1
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
2
|
Zheng C, Javitch JA, Lambert NA, Donthamsetti P, Gurevich VV. In-Cell Arrestin-Receptor Interaction Assays. Curr Protoc 2023; 3:e890. [PMID: 37787634 PMCID: PMC10566372 DOI: 10.1002/cpz1.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
G protein-coupled receptors (GPCRs) represent ∼30% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which function in different signaling pathways. Given that functionally selective or biased ligands preferentially activate one of these two groups of pathways, they may be superior medications for certain disease states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for assays that monitor reversible arrestin recruitment to GPCRs in living cells using either bioluminescence resonance energy transfer (BRET) or nanoluciferase complementation (NanoLuc). Two types of assays can be used: one configuration directly measures arrestin recruitment to a GPCR fused to a protein tag at its intracellular C-terminus, whereas the other configuration detects arrestin translocation to the plasma membrane in response to activation of an unmodified GPCR. Together, these assays are powerful tools for studying dynamic interactions between GPCRs and arrestins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Receptor-arrestin BRET assay to measure ligand-induced recruitment of arrestin to receptors Basic Protocol 2: Receptor-arrestin NANOBIT assay to measure ligand-induced recruitment of arrestin to receptors Alternative Protocol 1: BRET assay to measure ligand-induced recruitment of arrestin to the plasma membrane Alternative Protocol 2: NANOBIT assay to measure ligand-induced recruitment of arrestin to the plasma membrane Support Protocol 1: Optimization of polyethylenimine (PEI) concentration for transfection.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
3
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
4
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements. Cells 2023; 12:1563. [PMID: 37371033 PMCID: PMC10296906 DOI: 10.3390/cells12121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the roles of arrestin-3 conformational equilibrium and Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. The subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
Affiliation(s)
| | | | | | | | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (C.Z.); (L.D.W.); (K.K.N.); (A.G.); (E.V.G.)
| |
Collapse
|
5
|
Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. GPCR binding and JNK3 activation by arrestin-3 have different structural requirements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538990. [PMID: 37205393 PMCID: PMC10187157 DOI: 10.1101/2023.05.01.538990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the role of arrestin-3 conformational equilibrium and of Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. Subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds, but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.
Collapse
|
6
|
Karnam PC, Vishnivetskiy SA, Gurevich VV. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:12481. [PMID: 34830362 PMCID: PMC8621391 DOI: 10.3390/ijms222212481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.
Collapse
Affiliation(s)
| | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (P.C.K.); (S.A.V.)
| |
Collapse
|
7
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
8
|
Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021; 288:2529-2549. [DOI: 10.1111/febs.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Aydin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| | - Irene Coin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| |
Collapse
|
9
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin-GPCR interactions has been extensively studied and discussed from the "arrestin perspective", focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the "receptor perspective", focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter's transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48167-75952, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | | |
Collapse
|
10
|
Vishnivetskiy SA, Zheng C, May MB, Karnam PC, Gurevich EV, Gurevich VV. Lysine in the lariat loop of arrestins does not serve as phosphate sensor. J Neurochem 2021; 156:435-444. [PMID: 32594524 PMCID: PMC7765740 DOI: 10.1111/jnc.15110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Arrestins demonstrate strong preference for phosphorylated over unphosphorylated receptors, but how arrestins "sense" receptor phosphorylation is unclear. A conserved lysine in the lariat loop of arrestins directly binds the phosphate in crystal structures of activated arrestin-1, -2, and -3. The lariat loop supplies two negative charges to the central polar core, which must be disrupted for arrestin activation and high-affinity receptor binding. Therefore, we hypothesized that receptor-attached phosphates pull the lariat loop via this lysine, thus removing the negative charges and destabilizing the polar core. We tested the role of this lysine by introducing charge elimination (Lys->Ala) and reversal (Lys->Glu) mutations in arrestin-1, -2, and -3. These mutations in arrestin-1 only moderately reduced phospho-rhodopsin binding and had no detectable effect on arrestin-2 and -3 binding to cognate non-visual receptors in cells. The mutations of Lys300 in bovine and homologous Lys301 in mouse arrestin-1 on the background of pre-activated mutants had variable effects on the binding to light-activated phosphorylated rhodopsin, while affecting the binding to unphosphorylated rhodopsin to a greater extent. Thus, conserved lysine in the lariat loop participates in receptor binding, but does not play a critical role in phosphate-induced arrestin activation.
Collapse
Affiliation(s)
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
11
|
Ziffert I, Kaiser A, Hoppenz P, Mörl K, Beck‐Sickinger AG. Shuttling of Peptide-Drug Conjugates by G Protein-Coupled Receptors Is Significantly Improved by Pulsed Application. ChemMedChem 2021; 16:164-178. [PMID: 32700391 PMCID: PMC7818256 DOI: 10.1002/cmdc.202000490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptors (GPCRs) can be used to shuttle peptide-drug conjugates into cells. But, for efficient therapy, a high concentration of cargo needs to be delivered. To explore this, we studied the pharmacologically interesting neuropeptide Y1 receptor (Y1 R) in one recombinant and three oncogenic cell systems that endogenously express the receptor. We demonstrate that recycled receptors behave identically to newly synthesized receptors with respect to ligand binding and internalization pathways. Depending on the cell system, biosynthesis, recycling efficiency, and peptide uptake differ partially, but shuttling was efficient in all systems. However, by comparing continuous application of the ligand for four hours to four cycles of internalization and recycling in between, a significantly higher amount of peptide uptake was achieved in the pulsed application (150-250 % to 300-400 %). Accordingly, in this well-suited drug shuttle system pulsed application is superior under all investigated conditions and should be considered for innovative, targeted drug delivery in general.
Collapse
Affiliation(s)
- Isabelle Ziffert
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Anette Kaiser
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Paul Hoppenz
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Karin Mörl
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| | - Annette G. Beck‐Sickinger
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigBrüderstraße 3404103LeipzigGermany
| |
Collapse
|
12
|
Kaiser A, Wanka L, Ziffert I, Beck-Sickinger AG. Biased agonists at the human Y 1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. Cell Mol Life Sci 2020; 77:4675-4691. [PMID: 31919571 PMCID: PMC11104783 DOI: 10.1007/s00018-019-03432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Functionally selective ligands to address specific cellular responses downstream of G protein-coupled receptors (GPCR) open up new possibilities for therapeutics. We designed and characterized novel subtype- and pathway-selective ligands. Substitution of position Q34 of neuropeptide Y to glycine (G34-NPY) results in unprecedented selectivity over all other YR subtypes. Moreover, this ligand displays a significant bias towards activation of the Gi/o pathway over recruitment of arrestin-3. Notably, no bias is observed for an established Y1R versus Y2R selective ligand carrying a proline at position 34 (F7,P34-NPY). Next, we investigated the spatio-temporal signaling at the Y1R and demonstrated that G protein-biased ligands promote a prolonged localization at the cell membrane, which leads to enhanced G protein signaling, while endosomal receptors do not contribute to cAMP signaling. Thus, spatial components are critical for the signaling of the Y1R that can be modulated by tailored ligands and represent a novel mode for biased pathways.
Collapse
Affiliation(s)
- Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Isabelle Ziffert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:169-197. [PMID: 32312421 PMCID: PMC7977737 DOI: 10.1016/bs.apcsb.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
Collapse
Affiliation(s)
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019; 76:4413-4421. [PMID: 31422444 PMCID: PMC11105767 DOI: 10.1007/s00018-019-03272-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019; 484:34-41. [PMID: 30703488 PMCID: PMC6377262 DOI: 10.1016/j.mce.2019.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Zheng C, Tholen J, Gurevich VV. Critical role of the finger loop in arrestin binding to the receptors. PLoS One 2019; 14:e0213792. [PMID: 30875392 PMCID: PMC6420155 DOI: 10.1371/journal.pone.0213792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
We tested the interactions with four different G protein-coupled receptors (GPCRs) of arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically. Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for the arrestin-receptor interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Arrestins/chemistry
- Arrestins/genetics
- Arrestins/metabolism
- HEK293 Cells
- Humans
- Point Mutation
- Protein Conformation
- Receptor, Muscarinic M2/chemistry
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Sequence Homology
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, Germany
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| |
Collapse
|
17
|
Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol 2019; 10:125. [PMID: 30837883 PMCID: PMC6389790 DOI: 10.3389/fphar.2019.00125] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Every animal species expresses hundreds of different G protein-coupled receptors (GPCRs) that respond to a wide variety of external stimuli. GPCRs-driven signaling pathways are involved in pretty much every physiological function and in many pathologies. Therefore, GPCRs are targeted by about a third of clinically used drugs. The signaling of most GPCRs via G proteins is terminated by the phosphorylation of active receptor by specific kinases (GPCR kinases, or GRKs) and subsequent binding of arrestin proteins, that selectively recognize active phosphorylated receptors. In addition, GRKs and arrestins play a role in multiple signaling pathways in the cell, both GPCR-initiated and receptor-independent. Here we focus on the mechanisms of GRK- and arrestin-mediated regulation of GPCR signaling, which includes homologous desensitization and redirection of signaling to additional pathways by bound arrestins.
Collapse
|
18
|
Perry NA, Zhan X, Gurevich EV, Iverson TM, Gurevich VV. Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin. Methods Mol Biol 2019; 1957:107-120. [PMID: 30919350 PMCID: PMC7039183 DOI: 10.1007/978-1-4939-9158-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonvisual arrestins (arrestin-2/arrestin-3) interact with hundreds of G protein-coupled receptor (GPCR) subtypes and dozens of non-receptor signaling proteins. Here we describe the methods used to identify the interaction sites of arrestin-binding partners on arrestin-3 and the use of monofunctional individual arrestin-3 elements in cells. Our in vitro pull-down assay with purified proteins demonstrates that relatively few elements in arrestin engage each partner, whereas cell-based functional assays indicate that certain arrestin elements devoid of other functionalities can perform individual functions in living cells.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Xuanzhi Zhan
- Department of Chemistry, Tennessee Technological University, Cookeville, TN, USA
| | | | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
19
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
20
|
Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:29-45. [PMID: 30711028 PMCID: PMC6400060 DOI: 10.1016/bs.pmbts.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y 1 and Y 2 receptor. Cell Signal 2018; 50:58-71. [DOI: 10.1016/j.cellsig.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
|
22
|
Hofmann S, Lindner J, Beck-Sickinger AG, Hey-Hawkins E, Bellmann-Sickert K. Carbaboranylation of Truncated C-Terminal Neuropeptide Y Analogue Leads to Full hY1
Receptor Agonism. Chembiochem 2018; 19:2300-2306. [DOI: 10.1002/cbic.201800343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Sven Hofmann
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Josephin Lindner
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry, Leipzig University; Johannisallee 29 04103 Leipzig Germany
| | - Kathrin Bellmann-Sickert
- Faculty of Life Sciences; Institute of Biochemistry; Leipzig University; Brüderstrasse 34 04103 Leipzig Germany
| |
Collapse
|
23
|
Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:47-61. [PMID: 30470292 PMCID: PMC6437759 DOI: 10.1016/bs.pmbts.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins were discovered as proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) and block their interactions with G proteins, i.e., for their role in homologous desensitization of GPCRs. Mammals express only four arrestin subtypes, two of which are largely restricted to the retina. Two nonvisual arrestins are ubiquitous and interact with hundreds of different GPCRs and dozens of other binding partners. Changes of just a few residues on the receptor-binding surface were shown to dramatically affect GPCR preference of inherently promiscuous nonvisual arrestins. Mutations on the cytosol-facing side of arrestins modulate their interactions with individual downstream signaling molecules. Thus, it appears feasible to construct arrestin mutants specifically linking particular GPCRs with signaling pathways of choice or mutants that sever the links between selected GPCRs and unwanted pathways. Signaling-biased "designer arrestins" have the potential to become valuable molecular tools for research and therapy.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
24
|
Chen Q, Iverson TM, Gurevich VV. Structural Basis of Arrestin-Dependent Signal Transduction. Trends Biochem Sci 2018; 43:412-423. [PMID: 29636212 PMCID: PMC5959776 DOI: 10.1016/j.tibs.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Arrestins are a small family of proteins with four isoforms in humans. Remarkably, two arrestins regulate signaling from >800 G protein-coupled receptors (GPCRs) or nonreceptor activators by simultaneously binding an activator and one out of hundreds of other signaling proteins. When arrestins are bound to GPCRs or other activators, the affinity for these signaling partners changes. Thus, it is proposed that an activator alters arrestin's ability to transduce a signal. The comparison of all available arrestin structures identifies several common conformational rearrangements associated with activation. In particular, it identifies elements that are directly involved in binding to GPCRs or other activators, elements that likely engage distinct downstream effectors, and elements that likely link the activator-binding sites with the effector-binding sites.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| |
Collapse
|
25
|
Eichel K, Jullié D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO, von Zastrow M. Catalytic activation of β-arrestin by GPCRs. Nature 2018; 557:381-386. [PMID: 29720660 PMCID: PMC6058965 DOI: 10.1038/s41586-018-0079-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
β-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). β-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-β-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of β-arrestin activation that does not require stable GPCR-β-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in β-arrestin. This promotes capture of β-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. β-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a β-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular β-arrestin function that is activated catalytically by GPCRs.
Collapse
Affiliation(s)
- Kelsie Eichel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Damien Jullié
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Benjamin Barsi-Rhyne
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Naomi R Latorraca
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
26
|
Kaiser A, Hempel C, Wanka L, Schubert M, Hamm HE, Beck-Sickinger AG. G Protein Preassembly Rescues Efficacy of W 6.48 Toggle Mutations in Neuropeptide Y 2 Receptor. Mol Pharmacol 2018; 93:387-401. [PMID: 29436493 DOI: 10.1124/mol.117.110544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 02/14/2025] Open
Abstract
Ligand binding and pathway-specific activation of G protein-coupled receptors is currently being studied with great effort. Individual answers may depend on the nature of the ligands and the effector pathway. Recently, we have presented a detailed model of neuropeptide Y bound to the Y2R. Accordingly, the C-terminal part of the peptide binds deeply in the transmembrane bundle and brings the side chain of the most essential Y36 in close proximity to W6.48 Here, we investigate the role of this interaction for ligand binding and activation of this receptor. BRET sensors were used for detailed investigation of effector coupling and led to the identification of preassembly of the Y2R-Gi complex. It further confirmed ligand-dependent recruitment of arrestin3. Using equally sensitive readouts for Gi activation and arrestin recruitment as well as quantification with operational models of agonism allowed us to identify a strong inherent bias for Gi activation over arrestin3 recruitment for the wild-type receptor. By systematic mutagenesis, we found that W6.48 does not contribute to the binding affinity, but acts as an allosteric connector to couple ligand binding to Gi activation and arrestin3 recruitment. However, even mutagenesis to a small threonine did not lead to a complete loss of signaling. Interestingly, signaling was restored to wild-type levels by ligands that contain a naphthylalanine as the C-terminal residue instead of Y36 Steric and polar contributions of W6.48 for the activation of the receptor are discussed in the context of different mechanisms of G protein coupling and arrestin recruitment.
Collapse
Affiliation(s)
- Anette Kaiser
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| | - Caroline Hempel
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| | - Lizzy Wanka
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| | - Mario Schubert
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| | - Heidi E Hamm
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany (A.K., C.H., L.W., M.S., A.G.B.-S.); and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.K., C.H., H.E.H.)
| |
Collapse
|
27
|
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 2018; 293:876-892. [PMID: 29146594 PMCID: PMC5777260 DOI: 10.1074/jbc.m117.813139] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
Collapse
Affiliation(s)
- András D Tóth
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Susanne Prokop
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Pál Gyombolai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
- the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
- the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
- the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary,
- the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Gábor Turu
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
- the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| |
Collapse
|
28
|
Gurevich VV, Gurevich EV. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017; 18:2519. [PMID: 29186792 PMCID: PMC5751122 DOI: 10.3390/ijms18122519] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential.
Collapse
|
29
|
Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV, Brautigam CA, Klug CS, Gurevich VV, Iverson TM. Structural basis of arrestin-3 activation and signaling. Nat Commun 2017; 8:1427. [PMID: 29127291 PMCID: PMC5681653 DOI: 10.1038/s41467-017-01218-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathaniel C Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Prashant K Singh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, 26723, Germany
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Schubert M, Stichel J, Du Y, Tough IR, Sliwoski G, Meiler J, Cox HM, Weaver CD, Beck-Sickinger AG. Identification and Characterization of the First Selective Y4 Receptor Positive Allosteric Modulator. J Med Chem 2017; 60:7605-7612. [DOI: 10.1021/acs.jmedchem.7b00976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mario Schubert
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jan Stichel
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Yu Du
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Iain R. Tough
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - Gregory Sliwoski
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Helen M. Cox
- Wolfson
Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, U.K
| | - C. David Weaver
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Annette G. Beck-Sickinger
- Faculty
of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
31
|
Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Cell Signal 2017; 36:98-107. [PMID: 28461104 PMCID: PMC5797668 DOI: 10.1016/j.cellsig.2017.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022]
Abstract
Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M2 muscarinic receptor, so that agonist activation of the M2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M2, whereas its interactions with other receptors, including the β2-adrenergic receptor and the D1 and D2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β2-adrenergic and D2 dopamine receptors, while reducing its interaction with the D1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes.
Collapse
Affiliation(s)
- Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA
| | | | - Andras D Toth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Graeme Milligan
- Centre for Translational Pharmacology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA
| | - Laszlo Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| |
Collapse
|
32
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
33
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017; 69:256-297. [PMID: 28626043 PMCID: PMC5482185 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
34
|
Donthamsetti P, Quejada JR, Javitch JA, Gurevich VV, Lambert NA. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors. CURRENT PROTOCOLS IN PHARMACOLOGY 2015; 70:2.14.1-2.14.14. [PMID: 26331887 PMCID: PMC4583203 DOI: 10.1002/0471141755.ph0214s70] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs.
Collapse
Affiliation(s)
- Prashant Donthamsetti
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Jose Rafael Quejada
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | | | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| |
Collapse
|
35
|
Stoy H, Gurevich VV. How genetic errors in GPCRs affect their function: Possible therapeutic strategies. Genes Dis 2015; 2:108-132. [PMID: 26229975 PMCID: PMC4516391 DOI: 10.1016/j.gendis.2015.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/07/2015] [Indexed: 01/14/2023] Open
Abstract
Activating and inactivating mutations in numerous human G protein-coupled receptors (GPCRs) are associated with a wide range of disease phenotypes. Here we use several class A GPCRs with a particularly large set of identified disease-associated mutations, many of which were biochemically characterized, along with known GPCR structures and current models of GPCR activation, to understand the molecular mechanisms yielding pathological phenotypes. Based on this mechanistic understanding we also propose different therapeutic approaches, both conventional, using small molecule ligands, and novel, involving gene therapy.
Collapse
|
36
|
Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJG, Gurevich VV, Gurevich EV. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 2015; 290:10775-10790. [PMID: 25770216 PMCID: PMC4409243 DOI: 10.1074/jbc.m115.644773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/04/2015] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.
Collapse
Affiliation(s)
- Lingyong Li
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristoff T Homan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | | | - Aashish Manglik
- the Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - John J G Tesmer
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Vsevolod V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232,
| |
Collapse
|
37
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2015; 50:440-452. [PMID: 26453028 PMCID: PMC4852696 DOI: 10.3109/10409238.2015.1067185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here, we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- a Department of Pharmacology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|