1
|
Sugawara R, Hamada K, Ito H, Scala M, Ueda H, Tabata H, Ogata K, Nagata KI. A p.N92K variant of the GTPase RAC3 disrupts cortical neuron migration and axon elongation. J Biol Chem 2025; 301:108346. [PMID: 40015633 PMCID: PMC11968283 DOI: 10.1016/j.jbc.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
RAC3 encodes a small GTPase of the Rho family, crucial for actin cytoskeleton organization and signaling pathways. De novo deleterious variants in RAC3 cause neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (NEDBAF). Disease-causing variants thus far reported are thought to impact key conserved regions within RAC3, such as the P-loop, switch I/II, and G boxes, which are essential for the interaction with regulatory proteins and effectors. Recently, however, a novel variant, c.276T > A, p.N92K, was identified in a prenatal case with complex brain malformations. This variant, located outside the core functional regions, represents a unique class of RAC3 pathogenic mutations. We investigated the variant's effects using in vitro, in silico, and in vivo approaches. Overexpression of RAC3-N92K in primary hippocampal neurons impaired differentiation, leading to round cell shape with lamellipodia, suggesting that RAC3-N92K is active. Biochemical studies showed that RAC3-N92K is (1) resistant to GAP-mediated inactivation, (2) responsive to GEF activation, and (3) capable of interacting with RAC effectors PAK1 and MLK2, as well as Rho-kinase 1, activating gene expression through SRF, NFκB, and AP1 pathways. Structural analyses suggest that N92K disrupts GAP interactions but preserves interactions with GEF, PAK1, and MLK2. In vivo, RAC3-N92K expression in embryonic mouse cortical neurons led to migration defects and periventricular clustering during corticogenesis, along with impaired axon elongation. These findings indicate that RAC3-N92K's activated state significantly disrupts cortical development, expanding the genetic and pathophysiological spectrum of NEDBAF.
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
2
|
Pollak RM, Sefik E, Aberizk K, Duan K, Espana R, Guest RM, Goldman-Yassen AE, Goines K, Novacek DM, Saulnier CA, Klaiman C, Pulver S, Cubells JF, Burrell TL, Shultz S, Walker EF, Murphy MM, Mulle JG. Beyond IQ: executive function deficits and their relation to functional, clinical, and neuroimaging outcomes in 3q29 deletion syndrome. Psychol Med 2024; 54:1-12. [PMID: 39365000 PMCID: PMC11578917 DOI: 10.1017/s0033291724002320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND 3q29 deletion syndrome (3q29del) is a rare (~1:30 000) genomic disorder associated with a wide array of neurodevelopmental and psychiatric phenotypes. Prior work by our team identified clinically significant executive function (EF) deficits in 47% of individuals with 3q29del; however, the nuances of EF in this population have not been described. METHODS We used the Behavior Rating Inventory of Executive Function (BRIEF) to perform the first in-depth assessment of real-world EF in a cohort of 32 individuals with 3q29del (62.5% male, mean age = 14.5 ± 8.3 years). All participants were also evaluated with gold-standard neuropsychiatric and cognitive assessments. High-resolution structural magnetic resonance imaging was performed on a subset of participants (n = 24). RESULTS We found global deficits in EF; individuals with 3q29del scored higher than the population mean on the BRIEF global executive composite (GEC) and all subscales. In total, 81.3% of study subjects (n = 26) scored in the clinical range on at least one BRIEF subscale. BRIEF GEC T scores were higher among 3q29del participants with a diagnosis of attention deficit/hyperactivity disorder (ADHD), and BRIEF GEC T scores were associated with schizophrenia spectrum symptoms as measured by the Structured Interview for Psychosis-Risk Syndromes. BRIEF GEC T scores were not associated with cognitive ability. The BRIEF-2 ADHD form accurately (sensitivity = 86.7%) classified individuals with 3q29del based on ADHD diagnosis status. BRIEF GEC T scores were correlated with cerebellar white matter and subregional cerebellar cortex volumes. CONCLUSIONS Together, these data expand our understanding of the phenotypic spectrum of 3q29del and identify EF as a core feature linked to both psychiatric and neuroanatomical features of the syndrome.
Collapse
Affiliation(s)
- Rebecca M. Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Esra Sefik
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
| | - Roberto Espana
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Ryan M. Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Adam E. Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katrina Goines
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Derek M. Novacek
- Desert Pacific Mental Illness Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Celine A. Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Decatur, GA, USA
| | - Cheryl Klaiman
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stormi Pulver
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Melissa M. Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G. Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Viou L, Atkins M, Rousseau V, Launay P, Masson J, Pace C, Murakami F, Barnier JV, Métin C. PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity. Mol Psychiatry 2024; 29:2296-2307. [PMID: 38454080 PMCID: PMC11412908 DOI: 10.1038/s41380-024-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Mutations of PAK3, a p21-activated kinase, are associated in humans with cognitive deficits suggestive of defective cortical circuits and with frequent brain structural abnormalities. Most human variants no longer exhibit kinase activity. Since GABAergic interneurons express PAK3 as they migrate within the cortex, we here examined the role of PAK3 kinase activity in the regulation of cortical interneuron migration. During the embryonic development, cortical interneurons migrate a long distance tangentially and then re-orient radially to settle in the cortical plate, where they contribute to cortical circuits. We showed that interneurons expressing a constitutively kinase active PAK3 variant (PAK3-ca) extended shorter leading processes and exhibited unstable polarity. In the upper cortical layers, they entered the cortical plate and extended radially oriented processes. In the deep cortical layers, they exhibited erratic non-processive migration movements and accumulated in the deep pathway. Pharmacological inhibition of PAK3 kinase inhibited the radial migration switch of interneurons to the cortical plate and reduced their accumulation in the deep cortical layers. Interneurons expressing a kinase dead PAK3 variant (PAK3-kd) developed branched leading processes, maintained the same polarity during migration and exhibited processive and tangentially oriented movements in the cortex. These results reveal that PAK3 kinase activity, by promoting leading process shortening and cell polarity changes, inhibits the tangential processive migration of interneurons and favors their radial re- orientation and targeting to the cortical plate. They suggest that patients expressing PAK3 variants with impaired kinase activity likely present alterations in the cortical targeting of their GABAergic interneurons.
Collapse
Affiliation(s)
- Lucie Viou
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Pierre Launay
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Justine Masson
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Clarisse Pace
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
4
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
5
|
Bolamperti S, Saito H, Heerdmann S, Hesse E, Taipaleenmäki H. Tgif1-deficiency impairs cytoskeletal architecture in osteoblasts by activating PAK3 signaling. eLife 2024; 13:RP94265. [PMID: 38661167 PMCID: PMC11045221 DOI: 10.7554/elife.94265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.
Collapse
Affiliation(s)
- Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Sarah Heerdmann
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
6
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
7
|
Barraza-Núñez N, Pérez-Núñez R, Gaete-Ramírez B, Barrios-Garrido A, Arriagada C, Poksay K, John V, Barnier JV, Cárdenas AM, Caviedes P. Pharmacological Inhibition of p-21 Activated Kinase (PAK) Restores Impaired Neurite Outgrowth and Remodeling in a Cellular Model of Down Syndrome. Neurotox Res 2023; 41:256-269. [PMID: 36867391 DOI: 10.1007/s12640-023-00638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Down syndrome (DS) is characterized by the trisomy of chromosome 21 and by cognitive deficits that have been related to neuronal morphological alterations in humans, as well as in animal models. The gene encoding for amyloid precursor protein (APP) is present in autosome 21, and its overexpression in DS has been linked to neuronal dysfunction, cognitive deficit, and Alzheimer's disease-like dementia. In particular, the neuronal ability to extend processes and branching is affected. Current evidence suggests that APP could also regulate neurite growth through its role in the actin cytoskeleton, in part by influencing p21-activated kinase (PAK) activity. The latter effect is carried out by an increased abundance of the caspase cleavage-released carboxy-terminal C31 fragment. In this work, using a neuronal cell line named CTb, which derived from the cerebral cortex of a trisomy 16 mouse, an animal model of human DS, we observed an overexpression of APP, elevated caspase activity, augmented cleavage of the C-terminal fragment of APP, and increased PAK1 phosphorylation. Morphometric analyses showed that inhibition of PAK1 activity with FRAX486 increased the average length of the neurites, the number of crossings per Sholl ring, the formation of new processes, and stimulated the loss of processes. Considering our results, we propose that PAK hyperphosphorylation impairs neurite outgrowth and remodeling in the cellular model of DS, and therefore we suggest that PAK1 may be a potential pharmacological target.
Collapse
Affiliation(s)
- Natalia Barraza-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ramón Pérez-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Barrios-Garrido
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Arriagada
- Department of Anatomy & Forensic Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Varghese John
- Department of Neurology, Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA, USA
| | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, CNRS-Université Paris-Saclay, Gif-Sur-Yvette, France
| | | | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
- Center for Biotechnology & Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology & Materials, Faculty of Physical & Mathematical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
8
|
Bauleo A, Pace V, Montesanto A, De Stefano L, Brando R, Puntorieri D, Cento L, Genuardi M, Falcone E. 3q29 microduplication syndrome: New evidence for the refinement of the critical region. Mol Genet Genomic Med 2023; 11:e2130. [PMID: 36691815 PMCID: PMC10094080 DOI: 10.1002/mgg3.2130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The 3q29 microduplication syndrome is a rare genomic disorder characterized by an extremely variable neurodevelopmental phenotype usually involving a genomic region ranging from 1.6 to 1.76 Mb. A small microduplication of 448.8 Kb containing only two genes was recently described in a patient with a 3q29 microduplication that was proposed as the minimal critical region of overlap of this syndrome. METHODS Molecular karyotyping (array-CGH) was performed on DNA extracted from peripheral blood samples using Agilent-California USA Human Genome CGH Microarray 4 × 180 K. The proband and his younger brother were further tested with a next generation sequencing (NGS) panel including genes implicated in autism spectrum disorder and in neurodevelopmental disorders. Quantitative real-time PCR was applied to verify the abnormal array-CGH findings. RESULTS Here, we report on a family with two males with neurodevelopmental disorders and an unaffected sibling with a small 3q29 microduplication (432.8 Kb) inherited from an unaffected mother that involves only two genes: DGL1 and BDH1. The proband had an additional intragenic duplication inherited from the unaffected father. Further testing was negative for Fragile X syndrome and for genes implicated in autism spectrum disorder and in neurodevelopmental disorders. CONCLUSION To the best of our knowledge, one of the family members here analyzed is the second reported case of a patient carrying a small 3q29 microduplication including only DGL1 and BDH1 genes and without any additional genetic aberration. The recognition of the clinical spectrum in patients with the critical region of overlap associated with the 3q29 duplication syndrome should prove valuable for predicting outcomes and providing more informed genetic counseling to patients with duplications in this region.
Collapse
Affiliation(s)
- Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Vincenza Pace
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Laura De Stefano
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Rossella Brando
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Domenica Puntorieri
- Dipartimento Materno Infantile Neuropsichiatria Infanzia e Adolescenza Rossano - Cariati, Azienda Sanitaria Provinciale di Cosenza, Cosenza, Italy
| | - Luca Cento
- Dipartimento Materno Infantile Neuropsichiatria Infanzia e Adolescenza Rossano - Cariati, Azienda Sanitaria Provinciale di Cosenza, Cosenza, Italy
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| |
Collapse
|
9
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
10
|
Magne N, Rousseau V, Duarte K, Poëa-Guyon S, Gleize V, Mutel A, Schmitt C, Castel H, Idbaih A, Huillard E, Sanson M, Barnier JV. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell Oncol (Dordr) 2021; 44:1257-1271. [PMID: 34550532 DOI: 10.1007/s13402-021-00635-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Gliomas are the most lethal adult primary brain cancers. Recent advances in their molecular characterization have contributed to a better understanding of their pathophysiology, but there is still a need to identify key genes controling glioma cell proliferation and differentiation. The p21-activated kinases PAK1 and PAK2 play essential roles in cell division and brain development and are well-known oncogenes. In contrast, the role of PAK3 in cancer is poorly understood. It is known, however, that this gene is involved in brain ontogenesis and has been identified as a gene of the proneural subtype signature in glioblastomas. METHODS To better understand the role of PAK kinases in the pathophysiology of gliomas, we conducted expression analyses by querying multiple gene expression databases and analyzing primary human glioma samples. We next studied PAK3 expression upon differentiation in patient-derived cell lines (PDCLs) and the effects of PAK3 inhibition by lentiviral-mediated shRNA on glioma cell proliferation, differentiation and tumor growth. RESULTS We show that contrary to PAK1 and PAK2, high PAK3 expression positively correlates with a longer survival of glioma patients. We also found that PAK3 displays differential expression patterns between glioma sub-groups with a higher expression in 1p/19q-codeleted oligodendrogliomas, and is highly expressed in tumors and PDCLs of the proneural subtype. In PDCLs, high PAK3 expression negatively correlated with proliferation and positively correlated with neuronal differentiation. Inhibition of PAK3 expression increased PDCL proliferation and glioma tumor growth in nude mice. CONCLUSIONS Our results indicate that PAK3 plays a unique role among PAKs in glioma development and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Nathalie Magne
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Véronique Rousseau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Kévin Duarte
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sandrine Poëa-Guyon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Vincent Gleize
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Alexandre Mutel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire Différenciation Et Communication Neuronale Et Neuroendocrine, Institut de Recherche Et D'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Charlotte Schmitt
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Hélène Castel
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire Différenciation Et Communication Neuronale Et Neuroendocrine, Institut de Recherche Et D'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Jean-Vianney Barnier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
12
|
Castillon C, Gonzalez L, Domenichini F, Guyon S, Da Silva K, Durand C, Lestaevel P, Vaillend C, Laroche S, Barnier JV, Poirier R. The intellectual disability PAK3 R67C mutation impacts cognitive functions and adult hippocampal neurogenesis. Hum Mol Genet 2021; 29:1950-1968. [PMID: 31943058 DOI: 10.1093/hmg/ddz296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
The link between mutations associated with intellectual disability (ID) and the mechanisms underlying cognitive dysfunctions remains largely unknown. Here, we focused on PAK3, a serine/threonine kinase whose gene mutations cause X-linked ID. We generated a new mutant mouse model bearing the missense R67C mutation of the Pak3 gene (Pak3-R67C), known to cause moderate to severe ID in humans without other clinical signs and investigated hippocampal-dependent memory and adult hippocampal neurogenesis. Adult male Pak3-R67C mice exhibited selective impairments in long-term spatial memory and pattern separation function, suggestive of altered hippocampal neurogenesis. A delayed non-matching to place paradigm testing memory flexibility and proactive interference, reported here as being adult neurogenesis-dependent, revealed a hypersensitivity to high interference in Pak3-R67C mice. Analyzing adult hippocampal neurogenesis in Pak3-R67C mice reveals no alteration in the first steps of adult neurogenesis, but an accelerated death of a population of adult-born neurons during the critical period of 18-28 days after their birth. We then investigated the recruitment of hippocampal adult-born neurons after spatial memory recall. Post-recall activation of mature dentate granule cells in Pak3-R67C mice was unaffected, but a complete failure of activation of young DCX + newborn neurons was found, suggesting they were not recruited during the memory task. Decreased expression of the KCC2b chloride cotransporter and altered dendritic development indicate that young adult-born neurons are not fully functional in Pak3-R67C mice. We suggest that these defects in the dynamics and learning-associated recruitment of newborn hippocampal neurons may contribute to the selective cognitive deficits observed in this mouse model of ID.
Collapse
Affiliation(s)
- Charlotte Castillon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Laurine Gonzalez
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Florence Domenichini
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Sandrine Guyon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Kevin Da Silva
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Christelle Durand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Jean-Vianney Barnier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Roseline Poirier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
13
|
Disruption of the autism-related gene Pak1 causes stereocilia disorganization, hair cell loss, and deafness in mice. J Genet Genomics 2021; 48:324-332. [PMID: 34049799 DOI: 10.1016/j.jgg.2021.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 01/06/2023]
Abstract
Several clinical studies have reported that hearing loss is correlated with autism in children. However, little is known about the underlying mechanism between hearing loss and autism. p21-activated kinases (PAKs) are a family of serine/threonine kinases that can be activated by multiple signaling molecules, particularly the Rho family of small GTPases. Previous studies have shown that Pak1 mutations are associated with autism. In the present study, we take advantage of Pak1 knockout (Pak1-/-) mice to investigate the role of PAK1 in hearing function. We find that PAK1 is highly expressed in the postnatal mouse cochlea and that PAK1 deficiency leads to hair cell (HC) apoptosis and severe hearing loss. Further investigation indicates that PAK1 deficiency downregulates the phosphorylation of cofilin and ezrin-radixin-moesin and the expression of βII-spectrin, which further decreases the HC synapse density in the basal turn of cochlea and disorganized the HC stereocilia in all three turns of cochlea in Pak1-/- mice. Overall, our work demonstrates that the autism-related gene Pak1 plays a crucial role in hearing function. As the first candidate gene linking autism and hearing loss, Pak1 may serve as a potential target for the clinical diagnosis of autism-related hearing loss.
Collapse
|
14
|
Corrêa T, Santos-Rebouças CB, Mayndra M, Schinzel A, Riegel M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes (Basel) 2021; 12:genes12050632. [PMID: 33922640 PMCID: PMC8146713 DOI: 10.3390/genes12050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal duplications are associated with a large group of human diseases that arise mainly from dosage imbalance of genes within the rearrangements. Phenotypes range widely but are often associated with global development delay, intellectual disability, autism spectrum disorders, and multiple congenital abnormalities. How different contiguous genes from a duplicated genomic region interact and dynamically affect the expression of each other remains unclear in most cases. Here, we report a genomic comparative delineation of genes located in duplicated chromosomal regions 8q24.13q24.3, 18p11.32p11.21, and Xq22.3q27.2 in three patients followed up at our genetics service who has the intellectual disability (ID) as a common phenotype. We integrated several genomic data levels by identification of gene content within the duplications, protein-protein interactions, and functional analysis on specific tissues. We found functional relationships among genes from three different duplicated chromosomal regions, reflecting interactions of protein-coding genes and their involvement in common cellular subnetworks. Furthermore, the sharing of common significant biological processes associated with ID has been demonstrated between proteins from the different chromosomal regions. Finally, we elaborated a shared model of pathways directly or indirectly related to the central nervous system (CNS), which could perturb cognitive function and lead to ID in the three duplication conditions.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
| | - Cíntia B. Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20511-010, Brazil;
| | - Maytza Mayndra
- Children’s Hospital Jeser Amarante Faria, Joinville 89204-310, Brazil;
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland;
| | - Mariluce Riegel
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Correspondence:
| |
Collapse
|
15
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
16
|
Liu JJ, Chiu YT, Chen C, Huang P, Mann M, Liu-Chen LY. Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology 2020; 181:108324. [PMID: 32976891 DOI: 10.1016/j.neuropharm.2020.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Kappa opioid receptor (KOR) agonists possess adverse dysphoric and psychotomimetic effects, thus limiting their applications as non-addictive anti-pruritic and analgesic agents. Here, we showed that protein kinase C (PKC) inhibition preserved the beneficial antinociceptive and antipruritic effects of KOR agonists, but attenuated the adverse condition placed aversion (CPA), sedation, and motor incoordination in mice. Using a large-scale mass spectrometry-based phosphoproteomics of KOR-mediated signaling in the mouse brain, we observed PKC-dependent modulation of G protein-coupled receptor kinases and Wnt pathways at 5 min; stress signaling, cytoskeleton, mTOR signaling and receptor phosphorylation, including cannabinoid receptor CB1 at 30 min. We further demonstrated that inhibition of CB1 attenuated KOR-mediated CPA. Our results demonstrated the feasibility of in vivo biochemical dissection of signaling pathways that lead to side effects.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Chongguang Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Peng Huang
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
19
|
Post-Treatment with Erinacine A, a Derived Diterpenoid of H. erinaceus, Attenuates Neurotoxicity in MPTP Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9020137. [PMID: 32033220 PMCID: PMC7070543 DOI: 10.3390/antiox9020137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
Hericium erinaceus, a valuable pharmaceutical and edible mushroom, contains potent bioactive compounds such as H. erinaceus mycelium (HEM) and its derived ethanol extraction of erinacine A, which have been found to regulate physiological functions in our previous study. However, HEM or erinacine A with post-treatment regimens also shows effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, but its mechanisms remain unknown. By using annexin-V–fluorescein-isothiocyanate (FITC)/propidium iodide staining and a 2’,7’ –dichlorofluorescin diacetate (DCFDA) staining assay, the cell death, cell viability, and reactive oxygen species (ROS) of 1-methyl-4-phenylpyridinium (MMP+)-treated Neuro-2a (N2a) cells with or without erinacine A addition were measured, respectively. Furthermore, signaling molecules for regulating the p21/GADD45 cell death pathways and PAKalpha, p21 (RAC1) activated kinase 1 (PAK1) survival pathways were also detected in the cells treated with MPP+ and erinacine A by Western blots. In neurotoxic animal models of MPTP induction, the effects of HEM or erinacine A and its mechanism in vivo were determined by measuring the TH-positive cell numbers and the protein level of the substantia nigra through a brain histological examination. Our results demonstrated that post-treatment with erinacine A was capable of preventing the cytotoxicity of neuronal cells and the production of ROS in vitro and in vivo through the neuroprotective mechanism for erinacine A to rescue the neurotoxicity through the disruption of the IRE1α/TRAF2 interaction and the reduction of p21 and GADD45 expression. In addition, erinacine A treatment activated the conserved signaling pathways for neuronal survival via the phosphorylation of PAK1, AKT, LIM domain kinase 2 (LIMK2), extracellular signal-regulated kinases (ERK), and Cofilin. Similar changes in the signal molecules also were found in the substantia nigra of the MPTP, which caused TH+ neuron damage after being treated with erinacine A in the post-treatment regimens in a dose-dependent manner. Taken together, our data indicated a novel mechanism for post-treatment with erinacine A to protect from neurotoxicity through regulating neuronal survival and cell death pathways.
Collapse
|
20
|
Mei X, Tan G, Qing W. AMPK activation increases postoperative cognitive impairment in intermittent hypoxia rats via direct activating PAK2. Behav Brain Res 2020; 379:112344. [DOI: 10.1016/j.bbr.2019.112344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
|
21
|
Gong CC, Li TT, Pei DS. PAK6: a potential anti-cancer target. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Dong-Sheng Pei
- Xuzhou Medical University, China; Xuzhou Medical University, China
| |
Collapse
|
22
|
Duarte K, Heide S, Poëa-Guyon S, Rousseau V, Depienne C, Rastetter A, Nava C, Attié-Bitach T, Razavi F, Martinovic J, Moutard ML, Cherfils J, Mignot C, Héron D, Barnier JV. PAK3 mutations responsible for severe intellectual disability and callosal agenesis inhibit cell migration. Neurobiol Dis 2019; 136:104709. [PMID: 31843706 DOI: 10.1016/j.nbd.2019.104709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023] Open
Abstract
Corpus callosum agenesis (CCA) is a brain malformation associated with a wide clinical spectrum including intellectual disability (ID) and an etiopathological complexity. We identified a novel missense G424R mutation in the X-linked p21-activated kinase 3 (PAK3) gene in a boy presenting with severe ID, microcephaly and CCA and his fetal sibling with CCA and severe hydrocephaly. PAK3 kinase is known to control synaptic plasticity and dendritic spine dynamics but its implication is less characterized in brain ontogenesis. In order to identify developmental functions of PAK3 impacted by mutations responsible for CCA, we compared the biochemical and biological effects of three PAK3 mutations localized in the catalytic domain. These mutations include two "severe" G424R and K389N variants (responsible for severe ID and CCA) and the "mild" A365E variant (responsible for nonsyndromic mild ID). Whereas they suppressed kinase activity, only the two severe variants displayed normal protein stability. Furthermore, they increased interactions between PAK3 and the guanine exchange factor αPIX/ARHGEF6, disturbed adhesion point dynamics and cell spreading, and severely impacted cell migration. Our findings highlight new molecular defects associated with mutations responsible for severe clinical phenotypes with developmental brain defects.
Collapse
Affiliation(s)
- Kévin Duarte
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Solveig Heide
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Sandrine Poëa-Guyon
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Véronique Rousseau
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Christel Depienne
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France; Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Agnès Rastetter
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Caroline Nava
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Tania Attié-Bitach
- Unité d'Embryofoetopathologie, Service of Histology-Embryology-Cytogenetics, APHP Necker Enfants Malades & Imagine Institute, Inserm U1163, Paris, France.
| | - Ferechté Razavi
- Unité d'Embryofoetopathologie, Service of Histology-Embryology-Cytogenetics, APHP Necker Enfants Malades & Imagine Institute, Inserm U1163, Paris, France
| | | | - Marie Laure Moutard
- Department of Pediatrics Neurology, Reference Center for Intellectual Disabilities of Rare Causes APHP, Armand-Trousseau Hospital, Paris, France.
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole normale supérieure Paris-Saclay, Cachan, France.
| | - Cyril Mignot
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Delphine Héron
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Jean-Vianney Barnier
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| |
Collapse
|
23
|
Baba M, Yokoyama K, Seiriki K, Naka Y, Matsumura K, Kondo M, Yamamoto K, Hayashida M, Kasai A, Ago Y, Nagayasu K, Hayata-Takano A, Takahashi A, Yamaguchi S, Mori D, Ozaki N, Yamamoto T, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome. Neuropsychopharmacology 2019; 44:2125-2135. [PMID: 31216562 PMCID: PMC6887869 DOI: 10.1038/s41386-019-0441-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 01/23/2023]
Abstract
3q29 microdeletion, a rare recurrent copy number variant (CNV), greatly confers an increased risk of psychiatric disorders, such as schizophrenia and autism spectrum disorder (ASD), as well as intellectual disability. However, disease-relevant cellular phenotypes of 3q29 deletion syndrome remain to be identified. To reveal the molecular and cellular etiology of 3q29 deletion syndrome, we generated a mouse model of human 3q29 deletion syndrome by chromosome engineering, which achieved construct validity. 3q29 deletion (Df/+) mice showed reduced body weight and brain volume and, more importantly, impaired social interaction and prepulse inhibition. Importantly, the schizophrenia-related impaired prepulse inhibition was reversed by administration of antipsychotics. These findings are reminiscent of the growth defects and neuropsychiatric behavioral phenotypes in patients with 3q29 deletion syndrome and exemplify that the mouse model achieves some part of face validity and predictive validity. Unbiased whole-brain imaging revealed that neuronal hyperactivation after a behavioral task was strikingly exaggerated in a restricted region of the cortex of Df/+ mice. We further elucidated the cellular phenotypes of neuronal hyperactivation and the reduction of parvalbumin expression in the cortex of Df/+ mice. Thus, the 3q29 mouse model provides invaluable insight into the disease-causative molecular and cellular pathology of psychiatric disorders.
Collapse
Affiliation(s)
- Masayuki Baba
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Kazumasa Yokoyama
- 0000 0001 0673 6017grid.419841.1Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa Fujisawa, 251-8555 Japan
| | - Kaoru Seiriki
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0373 3971grid.136593.bInterdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yuichiro Naka
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Kensuke Matsumura
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0373 3971grid.136593.bInterdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0614 710Xgrid.54432.34Research Fellowships for Young Scientists of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Momoka Kondo
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Kana Yamamoto
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Misuzu Hayashida
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Atsushi Kasai
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yukio Ago
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0373 3971grid.136593.bLaboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Kazuki Nagayasu
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Atsuko Hayata-Takano
- 0000 0004 0373 3971grid.136593.bLaboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0373 3971grid.136593.bMolecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871 Japan
| | - Akinori Takahashi
- 0000 0000 9805 2626grid.250464.1Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495 Japan
| | - Shun Yamaguchi
- 0000 0004 0370 4927grid.256342.4Department of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan ,0000 0004 0370 4927grid.256342.4Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, 501-1194 Japan
| | - Daisuke Mori
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Nagoya, 466-8550 Japan ,0000 0001 0943 978Xgrid.27476.30Brain and Mind Research Center, Nagoya University, Aichi, Nagoya, 466-8550 Japan
| | - Norio Ozaki
- 0000 0001 0943 978Xgrid.27476.30Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Nagoya, 466-8550 Japan
| | - Tadashi Yamamoto
- 0000 0000 9805 2626grid.250464.1Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495 Japan ,0000000094465255grid.7597.cLaboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, Kanagawa Yokohama, 230-0045 Japan
| | - Kazuhiro Takuma
- 0000 0004 0373 3971grid.136593.bMolecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871 Japan ,0000 0004 0373 3971grid.136593.bDepartment of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ryota Hashimoto
- 0000 0004 1763 8916grid.419280.6Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553 Japan ,0000 0004 0373 3971grid.136593.bOsaka University, Suita, Osaka 565-0871 Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan. .,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan. .,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis. Biochem J 2019; 476:1037-1051. [PMID: 30858169 PMCID: PMC6448136 DOI: 10.1042/bcj20180867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
The group A p21-activated kinases (PAKs) exist in an auto-inhibited form until activated by GTPase binding and auto-phosphorylation. In the auto-inhibited form, a regulatory domain binds to the kinase domain (KD) blocking the binding of substrates, and CDC42 or Rac binding to the regulatory domain relieves this auto-inhibition allowing auto-phosphorylation on the KD activation loop. We have determined the crystal structure of the PAK3 catalytic domain and by small angle X-ray scattering, the solution-phase structures of full-length inactive PAK1 and PAK3. The structures reveal a compact but elongated molecular shape that demonstrates that, together with multiple independent biophysical measurements and in contrast with previous assumptions, group A PAKs are monomeric both before and after activation, consistent with an activation mechanism of cis-auto-inhibition and initial cis-auto-phosphorylation, followed by transient dimerisation to allow trans-auto-phosphorylation for full activation, yielding a monomeric active PAK protein.
Collapse
|
25
|
Yao GW, Bai JR, Zhang DP. P21 activated kinase 2 promotes pancreatic cancer growth and metastasis. Oncol Lett 2019; 17:3709-3718. [PMID: 30930982 PMCID: PMC6425405 DOI: 10.3892/ol.2019.10040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has an overall 5-year survival rate of only 9%, due to its rapid metastasis and poor prognosis. To combat this disease, novel therapeutic targets and biomarkers are required. In this study, immunohistochemistry was used to detect the expression of P21 activated kinase 2 (PAK2) protein in the tissues of cancer and the paired adjacent normal tissues. The association between PAK2 and the clinicopathologic features of patients with pancreatic cancer was subsequently analyzed. The results indicated that PAK2 was overexpressed in the cancer tissues, which indicated high pTNM stage, poor tumor grade, lymph node metastasis and vascular invasion. In addition, the results demonstrated evidence of a close association between PAK2 expression and poor prognosis of patients with pancreatic cancer. The results also suggested that PAK2 may promote pancreatic cancer cell proliferation and migration in vitro through clone formation, MTT, wound healing and Transwell assays. The present study further identified that PAK2 could stimulate pancreatic cancer growth and metastasis in mice. Decreased expression of proliferation marker protein Ki-67 and proliferating cell nuclear antigen in response to PAK2 knockdown further verified the role of PAK2 in promoting cell proliferation by western blot analysis. In addition, the expression levels of matrix metallopeptidase (MMP) 2 and MMP9 were decreased in PANC1 and BxPC3 cell lines transfected with PAK2-short hairpin RNA as indicated in western blot analysis, suggesting a function of PAK2 in promoting cell invasion. Collectively, these findings revealed a critical role for PAK2 in the development of pancreatic cancer and may have important implications for the management of this disease.
Collapse
Affiliation(s)
- Guo-Wang Yao
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jing-Rui Bai
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Da-Peng Zhang
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
26
|
Biswal J, Jayaprakash P, Suresh Kumar R, Venkatraman G, Poopandi S, Rangasamy R, Jeyaraman J. Identification of Pak1 inhibitors using water thermodynamic analysis. J Biomol Struct Dyn 2019; 38:13-31. [PMID: 30661460 DOI: 10.1080/07391102.2019.1567393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.
Collapse
Affiliation(s)
- Jayashree Biswal
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Prajisha Jayaprakash
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Rayala Suresh Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Saritha Poopandi
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Raghu Rangasamy
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| |
Collapse
|
27
|
Nie J, Sun C, Chang Z, Musi N, Shi Y. SAD-A Promotes Glucose-Stimulated Insulin Secretion Through Phosphorylation and Inhibition of GDIα in Male Islet β Cells. Endocrinology 2018; 159:3036-3047. [PMID: 29873699 PMCID: PMC6693047 DOI: 10.1210/en.2017-03243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Rho GDP-dissociation inhibitor (GDIα) inhibits glucose-stimulated insulin secretion (GSIS) in part by locking Rho GTPases in an inactive GDP-bound form. The onset of GSIS causes phosphorylation of GDIα at Ser174, a critical inhibitory site for GDIα, leading to the release of Rho GTPases and their subsequent activation. However, the kinase regulator(s) that catalyzes the phosphorylation of GDIα in islet β cells remains elusive. We propose that SAD-A, a member of AMP-activated protein kinase-related kinases that promotes GSIS as an effector kinase for incretin signaling, interacts with and inhibits GDIα through phosphorylation of Ser174 during the onset GSIS from islet β cells. Coimmunoprecipitation and phosphorylation analyses were carried out to identify the physical interaction and phosphorylation site of GDIα by SAD-A in the context of GSIS from INS-1 β cells and primary islets. We identified GDIα directly binds to SAD-A kinase domain and phosphorylated by SAD-A on Ser174, leading to dissociation of Rho GTPases from GDIα complexes. Accordingly, overexpression of SAD-A significantly stimulated GDIα phosphorylation at Ser174 in response to GSIS, which is dramatically potentiated by glucagonlike peptide-1, an incretin hormone. Conversely, SAD-A deficiency, which is mediated by short hairpin RNA transfection in INS-1 cells, significantly attenuated endogenous GDIα phosphorylation at Ser174. Consequently, coexpression of SAD-A completely prevented the inhibitory effect of GDIα on insulin secretion in islets. In summary, glucose and incretin stimulate insulin secretion through the phosphorylation of GDIα at Ser174 by SAD-A, which leads to the activation of Rho GTPases, culminating in insulin exocytosis.
Collapse
Affiliation(s)
- Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Correspondence: Jia Nie, PhD, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245. E-mail:
| | - Chao Sun
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Tassano E, Uccella S, Giacomini T, Severino M, Siri L, Gherzi M, Celle ME, Porta S, Gimelli G, Ronchetto P. 3q29 microduplication syndrome: Description of two new cases and delineation of the minimal critical region. Eur J Med Genet 2018; 61:428-433. [PMID: 29501613 DOI: 10.1016/j.ejmg.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Heterogeneous clinical and neuropsychological features, such as intellectual disability, developmental and language delay, hypotonia, and, to a lesser extent, microcephaly that is present in about the half of the reported patients, characterize the 3q29 microduplication syndrome with usually a milder phenotype compared with the corresponding 3q29 microdeletion syndrome. The duplications described so far range from 2.3 Mb to 1.6 Mb, spanning from TFRC to BDH1 genes. Here we report on two patients with overlapping interstitial duplications of the 3q29 region differing in size. Patient 1 harboured a common-seized 3q29 microduplication spanning ∼1.6 Mb, while patient 2 carried a very small 3q29 microduplication of 448.8 Kb encompassing only two genes, DLG1 and BDH1. Both patients presented clinical characteristics similar to those reported in the literature in 3q29 microduplication syndrome. Interestingly, heterotopic gray matter nodules were found along the right lateral ventricle on brain MRI in patient 1, thus expanding the neuroradiological phenotype in 3q29 microduplication syndrome, while patient 2 allowed us to define with more precision the smallest region of overlap (SRO). Gene content analysis of the duplicated region suggests that gain-of-dosage of DLG1 and BDH1 may be a good candidate for the main clinical features of this syndrome.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratory of Cytogenetics, Istituto Giannina Gaslini, Genoa, Italy.
| | - Sara Uccella
- Unit of Child Neuropsychiatry, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | - Thea Giacomini
- Unit of Child Neuropsychiatry, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | | | - Laura Siri
- "La Nostra Famiglia" Association, Varazze (Sv) - Scientific Institute E. Medea, Lecco, Bosisio Parini, Italy
| | - Marcella Gherzi
- Unit of Child Neuropsychiatry, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | - Maria Elena Celle
- Unit of Child Neuropsychiatry, Head Neck and Neuroscience Department, Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Porta
- Laboratory of Cytogenetics, Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Gimelli
- Laboratory of Cytogenetics, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
29
|
Cloning and functional characterization of human Pak1 promoter by steroid hormones. Gene 2017; 646:120-128. [PMID: 29274909 DOI: 10.1016/j.gene.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
P21-activated kinase 1 (Pak1) is known to be involved in a plethora of functions including cell growth, survival and can lead to cell transformation and tumor progression especially in breast tissue. Multiple studies have shown Pak1 dysregulation as a change in DNA copy number as well as gene expression levels, suggesting many regulatory mechanisms at transcriptional and translational level. However, very little is known about the transcriptional regulation of the human Pak1 promoter. Here, we focus on Pak1 promoter regulation by steroid hormones along with their respective receptors that are also crucial players in breast tissue function and tumorigenesis. Our results show high Pak1 expression in breast cancer cell lines and in breast tumor tissue. It also suggests that Pak1 is hormone responsive, whose expression can be modulated by steroid hormones namely, estrogen in the form of 17β-estradiol (E2) and progesterone (P4). Sequence analysis of a 3.2kb Pak1 proximal promoter region shows the presence of PRE (progesterone response element) and ERE (estrogen response element) half sites, that were further cloned and characterized. Results from promoter analysis showed that Pak1 promoter activity is mediated by PR via its binding to PRE present on the Pak1 promoter that was further reaffirmed in vitro by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Our results together suggest that it is the PR isoform B regulates Pak1 promoter. To our knowledge, this is the first study to report the detailed characterization and transcriptional regulation of the human Pak1 promoter by steroid hormones.
Collapse
|
30
|
Wu S, Gan G, Zhang Z, Sun J, Wang Q, Gao Z, Li M, Jin S, Huang J, Thomas U, Jiang YH, Li Y, Tian R, Zhang YQ. A Presynaptic Function of Shank Protein in Drosophila. J Neurosci 2017; 37:11592-11604. [PMID: 29074576 PMCID: PMC6705749 DOI: 10.1523/jneurosci.0893-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Human genetic studies support that loss-of-function mutations in the SH3 domain and ankyrin repeat containing family proteins (SHANK1-3), the large synaptic scaffolding proteins enriched at the postsynaptic density of excitatory synapses, are causative for autism spectrum disorder and other neuropsychiatric disorders in humans. To better understand the in vivo functions of Shank and facilitate dissection of neuropathology associated with SHANK mutations in human, we generated multiple mutations in the Shank gene, the only member of the SHANK family in Drosophila melanogaster Both male and female Shank null mutants were fully viable and fertile with no apparent morphological or developmental defects. Expression analysis revealed apparent enrichment of Shank in the neuropils of the CNS. Specifically, Shank coexpressed with another PSD scaffold protein, Homer, in the calyx of mushroom bodies in the brain. Consistent with high expression in mushroom body calyces, Shank mutants show an abnormal calyx structure and reduced olfactory acuity. These morphological and functional phenotypes were fully rescued by pan-neuronal reexpression of Shank, and only partially rescued by presynaptic but no rescue by postsynaptic reexpression of Shank. Our findings thus establish a previously unappreciated presynaptic function of Shank.SIGNIFICANCE STATEMENT Mutations in SHANK family genes are causative for idiopathic autism spectrum disorder. To understand the neural function of Shank, a large scaffolding protein enriched at the postsynaptic densities, we examined the role of Drosophila Shank in synapse development at the peripheral neuromuscular junctions and the central mushroom body calyx. Our results demonstrate that, in addition to its conventional postsynaptic function, Shank also acts presynaptically in synapse development in the brain. This study offers novel insights into the synaptic role of Shank.
Collapse
Affiliation(s)
- Song Wu
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Guangming Gan
- Medical School, Southeast University, Nanjing 210009, China
| | - Zhiping Zhang
- Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Sun
- College of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Qifu Wang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongbao Gao
- Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meixiang Li
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Jin
- College of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Ulrich Thomas
- Leibniz Institute for Neurobiology, Magdeburg 39118, Germany, and
| | - Yong-Hui Jiang
- Departments of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Yan Li
- Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Tian
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing 100101, China,
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
31
|
Civiero L, Greggio E. PAKs in the brain: Function and dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1864:444-453. [PMID: 29129728 DOI: 10.1016/j.bbadis.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
p21-Activated kinases (PAKs) comprise a family of proteins covering a central role in signal transduction. They are downstream effectors of Rho GTPases and can affect a variety of processes in different cell types and tissues by remodeling the cytoskeleton and by promoting gene transcription and cell survival. Given the relevance of cytoskeletal organization in neuronal development as well as synaptic function and the importance of pro-survival signals in controlling neuronal cell fate, accumulating studies investigated the role of PAKs in the nervous system. In this review, we provide a critical overview of the role of PAKs in the nervous system, both in neuronal and non-neuronal cells, and discuss their potential link with neurodegenerative diseases.
Collapse
|
32
|
Li Y, Zhao M, Guo C, Chu H, Li W, Chen X, Wang X, Li Y, Jia Y, Koussatidjoa S, Zhu F, Wang J, Wang X, Wang Q, Zhao W, Shi Y, Chen W, Zhang L. Intracellular mature IL-37 suppresses tumor metastasis via inhibiting Rac1 activation. Oncogene 2017; 37:1095-1106. [PMID: 29106392 DOI: 10.1038/onc.2017.405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 06/24/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022]
Abstract
IL-37, a newly found anti-inflammatory cytokine of the IL-1 family, has both extracellular and intracellular functions. Accumulating evidences indicate that it is also involved in tumor progression. However, the mechanism and its intracellular target are unclear. In this study, clinical data from 84 patients showed that loss or reduced expression of IL-37 in lung adenocarcinoma tissues was significantly associated with tumor metastasis. We further provided evidence that IL-37 inhibited effectively tumor metastasis in vitro and in vivo. Moreover, we uncovered a novel mechanism by which IL-37 suppressed tumor cell migration via its intracellular mature form (amino acids 46-218). Intracellular mature form of IL-37, but not its extracellular form, markedly inhibited migration of multiple kinds of tumor cells through inhibiting Rac1 activation. Mechanistically, intracellular mature IL-37 directly bound to the CAAX motif in the C-terminal hypervariable region of Rac1, and then inhibited Rac1 membrane translocation and subsequent downstream signaling. Our research identifies intracellular mature IL-37 as a novel endogenous inhibitor of Rac1. Given the crucial roles of Rac1 in tumor angiogenesis and metastasis, intracellular mature IL-37 might serve as a potential strategy for the control of Rac1 activity and tumor progression.
Collapse
Affiliation(s)
- Y Li
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - M Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - C Guo
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - H Chu
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - W Li
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - X Chen
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - X Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Y Li
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Y Jia
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - S Koussatidjoa
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - F Zhu
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - J Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - X Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Q Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - W Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Y Shi
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| | - W Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - L Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan, China
| |
Collapse
|
33
|
Gugliandolo A, Diomede F, Cardelli P, Bramanti A, Scionti D, Bramanti P, Trubiani O, Mazzon E. Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: A promising strategy for neuroregeneration. J Biomed Mater Res A 2017; 106:126-137. [PMID: 28879677 DOI: 10.1002/jbm.a.36213] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
The combined approach of mesenchymal stem cells (MSCs) and scaffolds has been proposed as a potential therapeutic tool for the treatment of neurodegenerative diseases. Indeed, even if MSCs can promote neuronal regeneration, replacing lost neurons or secreting neurotrophic factors, many limitations still exist for their application in regenerative medicine, including the low survival and differentiation rate. The scaffolds, by mimicking the endogenous microenvironment, have shown to promote cell survival, proliferation, and differentiation. In this work, gingival mesenchymal stem cells (GMSCs), isolated from healthy donors, were expanded in vitro, by culturing them adherent in plastic dishes (CTR-GMSCs) or on a poly(lactic acid) scaffold (SC-GMSCs). In order to evaluate the survival and the neurogenic differentiation potential, we performed a comparative transcriptomic analysis between CTR-GMSCs and SC-GMSCs by next generation sequencing. We found that SC-GMSCs showed an increased expression of neurogenic and prosurvival genes. In particular, genes involved in neurotrophin signaling and PI3K/Akt pathways were upregulated. On the contrary, proapoptotic and negative regulator of neuronal growth genes were downregulated. Moreover, nestin and GAP-43 protein levels increased in SC-GMSCs, confirming the neurogenic commitment of these cells. In conclusion, the scaffold, providing a trophic support for MSCs, may promote GMSCs differentiation toward a neuronal phenotype and survival. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 126-137, 2018.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Cardelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.,Institute of Applied Science and Intelligent Systems "ISASI Eduardo Caianiello,", National Research Council of Italy, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio," Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo," Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
34
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
35
|
Dagliyan O, Karginov AV, Yagishita S, Gale ME, Wang H, DerMardirossian C, Wells CM, Dokholyan NV, Kasai H, Hahn KM. Engineering Pak1 Allosteric Switches. ACS Synth Biol 2017; 6:1257-1262. [PMID: 28365983 DOI: 10.1021/acssynbio.6b00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineered domain inserted away from the active site responds to rapamycin to allosterically control activity of the PAK1 isoform. To examine the mechanism of rapamycin-induced PAK1 activation, we used molecular dynamics with graph theory to predict amino acids involved in allosteric communication with the active site. This analysis revealed allosteric pathways that were exploited to generate kinase switches. Activation of PAK1 resulted in transient cell spreading in metastatic breast cancer cells, and long-term dendritic spine enlargement in mouse hippocampal CA1 neurons.
Collapse
Affiliation(s)
| | - Andrei V. Karginov
- Department
of Pharmacology, University of Illinois at Chicago, Chicago Illinois 60612, United States
| | - Sho Yagishita
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | - Madeline E. Gale
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Celine DerMardirossian
- Department
of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, United States
| | - Claire M. Wells
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Haruo Kasai
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | | |
Collapse
|
36
|
Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2017; 484:323-330. [DOI: 10.1016/j.bbrc.2017.01.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
|
37
|
Varshney P, Dey CS. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2). Biochem Biophys Res Commun 2017; 485:372-378. [PMID: 28216158 DOI: 10.1016/j.bbrc.2017.02.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
We have recently reported P21-activated kinase 2 (PAK2), a serine/threonine kinase as a negative regulator of neuronal glucose uptake and insulin sensitivity. Resveratrol (RSV), a natural polyphenol with anti-oxidative, anti-inflammatory and anti-diabetic properties, regulates PAK2 activity in HepG2 and ESC-B5 cell apoptosis. However, regulation of PAK2 by RSV in neuronal insulin signaling pathway, if any, is still unknown. In the present study, RSV treatment significantly increased PAK2 activity under insulin-sensitive and insulin-resistant condition, along with a marked decrease in glucose uptake in differentiated N2A cells. Pretreatment with AMPK inhibitor, followed by RSV treatment resulted in reduction in PAK2 activity whereas glucose uptake showed an increase. However, pretreatment with Akt inhibitor and then RSV exposure significantly increased PAK2 activity, with a corresponding decrease in glucose uptake. RSV treatment increased AMPK activity and decreased Akt activity. In conclusion, RSV negatively regulates neuronal glucose uptake and insulin sensitivity via PAK2.
Collapse
Affiliation(s)
- Pallavi Varshney
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
38
|
Franchi SA, Astro V, Macco R, Tonoli D, Barnier JV, Botta M, de Curtis I. Identification of a Protein Network Driving Neuritogenesis of MGE-Derived GABAergic Interneurons. Front Cell Neurosci 2016; 10:289. [PMID: 28066185 PMCID: PMC5174131 DOI: 10.3389/fncel.2016.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022] Open
Abstract
Interneurons are essential modulators of brain activity and their abnormal maturation may lead to neural and intellectual disabilities. Here we show that cultures derived from murine medial ganglionic eminences (MGEs) produce virtually pure, polarized γ-aminobutyric acid (GABA)-ergic interneurons that can form morphologically identifiable inhibitory synapses. We show that Rac GTPases and a protein complex including the GIT family scaffold proteins are expressed during maturation in vitro, and are required for the normal development of neurites. GIT1 promotes neurite extension in a conformation-dependent manner, while affecting its interaction with specific partners reduces neurite branching. Proteins of the GIT network are concentrated at growth cones, and interaction mutants may affect growth cone behavior. Our findings identify the PIX/GIT1/liprin-α1/ERC1 network as critical for the regulation of interneuron neurite differentiation in vitro, and show that these cultures represent a valuable system to identify the molecular mechanisms driving the maturation of cortical/hippocampal interneurons.
Collapse
Affiliation(s)
- Sira A Franchi
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Veronica Astro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Romina Macco
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, Centre National de la Recherche Scientifique-Université Paris-Sud Orsay, France
| | - Martina Botta
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and San Raffaele University Milano, Italy
| |
Collapse
|
39
|
Maglorius Renkilaraj MRL, Baudouin L, Wells CM, Doulazmi M, Wehrlé R, Cannaya V, Bachelin C, Barnier JV, Jia Z, Nait Oumesmar B, Dusart I, Bouslama-Oueghlani L. The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 2016; 98:137-148. [PMID: 27940202 DOI: 10.1016/j.nbd.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022] Open
Abstract
Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation.
Collapse
Affiliation(s)
| | - Lucas Baudouin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | | | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et vieillissement, F-75005 Paris, France
| | - Rosine Wehrlé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Vidjeacoumary Cannaya
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Corinne Bachelin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, CNRS-Université Paris-Sud, UMR9197, F-91405 Orsay, France
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, 555 University, Toronto, Ontario M5G 1X8, Canada
| | - Brahim Nait Oumesmar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France.
| |
Collapse
|
40
|
Lee G, Schwarz TL. Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth. eLife 2016; 5. [PMID: 27914199 PMCID: PMC5173320 DOI: 10.7554/elife.19991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022] Open
Abstract
Filamin is a scaffolding protein that functions in many cells as an actin-crosslinker. FLN90, an isoform of the Drosophila ortholog Filamin/cheerio that lacks the actin-binding domain, is here shown to govern the growth of postsynaptic membrane folds and the composition of glutamate receptor clusters at the larval neuromuscular junction. Genetic and biochemical analyses revealed that FLN90 is present surrounding synaptic boutons. FLN90 is required in the muscle for localization of the kinase dPak and, downstream of dPak, for localization of the GTPase Ral and the exocyst complex to this region. Consequently, Filamin is needed for growth of the subsynaptic reticulum. In addition, in the absence of filamin, type-A glutamate receptor subunits are lacking at the postsynapse, while type-B subunits cluster correctly. Receptor composition is dependent on dPak, but independent of the Ral pathway. Thus two major aspects of synapse formation, morphological plasticity and subtype-specific receptor clustering, require postsynaptic Filamin. DOI:http://dx.doi.org/10.7554/eLife.19991.001
Collapse
Affiliation(s)
- GaYoung Lee
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas L Schwarz
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Schulte C, Ripamonti M, Maffioli E, Cappelluti MA, Nonnis S, Puricelli L, Lamanna J, Piazzoni C, Podestà A, Lenardi C, Tedeschi G, Malgaroli A, Milani P. Scale Invariant Disordered Nanotopography Promotes Hippocampal Neuron Development and Maturation with Involvement of Mechanotransductive Pathways. Front Cell Neurosci 2016; 10:267. [PMID: 27917111 PMCID: PMC5114288 DOI: 10.3389/fncel.2016.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation.
Collapse
Affiliation(s)
- Carsten Schulte
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di MilanoMilan, Italy; Fondazione FilareteMilan, Italy
| | - Maddalena Ripamonti
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Elisa Maffioli
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Martino A Cappelluti
- Fondazione FilareteMilan, Italy; SEMM - European School of Molecular MedicineMilan, Italy
| | - Simona Nonnis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano Milan, Italy
| | - Luca Puricelli
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Jacopo Lamanna
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Claudio Piazzoni
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Alessandro Podestà
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Cristina Lenardi
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Gabriella Tedeschi
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Paolo Milani
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
42
|
Expression of p21-activated kinases 1 and 3 is altered in the brain of subjects with depression. Neuroscience 2016; 333:331-44. [PMID: 27474226 DOI: 10.1016/j.neuroscience.2016.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). These abnormalities are likely to contribute to the pathology of depression and, in part, reflect impaired cytoskeleton remodeling pointing to the role of Rho GTPase signaling. Thus, the present study assessed the expression of the group I PAKs and their activators in the brain of depressed subjects. Using quantitative polymerase chain reaction (qPCR), mRNA levels and coexpression of the group I PAKs: PAK1, PAK2, and PAK3 as well as of their activators: RAC1, CDC42 and ARHGEF7 were examined in postmortem samples from the PFC (n=25) and the hippocampus (n=23) of subjects with depression and compared to control subjects (PFC n=24; hippocampus n=21). Results demonstrated that mRNA levels of PAK1 and PAK3, are significantly reduced in the brain of depressed subjects, with PAK1 being reduced in the PFC and PAK3 in the hippocampus. No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression.
Collapse
|
43
|
Kong D, Dagon Y, Campbell JN, Guo Y, Yang Z, Yi X, Aryal P, Wellenstein K, Kahn BB, Sabatini BL, Lowell BB. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron 2016; 91:25-33. [PMID: 27321921 PMCID: PMC4938763 DOI: 10.1016/j.neuron.2016.05.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/03/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
Abstract
AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity.
Collapse
Affiliation(s)
- Dong Kong
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02215, USA; Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02135, USA.
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Yikun Guo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA; Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02135, USA
| | - Zongfang Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Xinchi Yi
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02135, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA.
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Varshney P, Dey CS. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells. Mol Cell Endocrinol 2016; 429:50-61. [PMID: 27040307 DOI: 10.1016/j.mce.2016.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity.
Collapse
Affiliation(s)
- Pallavi Varshney
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
45
|
Kim DJ, Choi CK, Lee CS, Park MH, Tian X, Kim ND, Lee KI, Choi JK, Ahn JH, Shin EY, Shin I, Kim EG. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain. Exp Mol Med 2016; 48:e229. [PMID: 27126178 PMCID: PMC4855275 DOI: 10.1038/emm.2016.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/09/2022] Open
Abstract
p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors.
Collapse
Affiliation(s)
- Duk-Joong Kim
- Research Institute and Quality Management Team, NanoPharm Corp., Jincheon-gun, Korea
| | - Chang-Ki Choi
- Division of Planning and Research, Korea National Institute of Health, KCDC, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Chan-Soo Lee
- Livestock Products Standard Division, Food Standard Planning Office, Food Safety Policy Bureau, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Mee-Hee Park
- Division of Medical Science Knowledge Management, Center of Biomedical Sciences, Korea National Institutes of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Xizhe Tian
- Department of Chemistry, Yanbian University, Yanji, China
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kee-In Lee
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Joong-Kwon Choi
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Jin Hee Ahn
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Eun-Young Shin
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
46
|
Pérez-Núñez R, Barraza N, Gonzalez-Jamett A, Cárdenas AM, Barnier JV, Caviedes P. Overexpressed Down Syndrome Cell Adhesion Molecule (DSCAM) Deregulates P21-Activated Kinase (PAK) Activity in an In Vitro Neuronal Model of Down Syndrome: Consequences on Cell Process Formation and Extension. Neurotox Res 2016; 30:76-87. [PMID: 26966010 DOI: 10.1007/s12640-016-9613-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
In humans, Down syndrome (DS) is caused by the presence of an extra copy of autosome 21. The most striking finding in DS patients is intellectual disability and the onset of Alzheimer's disease (AD)-like neuropathology in adulthood. Gene overdose is most likely to underlie both developmental impairments, as well as altered neuronal function in DS. Lately, the disruption of cellular signaling and regulatory pathways has been implicated in DS pathophysiology, and many of such pathways may represent common targets for diverse DS-related genes, which could in turn represent attractive therapeutical targets. In this regard, one DS-related gene Down Syndrome Cell Adhesion Molecule (DSCAM), has important functions in neuronal proliferation, maturation, and synaptogenesis. p21-associated kinases (PAKs) appear as a most interesting possibility for study, as DSCAM is known to regulate the PAKs pathway. Hence, in DS, overexpressed DSCAM could deregulate PAKs activity and affect signaling pathways that regulate synaptic plasticity such as dendritic spine dynamics and axon guidance and growth. In the present work, we used an immortalized cell line derived from the cerebral cortex of an animal model of DS such as the trisomy 16 (Ts16) fetal mouse (named CTb), and a similar cell line established from a normal littermate (named CNh), to study the effect of DSCAM in the PAKs pathway. The present study shows that DSCAM is overexpressed in CTb cells by approximately twofold, compared to CNh cells. Congruently, PAK1, as well as its downstream effectors LIMK and cofilin, stay phosphorylated for longer periods after DSCAM activation in the CTb cells, leading to an altered actin dynamics, expressed as an increased basal F/G ratio and reduced neurite growth, in the trisomic condition. The present work presents the correlation between DSCAM gene overexpression and a dysregulation of the PAK pathway, resulting in altered morphological parameters of neuronal plasticity in the trisomic cell line, namely decreased number and length of processes.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - Natalia Barraza
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | | | | | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, CNRS-Université Paris-Sud, 91400, Orsay Cedex, France
| | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.
| |
Collapse
|
47
|
Alvarez Juliá A, Frasch AC, Fuchsova B. Neuronal filopodium formation induced by the membrane glycoprotein M6a (Gpm6a) is facilitated by coronin-1a, Rac1, and p21-activated kinase 1 (Pak1). J Neurochem 2016; 137:46-61. [PMID: 26809475 DOI: 10.1111/jnc.13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023]
Abstract
Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.
Collapse
Affiliation(s)
- Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
48
|
Ding Y, Li Y, Lu L, Zhang R, Zeng L, Wang L, Zhang X. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity. PLoS One 2015; 10:e0144948. [PMID: 26670864 PMCID: PMC4682924 DOI: 10.1371/journal.pone.0144948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons.
Collapse
Affiliation(s)
- Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Yuying Li
- Department of Physiology, School of Medicine, Quzhou College of Technology, Quzhou, 324000, China
| | - Lingchao Lu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Ruyi Zhang
- Department of Pathology, Jiaxing Second Hospital, Jiaxing, 314000, China
| | - Linghui Zeng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Linlin Wang
- Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- * E-mail: (XZ); (LW)
| | - Xiong Zhang
- Department of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- * E-mail: (XZ); (LW)
| |
Collapse
|
49
|
Dukala DE, Soliven B. S1P1deletion in oligodendroglial lineage cells: Effect on differentiation and myelination. Glia 2015; 64:570-82. [DOI: 10.1002/glia.22949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Danuta E. Dukala
- Department of Neurology; the University of Chicago; Chicago Illinois
| | - Betty Soliven
- Department of Neurology; the University of Chicago; Chicago Illinois
| |
Collapse
|
50
|
Yeh CW, Hsu LS. Zebrafish diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway. Mol Neurobiol 2015; 53:6594-6607. [PMID: 26635085 DOI: 10.1007/s12035-015-9550-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023]
Abstract
The small GTPase Ras superfamily regulates several neuronal functions including neurite outgrowth and neuron proliferation. In this study, zebrafish diras1a and diras1b were identified and were found to be mainly expressed in the central nervous system and dorsal neuron ganglion. Overexpression of green fluorescent protein (GFP)-diras1a or GFP-diras1b triggered neurite outgrowth of Neuro-2a cells. The wild types, but not the C terminus truncated forms, of diras1a and diras1b elevated the protein level of Ras-related C3 botulinum toxin substrate 1 (Rac1) and downregulated Ras homologous member A (RhoA) expression. Glutathione S-transferase (GST) pull-down assay also revealed that diras1a and diras1b enhanced Rac1 activity. Interfering with Rac1, Pak1, or cyclin-dependent kinase 5 (CDK5) activity or with the Arp2/3 inhibitor prevented diras1a and diras1b from mediating the neurite outgrowth effects. In the zebrafish model, knockdown of diras1a and/or diras1b by morpholino antisense oligonucleotides not only reduced axon guidance but also caused the loss of trigeminal ganglion without affecting the precursor markers, such as ngn1 and neuroD. Co-injection with messenger RNA (mRNA) derived from mouse diras1 or constitutively active human Rac1 restored the population of trigeminal ganglion. In conclusion, we provided preliminary evidence that diras1 is involved in neurite outgrowth and maintains the number of trigeminal ganglions through the Rac1-dependent pathway.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, No. 110, Sec.1, Jianguo N. Rd., Taichung, 40201, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, No. 110, Sec.1, Jianguo N. Rd., Taichung, 40201, Taiwan.
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|