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Metastatic progression drives the majority of cancer-related fatalities, and involvement of the central nervous system (CNS) poses especially formidable challenges to patients and clinicians. Brain metastases (BrM), commonly originate from lung, breast and melanoma cancers, and carry disproportionately poor outcomes. Although therapeutic advances have extended survival for many extracranial tumors, BrM incidence continues to climb-underscoring critical knowledge gaps in understanding the unique biology of tumor colonization in the CNS. While definitive evidence remains limited, a growing focus on cancer neuroscience-especially regarding hormone dependent cancer cells in the brain-has begun to reveal that factors normally regulated by sex steroids and neurosteroids may similarly influence the specialized metastatic microenvironment in the CNS. Steroid hormones can permeate the blood-brain barrier (BBB) or be synthesized de novo by astrocytes and other CNS-resident cells, potentially influencing processes such as inflammation, synaptic plasticity, and immune surveillance. However, how these hormonal pathways are co-opted by disseminated cancer cells remains unclear. Here, we review the complex hormonal landscape of the adult brain and examine how neuroendocrine-immune interactions, often regulated by sex hormones, may support metastatic growth. We discuss the interplay between systemic hormones, local steroidogenesis, and tumor adaptation to identify novel therapeutic opportunities.
Collapse
Affiliation(s)
- Stephen Shovlin
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Leonie S Young
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Lynch SM, Richards CE, Ui Mhaonaigh A, Lynam-Lennon N, Eustace AJ, Allott EH, Robson T, Marcone S. Translating Basic Science Discoveries into Clinical Advances: Highlights from the EACR-AACR-IACR 2024 Conference in Celebration of Irish Association for Cancer Research's 60th Anniversary. Cancers (Basel) 2025; 17:1420. [PMID: 40361346 PMCID: PMC12071098 DOI: 10.3390/cancers17091420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The EACR-AACR-IACR 2024 Basic and Translational Research Conference, held in Dublin, Ireland, from 27th-29th February, 2024, marked a significant milestone as part of the 60th anniversary celebrations of the Irish Association for Cancer Research (IACR). Organized in collaboration with the European Association for Cancer Research (EACR) and the American Association for Cancer Research (AACR), this prestigious event brought together leading experts in oncology research from around the world. The conference provided a platform for cutting-edge discussions on the latest advancements in immunotherapy, drug combinations, cell-based therapies, liquid biopsies, epigenetics, tumour microenvironment, and novel drug targets. With keynote lectures from esteemed researchers such as Kevan Shokat, Jerome Galon, Suzanne Topalian, and Scott Lowe, the conference facilitated knowledge exchange and fostered international collaboration in the pursuit of improved cancer treatments. The report highlights the key sessions, research breakthroughs, and discussions that shaped this landmark event.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK;
| | - Cathy E. Richards
- School of Dentistry, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Aisling Ui Mhaonaigh
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (A.U.M.); (N.L.-L.)
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (A.U.M.); (N.L.-L.)
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 NPY6 Maynooth, Ireland
| | - Alex J. Eustace
- Life Science Institute, School of Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland;
| | - Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Simone Marcone
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland;
| |
Collapse
|
6
|
Cheng J, Xiao Y, Jiang P. Fumarate integrates metabolism and immunity in diseases. Trends Endocrinol Metab 2025:S1043-2760(25)00051-7. [PMID: 40246619 DOI: 10.1016/j.tem.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030; State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084.
| | - Yifeng Xiao
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084.
| |
Collapse
|
7
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Laterra J, Lopez-Bertoni H. Regulatory T Cell Mimicry by a Subset of Mesenchymal GBM Stem Cells Suppresses CD4 and CD8 Cells. Cells 2025; 14:592. [PMID: 40277917 PMCID: PMC12026101 DOI: 10.3390/cells14080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and the molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We showed that this immunosuppressive Treg-like (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGFβ type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a six-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs, and systemic mesenchymal malignancies. TGFBR2high GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Bejarano L, Lourenco J, Kauzlaric A, Lamprou E, Costa CF, Galland S, Maas RR, Guerrero Aruffo P, Fournier N, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Single-cell atlas of endothelial and mural cells across primary and metastatic brain tumors. Immunity 2025; 58:1015-1032.e6. [PMID: 40107274 DOI: 10.1016/j.immuni.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Central nervous system (CNS) malignancies include primary tumors, such as gliomas, and brain metastases (BrMs) originating from diverse extracranial cancers. The blood-brain barrier (BBB) is a key structural component of both primary and metastatic brain cancers. Here, we comprehensively analyzed the two major BBB cell types, endothelial and mural cells, across non-tumor brain tissue, isocitrate dehydrogenase (IDH) mutant (IDH mut) low-grade gliomas, IDH wild-type (IDH WT) high-grade glioblastomas (GBMs), and BrMs from various primary tumors. Bulk and single-cell RNA sequencing, integrated with spatial analyses, revealed that GBMs, but not low-grade gliomas, exhibit significant alterations in the tumor vasculature, including the emergence of diverse pathological vascular cell subtypes. However, these alterations are less pronounced in GBMs than in BrMs. Notably, the BrM vasculature shows higher permeability and more extensive interactions with distinct immune cell populations. This vascular atlas presents a resource toward understanding of tumor-specific vascular features in the brain, providing a foundation for developing vascular- and immune-targeting therapies.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Joao Lourenco
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catia F Costa
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
9
|
Huang C, Qiu H, Xu C, Tan Z, Jin M, Hu J, Huang Z, Zhou Y, Ge S, Hu X. Downregulation of tropomyosin 2 promotes the progression of lung adenocarcinoma by regulating neutrophil infiltration through neutrophil elastase. Cell Death Dis 2025; 16:264. [PMID: 40199876 PMCID: PMC11978998 DOI: 10.1038/s41419-025-07531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Lung adenocarcinoma (LUAD) is a common malignant tumor in the lung that seriously endangers the health of people worldwide. The neutrophil-associated inflammatory microenvironment contributes to the activation of tumor cells. In this study, we report a role of tumor-associated neutrophils (TANs) promote tumor progression of LUAD by crosstalk between neutrophils and tumor cells. Mechanistically, in co-culture with tumor cells, downregulation of TPM2 on tumor cells increases neutrophil elastase (ELANE) levels in neutrophils regulated by p38/ MAPK signaling activation, and ELANE promotes tumor cell progression through the Hippo pathway. Furthermore, downregulation of TPM2 activates ELANE of neutrophils to facilitate ERK1/2 activation, thus enhancing IL1β and IL8 secretion for chemoattraction of more neutrophils to tumor microenvironment. The new studies identify an accomplice role for the interaction between TPM2 and ELANE in promoting LUAD progression and provide potential strategies in the prevention and/or treatment of LUAD and other cancers.
Collapse
Affiliation(s)
- Caixiu Huang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Hao Qiu
- The First People's Hospital of Changde City, Changde, PR China
| | - Changting Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zilong Tan
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Mei Jin
- Pingxiang People's Hospital, Pingxiang, PR China
| | - Jing Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | | | - Yuwei Zhou
- Nanchang University Second Affiliated Hospital, Nanchang, PR China
| | - Shengyou Ge
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| | - Xiaoyuan Hu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Lu Z, Du W, Jiao X, Wang Y, Shi J, Shi Y, Shu Y, Niu Z, Hara H, Wu J, Hsu CH, Van Cutsem E, Brock MV, Zhang Z, Ding N, Zhang Y, Shen Z, Shen L. NOTCH1 Mutation and Survival Analysis of Tislelizumab in Advanced or Metastatic Esophageal Squamous Cell Carcinoma: A Biomarker Analysis From the Randomized, Phase III, RATIONALE-302 Trial. J Clin Oncol 2025:JCO2401818. [PMID: 40179324 DOI: 10.1200/jco-24-01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE Although multiple agents targeting PD-1 have been approved as second-line treatment for esophageal squamous cell carcinoma (ESCC), only a fraction of patients derive long-term survival. Hence, reliable predictive biomarkers are urgently needed. METHODS Comprehensive tumor genomic profiling and transcriptome sequencing were performed on samples from the RATIONALE-302 study. We also conducted single-cell RNA sequencing analysis on Notch1 knockdown ESCC murine models to further explore the potential molecular mechanisms underlying anti-PD-1 benefit. RESULTS We identified NOTCH1 mutation as a potential predictive biomarker for longer overall survival (OS) with tislelizumab versus chemotherapy (18.4 months v 5.3 months; hazard ratio, 0.35 [95% CI, 0.17 to 0.71]). At the transcriptional level, type I IFN (IFN-I)/toll-like receptor expression signatures were positively associated with OS benefit of tislelizumab, whereas B-cell and neutrophil signatures predicted unfavorable OS. Exploratory analyses showed that the presence of NOTCH1 mutation correlated with enrichment of IFN-I signatures and reduced infiltration of B cells and neutrophils. In murine models, comparative single-cell transcriptome analyses further revealed that Notch1 deficiency facilitated a more immunologically activated tumor microenvironment which potentiated anti-PD-1 treatment. CONCLUSION Our data provide novel insights for anti-PD-1 treatment selection using NOTCH1 mutations and may provide a rationale for combination therapy in ESCC.
Collapse
Affiliation(s)
- Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenting Du
- Clinical Biomarker, BeiGene (Shanghai) Co, Ltd, Shanghai, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingwen Shi
- Clinical Biomarker, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Yang Shi
- Clinical Biomarker, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Yongqian Shu
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital)-Cancer Center, Nanjing, China
| | - Zuoxing Niu
- Shandong Cancer Hospital-Oncology, Jinan, China
| | - Hiroki Hara
- Saitama Cancer Center-Gastroenterology, Kitaadachi-gun, Japan
| | - Jun Wu
- The First People's Hospital of Changzhou-Oncology, Changzhou, China
| | - Chih-Hung Hsu
- National Taiwan University Hospital, Taipei, Republic of China
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg/Leuven & KU Leuven, Leuven, Belgium
| | - Malcolm V Brock
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhang Zhang
- Statistics, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Ningning Ding
- Clinical Development, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Yun Zhang
- Clinical Biomarker, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Zhirong Shen
- Clinical Biomarker, BeiGene (Beijing) Co, Ltd, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
11
|
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J. Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 2025; 66:28. [PMID: 40017131 PMCID: PMC11900975 DOI: 10.3892/ijo.2025.5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Xi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanfang Fan
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Yuhan Zhang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanchi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huning Jiang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| |
Collapse
|
12
|
Yang C, Ma C, Xu C, Li S, Li C, Wang Z, Li Z. Comprehensive Evaluation of Frailty and Sarcopenia Markers to Predict Survival in Glioblastoma Patients. J Cachexia Sarcopenia Muscle 2025; 16:e13809. [PMID: 40234099 PMCID: PMC11999731 DOI: 10.1002/jcsm.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Patients with GBM are particularly susceptible to moderate-to-high frail. Frailty status has been associated with the outcome of many types of cancer, including GBM, although there is still little consensus regarding the specific criteria for assessing frailty status. This study aimed to determine the predictive significance of the modified frailty score (mFS) in GBM patients using haematological and sarcopenia indicators. METHODS Between January 2016 and September 2022, we enrolled 309 adult GBM patients. Data on demographics, haematological examination, and temporal muscle thickness (TMT) were collected and assessed. The prognostic relevance of the frailty parameters was established using Kaplan-Meier and Cox proportional model. The scoring systems were created by integrating these indicators. Variables with independent prognostic values were used to construct the nomograms. Nomogram accuracy was evaluated using the calibration curve, Harrell's concordance index (C-index), and time-dependent receiver operating characteristic curves. Clinical practicality was assessed using decision curve analysis. RESULTS The baseline characteristics of the 309 participants revealed a median age of 59 years (interquartile range 52-66) with a predominance of male patients (58.58%). TMT (hazard ratio [HR] = 3.787, 95% confidence interval [CI] 2.576-5.566, p < 0.001), prognostic nutritional index (HR = 1.722, 95% CI 1.098-2.703, p = 0.018), and mean corpuscular volume (HR = 1.958, 95% CI 1.111-3.451, p = 0.020) were identified as independent prognostic markers. The constructed mFS, obtained by integrating these three indices, exhibited independent prognostic significance (HR = 2.461, 95% CI 1.751-3.457, p < 0.001). The patients in the low-risk group had a median overall survival (OS) of 13.9 months, while the patients in the high risk had a median OS of 5.8 months. Importantly, the mFS demonstrated significant independent prognostic value in the subgroup aged > 65 (HR = 1.822, 95% CI 1.011-3.284, p = 0.046). The nomogram, which included the mFS, demonstrated high accuracy, with a c-index of 0.781. The nomogram bootstrapped calibration plot also performed well compared to the ideal model. Nomograms showed promising discriminative potential, with time-dependent areas under the curves of 0.945, 0.835, and 0.820 for 0.5-, 1-, and 2-year overall survival prediction, respectively. CONCLUSIONS Preoperative mFS is a comprehensive frailty marker for predicting survival outcomes in patients with GBM. A dynamic nomogram incorporating the mFS may facilitate preoperative survival evaluation. Early and appropriate multimodal interventions, including nutritional support, rehabilitation, and psychological care, may help in the neurosurgical care of patients with GBM or other brain tumours.
Collapse
Affiliation(s)
- Chao Yang
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Chao Ma
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Cheng‐Shi Xu
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Si‐Rui Li
- Department of RadiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Chen Li
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ze‐Fen Wang
- Department of PhysiologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Zhi‐Qiang Li
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Clinical NutritionZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
13
|
Till JE, Seewald NJ, Yazdani Z, Wang Z, Ballinger D, Samberg H, Dandu S, Macia C, Yin M, Abdalla A, Prior T, Shah S, Patel T, McCoy E, Monsour M, Wills CA, Bochenek V, Serrano J, Snuderl M, Phillips RE, O’Rourke DM, Amankulor NM, Nabavizadeh A, Desai AS, Gollomp K, Binder ZA, Zhou W, Bagley SJ, Carpenter EL. Corticosteroid-Dependent Association between Prognostic Peripheral Blood Cell-Free DNA Levels and Neutrophil-Mediated NETosis in Patients with Glioblastoma. Clin Cancer Res 2025; 31:1292-1304. [PMID: 39887264 PMCID: PMC11961315 DOI: 10.1158/1078-0432.ccr-24-3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Noninvasive prognostic biomarkers to inform clinical decision-making are an urgent unmet need for the management of patients with glioblastoma (GBM). We previously showed that higher circulating cell-free DNA (ccfDNA) concentration is associated with worse survival in GBM. However, the biology underlying this is unknown. EXPERIMENTAL DESIGN We prospectively enrolled 129 patients with treatment-naïve GBM with blood drawn prior to initial resection (baseline) and at the time of the first postradiotherapy MRI. We performed ccfDNA methylation deconvolution to determine cellular sources of ccfDNA. ELISA was performed to detect citrullinated histone 3 (citH3), a marker of neutrophil extracellular traps (NET). Multiplex proteomic analysis was used to measure soluble inflammatory proteins. RESULTS We found that neutrophils contributed the highest proportion of prognostic ccfDNA. The percentage of ccfDNA derived from neutrophils was correlated with total [ccfDNA] but only in patients receiving preoperative corticosteroids. At baseline and on therapy, [citH3] was significantly higher in the plasma of patients with GBM receiving corticosteroids compared with corticosteroid-naïve GBM or no-cancer controls. Unsupervised hierarchical clustering of ccfDNA methylation patterns yielded two clusters, with one enriched for patients with the NETosis phenotype and who received corticosteroids. Unsupervised clustering of circulating inflammatory proteins yielded similar results. CONCLUSIONS These data suggest neutrophil-mediated NETosis is the dominant source of prognostic ccfDNA in patients with GBM and may be associated with glucocorticoid exposure. If further studies show that pharmacological inhibition of NETosis can mitigate the deleterious effects of corticosteroids, these plasma markers will have important clinical utility as noninvasive correlative biomarkers.
Collapse
Affiliation(s)
- Jacob E. Till
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Nicholas J. Seewald
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zachariya Yazdani
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Zhuoyang Wang
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Dominique Ballinger
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Heather Samberg
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Siri Dandu
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Camilla Macia
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Melinda Yin
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Aseel Abdalla
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Timothy Prior
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shivani Shah
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thara Patel
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emily McCoy
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Maikel Monsour
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Carson A. Wills
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan Serrano
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Richard E. Phillips
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Donald M. O’Rourke
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nduka M. Amankulor
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Arati S. Desai
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zev A. Binder
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen J. Bagley
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Erica L. Carpenter
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
14
|
Wischnewski V, Guerrero Aruffo P, Massara M, Maas RR, Soukup K, Joyce JA. The local microenvironment suppresses the synergy between irradiation and anti-PD1 therapy in breast-to-brain metastasis. Cell Rep 2025; 44:115427. [PMID: 40106433 DOI: 10.1016/j.celrep.2025.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The brain environment is uniquely specialized to protect its neuronal tissue from excessive inflammation by tightly regulating adaptive immunity. However, in the context of brain cancer progression, this regulation can lead to a conflict between T cell activation and suppression. Here, we show that, while CD8+ T cells can infiltrate breast cancer-brain metastases, their anti-tumor cytotoxicity is locally suppressed in the brain. Conversely, CD8+ T cells exhibited tumoricidal activity in extracranial mammary lesions originating from the same cancer cells. Consequently, combined high-dose irradiation and anti-programmed cell death protein 1 (PD1) therapy was effective in extracranial tumors but not intracranial lesions. Transcriptional analyses and functional studies identified neutrophils and Trem2-expressing macrophages as key sources for local T cell suppression within the brain, providing rational targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Vladimir Wischnewski
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| |
Collapse
|
15
|
Golomb SM, Guldner IH, Aleksandrovic E, Fross SR, Liu X, Diao L, Liang K, Wu J, Wang Q, Lopez JA, Zhang S. Temporal dynamics of immune cell transcriptomics in brain metastasis progression influenced by gut microbiome dysbiosis. Cell Rep 2025; 44:115356. [PMID: 40023843 PMCID: PMC12028778 DOI: 10.1016/j.celrep.2025.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Interactions between metastatic cancer cells and the brain microenvironment regulate brain metastasis (BrMet) progression. Central nervous system (CNS)-native and peripheral immune cells influence the BrMet immune landscape, but the dynamics and factors modulating this microenvironment remain unclear. As the gut microbiome impacts CNS and peripheral immune activity, we investigated its role in regulating immune response dynamics throughout BrMet stages. Antibiotic-induced (ABX) gut dysbiosis significantly increased BrMet burden versus controls but was equalized with fecal matter transplantation, highlighting microbiome diversity as a regulator of BrMet. Single-cell sequencing revealed a highly dynamic immune landscape during BrMet progression in both conditions. However, the timing of the monocyte inflammatory response was altered. Microglia displayed an elevated activation signature in late-stage metastasis in ABX-treated mice. T cell and microglia perturbation revealed involvement of these cell types in modulating BrMet under gut dysbiosis. These data indicate profound effects on immune response dynamics imposed by gut dysbiosis across BrMet progression.
Collapse
Affiliation(s)
- Samantha M Golomb
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Emilija Aleksandrovic
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Shaneann R Fross
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Xiyu Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Lu Diao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Karena Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinxuan Wu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Jacqueline A Lopez
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
16
|
Kaya TA, Stein KP, Schaufler A, Neyazi B, Rashidi A, Kahlert UD, Mawrin C, Sandalcioglu IE, Dumitru CA. The tumor-neutrophil interactions in the microenvironment of brain metastases with different primary sites. J Leukoc Biol 2025; 117:qiae248. [PMID: 39565891 DOI: 10.1093/jleuko/qiae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Brain metastases originating from lung and breast cancer can recruit and activate neutrophils to acquire a tumor-promoting phenotype. It is currently unclear if this phenomenon also occurs in brain metastases arising from other primary sites. Here, we investigated the effect of tumor cells isolated from melanoma, lung cancer, and gastrointestinal cancer brain metastases on neutrophil biology and functions. We found that lung and gastrointestinal but not melanoma brain metastasis cells produced CXCL8/IL-8 and promoted neutrophil recruitment. Similarly, lung and gastrointestinal but not melanoma brain metastasis cells prolonged the survival of neutrophils and stimulated them to release MMP9 and CCL4/MIP1β. In situ, lung and gastrointestinal brain metastasis tissues contained significantly higher numbers of tumor-infiltrating neutrophils compared to melanoma brain metastases. The levels of neutrophil infiltration significantly correlated with the proliferation index of these tumors. Our findings identify variabilities in the immune microenvironment of brain metastases with different primary sites, which may ultimately affect their pathophysiology and progression.
Collapse
Affiliation(s)
- Tamer A Kaya
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Anna Schaufler
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Claudia A Dumitru
- Department of Neurosurgery, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
17
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
18
|
Liu Y, Sheng X, Zhao Z, Li H, Lu J, Xie L, Zheng G, Jiang T. Identification of regulator gene and pathway in myocardial ischemia-reperfusion injury: a bioinformatics and biological validation study. Hereditas 2025; 162:35. [PMID: 40069854 PMCID: PMC11895329 DOI: 10.1186/s41065-025-00397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the primary cause of cardiac mortality worldwide. However, myocardial ischemia-reperfusion injury (MIRI) following reperfusion therapy is common in AMI, causing myocardial damage and affecting the patient's prognosis. Presently, there are no effective treatments available for MIRI. METHODS We performed a comprehensive bioinformatics analysis using three GEO datasets on differentially expressed genes, including gene ontology (GO), pathway enrichment analyses, and protein-protein interaction (PPI) network analysis. Cytoscape and LASSO methods were employed to identify novel regulator genes for ischemia-reperfusion (I/R). Notably, gene S100A9 was identified as a potential regulator of I/R. Additionally, clinical sample datasets were analyzed to prove the expression and mechanism of S100A9 and its down genes in I/R. The correlation of S100A9 with cardiac events was also examined to enhance the reliability of our results. RESULTS We identified 135 differential genes between the peripheral blood of 47 controls and 92 I/R patients. S100A9 was distinguished as a novel regulator gene of I/R with diagnostic potential. RT-qPCR test demonstrated significant upregulation of S100A9 in I/R. We also verified that S100A9 expression strongly correlates with left ventricular ejection fraction (LVEF) and MIRI. CONCLUSION This study confirms that S100A9 is a key regulator of I/R progression and may participate in ischemia-reperfusion injury by upregulating RAGE /NFKB-NLRP3 activation. Elevated S100A9 levels may serve as a marker for identifying high-risk MIRI patients, especially those with coronary artery no-reflow (CNR), who might benefit from targeted therapeutic interventions. Furthermore, Peripheral blood S100A9 in AMI represents a new therapeutic target for preventing MIRI.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaodong Sheng
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Zhenghong Zhao
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiahui Lu
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Lihuan Xie
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Guanqun Zheng
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
19
|
Bedeschi M, Cavassi E, Romeo A, Tesei A. Glioblastoma Tumor Microenvironment and Purinergic Signaling: Implications for Novel Therapies. Pharmaceuticals (Basel) 2025; 18:385. [PMID: 40143161 PMCID: PMC11944773 DOI: 10.3390/ph18030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Glial-origin brain tumors, particularly glioblastomas (GBMs), are known for their devastating prognosis and are characterized by rapid progression and fatal outcomes. Despite advances in surgical resection, complete removal of the tumor remains unattainable, with residual cells driving recurrence that is resistant to conventional therapies. The GBM tumor microenviroment (TME) significantly impacts tumor progression and treatment response. In this review, we explore the emerging role of purinergic signaling, especially the P2X7 receptor (P2X7R). Due to its unique characteristics, it plays a key role in tumor progression and offers a potential therapeutic strategy for GBM through TME modulation. We discuss also the emerging role of the P2X4 receptor (P2X4R) as a promising therapeutic target. Overall, targeting purinergic signaling offers a potential approach to overcoming current GBM treatment limitations.
Collapse
Affiliation(s)
- Martina Bedeschi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Elena Cavassi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Antonino Romeo
- Radiation Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| |
Collapse
|
20
|
Maurya SK, Jaramillo-Gómez JA, Rehman AU, Gautam SK, Fatima M, Khan MA, Zaidi MAA, Khan P, Anwar L, Alsafwani ZW, Kanchan RK, Mohiuddin S, Pothuraju R, Vengoji R, Venkata RC, Natarajan G, Bhatia R, Atri P, Perumal N, Chaudhary S, Lakshmanan I, Mahapatra S, Talmon GA, Cox JL, Smith LM, Santamaria-Barria JA, Ganti AK, Siddiqui JA, Cittelly DM, Batra SK, Nasser MW. Mucin 5AC Promotes Breast Cancer Brain Metastasis through cMET/CD44v6. Clin Cancer Res 2025; 31:921-935. [PMID: 39760691 PMCID: PMC11882111 DOI: 10.1158/1078-0432.ccr-24-1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE Breast cancer brain metastasis remains a significant clinical problem. Mucins have been implicated in metastasis; however, whether they are also involved in breast cancer brain metastasis remains unknown. We queried databases of patients with brain metastasis and found mucin 5AC (MUC5AC) to be upregulated and therefore sought to define the role of MUC5AC in breast cancer brain metastasis. EXPERIMENTAL DESIGN In silico dataset analysis, RNA-sequence profiling of patient samples and cell lines, analysis of patient serum samples, and in vitro/in vivo knockdown experiments were performed to determine the function of MUC5AC in breast cancer brain metastasis. Coimmunoprecipitation was used to unravel the interactions that can be therapeutically targeted. RESULTS Global in silico transcriptomic analysis showed that MUC5AC is significantly higher in patients with breast cancer brain metastasis. Analysis of archived breast cancer brain metastasis tissue further revealed significantly higher expression of MUC5AC in all breast cancer subtypes, and high MUC5AC expression predicted poor survival in HER2+ breast cancer brain metastasis. We validated these observations in breast cancer brain metastatic cell lines and tissue samples. Interestingly, elevated levels of MUC5AC were detected in the sera of patients with breast cancer brain metastasis. MUC5AC silencing in breast cancer brain metastatic cells reduced their migration and adhesion in vitro and in brain metastasis in the intracardiac injection mouse model. We found high expression of cMET and CD44v6 in breast cancer brain metastasis, which increased MUC5AC expression via hepatocyte growth factor signaling. In addition, MUC5AC interacts with cMET and CD44v6, suggesting that MUC5AC promotes breast cancer brain metastasis via the cMET/CD44v6 axis. Inhibition of the MUC5AC/cMET/CD44v6 axis with the blood-brain barrier-permeable cMET inhibitor bozitinib (PLB1001) effectively inhibits breast cancer brain metastasis. CONCLUSIONS Our study establishes that the MUC5AC/cMET/CD44v6 axis is critical for breast cancer brain metastasis, and blocking this axis will be a novel therapeutic approach for breast cancer brain metastasis.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jenny A Jaramillo-Gómez
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shailendra Kumar Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Laiba Anwar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa Wajih Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mohiuddin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - NaveenKumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, College of Public Health, Omaha, NE 68108, USA
| | | | - Apar Kishor Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska, Omaha, NE, 68182, USA
| |
Collapse
|
21
|
Camargo S, Moskowitz O, Giladi A, Levinson M, Balaban R, Gola S, Raizman A, Lipczyc K, Richter A, Keren-Khadmy N, Barboy O, Dugach Y, Carmi Y, Sonnenblick A, Cohen M. Neutrophils physically interact with tumor cells to form a signaling niche promoting breast cancer aggressiveness. NATURE CANCER 2025; 6:540-558. [PMID: 40055573 DOI: 10.1038/s43018-025-00924-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/04/2025] [Indexed: 03/29/2025]
Abstract
Tissue remodeling and cell plasticity in the mammary gland are activated by multilineage communications; however, the dynamic signaling promoting breast cancer remains unclear. Here, by RNA sequencing of single cells and physically interacting cells (PICs) along mammary gland development and carcinogenesis, we uncovered that neutrophils appear transiently during early development and re-emerge in physical interaction with tumor cells in advanced carcinoma. Neutrophil heterogeneity analysis characterized transcriptional states linked to age and cancer stage. Integrating ligand-receptor and PIC sequencing analyses with various functional experiments unveiled a physical and secreted protumorigenic signaling niche. This approach revealed that neutrophils are recruited by tumor-activated macrophages and physically interact with tumor cells, increasing tumor cell proliferative and invasive properties, as well as endothelial proliferation and angiogenesis. The molecular program upregulated in neutrophil-PICs correlates with lower survival in advanced breast cancer patients. Our interaction-driven perspective highlights potential molecular targets and biomarkers for breast cancer treatment.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ori Moskowitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Maiia Levinson
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roi Balaban
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Gola
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alice Raizman
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kelly Lipczyc
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alon Richter
- Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Keren-Khadmy
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Barboy
- Department of Systems Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Yael Dugach
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Carmi
- Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Huang Y, Zhou X, Liu J, Cao Y, Fu W, Yang J. Emerging neuroimmune mechanisms in cancer neuroscience. Cancer Lett 2025; 612:217492. [PMID: 39848532 DOI: 10.1016/j.canlet.2025.217492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has become increasingly recognized that neural signals can profoundly influence the prognosis of various cancer types. In the past years, we have witnessed "cancer neuroscience," which primarily focuses on the complex crosstalk between tumors and neural signals, emerging as a new, multidisciplinary direction of biomedical science. This review aims to summarize the current knowledge of this research frontier, with an emphasis on the neuroimmune mechanisms enacted through the reciprocal interactions between tumors and the central or peripheral nervous system. In addition, we wish to highlight several key questions of cancer neuroscience and its neuroimmune action that warrant future research and translational efforts, including novel strategies for manipulating neural signals for antitumor immunotherapies, as well as managing cancer-related neurological or psychiatric complications.
Collapse
Affiliation(s)
- Yingying Huang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Xin Zhou
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Liu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ying Cao
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Wei Fu
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Jing Yang
- School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
23
|
Wen R, Liu Y, Tian X, Xu Y, Chen X. Efficient Photosensitizer Delivery by Neutrophils for Targeted Photodynamic Therapy of Glioblastoma. Pharmaceuticals (Basel) 2025; 18:276. [PMID: 40006088 PMCID: PMC11859058 DOI: 10.3390/ph18020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Glioblastoma (GBM) is the deadliest type of brain tumor and photodynamic therapy (PDT) is a promising treatment modality of GBM. However, insufficient photosensitizer distribution in the GBM critically limits the success of PDT. To address this obstacle, we propose tumoritropic neutrophils (NE) as active carriers for photosensitizer delivery to achieve GBM-targeted PDT. Methods: Isolated mouse NE were loaded with functionalized hexagonal boron nitride nanoparticles carrying the photosensitizer chlorin e6 (BNPD-Ce6). In vitro experiments were conducted to determine drug release from the loaded NE (BNPD-Ce6@NE) to mouse GBM cells and consequential photo-cytotoxicity. In vivo experiments were performed on mice bearing intracranial graft GBMs to demonstrate GBM-targeted drug delivery and the efficacy of anti-GBM PDT mediated by BNPD-Ce6@NE. Results: BNPD-Ce6@NE displayed good viability and migration ability, and rapidly released BNPD-Ce6 to co-cultured mouse GBM cells, which then exhibited marked reactive oxygen species (ROS) generation and cytotoxicity following 808 nm laser irradiation (LI). In the in vivo study, a single intravenous bolus injection of BNPD-Ce6@NE resulted in pronounced Ce6 distribution in intracranial graft GBMs 4 h post injection, which peaked around 8 h post injection. A PDT regimen consisting of multiple intravenous BNPD-Ce6@NE injections each followed by one extracranial tumor-directed LI 8 h post injection significantly slowed the growth of intracranial graft GBMs and markedly improved the survival of host animals. Histological analysis revealed massive tumor cell damage and NE infiltration in the PDT-treated GBMs. Conclusions: NE are efficient carriers for GBM-targeted photosensitizer delivery to achieve efficacious anti-GBM PDT.
Collapse
Affiliation(s)
- Ruojian Wen
- Department of Physiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yuwei Liu
- Department of Anatomy, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiang Tian
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yonghong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Lemoine C, Da Veiga MA, Rogister B, Piette C, Neirinckx V. An integrated perspective on single-cell and spatial transcriptomic signatures in high-grade gliomas. NPJ Precis Oncol 2025; 9:44. [PMID: 39934275 DOI: 10.1038/s41698-025-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025] Open
Abstract
High-grade gliomas (HGG) are incurable brain malignancies in children and adults. Breakthrough advances in transcriptomic technologies unveiled the intricate diversity of cellular states and their spatial organization within HGGs. We qualitatively integrated 55 neoplastic transcriptomic signatures described in 17 single-cell and spatial RNA sequencing-based studies. Our review delineates a spectrum of cellular states, represented by the expression of specific genes, which can be conceptualized along a "reactive-developmental programs" axis. Additionally, we discussed the potential cues influencing these cellular states, including how spatial organization may impact transcriptomic dynamics. Leveraging these insightful discoveries, we discussed a novel, evolutive way to integrate the different transcriptomic signatures in two or three dimensions, incorporating developmental states, their proliferative capacity, and their possible transition towards reactive states. This integrated analysis illuminates the diverse cellular landscape of HGGs and provides a valuable resource for further elucidation of malignant mechanisms, and for the design of therapeutic endeavors.
Collapse
Affiliation(s)
- Célia Lemoine
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000, Liège, Belgium
| | - Marc-Antoine Da Veiga
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000, Liège, Belgium
- Department of Neurology, CHU of Liège, 4000, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000, Liège, Belgium
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, 4000, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
25
|
Zhao MY, Shen ZL, Dai H, Xu WY, Wang LN, Gu Y, Zhao JH, Yu TH, Wang CZ, Xu JF, Chen GJ, Chen DH, Hong WM, Zhang F. Single-cell sequencing elucidates the mechanism of NUSAP1 in glioma and its diagnostic and prognostic significance. Front Immunol 2025; 16:1512867. [PMID: 39975552 PMCID: PMC11835852 DOI: 10.3389/fimmu.2025.1512867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Background Personalized precision medicine (PPPM) in cancer immunology and oncology is a rapidly advancing field with significant potential. Gliomas, known for their poor prognosis, rank among the most lethal brain tumors. Despite advancements, there remains a critical need for precise, individualized treatment strategies. Methods We conducted a comprehensive analysis of RNA-seq and microarray data from the TCGA and GEO databases, supplemented by single-cell RNA sequencing (scRNA-seq) data from glioma patients. By integrating single-cell sequencing analysis with foundational experiments, we investigated the molecular variations and cellular interactions within neural glioma cell subpopulations during tumor progression. Results Our single-cell sequencing analysis revealed distinct gene expression patterns across glioma cell subpopulations. Notably, differentiation trajectory analysis identified NUSAP1 as a key marker for the terminal subpopulation. We found that elevated NUSAP1 expression correlated with poor prognosis, prompting further investigation of its functional role through both cellular and animal studies. Conclusions NUSAP1-based risk models hold potential as predictive and therapeutic tools for personalized glioma treatment. In-depth exploration of NUSAP1's mechanisms in glioblastoma could enhance our understanding of its response to immunotherapy, suggesting that targeting NUSAP1 may offer therapeutic benefits for glioma patients.
Collapse
Affiliation(s)
- Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhao-Lei Shen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongzhen Dai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Yu- Gu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Jie-Hui Zhao
- School of Nursing, Anhui Medical University, Hefei, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun-Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-feng Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guan-Jun Chen
- Research and Experiment Center of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dong-Hui Chen
- Department of Neurosurgery, Lu’an People’s Hospital, Luan, China
| | - Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Asey B, Pantel TF, Mohme M, Zghaibeh Y, Dührsen L, Silverbush D, Schüller U, Drexler R, Ricklefs FL. Peripheral blood-derived immune cell counts as prognostic indicators and their relationship with DNA methylation subclasses in glioblastoma patients. Brain Pathol 2025:e13334. [PMID: 39901324 DOI: 10.1111/bpa.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Glioblastomas are known for their immunosuppressive tumor microenvironment, which may explain the failure of most clinical trials in the past decade. Recent studies have emphasized the significance of stratifying glioblastoma patients to predict better therapeutic responses and survival outcomes. This study aims to investigate the prognostic relevance of peripheral immune cell counts sampled prior to surgery, with a special focus on methylation-based subclassification. Peripheral blood was sampled in patients with newly diagnosed (n = 176) and recurrent (n = 41) glioblastoma at the time of surgery and analyzed for neutrophils, monocytes, leukocytes, platelets, neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, and platelet-lymphocyte ratio. Peripheral immune cell counts were correlated with patients' survival after combined radiochemotherapy. In addition, 850 k genome-wide DNA methylation was assessed on tissue for defining tumor subclasses and performing cell-type deconvolution. In newly diagnosed glioblastoma, patients with higher peripheral neutrophil counts had an unfavorable overall survival (OS) (p = 0.01, median overall-survival (mOS) 17.0 vs. 10.0 months). At the time of first recurrence, a significant decrease of peripheral immune cell counts was observed, and elevated monocyte (p = 0.03), neutrophil (p = 0.04), and platelet (p = 0.01) counts were associated with poorer survival outcomes. DNA methylation subclass-stratified analysis revealed a significant survival influence of neutrophils (p = 0.007) and lymphocytes (p = 0.04) in the mesenchymal (MES) subclass. Integrating deconvolution of matched tumor tissue showed that platelets and monocytes were correlated with a more differentiated, tumor-progressive cell state, and peripheral immune cell counts were most accurately reflected in tissue of the MES subclass. This study illustrates a restricted prognostic significance of peripheral immune cell counts in newly diagnosed glioblastoma and a constrained representation in matched tumor tissue, but it demonstrates a more pertinent situation at the time of recurrence and after DNA methylation-based stratification.
Collapse
Affiliation(s)
- Benedikt Asey
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias F Pantel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
To A, Yu Z, Sugimura R. Recent advancement in the spatial immuno-oncology. Semin Cell Dev Biol 2025; 166:22-28. [PMID: 39705969 DOI: 10.1016/j.semcdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in spatial transcriptomics and spatial proteomics enabled the high-throughput profiling of single or multi-cell types and cell states with spatial information. They transformed our understanding of the higher-order architectures and paired cell-cell interactions within a tumor microenvironment (TME). Within less than a decade, this rapidly emerging field has discovered much crucial fundamental knowledge and significantly improved clinical diagnosis in the field of immuno-oncology. This review summarizes the conceptual frameworks to understand spatial omics data and highlights the updated knowledge of spatial immuno-oncology.
Collapse
Affiliation(s)
- Alex To
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Zou Yu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, University of Hong Kong, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
28
|
Zhu M, Jia R, Zhang X, Xu P. The success of the tumor immunotherapy: neutrophils from bench to beside. Front Immunol 2025; 16:1524038. [PMID: 39925807 PMCID: PMC11802522 DOI: 10.3389/fimmu.2025.1524038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
The present immune therapy was focused on the immune checkpoint blockade or Chimeric Antigen Receptor T-Cell Immunotherapy (CART) transfer, but how to activate the innate immune system to antitumor still lags out. Neutrophils are the most abundant circulating leukocytes in human, and heterogeneous neutrophils have been increasingly recognized as important players in tumor progression. They play double "edge-sward" by either supporting or suppressing the tumor growth, including driving angiogenesis, extracellular matrix remodeling to promote tumor growth, participating in antitumor adaptive immunity, or killing tumor cells directly to inhibit the tumor growth. The complex role of neutrophils in various tumors depends on the tumor microenvironment (TME) they are located, and emerging evidence has suggested that neutrophils may determine the success of tumor immunotherapy in the context of the immune checkpoint blockade, innate immune training, or drug-loaded extracellular microvesicles therapy, which makes them become an exciting target for tumor immunotherapy, but still with challenges. Here, we summarize the latest insights on how to activate neutrophils in antitumor immunity and discuss the advances of neutrophil-targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Meng Zhu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ru Jia
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojie Zhang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
29
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Schreurs LD, vom Stein AF, Jünger ST, Timmer M, Noh KW, Buettner R, Kashkar H, Neuschmelting V, Goldbrunner R, Nguyen PH. The immune landscape in brain metastasis. Neuro Oncol 2025; 27:50-62. [PMID: 39403738 PMCID: PMC11726252 DOI: 10.1093/neuonc/noae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
The prognosis for patients with brain metastasis remains dismal despite intensive therapy including surgical resection, radiotherapy, chemo-, targeted, and immunotherapy. Thus, there is a high medical need for new therapeutic options. Recent advances employing high-throughput and spatially resolved single-cell analyses have provided unprecedented insights into the composition and phenotypes of the diverse immune cells in the metastatic brain, revealing a unique immune landscape starkly different from that of primary brain tumors or other metastatic sites. This review summarizes the current evidence on the composition and phenotypes of the most prominent immune cells in the brain metastatic niche, along with their dynamic interactions with metastatic tumor cells and each other. As the most abundant immune cell types in this niche, we explore in detail the phenotypic heterogeneity and functional plasticity of tumor-associated macrophages, including both resident microglia and monocyte-derived macrophages, as well as the T-cell compartment. We also review preclinical and clinical trials evaluating the therapeutic potential of targeting the immune microenvironment in brain metastasis. Given the substantial evidence highlighting a significant role of the immune microenvironmental niche in brain metastasis pathogenesis, a comprehensive understanding of the key molecular and cellular factors within this niche holds great promise for developing novel therapeutic approaches as well as innovative combinatory treatment strategies for brain metastasis.
Collapse
Affiliation(s)
- Luca D Schreurs
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Alexander F vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Stephanie T Jünger
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Marco Timmer
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Ka-Won Noh
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, Cologne, Germany
| | - Reinhard Buettner
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, Cologne, Germany
| | - Hamid Kashkar
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, Cologne, Germany
- University of Cologne, Translational Research for Infectious Diseases and Oncology (TRIO), Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Volker Neuschmelting
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Roland Goldbrunner
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Department of General Neurosurgery, Center for Neurosurgery, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
32
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Lopez-Bertoni H, Laterra J. TGFBR2 High mesenchymal glioma stem cells phenocopy regulatory T cells to suppress CD4+ and CD8+ T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631757. [PMID: 39829747 PMCID: PMC11741370 DOI: 10.1101/2025.01.07.631757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We show that this I mmunosuppressive T reg- L ike (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGF-β type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a 6-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs and systemic mesenchymal malignancies. TGFBR2 High GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
|
33
|
Hermelo I, Virtanen T, Salonen I, Nätkin R, Keitaanniemi S, Tiihonen AM, Lehtipuro S, Kummola L, Raulamo E, Nordfors K, Haapasalo H, Rauhala M, Kesseli J, Nykter M, Haapasalo J, Rautajoki K. Unsupervised clustering reveals noncanonical myeloid cell subsets in the brain tumor microenvironment. Cancer Immunol Immunother 2025; 74:63. [PMID: 39751910 PMCID: PMC11699035 DOI: 10.1007/s00262-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3+ myeloids and CD19+ myeloids. T lymphocyte subsets included double-negative (CD4- CD8-) T cells (DNTs). Noncanonical myeloids and DNTs were explored on independent datasets, suggesting that our DNT phenotype represents γδ T cells. Noncanonical myeloids were validated using orthogonal methods across 73 patients from three independent datasets. While the proportions of classical myeloids agreed with reported malignancy type-associated TiMEs, unexpectedly high lymphocyte frequencies were detected in gliosarcoma, which also showed a unique expression pattern of immune-related genes. Our findings highlight the potential of data-driven approaches in resolving CNS TiME to reveal the mosaic of immune cell types constituting TiME, warranting the need for future studies on the nonclassical immune cell subsets.
Collapse
Affiliation(s)
- Ismaïl Hermelo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland.
| | - Tuomo Virtanen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Iida Salonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Reetta Nätkin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Sofia Keitaanniemi
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Aliisa M Tiihonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Suvi Lehtipuro
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ella Raulamo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Unit of Pediatric Haematology and Oncology, Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Kirsi Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
34
|
Sheikh RA, Naqvi S, Al-Sulami AM, Bayamin M, Samsahan A, Baig MR, Al-Abbasi FA, Almalki NAR, Asar TO, Anwar F. Synchronized Glioma Insights: Trends, Blood Group Correlations, Staging Dynamics, and the Vanguard of Liquid Biopsy Advancements. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:74-82. [PMID: 38956913 DOI: 10.2174/0118715273306577240612053957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Gliomas are the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. MATERIALS AND METHODS We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, we tried to prove the potential association between glioma and specific blood group antigens. RESULTS 78 patients were found, among whom the maximum percentage with glioblastoma had blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and the least with O-. Liquid biopsy biomarkers included Alanine Aminotransferase (ALT), Lactate Dehydrogenase (LDH), lymphocytes, Urea, Alkaline phosphatase (AST), Neutrophils, and C-Reactive Protein (CRP). The levels of all the components increased significantly with the severity of the glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II, respectively. CONCLUSION Gliomas have significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. A liquid biopsy is a non-invasive approach that aids in setting up the status of the patient and figuring out the tumor grade; therefore, it may show diagnostic and prognostic utility. Additionally, our study provides evidence to prove the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and confirm their clinical usefulness to guide treatment approaches.
Collapse
Affiliation(s)
- Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ayman Mohammed Al-Sulami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Bayamin
- Medical Oncology Consultant, King Abdullah Medical City Makkah. Saudi Council for Health Specialist Medical Oncology Program. Makka, Saudi Arabia
| | - Abdullaha Samsahan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
35
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
36
|
Anders CK, Van Swearingen AED, Neman J, Joyce JA, Cittelly DM, Valiente M, Zimmer AS, Floyd SR, Dhakal A, Sengupta S, Ahluwalia MS, Nagpal S, Kumthekar PU, Emerson S, Basho R, Beal K, Moss NS, Razis ED, Yang JT, Sammons SL, Sahebjam S, Tawbi HA. Consortium for Intracranial Metastasis Academic Research (CIMARa): Global interdisciplinary collaborations to improve outcomes of patient with brain metastases. Neurooncol Adv 2025; 7:vdaf049. [PMID: 40276376 PMCID: PMC12019957 DOI: 10.1093/noajnl/vdaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Brain metastases (BrM) arising from solid tumors is an ever-increasing and often devastating clinical challenge impacting hundreds of thousands of patients annually worldwide. As systemic anticancer therapies, and thus survival, improve, the risk for central nervous system (CNS) recurrence has increased. Historically, patients with BrM were excluded from clinical trials; however, there has been a shift toward increasing inclusion over the past decade. To most effectively design the next generation of clinical trials for patients with BrM, a multidisciplinary team spanning local and systemic therapies is imperative. CIMARa (Consortium for Intracranial Metastasis Academic Research), formalized in June 2021, is an inclusive group of multidisciplinary clinical investigators, research scientists, and advocates who share the collective goal of improving outcomes for patients with BrM. CIMARa aims to improve outcomes through the development, coordination, and awareness of multi-institutional clinical trials testing novel therapeutic agents for this unique patient population alongside the translation of preclinical research to the clinical setting.
Collapse
Affiliation(s)
- Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina, USA
| | | | - Josh Neman
- University of Southern California, Los Angeles, California, USA
| | - Johanna A Joyce
- University of Lausanne, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Diana M Cittelly
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Scott R Floyd
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina, USA
| | - Ajay Dhakal
- Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Soma Sengupta
- Department of Neurology & Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Seema Nagpal
- Division of Neuro-oncology, Stanford University, Palo Alto, California, USA
| | | | - Sam Emerson
- Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Reva Basho
- Ellison Medical Institute, Los Angeles, California, USA
| | | | - Nelson S Moss
- Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | | | | | | | - Solmaz Sahebjam
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Sibley Memorial Hospital, Washington, District of Columbia, USA
| | - Hussein A Tawbi
- Andrew M. McDougall Brain Metastasis Clinic and Research Program, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
37
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
38
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
39
|
Elguindy MM, Young JS, Ho WS, Lu RO. Co-evolution of glioma and immune microenvironment. J Immunother Cancer 2024; 12:e009175. [PMID: 39631850 PMCID: PMC11624716 DOI: 10.1136/jitc-2024-009175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Glioma evolution is governed by a multitude of dynamic interactions between tumor cells and heterogenous neighboring, non-cancerous cells. This complex ecosystem, termed the tumor microenvironment (TME), includes diverse immune cell types that have gained increasing attention for their critical and paradoxical roles in tumor control and tumorigenesis. Recent work has revealed that the cellular composition and functional state of immune cells in the TME can evolve extensively depending on the tumor stage and intrinsic features of surrounding glioma cells. Concurrently, adaptations to the glioma cellular phenotype, including activation of various cellular states, occur in the context of these immune cell alterations. In this review, we summarize important features of the immune TME that play key roles during each stage of glioma progression, from initiation to immune escape, invasion and recurrence. Understanding the complex interplay between tumor and immune cells is critical for the development of effective immunotherapies for glioma treatment.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Winson S Ho
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rongze O Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
40
|
Herro R, Grimes HL. The diverse roles of neutrophils from protection to pathogenesis. Nat Immunol 2024; 25:2209-2219. [PMID: 39567761 DOI: 10.1038/s41590-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Neutrophil granulocytes are the most abundant leukocytes in the blood and constitute a critical arm of innate immunity. They are generated in the bone marrow, and under homeostatic conditions enter the bloodstream to patrol tissues and scout for potential pathogens that they quickly destroy through phagocytosis, intracellular degradation, release of granules and formation of extracellular traps. Thus, neutrophils are important effector cells involved in antibacterial defense. However, neutrophils can also be pathogenic. Emerging data suggest they have critical functions related to tissue repair and fibrosis. Moreover, similarly to other innate immune cells, neutrophil cell states are affected by their microenvironment. Notably, this includes tumors that co-opt neutrophils. Neutrophils can undergo transcriptional and epigenetic reprogramming, thus causing or modulating inflammation and injury. It is also possible that distinct neutrophil subsets are generated with designated functions in the bone marrow. Understanding neutrophil plasticity and alternative cell states will help resolve their contradictive roles. This Review summarizes the most recent key findings surrounding protective versus pathogenic functions of neutrophils; elaborating on phenotype-specific subsets of neutrophils and their involvement in homeostasis and disease.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
41
|
Dong W, Sheng J, Cui JZM, Zhao H, Wong STC. Systems immunology insights into brain metastasis. Trends Immunol 2024; 45:903-916. [PMID: 39443266 PMCID: PMC12049182 DOI: 10.1016/j.it.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Brain metastasis poses formidable clinical challenges due to its intricate interactions with the brain's unique immune environment, often resulting in poor prognoses. This review delves into systems immunology's role in uncovering the dynamic interplay between metastatic cancer cells and brain immunity. Leveraging spatial and single-cell technologies, along with advanced computational modeling, systems immunology offers unprecedented insights into mechanisms of immune evasion and tumor proliferation. Recent studies highlight potential immunotherapeutic targets, suggesting strategies to boost antitumor immunity and counteract cancer cell evasion in the brain. Despite substantial progress, challenges persist, particularly in accurately simulating human conditions. This review underscores the need for interdisciplinary collaboration to harness systems immunology's full potential, aiming to dramatically improve outcomes for patients with brain metastasis.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Johnny Z M Cui
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Sarantopoulos A, Ene C, Aquilanti E. Therapeutic approaches to modulate the immune microenvironment in gliomas. NPJ Precis Oncol 2024; 8:241. [PMID: 39443641 PMCID: PMC11500177 DOI: 10.1038/s41698-024-00717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Immunomodulatory therapies, including immune checkpoint inhibitors, have drastically changed outcomes for certain cancer types over the last decade. Gliomas are among the cancers that have seem limited benefit from these agents, with most trials yielding negative results. The unique composition of the glioma immune microenvironment is among the culprits for this lack of efficacy. In recent years, several efforts have been made to improve understanding of the glioma immune microenvironment, aiming to pave the way for novel therapeutic interventions. In this review, we discuss some of the main components of the glioma immune microenvironment, including macrophages, myeloid-derived suppressor cells, neutrophils and microglial cells, as well as lymphocytes. We then provide a comprehensive overview of novel immunomodulatory agents that are currently in clinical development, namely oncolytic viruses, vaccines, cell-based therapies such as CAR-T cells and CAR-NK cells as well as antibodies and peptides.
Collapse
Affiliation(s)
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Elisa Aquilanti
- Center for Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
43
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
44
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
45
|
Ngule C, Shi R, Ren X, Jia H, Oyelami F, Li D, Park Y, Kim J, Hemati H, Zhang Y, Xiong X, Shinkle A, Vanderford NL, Bachert S, Zhou BP, Wang J, Song J, Liu X, Yang JM. NAC1 promotes stemness and regulates myeloid-derived cell status in triple-negative breast cancer. Mol Cancer 2024; 23:188. [PMID: 39243032 PMCID: PMC11378519 DOI: 10.1186/s12943-024-02102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFβ, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.
Collapse
Affiliation(s)
- Chrispus Ngule
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Ruyi Shi
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hongyan Jia
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Felix Oyelami
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Dong Li
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Younhee Park
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jinhwan Kim
- Department of Biochemistry, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Yi Zhang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Andrew Shinkle
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Nathan L Vanderford
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Sara Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Binhua P Zhou
- Department of Biochemistry, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| | - Xia Liu
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
46
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
47
|
Zhang S, Yu B, Sheng C, Yao C, Liu Y, Wang J, Zeng Q, Mao Y, Bei J, Zhu B, Chen S. SHISA3 Reprograms Tumor-Associated Macrophages Toward an Antitumoral Phenotype and Enhances Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403019. [PMID: 39054639 PMCID: PMC11423144 DOI: 10.1002/advs.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/22/2024] [Indexed: 07/27/2024]
Abstract
The main challenge for immune checkpoint blockade (ICB) therapy lies in immunosuppressive tumor microenvironment (TME). Repolarizing M2-like tumor-associated macrophages (TAMs) into inflammatory M1 phenotype is a promising strategy for cancer immunotherapy. Here, this study shows that the tumor suppressive protein SHISA3 regulates the antitumor functions of TAMs. Local delivery of mRNA encoding Shisa3 enables cancer immunotherapy by reprogramming TAMs toward an antitumoral phenotype, thus enhancing the efficacy of programmed cell death 1 (PD-1) antibody. Enforced expression of Shisa3 in TAMs increases their phagocytosis and antigen presentation abilities and promotes CD8+ T cell-mediated antitumor immunity. The expression of SHISA3 is induced by damage/pathogen-associated molecular patterns (DAMPs/PAMPs) in macrophages via nuclear factor-κB (NF-κB) transcription factors. Reciprocally, SHISA3 forms a complex with heat shock protein family A member 8 (HSPA8) to activate NF-κB signaling thus maintaining M1 polarization of macrophages. Knockout Shisa3 largely abolishes the antitumor efficacy of combination immunotherapy with Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and PD-1 antibody. It further found that higher expression of SHISA3 in antitumoral TAMs is associated with better overall survival in lung cancer patients. Taken together, the findings describe the role of SHISA3 in reprogramming TAMs that ameliorate cancer immunotherapy.
Collapse
Affiliation(s)
- Shimeng Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysicsthe Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Chen Yao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yang Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jing Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qi Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysicsthe Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhen518063P. R. China
| | - Shuai Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
48
|
Wu X, Stabile LP, Burns TF. The Emerging Role of Immune Checkpoint Blockade for the Treatment of Lung Cancer Brain Metastases. Clin Lung Cancer 2024; 25:483-501. [PMID: 38991863 DOI: 10.1016/j.cllc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Lung cancer has the highest incidence of brain metastases (BM) among solid organ cancers. Traditionally whole brain radiation therapy has been utilized for non-small-cell lung cancer (NSCLC) BM treatment, although stereotactic radiosurgery has emerged as the superior treatment modality for most patients. Highly penetrant central nervous system (CNS) tyrosine kinase inhibitors have also shown significant CNS activity in patients harboring select oncogenic drivers. There is emerging evidence that patients without oncogene-driven tumors derive benefit from the use of immune checkpoint inhibitors (ICIs). The CNS activity of ICIs have not been well studied given exclusion of patients with active BM from landmark trials, due to concerns of inadequate CNS penetration and activity. However, studies have challenged the idea of an immune-privileged CNS, given the presence of functional lymphatic drainage within the CNS and destruction of the blood brain barrier by BM. An emerging understanding of the interactions between tumor and CNS immune cells in the BM tumor microenvironment also support a role for immunotherapy in BM treatment. In addition, posthoc analyses of major trials have shown improved intracranial response and survival benefit of regimens with ICIs over chemotherapy (CT) alone for patients with BM. Two prospective phase 2 trials evaluating pembrolizumab monotherapy and atezolizumab plus CT in patients with untreated NSCLC BM also demonstrated significant intracranial responses. This review describes the interplay between CNS immune cells and tumor cells, discusses current evidence for ICI CNS activity from retrospective and prospective studies, and speculates on future directions of investigation.
Collapse
Affiliation(s)
- Xiancheng Wu
- Department of Medicine, Division of Internal Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Timothy F Burns
- UPMC Hillman Cancer Center, Pittsburgh, PA; Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
49
|
Dahal A, Hong Y, Mathew JS, Geber A, Eckl S, Renner S, Sailer CJ, Ryan AT, Mir S, Lim K, Linehan DC, Gerber SA, Kim M. Platelet-activating factor (PAF) promotes immunosuppressive neutrophil differentiation within tumors. Proc Natl Acad Sci U S A 2024; 121:e2406748121. [PMID: 39178229 PMCID: PMC11363292 DOI: 10.1073/pnas.2406748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024] Open
Abstract
Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive. Both in vivo and in vitro, newly recruited neutrophils into the tumor sites remained activated and highly motile for several days and developed immunosuppressive phenotypes, as indicated by increased arginase 1 (Arg1) and dcTrail-R1 expression and suppressed anticancer CD8 T cell cytotoxicity. The strong suppressive function was successfully recapitulated by incubating naive neutrophils with cancer cell culture supernatant in vitro. Cancer metabolite secretome analyses of the culture supernatant revealed that both murine and human cancers released lipid mediators to induce the differentiation of immunosuppressive neutrophils. Liquid chromatography-mass spectrometry (LC-MS) lipidomic analysis identified platelet-activation factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) as a common tumor-derived lipid mediator that induces neutrophil differentiation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2), the PAF biosynthetic enzyme, is up-regulated in human pancreatic ductal adenocarcinoma (PDAC) and shows an unfavorable correlation with patient survival across multiple cancer types. Our study identifies PAF as a lipid-driven mechanism of MDSC differentiation in the TME, providing a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ankit Dahal
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Yeonsun Hong
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Jocelyn S. Mathew
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Adam Geber
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Sarah Eckl
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Stephanie Renner
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Cooper J. Sailer
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Allison T. Ryan
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Sana Mir
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Scott A. Gerber
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
50
|
Li T, Sun S, Li Y, Zhang Y, Wei L. Immunotherapy revolutionizing brain metastatic cancer treatment: personalized strategies for transformative outcomes. Front Immunol 2024; 15:1418580. [PMID: 39136027 PMCID: PMC11317269 DOI: 10.3389/fimmu.2024.1418580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Brain metastatic cancer poses a significant clinical challenge, with limited treatment options and poor prognosis for patients. In recent years, immunotherapy has emerged as a promising strategy for addressing brain metastases, offering distinct advantages over conventional treatments. This review explores the evolving landscape of tumor immunotherapy in the context of brain metastatic cancer, focusing on the intricate interplay between the tumor microenvironment (TME) and immunotherapeutic approaches. By elucidating the complex interactions within the TME, including the role of immune cells, cytokines, and extracellular matrix components, this review highlights the potential of immunotherapy to reshape the treatment paradigm for brain metastases. Leveraging immune checkpoint inhibitors, cellular immunotherapies, and personalized treatment strategies, immunotherapy holds promise in overcoming the challenges posed by the blood-brain barrier and immunosuppressive microenvironment of brain metastases. Through a comprehensive analysis of current research findings and future directions, this review underscores the transformative impact of immunotherapy on the management of brain metastatic cancer, offering new insights and opportunities for personalized and precise therapeutic interventions.
Collapse
Affiliation(s)
- Ting Li
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shichen Sun
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yubing Li
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yanyu Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Linlin Wei
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|