1
|
Sun L, Zhao X, Tan X, Song L, Ma Z, Wang J, Lan P, Chen S, Chen G. High mobility group box-1 protein-mediated class II major histocompatibility complex transactivator superenhancers are critical for dendritic cell-trained immunity in acute-to-chronic progression of allograft rejection. Am J Transplant 2025; 25:954-968. [PMID: 39884654 DOI: 10.1016/j.ajt.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Chronic allograft rejection is mainly mediated by indirect recognition. Dendritic cells (DCs), as the major antigen-presenting cells in indirect recognition, exhibit an enhanced antigen-presenting ability in chronic rejection, but the specific mechanism is still unclear. Here, we found that pretreatment with high mobility group box-1 protein (HMGB1) in vivo can induce trained immunity in DCs. These trained DCs demonstrated an enhanced ability to present alloantigen, accelerating allograft rejection in a CTLA4-Ig-induced chronic rejection model by upregulating the expression of major histocompatibility complex (MHC)-II and class II major histocompatibility complex transactivator (CIITA) molecules. Mechanistically, we found that HMGB1 promoted the formation of superenhancers (SEs) of CIITA, epigenetically reprogramming DCs and promoting trained immunity. The SE inhibitor JQ1 reduced the expression of CIITA and MHC-II in DCs, thereby delaying the occurrence of chronic rejection. Interestingly, we identified HMGB1 as a specific inducer of SE formation in a newly named SEa region of CIITA. Targeted knockout of the CIITA's SEa region inhibited HMGB1-induced trained immunity in DCs. Taken together, our data confirm that HMGB1 can induce the formation of the SEs of CIITA, promote trained immunity in DCs, and accelerate allograft rejection, thus offering a new potential target for the treatment of chronic rejection.
Collapse
Affiliation(s)
- Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Liu Song
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jingzeng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
2
|
Blotas C, Le Nabec A, Collobert M, Bulcaen M, Carlon MS, Férec C, Moisan S. Cis-Regulation of the CFTR Gene in Pancreatic Cells. Int J Mol Sci 2025; 26:3788. [PMID: 40332394 PMCID: PMC12027686 DOI: 10.3390/ijms26083788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Genome organization is essential for precise spatial and temporal gene expression and relies on interactions between promoters and distal cis-regulatory elements (CREs), which constitute ~8% of the human genome. For the cystic fibrosis transmembrane conductance regulator (CFTR) gene, tissue-specific expression, especially in the pancreas, remains poorly understood. Unraveling its regulation could clarify the clinical heterogeneity observed in cystic fibrosis and CFTR-related disorders. To understand the role of 3D chromatin architecture in establishing tissue-specific expression of the CFTR gene, we mapped chromatin interactions and epigenomic regulation in Capan-1 pancreatic cells. Candidate CREs are validated by luciferase reporter assay and CRISPR knock-out. We identified active CREs not only around the CFTR gene but also outside the topologically associating domain (TAD). We demonstrate the involvement of multiple CREs upstream and downstream of the CFTR gene and reveal a cooperative effect of the -44 kb, -35 kb, +15.6 kb, and +37.7 kb regions, which share common predicted transcription factor (TF) motifs. We also extend our analysis to compare 3D chromatin conformation in intestinal and pancreatic cells, providing valuable insights into the tissue specificity of CREs in regulating CFTR gene expression.
Collapse
Affiliation(s)
- Clara Blotas
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F 29200 Brest, France; (M.C.); (C.F.)
| | - Anaïs Le Nabec
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Mégane Collobert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F 29200 Brest, France; (M.C.); (C.F.)
| | - Mattijs Bulcaen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Marianne S. Carlon
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F 29200 Brest, France; (M.C.); (C.F.)
| | - Stéphanie Moisan
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F 29200 Brest, France; (M.C.); (C.F.)
- Centre Hospitalier Universitaire Brest, F 29200 Brest, France
| |
Collapse
|
3
|
Zhang J, Song Y, Wang X, Wang X, Li S, Song X, Zhao C, Qi J, Tian Y, Zhao B, Zheng X, Xing Y. The transcription factor PITX1 cooperates with super-enhancers to regulate the expression of DUSP4 and inhibit pyroptosis in pulmonary artery smooth muscle cells. Respir Res 2025; 26:149. [PMID: 40241046 PMCID: PMC12004679 DOI: 10.1186/s12931-025-03222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a highly fatal pathophysiological syndrome. The group 1 pulmonary arterial hypertension (PAH) is characterized by acute pulmonary vasoconstriction and chronic vascular remodeling caused by hyperplasia and hypertrophy of pulmonary artery smooth muscle cells (PASMCs) and chronic inflammation. Pyroptosis is an inflammatory mode of cell death that is regulated by super-enhancers (SEs) and occurs in the setting of tumors and cardiovascular diseases. However, whether SEs are involved in the pathological process of pyroptosis in PAH and the specific mechanism involved remain unclear. METHODS Here, we identified the SE target gene DUSP4 via ChIP-seq with an anti-H3K27ac antibody, and bioinformatics predictions revealed that the transcription factor PITX1 can bind to the promoter and SE sequences of DUSP4. The AAV5 vector was used to deliver shRNAs targeting PITX1 and DUSP4 to PASMCs. RESULTS PITX1 overexpression reversed the increase in right ventricular systolic pressure and pulmonary vascular remodeling, restored the PAAT/PAVTI ratio in hypoxic pulmonary hypertension (HPH, Group 3 PH) and SuHx PAH (Group 1 PAH) mice, and suppressed pyroptosis in pulmonary vascular cells. However, knockdown of DUSP4 counteracted the effects of PITX1 overexpression. Similar results were obtained in cultured PASMCs. In addition, treatment with the SE inhibitors JQ1 and iBET decreased the transcription of DUSP4 and increased the expression of hypoxia-induced pyroptosis proteins in PASMCs. CONCLUSION We confirmed that PITX1 can promote DUSP4 expression by binding to the DUSP4 promoter and SE to reduce pyroptosis in hypoxic PASMCs, providing new insights into the role of SEs and pyroptosis in pulmonary vascular remodeling and a theoretical basis for the treatment of PAH and related diseases.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Mice
- Pyroptosis/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Dual-Specificity Phosphatases/genetics
- Dual-Specificity Phosphatases/biosynthesis
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Mitogen-Activated Protein Kinase Phosphatases/biosynthesis
- Cells, Cultured
- Male
- Mice, Inbred C57BL
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Paired Box Transcription Factors
Collapse
Affiliation(s)
- Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xinyue Song
- College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University, Daqing, 150081, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yunyun Tian
- Department of Pathology, Gaozhou People's Hospital, Gaozhou, 525299, Guangdong, People's Republic of China
| | - Baoshan Zhao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Zhao S, Yang Q, Yu Z, Chu C, Dai S, Li H, Diao M, Feng L, Ke J, Xue Y, Zhou Q, Liu Y, Ma H, Lin CP, Yao YG, Zhong G. Deciphering enhancers of hearing loss genes for efficient and targeted gene therapy of hereditary deafness. Neuron 2025:S0896-6273(25)00223-5. [PMID: 40262614 DOI: 10.1016/j.neuron.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Hereditary hearing loss accounts for about 60% of congenital deafness. Although adeno-associated virus (AAV)-mediated gene therapy shows substantial potential for treating genetic hearing impairments, there remain significant concerns regarding the specificity and safety of AAV vectors. The sophisticated nature of the cochlea further complicates the challenge of precisely targeting gene delivery. Here, we introduced an AAV-reporter-based in vivo transcriptional enhancer reconstruction (ARBITER) workflow, enabling efficient and reliable dissection of enhancers. With ARBITER, we successfully demonstrated that the conserved non-coding elements (CNEs) within the gene locus collaboratively regulate the expression of Slc26a5, which was further validated using knockout mouse models. We also assessed the potential of identified enhancers to treat hereditary hearing loss by conducting gene therapy in Slc26a5 mutant mice. Based on the original Slc26a5 enhancer with limited efficiency, we engineered a highly efficient and outer hair cell (OHC)-specific enhancer, B8, which successfully restored hearing of Slc26a5 knockout mice.
Collapse
Affiliation(s)
- Simeng Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Qiuxiang Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shengqi Dai
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongli Li
- State Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Yunnan Engineering Center on Brain Disease Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, Yunnan, China
| | - Min Diao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lingyue Feng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Xue
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qifang Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Yunnan Engineering Center on Brain Disease Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Gene Editing and Cell Therapy for Rare Diseases, Fudan University, Shanghai 20031, China.
| |
Collapse
|
5
|
Li F, Wang S, Chen L, Jiang N, Chen X, Li J. Systemic genome-epigenome analysis captures a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. Mol Syst Biol 2025:10.1038/s44320-025-00098-1. [PMID: 40234694 DOI: 10.1038/s44320-025-00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Gastrointestinal adenocarcinoma is a major cancer type for the digestive system, ranking as the top cause of cancer-related deaths worldwide. While there has been extensive research on mutations in protein-coding regions, the knowledge of the landscape of its non-coding regulatory elements is still insufficient. Combining the analysis of active enhancer profiles and genomic structural variation, we discovered and validated a lineage-specific super-enhancer for MYB in gastrointestinal adenocarcinoma. This super-enhancer is composed of a predominant enhancer e4 and several additional enhancers, whose transcriptional activity is regulated by the direct binding of HNF4A and MYB itself. Suppression of the super-enhancer downregulated the expression of MYB, inhibited downstream Notch signaling and prevented the development of gastrointestinal adenocarcinoma both in vitro and in vivo. Our study uncovers a mechanism driven by non-coding variations that regulate MYB expression in a lineage-specific manner, offering new insights into the carcinogenic mechanism and potential therapeutic strategies for gastrointestinal adenocarcinoma.
Collapse
Affiliation(s)
- Fuyuan Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Shangzi Wang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lian Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jin Li
- State Key Laboratory of Genetics and Development of Complex Phenotype, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
6
|
Georgiades E, Harrold C, Roberts N, Kassouf M, Riva SG, Sanders E, Downes D, Francis HS, Blayney J, Oudelaar AM, Milne TA, Higgs D, Hughes JR. Active regulatory elements recruit cohesin to establish cell specific chromatin domains. Sci Rep 2025; 15:11780. [PMID: 40189615 PMCID: PMC11973168 DOI: 10.1038/s41598-025-96248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
As the 3D structure of the genome is analysed at ever increasing resolution it is clear that there is considerable variation in the 3D chromatin architecture across different cell types. It has been proposed that this may, in part, be due to increased recruitment of cohesin to activated cis-elements (enhancers and promoters) leading to cell-type specific loop extrusion underlying the formation of new sub-TADs. Here we show that cohesin correlates well with the presence of active enhancers and that this varies in an allele-specific manner with the presence or absence of polymorphic enhancers which vary from one individual to another. Using the alpha globin cluster as a model, we show that when all enhancers are removed, peaks of cohesin disappear from these regions and the erythroid specific sub-TAD is no longer formed. Re-insertion of the major alpha globin enhancer (R2) is associated with re-establishment of recruitment and increased interactions. In complementary experiments insertion of the R2 enhancer element into a "neutral" region of the genome recruits cohesin, induces transcription and creates a new large (75 kb) erythroid-specific domain. Together these findings support the proposal that active enhancers recruit cohesin, stimulate loop extrusion and promote the formation of cell specific sub-TADs.
Collapse
Affiliation(s)
- Emily Georgiades
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simone G Riva
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Sanders
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena S Francis
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Blayney
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Zunjarrao S, Gambetta MC. Principles of long-range gene regulation. Curr Opin Genet Dev 2025; 91:102323. [PMID: 39947017 DOI: 10.1016/j.gde.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Transcription from gene promoters occurs in specific spatiotemporal patterns in multicellular organisms, controlled by genomic regulatory elements. The communication between a regulatory element and a promoter requires a certain degree of physical proximity between them; hence, most gene regulation occurs locally in the genome. However, recent discoveries have revealed long-range gene regulation strategies that enhance interactions between regulatory elements and promoters by overcoming the distances between them in the linear genome. These new findings challenge the traditional view of how gene expression patterns are controlled. This review examines long-range gene regulation strategies recently reported in Drosophila and mammals, offering insights into their mechanisms and evolution.
Collapse
Affiliation(s)
- Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
8
|
Jiang F, Wu J, Yang M, Chen X, Li R, Yu Q, Zuo L, Zhou J, Zhang Y, Zhen L, Tang X, Zhang R, Chen S, Wang C, Liao C, Li D. An unusual transfusion-dependent hemoglobin H disease caused by a novel complex inverted duplication involving the α-globin regulatory elements and α-thalassemia--SEA deletion. Ann Hematol 2025; 104:2529-2535. [PMID: 39934429 PMCID: PMC12052946 DOI: 10.1007/s00277-025-06223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Four multi-species conserved sequences (MCSs) are important enhancers which affect α-globin expression. Deletions of MCS can cause α-thalassemia. So far, duplication of MCS has never been reported to account for thalassemia. In this study, an unusual transfusion-dependent case of hemoglobin H disease was identified by whole-genome sequencing, optical genome mapping and longer PCR with special primers, which was caused by a familial 96,620-bp inverted duplication (from MCS-R1 to MCS-R4), inserted between chr16:199348 and 199349 (GRCh37/hg19) within MCSs. The duplication segment included an inverted repeat sequence from chr16:102712 to176193 and one direct repeat sequence from chr16:176208 to 199348. The associated α-thalassemia trait was confirmed to result from disrupted topological chromatin domains using ATAC-seq and the dual‑luciferase reporter assay system. This case presents a new mechanism of α-thalassemia, and may aid our understanding of the effects of enhancers on gene expression and the differential contribution of the four enhancer elements in the human a-globin locus.
Collapse
Affiliation(s)
- Fan Jiang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Jieying Wu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Manqiu Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Xiaojun Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Liandong Zuo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Jianying Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Yongling Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Xuewei Tang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Ren Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Chenyu Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China.
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Jinsui Road 9, Zhujiang New Town, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
9
|
Klonizakis A, Alcoverro-Bertran M, Massó P, Thomas J, de Andrés-Aguayo L, Wei X, Varamogianni-Mamatsi V, Nikolaou C, Graf T. Synergistic and antagonistic activities of IRF8 and FOS enhancer pairs during an immune-cell fate switch. EMBO J 2025; 44:2025-2055. [PMID: 39972074 PMCID: PMC11961672 DOI: 10.1038/s44318-025-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Cell fate instructive genes tend to be regulated by large clusters of enhancers. Whether and how individual enhancers within such clusters cooperate in regulating gene expression is poorly understood. We have previously developed a computational method, SEGCOND, which identifies hubs that we termed Putative Transcriptional Condensates (PTCs), consisting of enhancer clusters and associated target genes. Here, we use SEGCOND to identify PTCs in a CEBPA-induced B-cell-to-macrophage transdifferentiation system. We find that PTCs are enriched for highly expressed, lineage-restricted genes and associate with BRD4, a component of transcriptional condensates. Further, we performed single and combinatorial deletions of enhancers within two PTCs active during induced transdifferentiation, harboring IRF8 and FOS. Two enhancers within the IRF8 PTC were found to provide a backup mechanism when combined, safeguarding IRF8 expression and efficient transdifferentiation. Unexpectedly, two individual enhancers within the FOS PTC antagonize each other on day 1 of transdifferentiation, delaying the conversion of B-cells into macrophages and reducing FOS expression, while on day 7, they cooperate to increase FOS levels induced cells. Our results reveal complex, differentiation-stage-specific interactions between individual enhancers within enhancer clusters.
Collapse
Affiliation(s)
- Antonios Klonizakis
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Marc Alcoverro-Bertran
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Spain
| | - Pere Massó
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Joanna Thomas
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Faculty of Life Sciences and Medicine, King's College, WC2R 2LS, London, UK
| | - Luisa de Andrés-Aguayo
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Xiao Wei
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | | | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece.
| | - Thomas Graf
- Genome Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
10
|
Preston AE, Frost JN, Teh MR, Badat M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy NB, Babbs C, Ghesquiere B, Davies J, Howden AJ, Sinclair LV, Hughes JR, Kassouf M, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage of α-globin and Nprl3 couples metabolism with erythropoiesis. Nat Commun 2025; 16:2749. [PMID: 40128524 PMCID: PMC11933693 DOI: 10.1038/s41467-025-57683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Red blood cell development from erythroid progenitors requires profound reshaping of metabolism and gene expression. How these transcriptional and metabolic alterations are coupled is unclear. Nprl3 (an inhibitor of mTORC1) has remained in synteny with the α-globin genes for >500 million years, and harbours most of the a-globin enhancers. However, whether Nprl3 serves an erythroid role is unknown. We found that while haematopoietic progenitors require basal Nprl3 expression, erythroid Nprl3 expression is further boosted by the α-globin enhancers. This lineage-specific upregulation is required for sufficient erythropoiesis. Loss of Nprl3 affects erythroblast metabolism via elevating mTORC1 signalling, suppressing autophagy and disrupting glycolysis. Broadly consistent with these murine findings, human NPRL3-knockout erythroid progenitors produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Therefore, we propose that the anciently conserved linkage of NprI3, α-globin and their associated enhancers has coupled metabolic and developmental control of erythropoiesis.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Joe N Frost
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London and Barts Health, Whitechapel, London, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sarah K Wideman
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Natasha White
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew Jm Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rob Beagrie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Deleuze V, Stephen T, Salma M, Orfeo C, Jorna R, Maas A, Barroca V, Arcangeli ML, Lecellier CH, Andrieu-Soler C, Grosveld F, Soler E. In vivo deletion of a GWAS-identified Myb distal enhancer acts on Myb expression, globin switching, and clinical erythroid parameters in β-thalassemia. Sci Rep 2025; 15:8996. [PMID: 40089598 PMCID: PMC11910609 DOI: 10.1038/s41598-025-94222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous genetic variants linked to human diseases, mostly located in non-coding regions of the genome, particularly in putative enhancers. However, functional assessment of the non-coding GWAS variants has progressed at slow pace, since the functions of the vast majority of genomic enhancers have not been defined, impeding interpretation of disease-susceptibility variants. The HBS1L-MYB intergenic region harbors multiple SNPs associated with clinical erythroid parameters, including fetal hemoglobin levels, a feature impacting disease severity of beta-hemoglobinopathies such as sickle cell anemia and beta-thalassemia. HBS1L-MYB variants cluster in the vicinity of several MYB enhancers, altering MYB expression and globin switching. We and others have highlighted the conserved human MYB - 84kb enhancer, known as the - 81kb enhancer in the mouse, as likely candidate linked to these traits. We report here the generation of a Myb - 81kb enhancer knock-out mouse model, and shed light for the first time on its impact on steady state erythropoiesis and in beta-thalassemia in vivo.
Collapse
Affiliation(s)
| | | | - Mohammad Salma
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cédric Orfeo
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ruud Jorna
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Luminex Corporation, s-Hertogenbosch, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France.
| |
Collapse
|
13
|
Tjalsma SJD, Rinzema NJ, Verstegen MJAM, Robers MJ, Nieto-Aliseda A, Gremmen RA, Allahyar A, Muraro MJ, Krijger PHL, de Laat W. Long-range enhancer-controlled genes are hypersensitive to regulatory factor perturbations. CELL GENOMICS 2025; 5:100778. [PMID: 40010352 PMCID: PMC11960515 DOI: 10.1016/j.xgen.2025.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Cell-type-specific gene activation is regulated by enhancers, sometimes located at large genomic distances from target gene promoters. Whether distal enhancers require specific factors to orchestrate gene regulation remains unclear. Here, we used enhancer distance-controlled reporter screens to find candidate factors. We depleted them and employed activity-by-contact predictions to genome-wide classify genes based on enhancer distance. Predicted distal enhancers typically control tissue-restricted genes and often are strong enhancers. We find cohesin, but also mediator, most specifically required for long-range activation, with cohesin repressing short-range gene activation and prioritizing distal over proximal HBB genes competing for shared enhancers. Long-range controlled genes are also most sensitive to perturbations of other regulatory proteins and to BET inhibitor JQ1, this being more a consequence of their distinct enhancer features than distance. Our work predicts that lengthening of intervening sequences can help limit the expression of target genes to specialized cells with optimal trans-factor environments.
Collapse
Affiliation(s)
- Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels J Rinzema
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michelle J Robers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrea Nieto-Aliseda
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Gremmen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Amin Allahyar
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Wu C, Wang Q, Xu Z, Deng C, Tang C. Bioinformatics analysis of electroacupuncture treatment for ischemic stroke: exploring transcriptional regulatory mechanisms mediated by super-enhancers. Front Neurosci 2025; 19:1522466. [PMID: 40109665 PMCID: PMC11920576 DOI: 10.3389/fnins.2025.1522466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Background Ischemic stroke is a leading cause of disability and mortality, imposing substantial physical, emotional, and economic burdens on patients and society. This study aimed to explore the regulatory effects of super-enhancers (SEs) on gene expression in the context of ischemic stroke and their potential transcriptional regulatory mechanisms. Methods Super-enhancers were identified via H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) and ROSE software. RNA-sequencing (RNA-seq) was employed to screen for differentially expressed genes. A comparative analysis of ChIP-seq and RNA-seq data initially identified SE target genes, followed by further screening of key core differentially expressed SE target genes via the random forest method. The identified core SE target genes were initially validated through immunofluorescence and immunoblotting techniques. Additionally, potential core transcriptional regulatory circuits were preliminarily screened via the Coltron algorithm. Results We identified SE-associated genes in the ischemic stroke model and electroacupuncture-treated groups, revealing 41 genes uniquely regulated by SEs in the electroacupuncture group compared with 367 in the model group. Enrichment analyses revealed that pathways involved in axon guidance, regulation of lipolysis in adipocytes and sphingolipid signaling pathway were significantly enriched in the SE target genes, suggesting that these pathways may be involved in the therapeutic effects of electroacupuncture. Notably, HDAC7 emerged as a key SE-driven gene; its expression was significantly reduced following electroacupuncture treatment, indicating its potential as a therapeutic target. Protein expression analyses confirmed elevated levels of HDAC7 in the model group, which were reduced by electroacupuncture intervention (p < 0.05). Furthermore, core transcriptional regulatory circuitries involving SOX8, FOXK1, and KLF13 were identified, highlighting their roles in the modulation of SE-mediated gene regulation by acupuncture in the ischemic stroke context. Conclusion Overall, our findings provide novel insights into the molecular mechanisms by which acupuncture may treat ischemic stroke, identifying key SE target genes and transcriptional circuits as promising targets for future therapeutic strategies. Further research is warranted to validate these findings in clinical settings and explore the translational potential of acupuncture in ischemic stroke treatment.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhirui Xu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyu Deng
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhi Tang
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Huang Y, Verstegen MJAM, Tjalsma SJD, Krijger PHL, Gupta K, Park M, Boettiger A, de Laat W. Two unrelated distal genes activated by a shared enhancer benefit from localizing inside the same small topological domain. Genes Dev 2025; 39:348-363. [PMID: 39870429 PMCID: PMC11874980 DOI: 10.1101/gad.352235.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
Enhancers are tissue-specific regulatory DNA elements that can activate transcription of genes over distance. Their target genes most often are located in the same contact domain-chromosomal entities formed by cohesin DNA loop extrusion and typically flanked by CTCF-bound boundaries. Enhancers shared by multiple unrelated genes are underexplored but may be more common than anticipated. Here, we analyzed the interplay between an enhancer and two distal functionally unrelated genes residing at opposite domain boundaries. The enhancer strongly activated their expression and supported their frequent interactions. Cohesin structured the domain and supported their transcription, but the genes did not rely on each other's transcription or show gene competition. Deleting either domain boundary not only extended the contact domain but led to reduced contacts within the original domain and reduction in the expression of both genes. Conversely, by isolating either gene with the enhancer in shorter domains, through insertion of new CTCF boundaries, intradomain contact frequencies increased, and the gene isolated with the enhancer was upregulated. Collectively, this shows that an enhancer can independently activate unrelated distal genes and that long-range gene regulation benefits from operating in small contact domains.
Collapse
Affiliation(s)
- Yike Huang
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Kavvya Gupta
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Minhee Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands;
| |
Collapse
|
16
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2025; 43:369-383. [PMID: 38760567 PMCID: PMC11919711 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Ribeiro-Dos-Santos AM, Maurano MT. Iterative improvement of deep learning models using synthetic regulatory genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636130. [PMID: 39974895 PMCID: PMC11838587 DOI: 10.1101/2025.02.04.636130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Generative deep learning models can accurately reconstruct genome-wide epigenetic tracks from the reference genome sequence alone. But it is unclear what predictive power they have on sequence diverging from the reference, such as disease- and trait-associated variants or engineered sequences. Recent work has applied synthetic regulatory genomics to characterized dozens of deletions, inversions, and rearrangements of DNase I hypersensitive sites (DHSs). Here, we use the state-of-the-art model Enformer to predict DNA accessibility across these engineered sequences when delivered at their endogenous loci. At high level, we observe a good correlation between accessibility predicted by Enformer and experimentally measured values. But model performance was best for sequences that more resembled the reference, such as single deletions or combinations of multiple DHSs. Predictive power was poorer for rearrangements affecting DHS order or orientation. We use these data to fine-tune Enformer, yielding significant reduction in prediction error. We show that this fine-tuning retains strong predictive performance for other tracks. Our results show that current deep learning models perform poorly when presented with novel sequence diverging in certain critical features from their training set. Thus an iterative approach incorporating profiling of synthetic constructs can improve model generalizability, and ultimately enable functional classification of regulatory variants identified by population studies.
Collapse
Affiliation(s)
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Corresponding author:
| |
Collapse
|
18
|
Turner JL, Hinojosa-Gonzalez L, Sasaki T, Uchino S, Vouzas A, Soto MS, Chakraborty A, Alexander KE, Fitch CA, Brown AN, Ay F, Gilbert DM. Master transcription factor binding sites constitute the core of early replication control elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.22.563497. [PMID: 39990485 PMCID: PMC11844392 DOI: 10.1101/2023.10.22.563497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Eukaryotic genomes replicate in a defined temporal order called the replication timing (RT) program. RT is developmentally regulated with potential to drive cell fate transitions, but mechanisms controlling RT remain elusive. We previously identified "Early Replication Control Elements" (ERCEs) necessary for early RT, domain-wide transcription, 3D chromatin architecture and compartmentalization in mouse embryonic stem cells (mESCs) but, deletions identifying ERCEs were large and encompassed many putative regulatory elements. Here, we show that ERCEs are compound elements whose RT activity can largely be accounted for by multiple sites of diverse master transcription factor binding (subERCEs), distinguished from other such sites by their long-range interactions. While deletion of subERCEs had large effects on both transcription and RT, deleting transcription start sites eliminated nearly all transcription with moderate effects on RT. Our results suggest a model in which subERCEs respond to diverse master transcription factors by functioning both as transcription enhancers and as elements that organize chromatin domains structurally and support early RT, potentially providing a feed-forward loop to drive robust epigenomic change during cell fate transitions.
Collapse
|
19
|
Zeng J, Nguyen MA, Liu P, da Silva LF, Levesque S, Lin LY, Justus DG, Petri K, Clement K, Porter SN, Verma A, Neri NR, Rosanwo T, Ciuculescu MF, Abriss D, Mintzer E, Maitland SA, Demirci S, Cha HJ, Orkin SH, Tisdale JF, Williams DA, Zhu LJ, Pruett-Miller SM, Pinello L, Joung JK, Pattanayak V, Manis JP, Armant M, Pellin D, Brendel C, Wolfe SA, Bauer DE. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Cell Stem Cell 2025; 32:191-208.e11. [PMID: 39672163 PMCID: PMC11805672 DOI: 10.1016/j.stem.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/05/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. Unintended on-target outcomes of double-strand break (DSB) repair in hematopoietic stem and progenitor cells (HSPCs), such as long deletions and centromere-distal chromosome fragment loss, are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing quiescent HSPCs bypasses long deletion and micronuclei formation and preserves efficient on-target editing and engraftment function.
Collapse
Affiliation(s)
- Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - My Anh Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lucas Ferreira da Silva
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sébastien Levesque
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Linda Y Lin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David G Justus
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Program in Transfusion Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl Petri
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Archana Verma
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nola R Neri
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tolulope Rosanwo
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Daniela Abriss
- TransLab, Boston Children's Hospital, Boston, MA 02115, USA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hye Ji Cha
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, Department of Molecular Medicine, Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Pattanayak
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - John P Manis
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Armant
- TransLab, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Bower G, Kvon EZ. Genetic factors mediating long-range enhancer-promoter communication in mammalian development. Curr Opin Genet Dev 2025; 90:102282. [PMID: 39579740 DOI: 10.1016/j.gde.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Enhancers are remotely located noncoding DNA sequences that regulate gene expression in response to developmental, homeostatic, and environmental cues. Canonical short-range enhancers located <50 kb from their cognate promoters function by binding transcription factors, coactivators, and chromatin modifiers. In this review, we discuss recent evidence that medium-range (50-400 kb) and long-range (>400 kb) enhancers rely on additional mechanisms, including cohesin, CCCTC-binding factor, and high-affinity protein-protein interactions. These mechanisms are crucial for establishing the physical proximity and interaction between enhancers and their target promoters over extended genomic distances and ensuring robust gene activation during mammalian development. Future studies will be critical to unravel their prevalence and evolutionary significance across various genomic loci, cell types, and species.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA. https://twitter.com/@gracecbower
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA.
| |
Collapse
|
22
|
Yu J, Chen M, Sang Q, Li F, Xu Z, Yu B, He C, Su L, Dai W, Yan C, Zhu Z, Xia J, Li J, Feng H, Chen Y, Li Y, Liu B. Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409050. [PMID: 39731339 PMCID: PMC11831572 DOI: 10.1002/advs.202409050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq). SiRNA transcription factors (TFs) screen determines master TF Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1) activated by SE. High NR3C1 expression driven by SE correlated with 5-FU resistance in patient-derived organoids (PDOs). Phase separation formed by NR3C1 is observed using fluorescence recovery after photobleaching (FRAP). NR3C1 protein and Mediator promoted SE-related gene transcription via phase separation. SEs and NR3C1 co-binding patterns are explored using Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing. 5-FU-related genes driven by NR3C1 are identified using epigenetic reader inhibitor JQ1 and NR3C1 specific inhibitor Cort108297. NR3C1 knockdown increases 5-FU sensitivity and alters the SE landscape through enhancer reprogramming, reducing downstream 5-FU-related target genes. JQ1 and Cort108297 both improve 5-FU efficacy in PDOs and patient-derived xenografts (PDXs) by destroying SEs or inhibiting NR3C1. In conclusion, SE-driven NR3C1 promotes 5-FU resistance in GC. SE destruction and NR3C1 inhibition lead to enhancer reconstruction and reduce 5-FU-related gene transcription, providing alternative therapeutic strategies for improving 5-FU sensitivity.
Collapse
Affiliation(s)
- Junxian Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Department of Gastric SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Mengdi Chen
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qingqing Sang
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Fangyuan Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhuoqing Xu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Beiqin Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Changyu He
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Liping Su
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wentao Dai
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200080China
| | - Chao Yan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zheng‐gang Zhu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiazeng Xia
- Department of General SurgeryJiangnan University Medical CenterWuxi200240PR China
| | - Jianfang Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Haoran Feng
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yunqin Chen
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200080China
| | - Yuan‐Yuan Li
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200080China
| | - Bingya Liu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
23
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
24
|
Kittle RH, Levo M. Exploring the interplay between enhancer-promoter interactions and transcription. Curr Opin Genet Dev 2025; 90:102303. [PMID: 39808848 DOI: 10.1016/j.gde.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved. In this brief review, we discuss recent studies exploring this relationship across scales: from developmental stages to the minutes surrounding transcriptional activation and from the tissue level to single-allele subcellular dynamics. We discuss how seemingly contradictory observations might be reconciled and contribute to a refined causal relationship between E-P interactions and transcription, with mutual influences.
Collapse
Affiliation(s)
- Ryan H Kittle
- Department of Genetics and Development, Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michal Levo
- Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
25
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Kassouf MT, Francis HS, Gosden M, Suciu MC, Downes DJ, Harrold C, Larke M, Oudelaar M, Cornell L, Blayney J, Telenius J, Xella B, Shen Y, Sousos N, Sharpe JA, Sloane-Stanley J, Smith AJH, Babbs C, Hughes JR, Higgs DR. The α-globin super-enhancer acts in an orientation-dependent manner. Nat Commun 2025; 16:1033. [PMID: 39863595 PMCID: PMC11762767 DOI: 10.1038/s41467-025-56380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Individual enhancers are defined as short genomic regulatory elements, bound by transcription factors, and able to activate cell-specific gene expression at a distance, in an orientation-independent manner. Within mammalian genomes, enhancer-like elements may be found individually or within clusters referred to as locus control regions or super-enhancers (SEs). While these behave similarly to individual enhancers with respect to cell specificity, distribution and distance, their orientation-dependence has not been formally tested. Here, using the α-globin locus as a model, we show that while an individual enhancer works in an orientation-independent manner, the direction of activity of a SE changes with its orientation. When the SE is inverted within its normal chromosomal context, expression of its normal targets, the α-globin genes, is severely reduced and the normally silent genes lying upstream of the α-globin locus are upregulated. These findings add to our understanding of enhancer-promoter specificity that precisely activate transcription.
Collapse
Affiliation(s)
- Mira T Kassouf
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
| | - Helena S Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Matthew Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Maria C Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Martin Larke
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, 37077, Gottingen, Germany
| | - Lucy Cornell
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Joseph Blayney
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Yuki Shen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Nikolaos Sousos
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jacqueline Sloane-Stanley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Andrew J H Smith
- Institute for Regeneration and Repair, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Christian Babbs
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
| | - Douglas R Higgs
- Gene Regulation Laboratory, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, OX3 7BN, Oxford, UK.
| |
Collapse
|
27
|
Jiang N, Wen Z, Tao H, Liao H. Improved ChIP Sequencing for H3K27ac Profiling and Super-Enhancer Analysis Assisted by Fluorescence-Activated Sorting of Formalin-Fixed Paraffin-Embedded Tissues. Biol Proced Online 2025; 27:1. [PMID: 39844037 PMCID: PMC11753037 DOI: 10.1186/s12575-025-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized. Essential steps included single cell preparation, heat treatment enhancing antigen retrieval and labeling, cell sorting, chromatin shearing, ChIP and NGS. Through assistance of FACS, we successfully isolated tumor cells from FFPE lymph node samples of nTFHL-AI and profiled super-enhancers (SEs) mapping by enrichment of H3K27ac signals. The data indicated that the SEs mapping of the sorted cells was different from that of the entire unsorted tissue sample. The H3K27ac signals with cell lineage specificity from background cell components were successfully removed, and the remaining SEs mapping was more similar to T follicular helper cell in an unsupervised clustering analysis, rather than the primary tissue. In addition, we also evaluated the protocol using cultured pure cell lines, and the results indicated that the sequencing data obtained through this protocol had high fidelity and reproducibility. These results show that ChIP-seq for H3K27ac profiling and SEs mapping assisted by FACS with pathological FFPE tissue is available for research of histone modification. Precise epigenetic characteristics of the tumor cell can be described with this protocol.
Collapse
Affiliation(s)
- Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhihao Wen
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Tao
- Department of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Thomas HF, Feng S, Haslhofer F, Huber M, García Gallardo M, Loubiere V, Vanina D, Pitasi M, Stark A, Buecker C. Enhancer cooperativity can compensate for loss of activity over large genomic distances. Mol Cell 2025; 85:362-375.e9. [PMID: 39626663 DOI: 10.1016/j.molcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Enhancers are short DNA sequences that activate their target promoter from a distance; however, increasing the genomic distance between the enhancer and the promoter decreases expression levels. Many genes are controlled by combinations of multiple enhancers, yet the interaction and cooperation of individual enhancer elements are not well understood. Here, we developed a synthetic platform in mouse embryonic stem cells that allows building complex regulatory landscapes from the bottom up. We tested the system by integrating individual enhancers at different distances and confirmed that the strength of an enhancer contributes to how strongly it is affected by increased genomic distance. Furthermore, synergy between two enhancer elements depends on the distance at which the two elements are integrated: introducing a weak enhancer between a strong enhancer and the promoter strongly increases reporter gene expression, allowing enhancers to activate from increased genomic distances.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria.
| | - Songjie Feng
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Felix Haslhofer
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marie Huber
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - María García Gallardo
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Vincent Loubiere
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daria Vanina
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mattia Pitasi
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Christa Buecker
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
29
|
Tsouraki D, Oudelaar AM. Bridging the gap: How enhancers cooperate to regulate gene expression over large genomic distances. Mol Cell 2025; 85:199-201. [PMID: 39824162 DOI: 10.1016/j.molcel.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
By building synthetic regulatory landscapes, Jensen et al.1 and Thomas et al.2 demonstrate in this issue of Molecular Cell that gene expression levels strongly depend on the genomic distance between enhancers and promoters and that enhancer cooperation can compensate for reduced enhancer activity over large genomic distances.
Collapse
Affiliation(s)
- Dimitra Tsouraki
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; University of Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
30
|
Li Q, Wu D, Song Y, Zhang L, Wang T, Chen X, Zhang M. In vivo mechanism of the interaction between trimethylamine lyase expression and glycolytic pathways. Food Funct 2025; 16:87-101. [PMID: 39604809 DOI: 10.1039/d4fo03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent studies confirmed that host-gut microbiota interactions modulate disease-linked metabolite TMA production via TMA lyase. However, microbial enzyme production mechanisms remain unclear. In the present study, we investigated the impact of dietary and intervention factors on gut microbiota, microbial gene expression, and the interplay between TMA lyase and glycolytic pathways in mice. Using 16S rRNA gene sequencing, metagenomics, and metabolomics, the gut microbiota composition and microbial functional gene expression profiles related to TMA lyase and glycolytic enzymes were determined. The results revealed that distinct diets and intervention factors altered gut microbiota, gene expression, and metabolites linked to glycine metabolism and glycolysis. Notably, an arabinoxylan-rich diet suppressed genes linked to choline, glycine, glycolysis, and TMA lyase, favoring glycine utilization via pyruvate pathways. Glycolytic inhibitors amplified these effects, mainly inhibiting pyruvate kinase. Our findings underscored the crosstalk between TMA lyase and glycolytic pathways, regulating glycine levels, and suggested avenues for targeted interventions and personalized diets to curb choline TMA lyase production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Di Wu
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Yu Song
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Lu Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Ting Wang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Xiaoxu Chen
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
31
|
Miladinović A, Antiga L, Venit T, Bayona-Hernandez A, Červenka J, Labala RK, Kolář M, Castaño E, Sztacho M, Hozák P. The perinucleolar compartment and the oncogenic super-enhancers are part of the same phase-separated structure filled with phosphatidylinositol 4,5-bisphosphate and long non-coding RNA HANR. Adv Biol Regul 2025; 95:101069. [PMID: 39648081 DOI: 10.1016/j.jbior.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The liquid-liquid phase separation in the cell nucleus regulates various processes such as gene regulation and transcription control, chromatin organization, and DNA repair. A plethora of proteins and RNAs contribute to the formation of biomolecular condensates and recently, several nuclear phosphoinositides were shown to be a part of these membrane-less complexes within the nucleus as well. Here we lipid-interacting RNA sequencing (LIPRNAseq) and confocal microscopy to uncover the RNA-binding capacity and localization of phosphatidylinositol 4,5 bisphosphate (PIP2). We discovered the consensus PIP2-binding AU-rich RNA motif and identified long non-coding RNA HANR (lncHANR) to colocalize with PIP2 in the proximity to the nucleolus in the perinucleolar compartment (PNC). Colocalization studies with different nuclear markers reveal that PIP2-HANR presence in the PNC correlates with oncogenic super-enhancers, and both PNC and oncogenic enhancers are part of the same structure. As lncHANR, PNC, and oncogenic super-enhancers are associated with cancer cell lines and tumors, we suggest that they can serve as interchangeable prognostic markers. Understanding of the interplay between lipid metabolism, and lncRNAs in subnuclear compartment phase separation can lead to future improvement in treatment strategies and personalized cancer management approaches.
Collapse
Affiliation(s)
- Ana Miladinović
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Venit
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Bayona-Hernandez
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, Mexico
| | - Jakub Červenka
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Rajendra Kumar Labala
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Enrique Castaño
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, Mexico
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
32
|
McGuire ST, Shockey J, Bates PD. The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. THE NEW PHYTOLOGIST 2025; 245:263-281. [PMID: 39501618 PMCID: PMC11617664 DOI: 10.1111/nph.20244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue-specific expression of either gene has not yet been identified. We transformed a dgat1-1/dgat1-1//PDAT1/pdat1-2 parent with transgenic constructs containing the Arabidopsis DGAT1 promoter fused to the AtDGAT1 open reading frame either with or without the first intron. Triple homozygous plants were obtained, however, in the absence of the DGAT1 first intron anthers fail to fill with pollen, seed yield is c. 10% of wild-type, seed oil content remains reduced (similar to dgat1-1/dgat1-1), and non-Mendelian segregation of the PDAT1/pdat1-2 locus occurs. Whereas plants expressing the AtDGAT1pro:AtDGAT1 transgene containing the first intron mostly recover phenotypes to wild-type. This study establishes that a combination of the promoter and first intron of AtDGAT1 provides the proper context for temporal and tissue-specific expression of AtDGAT1 in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes in Arabidopsis.
Collapse
Affiliation(s)
- Sean T. McGuire
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Service1100 Allen Toussaint BlvdNew OrleansLA70124USA
| | - Philip D. Bates
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| |
Collapse
|
33
|
Mahara S, Prüssing S, Smialkovska V, Krall S, Holliman S, Blum B, Dachtler V, Borgers H, Sollier E, Plass C, Feldmann A. Transient promoter interactions modulate developmental gene activation. Mol Cell 2024; 84:4486-4502.e7. [PMID: 39476844 DOI: 10.1016/j.molcel.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 12/08/2024]
Abstract
Transcriptional induction coincides with the formation of various chromatin topologies. Strong evidence supports that gene activation is accompanied by a general increase in promoter-enhancer interactions. However, it remains unclear how these topological changes are coordinated across time and space during transcriptional activation. Here, we combine chromatin conformation capture with transcription and chromatin profiling during an embryonic stem cell (ESC) differentiation time course to determine how 3D genome restructuring is related to transcriptional transitions. This approach allows us to identify distinct topological alterations that are associated with the magnitude of transcriptional induction. We detect transiently formed interactions and demonstrate by genetic deletions that associated distal regulatory elements (DREs), as well as appropriate formation and disruption of these interactions, can contribute to the transcriptional induction of linked genes. Together, our study links topological dynamics to the magnitude of transcriptional induction and detects an uncharacterized type of transcriptionally important DREs.
Collapse
Affiliation(s)
- Sylvia Mahara
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Sonja Prüssing
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Valeriia Smialkovska
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Samuel Krall
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | | | - Belinda Blum
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Victoria Dachtler
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Helena Borgers
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelika Feldmann
- Mechanisms of Genome Control, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany.
| |
Collapse
|
34
|
Nasser J, Nam KM, Gunawardena J. A mathematical model clarifies the ABC Score formula used in enhancer-gene prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626072. [PMID: 39677755 PMCID: PMC11642778 DOI: 10.1101/2024.11.29.626072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Enhancers are discrete DNA elements that regulate the expression of eukaryotic genes. They are important not only for their regulatory function, but also as loci that are frequently associated with disease traits. Despite their significance, our conceptual understanding of how enhancers work remains limited. CRISPR-interference methods have recently provided the means to systematically screen for enhancers in cell culture, from which a formula for predicting whether an enhancer regulates a gene, the Activity-by-Contact (ABC) Score, has emerged and has been widely adopted. While useful as a binary classifier, it is less effective at predicting the quantitative effect of an enhancer on gene expression. It is also unclear how the algebraic form of the ABC Score arises from the underlying molecular mechanisms and what assumptions are needed for it to hold. Here, we use the graph-theoretic linear framework, previously introduced to analyze gene regulation, to formulate the default model, a mathematical model of how multiple enhancers independently regulate a gene. We show that the algebraic form of the ABC Score arises from this model. However, the default model assumptions also imply that enhancers act additively on steady-state gene expression. This is known to be false for certain genes and we show how modifying the assumptions can accommodate this discrepancy. Overall, our approach lays a rigorous, biophysical foundation for future studies of enhancer-gene regulation.
Collapse
Affiliation(s)
- Joseph Nasser
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Physics, Brandeis University, Waltham, MA, USA
| | - Kee-Myoung Nam
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
35
|
Koeppel J, Weller J, Vanderstichele T, Parts L. Engineering structural variants to interrogate genome function. Nat Genet 2024; 56:2623-2635. [PMID: 39533047 DOI: 10.1038/s41588-024-01981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Structural variation, such as deletions, duplications, inversions and complex rearrangements, can have profound effects on gene expression, genome stability, phenotypic diversity and disease susceptibility. Structural variants can encompass up to millions of bases and have the potential to rearrange substantial segments of the genome. They contribute considerably more to genetic diversity in human populations and have larger effects on phenotypic traits than point mutations. Until recently, our understanding of the effects of structural variants was driven mainly by studying naturally occurring variation. New genome-engineering tools capable of generating deletions, insertions, inversions and translocations, together with the discovery of new recombinases and advances in creating synthetic DNA constructs, now enable the design and generation of an extended range of structural variation. Here, we discuss these tools and examples of their application and highlight existing challenges that will need to be overcome to fully harness their potential.
Collapse
|
36
|
Lee H, Friedman MJ, Kim SB, Oh S. DNA regulatory element cooperation and competition in transcription. BMB Rep 2024; 57:509-520. [PMID: 39523506 PMCID: PMC11693600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Regulation of eukaryotic transcription is a complex process that enables precise temporal and spatial control of gene expression. Promoters, which are cis-regulatory elements (CREs) located proximal to the transcription start site (TSS), selectively integrate regulatory cues from distal CREs, or enhancers, and their associated transcriptional machinery. In this review, we discuss current knowledge regarding CRE cooperation and competition impacting gene expression, including features of enhancer-promoter, enhancer-enhancer, and promoter-promoter interplay. We also provide an overview of recent insights into the underlying molecular mechanisms that facilitate physical and functional interaction of regulatory elements, such as the involvement of enhancer RNAs and biomolecular condensates. [BMB Reports 2024; 57(12): 509-520].
Collapse
Affiliation(s)
- Haram Lee
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| | - Meyer Joseph Friedman
- Department and School of Medicine, University of California, San Diego, CA 92093, USA, Seoul 01795, Korea
| | - Sang Bum Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Soohwan Oh
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| |
Collapse
|
37
|
Bao Y, Teng S, Zhai H, Zhang Y, Xu Y, Li C, Chen Z, Ren F, Wang Y. SE-lncRNAs in Cancer: Classification, Subcellular Localisation, Function and Corresponding TFs. J Cell Mol Med 2024; 28:e70296. [PMID: 39690143 DOI: 10.1111/jcmm.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Emerging evidence highlights certain long noncoding RNAs (lncRNAs) transcribed from or interacting with super-enhancer (SE) regulatory elements. These lncRNAs, known as SE-lncRNAs, are strongly linked to cancer and regulate cancer progression through multiple interactions with downstream targets. The expression of SE-lncRNAs is controlled by various transcription factors (TFs), and dysregulation of these TFs can contribute to cancer development. In this review, we discuss the characteristics, classification and subcellular distribution of SE-lncRNAs and summarise the role of key TFs in the transcription and regulation of SE-lncRNAs. Moreover, we examine the distinct functions and potential mechanisms of SE-lncRNAs in cancer progression.
Collapse
Affiliation(s)
- Yuxin Bao
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Songling Teng
- Department of Hand Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Hanjie Zhai
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yeqiu Xu
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Chenghao Li
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Zhenjun Chen
- Department of Neurosurgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yong Wang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| |
Collapse
|
38
|
Museridze M, Ceolin S, Mühling B, Ramanathan S, Barmina O, Sekhar PS, Gompel N. Entangled and non-modular enhancer sequences producing independent spatial activities. SCIENCE ADVANCES 2024; 10:eadr9856. [PMID: 39565856 PMCID: PMC11578167 DOI: 10.1126/sciadv.adr9856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
The modularity of transcriptional enhancers is central to our understanding of morphological evolution, allowing specific changes to a gene expression pattern component, without affecting others. Enhancer modularity refers to physically separated stretches of regulatory sequence producing discrete spatiotemporal transcriptional activity. This concept stems from assays that test the sufficiency of a DNA segment to drive spatial reporter expression resembling that of the corresponding gene. Focusing on spatial patterns, it overlooks quantitative aspects of gene expression, underestimating the regulatory sequence actually required to reach full endogenous expression levels. Here, we show that five regulatory activities of the gene yellow in Drosophila, classically described as modular, result from extensively overlapping sequences, with broadly distributed regulatory information. Nevertheless, the independent regulatory activities of these entangled enhancers appear to be nucleated by specific segments that we called enhancer cores. Our work calls for a reappraisal of enhancer definition and properties, as well as of the consequences on regulatory evolution.
Collapse
Affiliation(s)
- Mariam Museridze
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
- University of Bonn, Bonn Institute for Organismic Biology, Bonn, Germany
| | - Stefano Ceolin
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Bettina Mühling
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Srishti Ramanathan
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Pallavi Santhi Sekhar
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
- University of Bonn, Bonn Institute for Organismic Biology, Bonn, Germany
| |
Collapse
|
39
|
Chen C, Du Z, Zheng Y, Chen H, Saleh AA, Yang N, Wang M, Azele P, Wang X, Song C. Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses 2024; 16:1801. [PMID: 39599915 PMCID: PMC11598996 DOI: 10.3390/v16111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Homologous recombination events take place between the 5' and 3' long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR+) and 157 solo-LTR absence sites (solo-LTR-) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR- sites and 23 solo-LTR+ sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions.
Collapse
Affiliation(s)
- Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhanyu Du
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China;
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Phiri Azele
- Ministry of Fisheries and Livestock, Animal Science and Technology, Zambia Institute of Animal Health, Mazabuka 670237, Zambia;
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| |
Collapse
|
40
|
Wei X, Liu J, Cheng J, Cai W, Xie W, Wang K, Lin L, Hou J, Cai J, Zhuo H. Super-enhancer-driven ZFP36L1 promotes PD-L1 expression in infiltrative gastric cancer. eLife 2024; 13:RP96445. [PMID: 39373630 PMCID: PMC11458174 DOI: 10.7554/elife.96445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. Despite the widespread recognition of tumor immunotherapy in treating unresectable GC, challenges, including ineffective immunotherapy and drug resistance, persist. Therefore, understanding the regulatory mechanisms of PD-L1, particularly in the context of super-enhancers (SEs) and zinc finger protein 36 ring finger protein-like 1 (ZFP36L1) RNA-binding protein, is crucial. In this study, we performed H3K27ac Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing, investigated the heterogeneity of SEs between two GC subtypes with differential growth patterns, and revealed the immune escape signatures driven by ZFP36L1-SE in infiltrative GC through SEs inhibitors treatment. The regulation of ZFP36L1 to PD-L1 was evaluated by quantitative PCR, western blot, flow cytometry, and immunohistochemistry. Furthermore, we explored its regulatory mechanisms using a combination of molecular biology techniques, including luciferase reporter assay, GST/RNA pull-down, chromatin immunoprecipitation (ChIP)/RIP experiments, and in vivo functional assays. We demonstrated that ZFP36L1, driven by an SE, enhances IFN-γ-induced PD-L1 expression, with SPI1 identified as the specific transcription factor binding to ZFP36L1-SE. Mechanistically, ZFP36L1 binds to the adenylate uridylate-rich element in the 3' untranslated region (3'UTR) of HDAC3 mRNA, exacerbating its mRNA decay, and thereby facilitating PD-L1 abnormal transcriptional activation. Collectively, our findings provide mechanistic insights into the role of the SPI1-ZFP36L1-HDAC3-PD-L1 signaling axis in orchestrating immune escape mechanisms in GC, thereby offering valuable insights into the potential targets for immune checkpoint therapy in GC management.
Collapse
Affiliation(s)
- Xujin Wei
- Endoscopic Center, The First Affiliated Hospital, Fujian Medical UniversityFuzhouChina
- The Graduate School of Fujian Medical UniversityFuzhouChina
| | - Jie Liu
- The Graduate School of Fujian Medical UniversityFuzhouChina
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Wangyu Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Wen Xie
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Kang Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Lingyun Lin
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jianchun Cai
- The Graduate School of Fujian Medical UniversityFuzhouChina
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| |
Collapse
|
41
|
Loubiere V, de Almeida BP, Pagani M, Stark A. Developmental and housekeeping transcriptional programs display distinct modes of enhancer-enhancer cooperativity in Drosophila. Nat Commun 2024; 15:8584. [PMID: 39362902 PMCID: PMC11450171 DOI: 10.1038/s41467-024-52921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Genomic enhancers are key transcriptional regulators which, upon the binding of sequence-specific transcription factors, activate their cognate target promoters. Although enhancers have been extensively studied in isolation, a substantial number of genes have more than one simultaneously active enhancer, and it remains unclear how these cooperate to regulate transcription. Using Drosophila melanogaster S2 cells as a model, we assay the activities of more than a thousand individual enhancers and about a million enhancer pairs toward housekeeping and developmental core promoters with STARR-seq. We report that housekeeping and developmental enhancers show distinct modes of enhancer-enhancer cooperativity: while housekeeping enhancers are additive such that their combined activity mirrors the sum of their individual activities, developmental enhancers are super-additive and combine multiplicatively. Super-additivity between developmental enhancers is promiscuous and neither depends on the enhancers' endogenous genomic contexts nor on specific transcription factor motif signatures. However, it can be further boosted by Twist and Trl motifs and saturates for the highest levels of enhancer activity. These results have important implications for our understanding of gene regulation in complex multi-enhancer developmental loci and genomically clustered housekeeping genes, providing a rationale to interpret the transcriptional impact of non-coding mutations at different loci.
Collapse
Affiliation(s)
- Vincent Loubiere
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
42
|
Kribelbauer-Swietek JF, Pushkarev O, Gardeux V, Faltejskova K, Russeil J, van Mierlo G, Deplancke B. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat Genet 2024; 56:2199-2212. [PMID: 39363017 PMCID: PMC11525195 DOI: 10.1038/s41588-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.
Collapse
Affiliation(s)
- Judith F Kribelbauer-Swietek
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Katerina Faltejskova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
43
|
Alvarez-Kuglen M, Ninomiya K, Qin H, Rodriguez D, Fiengo L, Farhy C, Hsu WM, Kirk B, Havas A, Feng GS, Roberts AJ, Anderson RM, Serrano M, Adams PD, Sharpee TO, Terskikh AV. ImAge quantitates aging and rejuvenation. NATURE AGING 2024; 4:1308-1327. [PMID: 39210148 DOI: 10.1038/s43587-024-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
For efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling. We find that interventions known to affect biological aging induce corresponding effects on ImAge, including increased ImAge upon chemotherapy treatment and decreased ImAge upon caloric restriction and partial reprogramming by transient OSKM expression in liver and skeletal muscle. Further, ImAge readouts from chronologically identical mice inversely correlated with their locomotor activity, suggesting that ImAge may capture elements of biological and functional age. In sum, we developed ImAge, an imaging-based biomarker of aging with single-cell resolution rooted in the analysis of spatial organization of epigenetic marks.
Collapse
Affiliation(s)
| | - Kenta Ninomiya
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Haodong Qin
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Chen Farhy
- Sanford Burnham Prebys, La Jolla, CA, USA
| | - Wei-Mien Hsu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian Kirk
- Sanford Burnham Prebys, La Jolla, CA, USA
| | | | - Gen-Sheng Feng
- School of Medicine, Univerity of California San Diego, La Jolla, CA, USA
| | | | - Rozalyn M Anderson
- University of Wisconsin, Madison, WI, USA
- GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Granta Park, UK
| | | | | | - Alexey V Terskikh
- The Scintillon Research Institute, San Diego, CA, USA.
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
44
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
45
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
46
|
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal. Genome Biol 2024; 25:142. [PMID: 38825692 PMCID: PMC11145787 DOI: 10.1186/s13059-024-03273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
Collapse
Affiliation(s)
- Edahi Gonzalez-Avalos
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Onodera
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Daniela Samaniego-Castruita
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
47
|
Lalanne JB, Regalado SG, Domcke S, Calderon D, Martin BK, Li X, Li T, Suiter CC, Lee C, Trapnell C, Shendure J. Multiplex profiling of developmental cis-regulatory elements with quantitative single-cell expression reporters. Nat Methods 2024; 21:983-993. [PMID: 38724692 PMCID: PMC11166576 DOI: 10.1038/s41592-024-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2024] [Indexed: 06/13/2024]
Abstract
The inability to scalably and precisely measure the activity of developmental cis-regulatory elements (CREs) in multicellular systems is a bottleneck in genomics. Here we develop a dual RNA cassette that decouples the detection and quantification tasks inherent to multiplex single-cell reporter assays. The resulting measurement of reporter expression is accurate over multiple orders of magnitude, with a precision approaching the limit set by Poisson counting noise. Together with RNA barcode stabilization via circularization, these scalable single-cell quantitative expression reporters provide high-contrast readouts, analogous to classic in situ assays but entirely from sequencing. Screening >200 regions of accessible chromatin in a multicellular in vitro model of early mammalian development, we identify 13 (8 previously uncharacterized) autonomous and cell-type-specific developmental CREs. We further demonstrate that chimeric CRE pairs generate cognate two-cell-type activity profiles and assess gain- and loss-of-function multicellular expression phenotypes from CRE variants with perturbed transcription factor binding sites. Single-cell quantitative expression reporters can be applied in developmental and multicellular systems to quantitatively characterize native, perturbed and synthetic CREs at scale, with high sensitivity and at single-cell resolution.
Collapse
Affiliation(s)
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tony Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chase C Suiter
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
48
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
49
|
Ordoñez R, Zhang W, Ellis G, Zhu Y, Ashe HJ, Ribeiro-Dos-Santos AM, Brosh R, Huang E, Hogan MS, Boeke JD, Maurano MT. Genomic context sensitizes regulatory elements to genetic disruption. Mol Cell 2024; 84:1842-1854.e7. [PMID: 38759624 PMCID: PMC11104518 DOI: 10.1016/j.molcel.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Gwen Ellis
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Hannah J Ashe
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | | | - Ran Brosh
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Megan S Hogan
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
50
|
Hu M, Kim I, Morán I, Peng W, Sun O, Bonnefond A, Khamis A, Bonàs-Guarch S, Froguel P, Rutter GA. Multiple genetic variants at the SLC30A8 locus affect local super-enhancer activity and influence pancreatic β-cell survival and function. FASEB J 2024; 38:e23610. [PMID: 38661000 PMCID: PMC11108099 DOI: 10.1096/fj.202301700rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-βH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Innah Kim
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ignasi Morán
- Life Sciences Department, Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
| | - Weicong Peng
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Orien Sun
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Amna Khamis
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Sílvia Bonàs-Guarch
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Philippe Froguel
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Inserm U1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, F-59000, France
- University of Lille, Lille University Hospital, Lille, F-59000, France.France
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore
| |
Collapse
|