1
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Dabbah-Krancher G, Ruchinskas A, Kallarakal MA, Lee KP, Bauman BM, Epstein B, Yin H, Krappmann D, Schaefer BC, Snow AL. A20 intrinsically influences human effector T-cell survival and function by regulating both NF-κB and JNK signaling. Eur J Immunol 2024; 54:e2451245. [PMID: 39359035 PMCID: PMC11631677 DOI: 10.1002/eji.202451245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
A20 is a dual-function ubiquitin-editing enzyme that maintains immune homeostasis by restraining inflammation. Although A20 serves a similar negative feedback function for T-cell receptor (TCR) signaling, the molecular mechanisms utilized and their ultimate impact on human T-cell function remain unclear. TCR engagement triggers the assembly of the CARD11-BCL10-MALT1 (CBM) protein complex, a signaling platform that governs the activation of downstream transcription factors including NF-κB and c-Jun/AP-1. Utilizing WT and A20 knockout Jurkat T cells, we found that A20 is required to negatively regulate NF-κB and JNK. Utilizing a novel set of A20 mutants in NF-κB and AP-1-driven reporter systems, we discovered the ZnF7 domain is crucial for negative regulatory capacity, while deubiquitinase activity is dispensable. Successful inactivation of A20 in human primary effector T cells congruently conferred sustained NF-κB and JNK signaling, including enhanced upregulation of activation markers, and increased secretion of several cytokines including IL-9. Finally, loss of A20 in primary human T cells resulted in decreased sensitivity to restimulation-induced cell death and increased sensitivity to cytokine withdrawal-induced death. These findings demonstrate the importance of A20 in maintaining T-cell homeostasis via negative regulation of both NF-κB and JNK signaling.
Collapse
Affiliation(s)
- Gina Dabbah-Krancher
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
| | - Allison Ruchinskas
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
| | - Melissa A. Kallarakal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| | - Katherine P. Lee
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| | - Bradly M. Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
| | - Benjamin Epstein
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
| | - Hongli Yin
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health; Neuherberg 85764, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, German Research Center for Environmental Health; Neuherberg 85764, Germany
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| | - Andrew L. Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| |
Collapse
|
3
|
O'Sullivan PA, Aidarova A, Afonina IS, Manils J, Thurston TLM, Instrell R, Howell M, Boeing S, Ranawana S, Herpels MB, Chetian R, Bassa M, Flynn H, Frith D, Snijders AP, Howes A, Beyaert R, Bowcock AM, Ley SC. CARD14 signalosome formation is associated with its endosomal relocation and mTORC1-induced keratinocyte proliferation. Biochem J 2024; 481:1143-1171. [PMID: 39145956 PMCID: PMC11555713 DOI: 10.1042/bcj20240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.
Collapse
Affiliation(s)
- Paul A. O'Sullivan
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Aigerim Aidarova
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S. Afonina
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joan Manils
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K
| | | | | | | | - Sashini Ranawana
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Melanie B. Herpels
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Riwia Chetian
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Matilda Bassa
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Helen Flynn
- The Francis Crick Institute, London NW1 1AT, U.K
| | - David Frith
- The Francis Crick Institute, London NW1 1AT, U.K
| | | | - Ashleigh Howes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, U.K
| | - Rudi Beyaert
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne M. Bowcock
- Department of Oncological Science, Dermatology, and Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Steven C. Ley
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| |
Collapse
|
4
|
Wang X, Yu C, Sun Y, Liu Y, Tang S, Sun Y, Zhou Y. Three-dimensional morphology scoring of hepatocellular carcinoma stratifies prognosis and immune infiltration. Comput Biol Med 2024; 172:108253. [PMID: 38484698 DOI: 10.1016/j.compbiomed.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The morphological attributes could serve as pivotal indicators precipitating early recurrence and dismal overall survival in hepatocellular carcinoma (HCC), and quantifying morphological features may better stratify the prognosis of HCC. OBJECTIVE To develop a radiomics approach based on 3D tumor morphology features for predicting the prognosis of HCC and identifying differentially expressed genes related to morphology to guide HCC treatment. MATERIALS AND METHODS Retrospective study of 357 HCC patients. Radiomic features were extracted from MRI tumor regions; 14 morphology-related features predicted early HCC recurrence and patient stratification via LASSO-Cox modeling. Overall survival (OS) and recurrence-free survival (RFS) were analyzed. RNA sequencing from the Cancer Imaging Archive (TCIA) examined drug sensitivity and stratified HCC using morphological immunity genes, validating recurrence and prognosis. RESULTS Patients were split into training (n = 225), test (n = 132), and 50 TCIA dataset cohorts. Two features (Maximum2DdiameterColumn, Sphericity) in Cox regression stratified patients into high/low-risk Morphological Radiological Score (Morph-RS) groups. Significant OS and RFS were seen across all sets. Differentially expressed genes focused on T cell receptor signaling; low-risk group had higher T cells (P = 0.039), B cells (P = 0.041), NK cells (P = 0.018). SN-38, GSK2126458 might treat high-risk morphology. Morphology-immune genes stratified HCC, showing significant RFS/OS differences. CONCLUSION Tumor Morph-RS effectively stratifies HCC patients' recurrence and prognosis. Limited immune infiltration seen in Morph-RS high-risk groups signifies the potential of employing tumor morphology as a potent visual biomarker for diagnosing and managing HCC.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Sun
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yixin Liu
- Basic Medicine College, Harbin Medical University, Harbin, China
| | - Shuli Tang
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yige Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
5
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
6
|
Li Q, Li S, Li Z, Xu H, Zhang W. KLF5‑mediated expression of CARD11 promotes the progression of gastric cancer. Exp Ther Med 2023; 26:422. [PMID: 37602310 PMCID: PMC10433449 DOI: 10.3892/etm.2023.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/31/2023] [Indexed: 08/22/2023] Open
Abstract
Caspase recruitment domain-containing protein 11 (CARD11) has been reported as functioning in multiple types of cancers. In the present study, the role and mechanism of CARD11 in gastric cancer was investigated. First, CARD11 expression in gastric cancer tissues and the association of CARD11 with overall survival were analyzed by the encyclopedia of RNA interactomes database. CARD11 expression in gastric cancer cells was detected by western blotting and reverse transcription-quantitative PCR analyses. After CARD11 silencing, cell proliferation was evaluated by Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining and flow cytometry analysis. Wound healing and Transwell assays were used to measure the capacities of cell migration and invasion. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related proteins and mTOR-related proteins were detected by western blot analysis. HumanTFDB predicted the binding of the transcription factor Krüppel-like factor 5 (KLF5) to the CARD11 promoter, which was confirmed by dual luciferase reporter and chromatin immunoprecipitation assays. To explore the regulatory effects between KLF5 and CARD11, KLF5 was overexpressed to perform the rescue experiments in gastric cancer cells with CARD11 silencing. Results revealed that CARD11 was highly expressed in gastric cancer and was associated with poor prognosis. CARD11 interference inhibited the proliferation of gastric cancer cells and induced cell cycle arrest. Additionally, CARD11 silencing suppressed the migration, invasion and EMT of gastric cancer cells, accompanied by upregulated E-cadherin expression and downregulated N-cadherin and vimentin expression. Moreover, the transcription factor KLF5 positively regulated the transcription of CARD11 in gastric cancer. KLF5 overexpression reversed the effects of interference of CARD11 expression in gastric cancer cells to promote their proliferation, migration, invasion and EMT. KLF5 overexpression also led to a reduction in cell cycle arrest. Finally, interference of CARD11 expression suppressed the mTOR pathway, which was activated by KLF5. In conclusion, KLF5-mediated CARD11 promoted the proliferation, migration and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Qiusen Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Sheng Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Zongxian Li
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Hongyan Xu
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Wenxian Zhang
- Department of Gastroenterology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
7
|
Liu T, Ren S, Sun C, Zhao P, Wang H. Glutaminolysis and peripheral CD4 + T cell differentiation: from mechanism to intervention strategy. Front Immunol 2023; 14:1221530. [PMID: 37545506 PMCID: PMC10401425 DOI: 10.3389/fimmu.2023.1221530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
To maintain the body's regular immune system, CD4+ T cell homeostasis is crucial, particularly T helper (Th1, Th17) cells and T regulatory (Treg) cells. Abnormally differentiated peripheral CD4+ T cells are responsible for the occurrence and development of numerous diseases, including autoimmune diseases, transplantation rejection, and irritability. Searching for an effective interventional approach to control this abnormal differentiation is therefore especially important. As immunometabolism progressed, the inherent metabolic factors underlying the immune cell differentiation have gradually come to light. Mounting number of studies have revealed that glutaminolysis plays an indelible role in the differentiation of CD4+ T cells. Besides, alterations in the glutaminolysis can also lead to changes in the fate of peripheral CD4+ T cells. All of this indicate that the glutaminolysis pathway has excellent potential for interventional regulation of CD4+ T cells differentiation. Here, we summarized the process by which glutaminolysis regulates the fate of CD4+ T cells during differentiation and further investigated how to reshape abnormal CD4+ T cell differentiation by targeting glutaminolysis.
Collapse
Affiliation(s)
- Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Pengyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
8
|
Wang W, Zhang Y, Xiao S, Liu X, Yan P, Fu C, Yang Z. The brain-specific upregulation of CARD11 in response to avian brain-neurotropic virus infection serves as a potential biomarker. Poult Sci 2023; 102:102539. [PMID: 36805399 PMCID: PMC9969321 DOI: 10.1016/j.psj.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Avian neurotropic viruses are critical problems in poultry industry causing severe central nervous system (CNS) damage with neuroinvasive and neurovirulence properties. Biomarker of neurotropic viral intracranial invasion is of great application value for the diagnosis, but that of avian neurotropic viruses remains elusive. Previously, we found that chicken caspase recruitment domain family, member 11 (CARD11) was only upregulated in virulent Newcastle disease virus-infected chickens and in chicken primary neuronal cells. In this study, CARD11 was systemically expressed in chickens and pigeons detected by absolute qPCR and immunohistochemical (IHC) assay. After virus challenging, only avian neurotropic viruses (avian encephalomyelitis virus [AEV] and pigeon paramyxovirus type 1 [PPMV-1]) except Marek's disease virus (MDV) can invade brain and cause pathological changes. The relative mRNA expression of CARD11 was brain-upregulated in AEV- or PPMV-1-infected animals, rather than MDV and non-neurotropic viruses (fowl adenovirus serotype 4 [FAdV-4] and infectious bronchitis virus [IBV]). Similarly, the protein expression of CARD11 was only upregulated in the cerebra and cerebella infected by avian brain-neurotropic virus using IHC assay. And there were no correlations between the change level of CARD11 and viral load. Our preliminary data suggested that avian CARD11 may be a potential brain biomarker for avian brain-neurotropic virus invasion.
Collapse
Affiliation(s)
- Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China.
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Peipei Yan
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Chunyan Fu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Geng H, Wang Y, Wang S. Blood MALT1 deficiency is common and relates to unfavorable induction therapy response and survival profile in acute myeloid leukemia patients. Hematology 2022; 27:1176-1183. [DOI: 10.1080/16078454.2022.2139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Haili Geng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yiting Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Shaoyuan Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
10
|
Dong X, Chen X, Ren Y. MALT1 reflects inflammatory cytokines, disease activity, and its chronological change could estimate treatment response to infliximab in Crohn's disease patients. J Clin Lab Anal 2022; 36:e24650. [PMID: 36036788 PMCID: PMC9550982 DOI: 10.1002/jcla.24650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) mediates the immunity and inflammatory response in multiple ways to be intimately involved in the progression of autoimmune diseases. This study intended to explore the linkage of MALT1 with inflammation, disease activity, and its change with infliximab treatment response in Crohn's disease (CD) patients. Methods MALT1 in peripheral blood mononuclear cell samples from 72 active CD patients (at baseline, 2 weeks [W2], W6, and W12 after infliximab treatment), 20 remissive CD patients (after enrollment), and 20 healthy controls (after enrollment) were detected by RT‐qPCR. Results MALT1 was highest in active CD patients, followed by remissive CD patients, and lowest in healthy controls (p < 0.001). MALT1 was positively linked with C‐reactive protein (p = 0.001), erythrocyte sedimentation rate (p = 0.014), clinical disease activity index (p = 0.003), tumor necrosis factor (TNF)‐α (p = 0.006), interleukin (IL)‐1β (p = 0.049), and IL‐17A (p = 0.004), but not other clinical characteristics (all p > 0.05) in active CD patients. After infliximab treatment, MALT1 was decreased from baseline to W12 in active CD patients (p < 0.001), especially in responders (p < 0.001), but not in nonresponders (p = 0.053). The reduction of MALT1 at W6 (p = 0.049) and W12 (p = 0.004) was associated with a good treatment response to infliximab in active CD patients. Moreover, the response rate or MALT1 at any time point was not different between active CD patients with and without TNFi history (all p > 0.05). Conclusion MALT1 reflects aggravated inflammation and disease activity. Meanwhile, the decrement of MALT1 from baseline to W12 could reflect infliximab treatment response in CD patients.
Collapse
Affiliation(s)
- Xiaoxia Dong
- Department of Nutrition, Handan Central Hospital, Handan, China
| | - Xiaoxiao Chen
- Department of Nutrition, Handan Central Hospital, Handan, China
| | - Yuxiu Ren
- Department of Nutrition, Handan Central Hospital, Handan, China
| |
Collapse
|
11
|
Bioinformatics Analysis Revealing the Correlation between NF-κB Signaling Pathway and Immune Infiltration in Gastric Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5385456. [PMID: 35936362 PMCID: PMC9352505 DOI: 10.1155/2022/5385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
Although the emerging of immunotherapy conferred a new landscape of gastric cancer (GC) treatment, its response rate was of significant individual differences. Insight into GC immune microenviroment may contribute to breaking the dilemma. To this end, the enrichment score of NF-κB signaling pathway was calculated in each GC sample from The Cancer Genome Atlas (TCGA) via ssGSEA algorithm, and its association with immune infiltration was estimated. Based on NF-κB-related genes, a risk score was established and its involvement in immune infiltration, tumor mutational burden (TMB), and N6-methyladenosine (M6A) modification was analyzed in GC. The results showed that NF-κB signaling pathway promoted the infiltration of immune cells in GC. In addition, GC samples were divided into low- and high-risk groups according to a seven-gene (CARD11, CCL21, GADD45B, LBP, RELB, TRAF1, and VCAM1) risk score. Although the high-risk group displayed high immune infiltration and high expression of M6A regulatory genes, it remains in an immunosuppressive microenviroment and whereby suffers a poorer outcome. Of note, most of hub genes were related to immune infiltration and could serve as an independent prognostic biomarker. Conclusively, our study emphasized the crucial role of NF-κB signaling pathway in GC immune microenviroment and provided several candidate genes that may participate in immune infiltration.
Collapse
|
12
|
Yuan J, Xiang L, Wang F, Zhang L, Liu G, Chang X, Zhang A, Tao Y. MALT1 positively relates to Th17 cells, inflammation/activity degree, and its decrement along with treatment reflects TNF inhibitor response in ankylosing spondylitis patients. J Clin Lab Anal 2022; 36:e24472. [PMID: 35622982 PMCID: PMC9279967 DOI: 10.1002/jcla.24472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) facilitates CD4+ T‐cell differentiation, immune response, inflammation, and osteoclastogenesis. This study aimed to explore the relation between MALT1 and treatment efficacy to tumor necrosis factor inhibitor (TNFi) in ankylosing spondylitis (AS) patients. Methods This study recruited 73 AS patients underwent adalimumab treatment. Peripheral blood mononuclear cell (PBMC) was obtained at Week (W) 0, W4, W8, and W12 after treatment initiation; then, MALT1 was measured using RT‐qPCR. Furthermore, PBMC and serum at W0 were proposed to flow cytometry and ELISA for Th1 cells, Th17 cells, IFN‐γ, and IL‐17A levels measurement. Besides, 20 osteoarthritis patients and 20 healthy controls (HCs) were enrolled to detect MALT1. Results Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 expression was higher in AS patients compared with HCs (p < 0.001) and osteoarthritis patients (p < 0.001). Besides, MALT1 expression was positively linked with CRP (p = 0.002), BASDAI (p = 0.026), PGADA (p = 0.040), ASDASCRP (p = 0.028), Th17 cells (p = 0.020), and IL‐17A (p = 0.017) in AS patients, but did not relate to other clinical features, Th1 cells or IFN‐γ (all p>0.050). MALT1 was decreased along with treatment only in AS patients with ASAS40 response (p < 0.001), but not in those without ASAS40 response (p = 0.064). Notably, MALT1 expression was of no difference at W0 (p = 0.328), W4 (p = 0.280), and W8 (p = 0.080), but lower at W12 (p = 0.028) in AS patients with ASAS40 response compared with those without ASAS40 response. Conclusion Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 positively correlates with Th17 cells, inflammatory, and activity degree; meanwhile, its decrement along with treatment reflects the response to TNF inhibitor in AS patients.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lei Xiang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Wang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lin Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Gaozhan Liu
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiuli Chang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Anbing Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Tao
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Kutzner K, Woods S, Karayel O, Gehring T, Yin H, Flatley A, Graß C, Wimberger N, Tofaute MJ, Seeholzer T, Feederle R, Mann M, Krappmann D. Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Sci Signal 2022; 15:eabk3083. [PMID: 35230873 DOI: 10.1126/scisignal.abk3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/β-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/β-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser893 in the carboxyl terminus of CARD11 prevented the activation of the transcription factor NF-κB, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser893 phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser893 in CARD11 by PKCθ controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCθ simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes.
Collapse
Affiliation(s)
- Kerstin Kutzner
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Hongli Yin
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole Wimberger
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Bedsaul JR, Shah N, Hutcherson SM, Pomerantz JL. Mechanistic impact of oligomer poisoning by dominant-negative CARD11 variants. iScience 2022; 25:103810. [PMID: 35198875 PMCID: PMC8844825 DOI: 10.1016/j.isci.2022.103810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The CARD11 scaffold controls antigen receptor signaling to NF-κB, JNK, and mTOR. Three classes of germline mutations in CARD11 cause Primary Immunodeficiency, including homozygous loss-of-function (LOF) mutations in CARD11 deficiency, heterozygous gain-of-function (GOF) mutations in BENTA disease, and heterozygous dominant-negative LOF mutations in CADINS. Here, we characterize LOF CARD11 mutants with a range of dominant-negative activities to identify the mechanistic properties that cause these variants to exert dominant effects when heterozygous. We find that strong dominant negatives can poison signaling from mixed wild-type:mutant oligomers at two steps in the CARD11 signaling cycle, at the Opening Step and at the Cofactor Association Step. Our findings provide evidence that CARD11 oligomer subunits cooperate in at least two steps during antigen receptor signaling and reveal how different LOF mutations in the same oligomeric signaling hub may cause disease with different inheritance patterns.
Collapse
Affiliation(s)
- Jacquelyn R. Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Shah
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shelby M. Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Shi X, Xia S, Chu Y, Yang N, Zheng J, Chen Q, Fen Z, Jiang Y, Fang S, Lin J. CARD11 is a prognostic biomarker and correlated with immune infiltrates in uveal melanoma. PLoS One 2021; 16:e0255293. [PMID: 34370778 PMCID: PMC8351993 DOI: 10.1371/journal.pone.0255293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UVM), the most common primary intraocular malignancy, has a high mortality because of a high propensity to metastasize. Our study analyzed prognostic value and immune-related characteristics of CARD11 in UVM, hoping to provide a potential management and research direction. The RNA-sequence data of 80 UVM patients were downloaded from The Cancer Genome Atlas database and divided them into high- and low-expression groups. We analyzed the differentially expressed genes, enrichment analyses and the infiltration of immune cells using the R package and Gene-Set Enrichment Analysis. A clinical prediction nomogram and protein-protein interaction network were constructed and the first 8 genes were considered as the hub-genes. Finally, we constructed a competing endogenous RNA (ceRNA) network by Cytoscape and analyzed the statistical data via the R software. Here we found that CARD11 expression had notable correlation with UVM clinicopathological features, which was also an independent predictor for overall survival (OS). Intriguingly, CARD11 had a positively correlation to autophagy, cellular senescence and apoptosis. Infiltration of monocytes was significantly higher in low CARD11 expression group, and infiltration of T cells regulatory was lower in the same group. Functional enrichment analyses revealed that CARD11 was positively related to T cell activation pathways and cell adhesion molecules. The expressions of hub-genes were all increased in the high CARD11 expression group and the ceRNA network showed the interaction among mRNA, miRNA and lncRNA. These findings show that high CARD11 expression in UVM is associated with poor OS, indicating that CARD11 may serve as a potential biomarker for the diagnosis and prognosis of the UVM.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Nan Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qianyi Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Zeng Fen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shifeng Fang
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
16
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Kitamura H, Hashimoto M. USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes. Int J Mol Sci 2021; 22:1209. [PMID: 33530560 PMCID: PMC7865608 DOI: 10.3390/ijms22031209] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin specific protease (USP) 2 is a multifunctional deubiquitinating enzyme. USP2 modulates cell cycle progression, and therefore carcinogenesis, via the deubiquitination of cyclins and Aurora-A. Other tumorigenic molecules, including epidermal growth factor and fatty acid synthase, are also targets for USP2. USP2 additionally prevents p53 signaling. On the other hand, USP2 functions as a key component of the CLOCK/BMAL1 complex and participates in rhythmic gene expression in the suprachiasmatic nucleus and liver. USP2 variants influence energy metabolism by controlling hepatic gluconeogenesis, hepatic cholesterol uptake, adipose tissue inflammation, and subsequent systemic insulin sensitivity. USP2 also has the potential to promote surface expression of ion channels in renal and intestinal epithelial cells. In addition to modifying the production of cytokines in immune cells, USP2 also modulates the signaling molecules that are involved in cytokine signaling in the target cells. Usp2 knockout mice exhibit changes in locomotion and male fertility, which suggest roles for USP2 in the central nervous system and male genital tract, respectively. In this review, we summarize the cellular events with USP2 contributions and list the signaling molecules that are upstream or downstream of USP2. Additionally, we describe phenotypic differences found in the in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | | |
Collapse
|
18
|
Pomerantz JL. Reconsidering phosphorylation in the control of inducible CARD11 scaffold activity during antigen receptor signaling. Adv Biol Regul 2021; 79:100775. [PMID: 33358178 PMCID: PMC7920944 DOI: 10.1016/j.jbior.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
Protein phosphorylation is a commonly used regulatory step that controls signal transduction pathways in a wide array of biological contexts. The finding that a residue is phosphorylated, coupled with the observation that mutation of that residue impacts signaling, often forms the basis for concluding that the phosphorylation of that residue is a key signaling step. However, in certain cases, the situation is more complicated and warrants further study to obtain a clear mechanistic understanding of whether and how the kinase-mediated modification in question is important. CARD11 is a multi-domain signaling scaffold that functions as a hub in lymphocytes to transmit the engagement of antigen receptors into the activation of NF-κB, JNK and mTOR. The phosphorylation of the CARD11 autoinhibitory Inhibitory Domain in response to antigen receptor triggering has been proposed to control the signal-induced conversion of CARD11 from an inactive to an active scaffold in a step required for lymphocyte activation. In this review, I discuss recent data that suggests that this model should be reconsidered for certain phosphorylation events in CARD11 and propose possible experimental avenues for resolution of raised issues.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Miller Research Building, Room 623, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Oikawa D, Hatanaka N, Suzuki T, Tokunaga F. Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway. Front Immunol 2020; 11:601926. [PMID: 33329596 PMCID: PMC7732508 DOI: 10.3389/fimmu.2020.601926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023] Open
Abstract
The LUBAC ubiquitin ligase complex, composed of the HOIP, HOIL-1L, and SHARPIN subunits, stimulates the canonical nuclear factor-κB (NF-κB) activation pathways through its Met1-linked linear ubiquitination activity. Here we performed cellular and mathematical modeling analyses of the LUBAC involvement in the T cell receptor (TCR)-mediated NF-κB activation pathway, using the Jurkat human T cell line. LUBAC is indispensable for TCR-induced NF-κB and T cell activation, and transiently associates with and linearly ubiquitinates the CARMA1-BCL10-MALT1 (CBM) complex, through the catalytic HOIP subunit. In contrast, the linear ubiquitination of NEMO, a substrate of the TNF-α-induced canonical NF-κB activation pathway, was limited during the TCR pathway. Among deubiquitinases, OTULIN, but not CYLD, plays a major role in downregulating LUBAC-mediated TCR signaling. Mathematical modeling indicated that linear ubiquitination of the CBM complex accelerates the activation of IκB kinase (IKK), as compared with the activity induced by linear ubiquitination of NEMO alone. Moreover, simulations of the sequential linear ubiquitination of the CBM complex suggested that the allosteric regulation of linear (de)ubiquitination of CBM subunits is controlled by the ubiquitin-linkage lengths. These results indicated that, unlike the TNF-α-induced NF-κB activation pathway, the TCR-mediated NF-κB activation in T lymphocytes has a characteristic mechanism to induce LUBAC-mediated NF-κB activation.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Naoya Hatanaka
- Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
20
|
Blanchett S, Boal-Carvalho I, Layzell S, Seddon B. NF-κB and Extrinsic Cell Death Pathways - Entwined Do-or-Die Decisions for T cells. Trends Immunol 2020; 42:76-88. [PMID: 33246882 DOI: 10.1016/j.it.2020.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
NF-κB signaling is required at multiple stages of T cell development and function. The NF-κB pathway integrates signals from many receptors and involves diverse adapters and kinases. Recent advances demonstrate that kinases controlling NF-κB activation, such as the IKK complex, serve dual independent functions because they also control cell death checkpoints. Survival functions previously attributed to NF-κB are in fact mediated by these upstream kinases by novel mechanisms. This new understanding has led to a refined view of how NF-κB and cell death signaling are interlinked and how they regulate cell fate. We discuss how NF-κB activation and control of cell death signaling by common upstream triggers cooperate to regulate different aspects of T cell development and function.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ines Boal-Carvalho
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
21
|
Demeyer A, Driege Y, Skordos I, Coudenys J, Lemeire K, Elewaut D, Staal J, Beyaert R. Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. iScience 2020; 23:101557. [PMID: 33083726 PMCID: PMC7522757 DOI: 10.1016/j.isci.2020.101557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
The protease MALT1 is a key regulator of NF-κB signaling and a novel therapeutic target in autoimmunity and cancer. Initial enthusiasm supported by preclinical results with MALT1 inhibitors was tempered by studies showing that germline MALT1 protease inactivation in mice results in reduced regulatory T cells and lethal multi-organ inflammation due to expansion of IFN-γ-producing T cells. However, we show that long-term MALT1 inactivation, starting in adulthood, is not associated with severe systemic inflammation, despite reduced regulatory T cells. In contrast, IL-2-, TNF-, and IFN-γ-producing CD4+ T cells were strongly reduced. Limited formation of tertiary lymphoid structures was detectable in lungs and stomach, which did not affect overall health. Our data illustrate that MALT1 inhibition in prenatal or adult life has a different outcome and that long-term MALT1 inhibition in adulthood is not associated with severe side effects. Inducible MALT1 inactivation for up to 6 months in the absence of severe toxicity MALT1 inactivation in adult mice decreases Tregs without effector T cell activation Long-term MALT1 inactivation results in tertiary lymphoid structure formation MALT1 inhibition in prenatal or adult life has a different outcome
Collapse
Affiliation(s)
- Annelies Demeyer
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Ioannis Skordos
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Julie Coudenys
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Dirk Elewaut
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| |
Collapse
|
22
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|
23
|
Regions of conformational flexibility in the proprotein convertase PCSK9 and design of antagonists for LDL cholesterol lowering. Biochem Soc Trans 2020; 48:1323-1336. [DOI: 10.1042/bst20190672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022]
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma LDL cholesterol levels by binding to the liver LDL receptor (LDLR) and promoting its degradation. Therefore, PCSK9 has become a compelling new therapeutic target for lipid lowering and the prevention of cardiovascular disease. PCSK9 contains two regions of conformational flexibility, the N-terminal regions of the prodomain and of the catalytic domain. The recognition that the latter region, the so-called P′ helix, is able to transition from an α-helical to a disordered state gave rise to new strategies to develop small molecule inhibitors of PCSK9 for lipid lowering. In the ordered state the P′ helix is buried in a groove of the PCSK9 catalytic domain located next to the main LDLR binding site. The transition to a disordered state leaves the groove site vacated and accessible for compounds to antagonize LDLR binding. By use of a groove-directed phage display strategy we were able to identify several groove-binding peptides. Based on structural information of PCSK9-peptide complexes, a minimized groove-binding peptide was generated and utilized as an anchor to extend towards the adjacent main LDLR binding site, either by use of a phage-displayed peptide extension library, or by appending organic moieties to yield organo-peptides. Both strategies led to antagonists with pharmacologic activities in cell-based assays. The intricate bipartite mechanism of the potent organo-peptide inhibitors was revealed by structural studies, showing that the core peptide occupies the N-terminal groove, while the organic moiety interacts with the LDLR binding site to create antagonism. These findings validate the PCSK9 groove as an attractive target site and should inspire the development of a new class of small molecule antagonists of PCSK9.
Collapse
|
24
|
Cheng J, Maurer LM, Kang H, Lucas PC, McAllister-Lucas LM. Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: Take-home points for the cell biologist. Cell Immunol 2020; 355:104158. [PMID: 32721634 DOI: 10.1016/j.cellimm.2020.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
25
|
Wang Z, Hutcherson SM, Yang C, Jattani RP, Tritapoe JM, Yang YK, Pomerantz JL. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem 2019; 294:14648-14660. [PMID: 31391255 PMCID: PMC6779434 DOI: 10.1074/jbc.ra119.009551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
The activation of key signaling pathways downstream of antigen receptor engagement is critically required for normal lymphocyte activation during the adaptive immune response. CARD11 is a multidomain signaling scaffold protein required for antigen receptor signaling to NF-κB, c-Jun N-terminal kinase, and mTOR. Germline mutations in the CARD11 gene result in at least four types of primary immunodeficiency, and somatic CARD11 gain-of-function mutations drive constitutive NF-κB activity in diffuse large B cell lymphoma and other lymphoid cancers. In response to antigen receptor triggering, CARD11 transitions from a closed, inactive state to an open, active scaffold that recruits multiple signaling partners into a complex to relay downstream signaling. However, how this signal-induced CARD11 conversion occurs remains poorly understood. Here we investigate the role of Inducible Element 1 (IE1), a short regulatory element in the CARD11 Inhibitory Domain, in the CARD11 signaling cycle. We find that IE1 controls the signal-dependent Opening Step that makes CARD11 accessible to the binding of cofactors, including Bcl10, MALT1, and the HOIP catalytic subunit of the linear ubiquitin chain assembly complex. Surprisingly, we find that IE1 is also required at an independent step for the maximal activation of HOIP and MALT1 enzymatic activity after cofactor recruitment to CARD11. This role of IE1 reveals that there is an Enzymatic Activation Step in the CARD11 signaling cycle that is distinct from the Cofactor Association Step. Our results indicate that CARD11 has evolved to actively coordinate scaffold opening and the induction of enzymatic activity among recruited cofactors during antigen receptor signaling.
Collapse
Affiliation(s)
- Zhaoquan Wang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rakhi P Jattani
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia M Tritapoe
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
26
|
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J, Beyaert R. MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Front Immunol 2019; 10:1898. [PMID: 31474984 PMCID: PMC6702287 DOI: 10.3389/fimmu.2019.01898] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-κB and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Malt1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4+ T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses.
Collapse
Affiliation(s)
- Annelies Demeyer
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ioannis Skordos
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marja Kreike
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery (CISTIM), Leuven, Belgium
| | - Jens Staal
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Moser E, Oliver PM. Special Issue: E3 ubiquitin ligases, the match makers and grim reapers of immune cells. Cell Immunol 2019; 340:103924. [PMID: 31101325 DOI: 10.1016/j.cellimm.2019.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Emily Moser
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paula M Oliver
- Department of Pathology and Laboratory Medicine, Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Abstract
The global burden of chronic kidney disease will increase during the next century. As NFκB, first described more than 30 years ago, plays a major role in immune and non-immune-mediated diseases and in inflammatory and metabolic disorders, this review article summarizes current knowledge on the role of NFκB in in vivo kidney injury and describes the new and so far not completely understood crosstalk between canonical and non-canonical NFκB pathways in T-lymphocyte activation in renal disease.
Collapse
Affiliation(s)
- Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Zhao S, Zhang Y, Huang G, Luo W, Li Y, Xiao Y, Zhou M, Li Y, Lai J, Li Y, Li B. Increased CD8 +CD27 +perforin + T cells and decreased CD8 +CD70 + T cells may be immune biomarkers for aplastic anemia severity. Blood Cells Mol Dis 2019; 77:34-42. [PMID: 30953940 DOI: 10.1016/j.bcmd.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Aplastic anemia (AA) is T cell immune-mediated autoimmune disease. Aberrant T cell activation involves an imbalance in T cell homeostasis in AA. However, whether the T cell activation molecule CD27 and its ligand CD70 participate in the immune pathogenesis of AA remains ill defined. METHODS The frequencies of CD27/CD70 and perforin/granzyme B in different T cell subsets were detected in AA patients and healthy individuals by flow cytometry. RESULTS We first time demonstrate a significantly elevated proportion of CD27+ and significantly decreased CD70+ T cells from AA. Changed frequency of CD27+ and CD70+ in different T cell subsets appeared to be associated with AA severity. In very severe aplastic anemia (VSAA) and severe aplastic anemia (SAA), increased CD8+CD27+ T cells present with a cytotoxic effector phenotype by elevating perforin proportion. CONCLUSIONS Elevated proportion of CD27 in T cells may contribute to distinct immune pathogenesis for different severities of AA. The CD8+CD27+perforin+ T cells combined with CD8+CD70+ T cells may serve as an immune biomarker for AA severity estimation.
Collapse
Affiliation(s)
- Suwen Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Guixuan Huang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | | | - Yan Li
- Department of Cardiology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yankai Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Yumiao Li
- Department of Hematology, Guangzhou First Municipal People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Bo Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
30
|
Hörner M, Eble J, Yousefi OS, Schwarz J, Warscheid B, Weber W, Schamel WWA. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome. Front Immunol 2019; 10:226. [PMID: 30863395 PMCID: PMC6399385 DOI: 10.3389/fimmu.2019.00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the known interaction partners, and could filter out all other proteins.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Schwarz
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Centre for Chronic Immunodeficiency CCI, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|