1
|
Balakumar P, Jagadeesh G. Game-changing breakthroughs to redefine the landscape of the renin-angiotensin-aldosterone system in health and disease. Cell Signal 2025; 126:111459. [PMID: 39389177 DOI: 10.1016/j.cellsig.2024.111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Novel perspectives on the role of the renin-angiotensin-aldosterone system (RAAS) offer a groundbreaking understanding of the system's role in health and illness. Our understanding of the role of the RAAS in several diseases, such as heart failure, hypertension, metabolic disorders, and chronic renal disease, has been broadened by recent studies. Specific variations in RAAS pathways can affect the course of disease and response to treatment, as shown by genetic and molecular research. The dynamic and fast-evolving nature of RAAS research described in this special issue might transform our approach to managing renal, neurological, and cardiovascular health, among other disease conditions, including cancer.
Collapse
Affiliation(s)
- Pitchai Balakumar
- The Office of Research & Development, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613 403, Tamil Nadu, India; School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Gowraganahalli Jagadeesh
- Formerly, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, MD 20993, USA; Presently, Distinguished Visiting Professor, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, India.
| |
Collapse
|
2
|
Ibraheem AAA, Saleh SA, Emam AA, Yousef AA, Abdulhay M, Haridi MK, Wahba AA, Al-Fahham MM, Selim DM, Razek SA, Sorour EI, Abouzied ESHF, Ismail AH, Mohamed SA, Soliman AA, Shehata H, Arab F, Rashad MLM, Hafez SFM, Abdelkhalek K, Ibrahim DM, Ashraf B, Saleh ASE, Fouad RA, Omar WE, Nabil RM, Ramadan RA, El-Sehsah EM, Afify MR, Bawazir Y, Mustafa M, Daghistani Y, Thabit RA, Salah W, Almoraie LM, Aljamei HM, Hummdi LA, Arishi EA, Salem HF, Massoud YM, Khalil DM, Raouf BMA, Elmikaty HA, El-Gaaly SAA, Fakhreldin AR, Hashem MIA. Angiotensin-Converting Enzyme 2 (G8790A) Gene Polymorphism as a Risk Factor for COVID-19 in Egyptian Children and Adolescents. Pediatr Pulmonol 2025; 60:e27479. [PMID: 39821718 DOI: 10.1002/ppul.27479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE Recently, angiotensin-converting enzyme 2 (ACE2) gene has emerged as a potential candidate gene for susceptibility to SARS-CoV-2 infection. We investigated whether ACE2 G8790A (rs2285666) polymorphism could be a genetic marker for susceptibility to COVID-19 and disease severity in Egyptian children and adolescents. METHODS This was a prospective case-control study included 580 cases diagnosed with COVID-19, and 580 matched control children and adolescents. The ACE2 G8790A (rs2285666) polymorphism was genotyped using polymerase chain reaction (PCR) and ACE2 serum level was measured by ELISA. RESULTS The ACE2 A/A genotype and A-allele were significantly more represented in cases with COVID-19 as compared to control group (44% vs. 30%; OR = 2.83; [95% CI: 1.27-2.63]; p = 0.006; for the A/A genotype) and (65% vs. 51%; OR = 1.9; [95% CI: 1.06-1.72]; p = 0.01; for the A-allele). The presence of ACE2 G/G genotype was an independent risk factor for severe disease (adjusted OR: 2.08; [95% CI: 1.57-6.78]; p = 0.003). CONCLUSION The ACE2 G8790A (rs2285666) polymorphism may confer susceptibility to COVID-19 in Egyptian children and adolescents. The ACE2 G/G genotype and G-allele was associated with lower ACE2 serum levels and may constitute independent risk factors for disease severity.
Collapse
Affiliation(s)
- Ahmed A A Ibraheem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sarah A Saleh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aly A Yousef
- Department of Pediatrics, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Mohamed Abdulhay
- Department of Pediatrics, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Mohammed K Haridi
- Department of Pediatrics, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Ali A Wahba
- Department of Pediatrics at SSMC, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Marwa M Al-Fahham
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Dalia M Selim
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Suzan A Razek
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ehab I Sorour
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt
| | - El Sayed H F Abouzied
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt
| | - Ahmed H Ismail
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Assiut, Egypt
| | - Soma A Mohamed
- Department of Pediatrics, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Shehata
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faika Arab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa L M Rashad
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sahbaa F M Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Khalil Abdelkhalek
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Dina M Ibrahim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Bassem Ashraf
- Department of Otorhinolaryngology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S E Saleh
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Banha, Egypt
| | - Rania A Fouad
- Department of Medical Biochemistry, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa E Omar
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rehab M Nabil
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Raghdaa A Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M El-Sehsah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Mona R Afify
- Department of Basic Medical Science, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser Bawazir
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mustafa
- Department of Medicine, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yassir Daghistani
- Department of Medicine, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Rawan A Thabit
- Department of Radiology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Wed Salah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Almoraie
- Department of Family Medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanan Maas Aljamei
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila Ahmed Hummdi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Hanan F Salem
- Department of Anesthesia, Faculty of Medicine, Benha University, Banha, Egypt
| | - Yasmine M Massoud
- Department of Tropical Medicine, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Dalia M Khalil
- Department of Psychiatry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Batoul M Abdel Raouf
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Hani A Elmikaty
- Department of Pediatrics, National Research Centre, Ad Doqi, Egypt
| | - Sonya A A El-Gaaly
- Department of Internal Medicine, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed R Fakhreldin
- Department of Pediatrics, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
4
|
Balakumar P, Orayj KM, Khan NA, Shanmugam K, Jagadeesh G. Impact of the local renin-angiotensin system in perivascular adipose tissue on vascular health and disease. Cell Signal 2024; 124:111461. [PMID: 39389180 DOI: 10.1016/j.cellsig.2024.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Perivascular adipose tissue (PVAT) is found locally around blood vessels. It has the ability to release vasoactive chemicals, such as factors that relax and contract blood vessels. PVAT is now recognized as an endocrine organ with metabolic activity and as a "protagonist" for maintaining vascular homeostasis. Angiotensin II, a powerful vasoconstrictor of the renin-angiotensin system (RAS) that can increase blood pressure and vascular tone, is produced locally by PVAT. To mitigate the multiple vascular effects of angiotensin II, PVAT also generates molecules such as angiotensin (1-7), adiponectin, and nitric oxide. Reactive oxygen species and proinflammatory cytokines are produced in greater amounts when PVAT-mediated angiotensin II is present, resulting in endothelial dysfunction, inflammation, atherosclerosis, and other vascular disorders. The anticontractile and procontractile nature of PVAT is frequently disrupted in obese individuals, which increases the production of angiotensin II and decreases the production of anti-inflammatory and vasodilatory factors. These changes in turn exacerbate vascular inflammation, hypertension, and atherosclerosis. PVAT, which is crucial for maintaining vascular homeostasis, loses its anticontractile effect in obesity due to adipocyte hypertrophy, inflammation, and oxidative stress, exacerbating endothelial dysfunction. Overactive RAS in PVAT facilitates the migration and proliferation of vascular smooth muscle cells and atherosclerotic plaques, both of which accelerate the development of atherosclerosis. Targeting PVAT and the local RAS can offer therapeutic benefits in treating hypertension, atherosclerosis, and other vascular diseases. This review highlights the scientific underpinnings of the function of PVAT in regulating the autocrine and paracrine activities of vascular RAS constituents.
Collapse
Affiliation(s)
- Pitchai Balakumar
- The Office of Research & Development, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613 403, Tamil Nadu, India; School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| | - Khalid M Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Qara, Abha 61421, Saudi Arabia
| | - Kumaran Shanmugam
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613 403, Tamil Nadu, India
| | - Gowraganahalli Jagadeesh
- Formerly, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, MD 20993, USA; Presently, Distinguished Visiting Professor, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, India
| |
Collapse
|
5
|
Wu D, Liao X, Gao J, Gao Y, Li Q, Gao W. Potential pharmaceuticals targeting neuroimmune interactions in treating acute lung injury. Clin Transl Med 2024; 14:e1808. [PMID: 39129233 PMCID: PMC11317502 DOI: 10.1002/ctm2.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND MAIN BODY Although interactions between the nervous and immune systems have been recognized decades ago, it has become increasingly appreciated that neuroimmune crosstalk is among the driving factors of multiple pulmonary inflammatory diseases including acute lung injury (ALI). Here, we review the current understanding of nerve innervations towards the lung and summarize how the neural regulation of immunity and inflammation participates in the onset and progression of several lung diseases, especially ALI. We then present advancements in the development of potential drugs for ALI targeting neuroimmune interactions, including cholinergic anti-inflammatory pathway, sympathetic-immune pathway, purinergic signalling, neuropeptides and renin-angiotensin system at different stages from preclinical investigation to clinical trials, including the traditional Chinese medicine. CONCLUSION This review highlights the importance of considering the therapeutic strategy of inflammatory diseases within a conceptual framework that integrates classical inflammatory cascade and neuroimmune circuits, so as to deepen the understanding of immune modulation and develop more sophisticated approaches to treat lung diseases represented by ALI. KEY POINTS The lungs present abundant nerve innervations. Neuroimmune interactions exert a modulatory effect in the onset and progression of lung inflammatory diseases, especially acute lung injury. The advancements of potential drugs for ALI targeting neuroimmune crosstalk at different stages from preclinical investigation to clinical trials are elaborated. Point out the direction for the development of neuroimmune pharmacology in the future.
Collapse
Affiliation(s)
- Di Wu
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Jing Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Yixuan Gao
- Department of GynaecologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanP. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
6
|
Maurer J, de Groot A, Martin L, Grouzmann E, Wuerzner G, Eugster PJ. Quantification of endogenous Angiotensin 1-10, 1-9, 1-8, 1-7, and 1-5 in human plasma using micro-UHPLC-MS/MS: Outlining the importance of the pre-analytics for reliable results. J Pharm Biomed Anal 2024; 243:116101. [PMID: 38489957 DOI: 10.1016/j.jpba.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Angiotensin peptides (ANGs) play a central role in the renin-angiotensin-aldosterone system, rendering them interesting biomarkers associated with hypertension. Precise quantification of circulating ANGs holds the potential to assess the activity of angiotensin-converting enzyme (ACE), a key protease targeted by widely prescribed drugs, namely ACE inhibitors. This ability could pave the way for personalised medicine, offering insights into the prescription of inhibitors targeting either the proteases or the receptors within the system. Despite recent developments in liquid chromatography-mass spectrometry (LC-MS) methods for measuring circulating ANG concentrations, comprehensive stability studies of ANGs in human plasma are absent in the literature, raising concerns about the reliability of measured concentrations and their link to clinical conditions. To address this critical gap, we conducted an exhaustive evaluation of the pre-analytical stability of ANG1-10, ANG1-9, ANG1-8, ANG1-7, and ANG1-5. By employing surfactants to mitigate non-specific adsorption and a dedicated mix of protease inhibitors to limit protease activity, we established an MS-based assay for these five peptides. We used this method to quantify circulating concentrations of ANGs in the plasma of 11 healthy donors and 3 patients under kidney dialysis. Our findings revealed that ANG1-10 and ANG1-8 circulate at concentrations ranging from 1 to 10 pM in healthy subjects and exhibit a high degree of correlation. Notably, ANG1-9, ANG1-7, and ANG1-5 were undetectable in any of the 14 patients, despite a sub-picomolar limit of detection. This strikingly contrasts with the reference concentrations reported in the literature, which typically fall within the picomolar range. In light of these discrepancies, we strongly advocate for rigorous pre-analytical considerations and comprehensive stability studies to ensure reliable results. We emphasise the pivotal role of heightened pre-analytical awareness within the clinical chemistry community, and we hope for continued growth in this critical area.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anke de Groot
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léon Martin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Hypertension and Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
9
|
Balapattabi K, Yavuz Y, Jiang J, Deng G, Mathieu NM, Ritter ML, Opichka MA, Reho JJ, McCorvy JD, Nakagawa P, Morselli LL, Mouradian GC, Atasoy D, Cui H, Hodges MR, Sigmund CD, Grobe JL. Angiotensin AT 1A receptor signal switching in Agouti-related peptide neurons mediates metabolic rate adaptation during obesity. Cell Rep 2023; 42:112935. [PMID: 37540598 PMCID: PMC10530419 DOI: 10.1016/j.celrep.2023.112935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Matsuo Y, Suematsu Y, Morita H, Miura SI. Development of a Non-Peptide Angiotensin II Type 1 Receptor Ligand by Structural Modification of Olmesartan as a Biased Agonist. Biomedicines 2023; 11:biomedicines11051486. [PMID: 37239156 DOI: 10.3390/biomedicines11051486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
As a biased agonist, peptide angiotensin II (Ang II) type 1 (AT1) receptor ligand antagonizes Ang II-stimulated G protein signaling but stimulates several kinase pathways. Here, we developed a non-peptide AT1 receptor compound as a biased ligand. We synthesized three non-peptide AT1 receptor ligands (R239470, R781253, and R794847) as candidates of biased ligands. Extracellular signal-regulated kinase (ERK) 1/2 activation and inositol phosphate (IP) production were measured using a cell system that overexpressed AT1 receptors (wild-type, L112A, Q257A, Y292A, and N295A receptors). We also examined the modes of receptor-ligand binding using a competition binding study. The Kd values of R239470, R781253, and R794847 for the AT1 wild-type receptor were 0.8, 21, and 48 nM, respectively, as assessed in a competition binding study. Those of R239470, R781253, and R794847 for the L112A receptor were 37, 23, and 31 nM, respectively. R781253 and R794847 decreased and increased IP production, respectively, whereas R239470 did not change IP production. R781253 and R794847, but not R239470, activated ERK1/2. In conclusion, R239470, R781253, and R794847 act as a neutral antagonist, an inverse agonist, and an agonist with regard to IP production, respectively. On the other hand, R781253 and R794847, but not R239470, are agonists toward ERK1/2 activation. Thus, we developed a non-peptide AT1 receptor compound as a biased ligand.
Collapse
Affiliation(s)
- Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Hidetaka Morita
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
- Department of Internal Medicine, Fukuoka University Nishijin Hospital, Fukuoka 814-8522, Japan
| |
Collapse
|
11
|
Gonçalves J, Santos CD, Fresco P, Fernandez-Llimos F. Potential use of renin-angiotensin-aldosterone system inhibitors to reduce COVID-19 severity. Rev Port Cardiol 2023; 42:373-383. [PMID: 36893838 PMCID: PMC9999244 DOI: 10.1016/j.repc.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 03/09/2023] Open
Abstract
SARS-CoV-2 infection and its clinical manifestations (COVID-19) quickly evolved to a pandemic and a global public health emergency. The limited effectivity of available treatments aimed at reducing virus replication and the lessons learned from other coronavirus infections (SARS-CoV-1 or NL63) that share the internalization process of SARS-CoV-2, led us to revisit the COVID-19 pathogenesis and potential treatments. Virus protein S binds to the angiotensin-converting enzyme 2 (ACE2) initiating the internalization process. Endosome formation removes ACE2 from the cellular membrane preventing its counter-regulative effect mediated by the metabolism of angiotensin II to angiotensin (1-7). Internalized virus-ACE2 complexes have been identified for these coronaviruses. SARS-CoV-2 presents the highest affinity for ACE2 and produces the most severe symptoms. Assuming ACE2 internalization is the trigger for COVID-19 pathogenesis, accumulation of angiotensin II can be viewed as the potential cause of symptoms. Angiotensin II is a strong vasoconstrictor, but has also important roles in hypertrophy, inflammation, remodeling, and apoptosis. Higher levels of ACE2 in the lungs explain the acute respiratory distress syndrome as primary symptoms. Most of the described findings and clinical manifestations of COVID-19, including increased interleukin levels, endothelial inflammation, hypercoagulability, myocarditis, dysgeusia, inflammatory neuropathies, epileptic seizures and memory disorders can be explained by excessive angiotensin II levels. Several meta-analyses have demonstrated that previous use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers were associated with better prognosis for COVID-19. Therefore, pragmatic trials to assess the potential therapeutic benefits of renin-angiotensin-aldosterone system inhibitors should be urgently promoted by health authorities to widen the therapeutic options for COVID-19.
Collapse
Affiliation(s)
- Jorge Gonçalves
- Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; I(3)S: Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.
| | - Catarina D Santos
- Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Fresco
- Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; I(3)S: Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Fernando Fernandez-Llimos
- Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; CINTESIS - Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| |
Collapse
|
12
|
Lv F, Jiang Y, Wang Y, Zhang T, Zhou Y. AGTR1rs5186 Polymorphism Is Associated with the Risk of Restenosis after Percutaneous Coronary Intervention: A Meta-Analysis. J Cardiovasc Dev Dis 2022; 9:jcdd9110406. [PMID: 36421941 PMCID: PMC9693694 DOI: 10.3390/jcdd9110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Progress has been made in genetic investigations on restenosis for the past 20 years, many studies regarding AGTR1 rs5186 polymorphism and restenosis after percutaneous coronary intervention (PCI) have been published, but the result remains controversial. The study aimed to explore the relationship between rs5186 polymorphism and the risk of restenosis after PCI. Methods: We performed a systematic search on PubMed, Web of Science, Embase, CNKI, and Wan Fang databases up to December 2021. Two authors individually extracted all useful data of each study involved in this meta-analysis and assessed the study quality using the Newcastle-Ottawa scale. Odds ratios (ORs) and 95% confidence intervals (CIs) were combined in different genetic models for evaluation using a random-effects model or fixed-effect model. Results: There were eventually 8 studies of 1111 cases and 4097 controls eligible for this meta-analysis. Significant associations were found between rs5186 polymorphism and restenosis after PCI.allelic (OR: 1.31, 95% CI: 1.17−1.47, p < 0.001), homozygous (OR: 1.90, 95% CI: 1.50−2.44, p < 0.001), heterozygous (OR: 1.10, 95% CI: 0.93−1.29, p = 0.27), recessive (OR: 1.80, 95% CI: 1.37−2.36, p < 0.001), dominant genetic model (OR: 1.24, 95% CI: 1.06−1.44, p = 0.006). Subgroup analyses indicated a significant association in Asians. Conclusions: The rs5186 polymorphism in the AGTR1 gene increases the risk of restenosis after PCI in Asians significantly.
Collapse
Affiliation(s)
- Feng Lv
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215125, China
- Department of Cardiology, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengzhou 312400, China
| | - Yufeng Jiang
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215125, China
| | - Yebao Wang
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215125, China
| | - Ting Zhang
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215125, China
| | - Yafeng Zhou
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215125, China
- Correspondence:
| |
Collapse
|
13
|
Zebardast A, Latifi T, Shabani M, Hasanzadeh A, Danesh M, Babazadeh S, Sadeghi F. Thrombotic storm in coronavirus disease 2019: from underlying mechanisms to its management. J Med Microbiol 2022; 71. [PMID: 36346830 DOI: 10.1099/jmm.0.001591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Introduction. Coronavirus disease 2019 (COVID-19) identified in December 2019 in Wuhan, China, is associated with high mortality rates worldwide.Hypothesis/Gap Statement. Thrombotic problems, such as coagulopathy, are common in COVID-19 patients. Despite anticoagulation, thrombosis is more common in patients in the intensive care unit and patients with more severe disease. Although the exact mechanisms of coagulopathy in COVID-19 patients are still unclear, studies showed that overactivation of the renin-angiotensin system (RAS), cytokine storm, endothelial damage, formation of neutrophil extracellular traps (NETs), and also extracellular vesicles (EVs) in response to COVID-19 induced inflammation can lead to systemic coagulation and thrombosis.Aim. The management of COVID-19 patients requires the use of basic and readily available laboratory markers, both on admission and during hospitalization. Because it is critical to understand the pathophysiology of COVID-19 induced coagulopathy and treatment strategies, in this review we attempt to explain the underlying mechanism of COVID-19 coagulopathy, its diagnosis, and the associated successful treatment strategies.Conclusion. The exact mechanisms behind COVID-19-related coagulopathy are still unclear, but several studies revealed some mechanisms. More research is needed to determine the best anticoagulant regimen and to study other therapeutic options.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shabani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Manizheh Danesh
- Assistant Professor, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Babazadeh
- Department of Pathology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Quarleri J, Delpino MV. SARS-CoV-2 interacts with renin-angiotensin system: impact on the central nervous system in elderly patients. GeroScience 2022; 44:547-565. [PMID: 35157210 PMCID: PMC8853071 DOI: 10.1007/s11357-022-00528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is a recently identified coronavirus that causes the current pandemic disease known as COVID-19. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, suggesting that the initial steps of SARS-CoV-2 infection may have an impact on the renin-angiotensin system (RAS). Several processes are influenced by RAS in the brain. The neurological symptoms observed in COVID-19 patients, including reduced olfaction, meningitis, ischemic stroke, cerebral thrombosis, and delirium, could be associated with RAS imbalance. In this review, we focus on the potential role of disturbances in the RAS as a cause for central nervous system sequelae of SARS-CoV-2 infection in elderly patients.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Chang T, Yang J, Deng H, Chen D, Yang X, Tang ZH. Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Front Immunol 2022; 13:843342. [PMID: 35265087 PMCID: PMC8898834 DOI: 10.3389/fimmu.2022.843342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 infection is closely related to disorders of the innate immune and delayed adaptive immune systems. Dendritic cells (DCs) “bridge” innate immunity and adaptive immunity. DCs have important roles in defending against SARS-CoV-2 infection. In this review, we summarize the latest research concerning the role of DCs in SARS-CoV-2 infection. We focus on the complex interplay between DCs and SARS-CoV-2: pyroptosis-induced activation; activation of the renin–angiotensin–aldosterone system; and activation of dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin. We also discuss the decline in DC number, the impaired antigen-presentation capability, and the reduced production of type-I interferon of DCs in severe SARS-CoV-2 infection. In addition, we discuss the potential mechanisms for pathological activation of DCs to understand the pattern of SARS-CoV-2 infection. Lastly, we provide a brief overview of novel vaccination and immunotherapy strategies based on DC targeting to overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| | - XiangPing Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji, China
| |
Collapse
|
16
|
Ben Boubaker R, Tiss A, Henrion D, Guissouma H, Chabbert M. Evolutionary information helps understand distinctive features of the angiotensin II receptors AT1 and AT2 in amniota. PLoS Comput Biol 2022; 18:e1009732. [PMID: 35202400 PMCID: PMC8870451 DOI: 10.1371/journal.pcbi.1009732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system. The analysis of protein sequences from different species can reveal interesting trends in the structural and functional evolution of a protein family. Here, we analyze the evolution of two G protein-coupled receptors, AT1 and AT2, which bind the angiotensin II peptide and are important regulators of the cardiovascular system. We show that these receptors underwent a mirror evolution. Specific mutations at, or near, the sodium binding pocket occurred in both AT1 and AT2 during the transition to terrestrial life. We carried out electrostatics computations and molecular dynamics simulations to decipher the details of the sodium binding mode in eel and human receptors, as prototypes of fish and amniota receptors. Our results indicate that sodium binding is kinetically slow but thermodynamically stable. Comparison of the sodium binding modes in eel and human receptors reveals that an unusual mutation in the sodium binding pocket of AT1 is critical for biased signaling of amniota AT1 whereas a mutation in AT2 promotes promiscuity of amniota AT2. In turn, these data indicate that a few mutations at a strategic position (here the sodium binding pocket) are an efficient way to gain functional evolution.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Asma Tiss
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- INSAT de Tunis, Université de Carthage, Carthage, Tunisie
| | - Daniel Henrion
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | | | - Marie Chabbert
- CNRS UMR 6015 – INSERM U1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
17
|
Balakumar P, Handa S, Alqahtani A, Alqahtani T, Khan NA, LakshmiRaj RS, Thangathirupathi A, Sundram K, Shenoy V. Unraveling the Differentially Articulated Axes of the Century-Old Renin-Angiotensin-Aldosterone System: Potential Therapeutic Implications. Cardiovasc Toxicol 2022; 22:246-253. [PMID: 35143015 DOI: 10.1007/s12012-022-09724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Among numerous choices in cardiovascular therapies used for the management of hypertension and heart failure, drugs affecting the renin-angiotensin-aldosterone system (RAAS) hold substantial therapeutic roles. Therapies aimed at modifying the RAAS and its overactivation are employed for the management of various insidious disorders. In the pharmacologic perspective, RAAS is one of the frequently manipulated systems for the management of hypertension, heart failure, myocardial infarction, and renal disease. The RAAS pharmacologic interventions principally include the ACE inhibitors, the angiotensin II-AT1 receptor blockers, the mineralocorticoid receptor antagonists, and the direct renin inhibitors. In addition, therapeutic implication of ACE2/angiotensin (1-7)/Mas receptor activation using various ligands is being explored owing to their anti-inflammatory, anti-fibrotic, vasodilatory, and cardiovascular defensive roles. Moreover, being considered as the counter-regulatory arm of AT1 receptor, the potential role of AT2 receptor activation using selective AT2 receptor agonist is currently investigated for its efficacy in pulmonary complications. As an important regulator of fluid volume, blood pressure, and cardiovascular-renal function, the RAAS has been documented as a diversified intricate system with several therapeutic possibilities coupled with their fundamental structural and functional modulatory roles in cardiovascular, renal, and other systems. The RAAS possesses a number of regulatory, deregulatory, and counter-regulatory axes of physiopathologic importance in health and disease. The counter-regulatory arms of the RAAS might play an essential role in mitigating cardiovascular, renal, and pulmonary pathologies. In light of this background, we sought to explore the classical and counter-regulatory axes/arms of the RAAS and their imperative roles in physiologic functions and disease pathogenesis.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India.
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Guraiger, 62529, Abha, Kingdom of Saudi Arabia
| | - R Sulochana LakshmiRaj
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India
| | - A Thangathirupathi
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul, Tamil Nadu, 624005, India
| | - Karupiah Sundram
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Malaysia
| | - Vinayak Shenoy
- College of Pharmacy, California Health Sciences University, Clovis, CA, 93612, USA
| |
Collapse
|
18
|
Cui Y, Kassmann M, Nickel S, Zhang C, Alenina N, Anistan YM, Schleifenbaum J, Bader M, Welsh DG, Huang Y, Gollasch M. Myogenic Vasoconstriction Requires Canonical G q/11 Signaling of the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e022070. [PMID: 35132870 PMCID: PMC9245832 DOI: 10.1161/jaha.121.022070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) arterial tone. However, many of the molecular determinants of this response are unknown. We previously found that mice with targeted disruption of the gene encoding the angiotensin II type 1a receptor (AT1AR) (Agtr1a), the major murine angiotensin II type 1 receptor (AT1R) isoform, showed reduced myogenic tone; however, uncontrolled genetic events (in this case, gene ablation) can lead to phenotypes that are difficult or impossible to interpret. Methods and Results We tested the mechanosensitive function of AT1R using tamoxifen-inducible smooth muscle-specific AT1aR knockout (smooth muscle-Agtr1a-/-) mice and studied downstream signaling cascades mediated by Gq/11 and/or β-arrestins. FR900359, Sar1Ile4Ile8-angiotensin II (SII), TRV120027 and TRV120055 were used as selective Gq/11 inhibitor and biased agonists to activate noncanonical β-arrestin and canonical Gq/11 signaling of the AT1R, respectively. Myogenic and Ang II-induced constrictions were diminished in the perfused renal vasculature, mesenteric and cerebral arteries of smooth muscle-Agtr1a-/- mice. Similar effects were observed in arteries of global mutant Agtr1a-/- but not Agtr1b-/- mice. FR900359 decreased myogenic tone and angiotensin II-induced constrictions whereas selective biased targeting of AT1R-β-arrestin signaling pathways had no effects. Conclusions This study demonstrates that myogenic arterial constriction requires Gq/11-dependent signaling pathways of mechanoactivated AT1R but not G protein-independent, noncanonical pathways in smooth muscle cells.
Collapse
Affiliation(s)
- Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Sophie Nickel
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Chenglin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany
| | - Yoland Marie Anistan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Charité - Universitätsmedizin Berlin Berlin Germany.,Institute for Biology University of Lübeck Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology Robarts, Research Institute Western University London Ontario Canada
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China.,Department of Biomedical Sciences Campus VirchowCity University of Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany.,Medical Clinic for Nephrology and Internal Intensive Care Campus VirchowCharité - Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
19
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
20
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
21
|
Hypertension May Reduce the Infection Risk but Increase the Severity of COVID-19: Based on the Current Data in China. Int J Hypertens 2021; 2021:6594863. [PMID: 34938578 PMCID: PMC8685758 DOI: 10.1155/2021/6594863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has shown an unusual relationship between hypertension and COVID-19, which may not be as simple as previously thought. The purpose of our study was to determine the association of hypertension with the onset and development of COVID-19. A meta-analysis was performed to summarize the prevalence of hypertension in COVID-19 patients, as well as the usage of ACEIs/ARBs. Metaregression analyses were used to evaluate the association of hypertension with disease severity and mortality. PubMed and Google Scholar were searched for relevant studies. A total of 42 studies including 14138 patients were enrolled in the study. The proportion of hypertension in COVID-19 patients in China was 17.7% according to the enrolled studies, while it was 6.0% in a study containing 72314 confirmed cases, which are both much lower than in the general population. All of the data from the 11 provinces in China showed the same tendency. The proportions of hypertension were higher in severe/ICU patients and nonsurvivors than in nonsevere/ICU patients and survivors. The metaregression analyses suggested that both disease severity and risk of death were associated with the incidence of hypertension. A total of 27.6% of COVID-19 patients with hypertension received ACEI/ARB therapy. The proportion of deaths in COVID-19 patients with hypertension treated with ACEIs/ARBs was significantly lower than that in nonuse patients treated with ACEIs/ARBs. In conclusion, hypertension may reduce the infection risk of COVID-19 but increase the risk of developing worse clinical outcomes. The use of ACEIs/ARBs may benefit COVID-19 patients with hypertension.
Collapse
|
22
|
Balakumar P, Jagadeesh G. The renin-angiotensin-aldosterone system: A century-old diversified system with several therapeutic avenues. Pharmacol Res 2021; 174:105929. [PMID: 34740819 DOI: 10.1016/j.phrs.2021.105929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul 624005, India.
| | - Gowraganahalli Jagadeesh
- Division of Pharmacology & Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Sepúlveda-Fragoso V, Alexandre-Santos B, Salles ACP, Proença AB, de Paula Alves AP, Vázquez-Carrera M, Nóbrega ACL, Frantz EDC, Magliano DC. Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sci 2021; 284:119919. [PMID: 34480931 DOI: 10.1016/j.lfs.2021.119919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin (Ang) system (RAS) is a complex hormonal system present locally in several tissues such as cardiovascular organs. RAS deregulation through overactivation of the classical arm [Ang-converting enzyme (ACE)/Ang-II/Ang type 1 receptor (AT1R)] has been linked to the development of cardiovascular diseases and activation of endoplasmic reticulum (ER) stress pathways. The ER stress is a condition that, if unresolved, might lead to heart failure, atherosclerosis, hypertension, and endothelial dysfunction. Accumulated evidence has shown that the RAS modulates the UPR activation. Several studies reported increased ER stress markers in response to Ang-II treatment, in both in vivo and in vitro models. Evidence has also pointed that targeting the RAS classical arm through RAS blockers, gene silencing or genetic models leads to lower levels of ER stress markers. Few studies demonstrated protective effects of the counter-regulatory arm (ACE-2/Ang-(1-7)/Mas receptor) over ER stress. However, the crosstalk mechanisms between the arms of the RAS and ER stress remain unclear. In this review, we sought to explore the classical arm of the RAS as a key mechanism in UPR activation and to suggest a possible protective role of the counter-regulatory arm in mitigating ER stress.
Collapse
Affiliation(s)
- Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Paula de Paula Alves
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Claudio Lucas Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
24
|
Dysregulation of the renin-angiotensin system in septic shock: Mechanistic insights and application of angiotensin II in clinical management. Pharmacol Res 2021; 174:105916. [PMID: 34597810 DOI: 10.1016/j.phrs.2021.105916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
Synergistic physiologic mechanisms involving the renin-angiotensin system (RAS), the sympathetic nervous system, and the arginine-vasopressin system play an integral role in blood pressure homeostasis. A subset of patients with sepsis experience septic shock with attendant circulatory, cellular, and metabolic abnormalities. Septic shock is associated with increased mortality because of an inadequacy to maintain mean arterial blood pressure (MAP) despite volume resuscitation and the use of vasopressors. Vasodilatory shock raises the dose of vasopressors required to maintain a MAP of > 65 mm Hg. The diminished response to endogenous angiotensin II in sepsis-induced vasoplegia may be related to the aberrant RAS activation that stimulates a proinflammatory beneficial antibacterial response, increasing the secretion of proinflammatory cytokines that downregulate AT-1 receptors expression. Moreover, excessive systemic upregulation of nitric oxide synthase, stimulation of prostaglandin synthesis, and activation of ATP-sensitive potassium channels followed by reduced vascular entry of calcium ions are putative mechanisms in the reduced responsiveness to vasopressors. However, intravenous angiotensin II in catecholamine-resistant septic shock patients showed substantial evidence of raising the MAP to target hemodynamic levels, thus allowing time to treat underlying conditions. Nevertheless, evidence of catecholamine-sparing effect by adding angiotensin II, aimed at increasing the therapeutic index of vasopressor therapy, does not show an attenuation of end-organ damage. The use of angiotensin II in septic shock has not been evaluated in patients who are not catecholamine resistant. This, in conjunction with an evolving definition of catecholamine resistance, provides an opportunity for further evaluation of exogenous angiotensin II in septic shock.
Collapse
|
25
|
Balakumar P, Alqahtani A, Khan NA, Alqahtani T, A T, Jagadeesh G. The physiologic and physiopathologic roles of perivascular adipose tissue and its interactions with blood vessels and the renin-angiotensin system. Pharmacol Res 2021; 173:105890. [PMID: 34536547 DOI: 10.1016/j.phrs.2021.105890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/12/2021] [Indexed: 01/16/2023]
Abstract
The perivascular adipose tissue (PVAT) refers to an ectopic local deposit of connective tissue that anatomically surrounds most of the blood vessels. While it was initially known only as a structural support for vasculature, the landmark findings of Soltis and Cassis (1991), first demonstrating that PVAT reduces the contractions of norepinephrine in the isolated rat aorta, brought the potential vascular role of PVAT into the limelight. This seminal work implied the potential ability of PVAT to influence vascular responsiveness. Several vasoactive/vasocrine substances influencing vascular homeostasis were successively shown to be released from PVAT that include both adipocyte-derived relaxing and contracting factors. The PVAT is currently recognized as a metabolically active endocrine organ and is eventually considered as the 'protagonist' in vascular homeostasis. It plays prominent defending and opposing roles in vascular function, while the actual vascular influences of PVAT vary with an increase in adiposity. Recent studies have presented compelling evidence implicating the pivotal role of PVAT in the local activation of the renin-angiotensin system (RAS), which substantially impacts vascular physiology and physiopathology. Current findings have advanced our understanding of the role of PVAT in favorably or adversely modulating the vascular function through differential RAS activation. Given that adipocytes also produce major RAS components locally to influence vascular function, this review provides a scientific basis to distinctly understand the key role of PVAT in regulating the autocrine and paracrine functions of vascular RAS components and its potential as an emerging therapeutic target for mitigating cardiovascular complications.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul 624005, India.
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Kingdom of Saudi Arabia
| | - Noohu Abdulla Khan
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Kingdom of Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Kingdom of Saudi Arabia
| | - Thangathirupathi A
- Department of Pharmacology, Pannai College of Pharmacy, Dindigul 624005, India
| | - Gowraganahalli Jagadeesh
- Division of Pharmacology & Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
26
|
Carlos CP, de Carvalho EP, Angeli Junior EV, Garcia Filho GF, Doná JPL, Batanero RPDO, Guena RDO, Agren C, Baptista MASF, Bizotto TSG, Cury PM, Chies AB. Angiotensin involvement in kidney injury induced by rheumatoid arthritis in rat. Clin Exp Pharmacol Physiol 2021; 48:1271-1279. [PMID: 34037987 DOI: 10.1111/1440-1681.13527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Renal injury induced by rheumatoid arthritis is not clear and may be related to the angiotensin II. We aim to investigate the adjuvant-induced arthritis (AIA) injury in rat kidney, focusing the angiotensin II/AT1 pathway. Male Wistar rats were allocated in to three groups: Control, AIA and AIA plus losartan. The AIA was induced by injection of 100 µL of an emulsion of dissected Mycobacterium tuberculosis (50 mg/mL) on the paw. Treatment with losartan was initiated on the first day of immunization (daily subcutaneous injection, 1 mg/kg). After 60 days post immunization, we evaluated kidney function by plasma creatinine, urea and uric acid levels and creatinine depuration; kidney injury by apoptosis analysis and inflammation markers such as macrophages, transforming growth factor beta (TGF-β) and inducible nitric oxide synthase (iNOS) expression; oxidative stress by plasma thiobarbituric acid reactive substances (TBARS); renal expression of angiotensin receptors subtype 1 (AT1 ) and 2 (AT2 ) and plasma concentration of angiotensin II. AIA rats showed elevated plasma levels of creatinine, urea, uric acid, TBARS and Ang II and reduced creatinine depuration, and enhanced kidney macrophage number, TGF-β, caspase-3, iNOS and AT1 /AT2 receptors expression. The losartan reduced plasma creatinine and its clearance, reduced macrophages and the expression of TGF-β and iNOS in renal tissues, and reduced plasma TBARS. We conclude that AIA causes kidney injury by a physiopathological mechanism that involves AT1 stimulation in renal tissue, elevating the presence of macrophages, the expression of TGF-β and iNOS, as well the local oxidative stress, which contribute to renal function deterioration.
Collapse
Affiliation(s)
- Carla Patrícia Carlos
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Enzo Prandi de Carvalho
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | | | - João Pedro Lot Doná
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | - Rafael de Oliveira Guena
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Camila Agren
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | | | - Patricia Maluf Cury
- Laboratory of Experimental Research, FACERES School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Agnaldo Bruno Chies
- Laboratory of Pharmacology, Marília Medical School, FAMEMA, São Paulo, Marília, Brazil
| |
Collapse
|
27
|
Laghlam D, Jozwiak M, Nguyen LS. Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021; 10:cells10071767. [PMID: 34359936 PMCID: PMC8303450 DOI: 10.3390/cells10071767] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The renin–angiotensin system (RAS) has long been described in the field of cardiovascular physiology as the main player in blood pressure homeostasis. However, other effects have since been described, and include proliferation, fibrosis, and inflammation. To illustrate the immunomodulatory properties of the RAS, we chose three distinct fields in which RAS may play a critical role and be the subject of specific treatments. In oncology, RAS hyperactivation has been associated with tumor migration, survival, cell proliferation, and angiogenesis; preliminary data showed promise of the benefit of RAS blockers in patients treated for certain types of cancer. In intensive care medicine, vasoplegic shock has been associated with severe macro- and microcirculatory imbalance. A relative insufficiency in angiotensin II (AngII) was associated to lethal outcomes and synthetic AngII has been suggested as a specific treatment in these cases. Finally, in solid organ transplantation, both AngI and AngII have been associated with increased rejection events, with a regional specificity in the RAS activity. These elements emphasize the complexity of the direct and indirect interactions of RAS with immunomodulatory pathways and warrant further research in the field.
Collapse
|
28
|
Gintoni I, Adamopoulou M, Yapijakis C. The Angiotensin-converting Enzyme Insertion/Deletion Polymorphism as a Common Risk Factor for Major Pregnancy Complications. In Vivo 2021; 35:95-103. [PMID: 33402454 DOI: 10.21873/invivo.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Idiopathic pregnancy complications pose a major threat to both maternal and fetal health worldwide. Numerous studies have implicated the role of the renin-angiotensin system (RAS) in the development of obstetric syndromes, since it is crucial for the uteroplacental function. A major RAS component is the angiotensin-converting enzyme (ACE), which hydrolyses angiotensin I to angiotensin II, and not only regulates arterial pressure, but also fibrinolytic activity, indirectly, through the expression of plasminogen activator inhibitor-1. A key functional polymorphism of the ACE gene is the insertion/deletion (I/D) polymorphism, which affects gene expression and product levels, and can therefore lead to high blood pressure and/or reduced fibrinolytic activity. These can cause major pregnancy complications, such as preeclampsia, recurrent pregnancy loss and preterm birth. This review discusses how the ACE I/D is associated with susceptibility towards pregnancy complications, on its own or in combination with other functional gene polymorphisms such, as the angiotensin II receptor type 1 (AT1R) A1166CC, angiotensin II receptor type 2 (AT2R) G1332A, plasminogen activator inhibitor-1 (PAI-1) 4G/5G, matrix metallopeptidase-9 (MMP-9) C1562T, angiotensinogen (AGT) M235T, renin (REN) 83A/G, factor XIII (F13) Val34Leu and endothelial nitric oxide synthase (eNOS) 4a/b.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1 Department of Paediatrics, School of Medicine, "Agia Sophia" Children's Hospital, National Kapodistrian University of Athens, Athens, Greece.,Department of Molecular Genetics, "Cephalogenetics" Center, Athens, Greece
| | - Maria Adamopoulou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1 Department of Paediatrics, School of Medicine, "Agia Sophia" Children's Hospital, National Kapodistrian University of Athens, Athens, Greece; .,Department of Molecular Genetics, "Cephalogenetics" Center, Athens, Greece
| |
Collapse
|
29
|
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. PATHOPHYSIOLOGY 2021; 28:273-290. [PMID: 35366262 PMCID: PMC8830479 DOI: 10.3390/pathophysiology28020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction.
Collapse
|
30
|
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2021; 183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.
Collapse
Affiliation(s)
| | - Hossein Fazelinia
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Man S Kim
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cem Meydan
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Yared Kidane
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Komal S Rathi
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Benjamin Stear
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Ying
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Foox
- Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | - Dong Wang
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sonja Schrepfer
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - J Tyson McDonald
- Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | - Gary Hardiman
- Queens University Belfast, Belfast BT9 5DL, UK; Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
31
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
32
|
Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med 2021; 47:95. [PMID: 33846799 PMCID: PMC8041481 DOI: 10.3892/ijmm.2021.4928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Present in more than one billion adults, hypertension is the most significant modifiable risk factor for mortality resulting from cardiovascular disease. Although its pathogenesis is not yet fully understood, the disruption of the renin-angiotensin system (RAS), consisting of the systemic and brain RAS, has been recognized as one of the primary reasons for several types of hypertension. Therefore, acquiring sound knowledge of the basic science of RAS and the under- lying mechanisms of the signaling pathways associated with RAS may facilitate the discovery of novel therapeutic targets with which to promote the management of patients with cardiovascular and kidney disease. In total, 4 types of angiotensin II receptors have been identified (AT1R-AT4R), of which AT1R plays the most important role in vasoconstriction and has been most extensively studied. It has been found in several regions of the brain, and its distribution is highly associated with that of angiotensin-like immunoreactivity in nerve terminals. The effect of AT1R involves the activation of multiple media and signaling pathways, among which the most important signaling pathways are considered to be AT1R/JAK/STAT and Ras/Raf/MAPK pathways. In addition, the regulation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and cyclic AMP response element-binding (CREB) pathways is also closely related to the effect of ATR1. Their mechanisms of action are related to pro-inflammatory and sympathetic excitatory effects. Central AT1R is involved in almost all types of hypertension, including spontaneous hypertension, salt-sensitive hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, angiotensin II-induced hyper- tension and aldosterone-induced hypertension. There are 2 types of central AT1R blockade, acute blockade and chronic blockade. The latter can be achieved by chemical blockade or genetic engineering. The present review article aimed to high- light the prevalence, functions, interactions and modulation means of central AT-1R in an effort to assist in the treatment of several pathological conditions. The identification of angiotensin-derived peptides and the development of AT-2R agonists may provide a wider perspective on RAS, as well as novel therapeutic strategies.
Collapse
Affiliation(s)
- Chuanxin Su
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhua Xue
- Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
33
|
Kim BJ, Cho YJ, Hong KS, Lee J, Kim JT, Choi KH, Park TH, Park SS, Park JM, Kang K, Lee SJ, Kim JG, Cha JK, Kim DH, Lee BC, Yu KH, Oh MS, Kim DE, Ryu WS, Choi JC, Kim WJ, Shin DI, Sohn SI, Hong JH, Lee JS, Lee J, Han MK, Gorelick PB, Bae HJ. Treatment Intensification for Elevated Blood Pressure and Risk of Recurrent Stroke. J Am Heart Assoc 2021; 10:e019457. [PMID: 33787300 PMCID: PMC8174371 DOI: 10.1161/jaha.120.019457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background It remains unclear whether physicians' attitudes toward timely management of elevated blood pressure affect the risk of stroke recurrence. Methods and Results From a multicenter stroke registry database, we identified 2933 patients with acute ischemic stroke who were admitted to participating centers in 2011, survived at the 1‐year follow‐up period, and returned to outpatient clinics ≥2 times after discharge. As a surrogate measure of physicians' attitude, individual treatment intensification (TI) scores were calculated by dividing the difference between the frequencies of observed and expected medication changes by the frequency of clinic visits and categorizing them into 5 groups. The association between TI groups and the recurrence of stroke within 1 year was analyzed using hierarchical frailty models, with adjustment for clustering within each hospital and relevant covariates. Mean±SD of the TI score was −0.13±0.28. The TI score groups were significantly associated with increased risk of recurrent stroke compared with Group 3 (TI score range, −0.25 to 0); Group 1 (range, −1 to −0.5), adjusted hazard ratio (HR) 13.43 (95% CI, 5.95–30.35); Group 2 (range, −0.5 to −0.25), adjusted HR 4.59 (95% CI, 2.01–10.46); and Group 4 (TI score 0), adjusted HR 6.60 (95% CI, 3.02–14.45); but not with Group 5 (range, 0–1), adjusted HR 1.68 (95% CI, 0.62–4.56). This elevated risk in the lowest TI score groups persisted when confining analysis to those with hypertension, history of blood pressure‐lowering medication, no atrial fibrillation, and regular clinic visits and stratifying the subjects by functional capacity at discharge. Conclusions A low TI score, which implies physicians' therapeutic inertia in blood pressure management, was associated with a higher risk of recurrent stroke. The TI score may be a useful performance indicator in the outpatient clinic setting to prevent recurrent stroke.
Collapse
Affiliation(s)
- Beom Joon Kim
- Department of Neurology and Cerebrovascular Center Seoul National University Bundang HospitalSeoul National University College of Medicine Seongnam Republic of Korea
| | - Yong-Jin Cho
- Department of Neurology Ilsan Paik HospitalInje University Goyang Republic of Korea
| | - Keun-Sik Hong
- Department of Neurology Ilsan Paik HospitalInje University Goyang Republic of Korea
| | - Jun Lee
- Department of Neurology Yeungnam University Hospital Daegu Republic of Korea
| | - Joon-Tae Kim
- Department of Neurology Chonnam National University Medical School and Hospital Gwangju Republic of Korea
| | - Kang Ho Choi
- Department of Neurology Chonnam National University Medical School and Hospital Gwangju Republic of Korea
| | - Tai Hwan Park
- Department of Neurology Seoul Medical Center Seoul Republic of Korea
| | - Sang-Soon Park
- Department of Neurology Seoul Medical Center Seoul Republic of Korea
| | - Jong-Moo Park
- Department of Neurology Eulji General Hospital Eulji University Seoul Republic of Korea
| | - Kyusik Kang
- Department of Neurology Eulji General Hospital Eulji University Seoul Republic of Korea
| | - Soo Joo Lee
- Department of Neurology Eulji University HospitalEulji University Daejeon Republic of Korea
| | - Jae Guk Kim
- Department of Neurology Eulji University HospitalEulji University Daejeon Republic of Korea
| | - Jae-Kwan Cha
- Department of Neurology Dong-A University College of Medicine Busan Republic of Korea
| | - Dae-Hyun Kim
- Department of Neurology Dong-A University College of Medicine Busan Republic of Korea
| | - Byung-Chul Lee
- Department of Neurology Hallym University Sacred Heart Hospital Anyang Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology Hallym University Sacred Heart Hospital Anyang Republic of Korea
| | - Mi-Sun Oh
- Department of Neurology Hallym University Sacred Heart Hospital Anyang Republic of Korea
| | - Dong-Eog Kim
- Department of Neurology Dongguk University Ilsan Hospital Goyang Republic of Korea
| | - Wi-Sun Ryu
- Department of Neurology Dongguk University Ilsan Hospital Goyang Republic of Korea
| | - Jay Chol Choi
- Department of Neurology Jeju National University Jeju Republic of Korea
| | - Wook-Joo Kim
- Department of Neurology Ulsan University HospitalUniversity of Ulsan College of Medicine Ulsan Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology Chungbuk National University Hospital Cheongju Republic of Korea
| | - Sung Il Sohn
- Department of Neurology Keimyung University Dongsan Medical Center Daegu Republic of Korea
| | - Jeong-Ho Hong
- Department of Neurology Keimyung University Dongsan Medical Center Daegu Republic of Korea
| | - Ji Sung Lee
- Clinical Research Center Asan Medical Center Seoul Republic of Korea
| | - Juneyoung Lee
- Department of Biostatistics College of Medicine Korea University Seoul Republic of Korea
| | - Moon-Ku Han
- Department of Neurology and Cerebrovascular Center Seoul National University Bundang HospitalSeoul National University College of Medicine Seongnam Republic of Korea
| | - Philip B Gorelick
- Davee Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL
| | - Hee-Joon Bae
- Department of Neurology and Cerebrovascular Center Seoul National University Bundang HospitalSeoul National University College of Medicine Seongnam Republic of Korea
| |
Collapse
|
34
|
Progesterone receptor isoform B regulates the Oxtr- Plcl2- Trpc3 pathway to suppress uterine contractility. Proc Natl Acad Sci U S A 2021; 118:2011643118. [PMID: 33707208 DOI: 10.1073/pnas.2011643118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.
Collapse
|
35
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
36
|
Gao M, Ma Y, Luo J, Li D, Jiang M, Jiang Q, Pi J, Chen R, Chen W, Zhang R, Zheng Y, Cui L. The Role of Nrf2 in the PM-Induced Vascular Injury Under Real Ambient Particulate Matter Exposure in C57/B6 Mice. Front Pharmacol 2021; 12:618023. [PMID: 33716746 PMCID: PMC7952307 DOI: 10.3389/fphar.2021.618023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Short-and long-term exposure to particulate matter (PM) has been associated with cardiovascular disease (CVD). It is well recognized that oxidative stress is a potential major mechanism in PM-induced vascular injuries, in which the nuclear factor E2-related factor 2 (Nrf2) signaling pathway plays a critical role. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential vascular injury and the potential role of Nrf2 in the angiotensin II (Ang II)-associated vascular injury. After 6-or 11-week exposure to PM, the histopathology assay revealed that PM exposure resulted in the thickening of the walls of vascular. After 6 weeks exposure to PM, the ELISA assay revealed that PM exposure resulted in the elevated plasma concentration of Ang II. The expression levels of genes of interest were then further investigated with quantitative real-time PCR. Notably, the results showed that Angiotensinogen (AGT), Angiotensin converting enzyme (ACE) and Angiotensin type I receptor (AT1R) were involved in PM-induced pathological changes. Western blotting for ACE showed similar results. Moreover, the extent of vascular thickening and the Ang II elevation was most prominent in the Nrf2 gene knockout PM exposure group (KOE). Furthermore, the expression of Nrf2 downstream relevant genes (HO1, Nqo1, Gclc, Gsta4) were significantly enhanced in the wildtype PM exposure group (WTE), while those were remarkably suppressed in the Nrf2 gene knockout groups. The ELISA result of monocyte chemoattractant protein-1 (MCP-1) serum levels in the KOE group was significantly higher in relation to that in the Nrf2 knockout control group (KOC). In summary, PM exposure is associated with thickening of vascular wall, while Nrf2 knockout may further enhance this effect. A potential mechanistic contributor of such effects is the activation of ACE/ANGII/AT1R axis, in which Nrf2 played a regulatory role.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Julien E, Biasch K, El Omar R, Freund JN, Gachet C, Lanza F, Tavian M. Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells 2021; 39:636-649. [PMID: 33480126 DOI: 10.1002/stem.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.
Collapse
Affiliation(s)
- Emmanuelle Julien
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Katia Biasch
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,IMoPA, UMR7365 CNRS-University of Lorraine, Vandœuvre Les Nancy, France
| | - Jean-Noël Freund
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| |
Collapse
|
38
|
Wen Z, Zhan J, Li H, Xu G, Ma S, Zhang J, Li Z, Ou C, Yang Z, Cai Y, Chen M. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics 2021; 11:3725-3741. [PMID: 33664858 PMCID: PMC7914367 DOI: 10.7150/thno.53644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: The compensatory activation of the renin-angiotensin system (RAS) after myocardial infarction (MI) plays a crucial role in the pathogenesis of heart failure. Most existing studies on this subject focus on mono- or dual-therapy of blocking the RAS, which exhibit limited efficacy and often causes serious adverse reactions. Few studies have been conducted on targeted therapy based on the activated RAS post-MI. Thus, the development of multiple-functional nanomedicine with concurrent targeting ability and synergistic therapeutic effect against RAS may show great promise in improving cardiac function post-MI. Methods: We utilized a cooperative self-assembly strategy constructing supramolecular nanofibers— telmisartan-doped co-assembly nanofibers (TDCNfs) to counter-regulate RAS through targeted delivery and combined therapy. TDCNfs were prepared through serial steps of solvent exchange, heating incubation, gelation, centrifugation, and lyophilization, in which the telmisartan was doped in the self-assembly process of Ang1-7 to obtain the co-assembly nanofibers wherein they act as both therapeutic agents and target-guide agents. Results: TDCNfs exhibited the desired binding affinity to the two different receptors, AT1R and MasR. Through the dual ligand-receptor interactions to mediate the coincident downstream pathways, TDCNfs not only displayed favorably targeted properties to hypoxic cardiomyocytes, but also exerted synergistic therapeutic effects in apoptosis reduction, inflammatory response alleviation, and fibrosis inhibition in vitro and in vivo, significantly protecting cardiac function and mitigating post-MI adverse outcomes. Conclusion: A dual-ligand nanoplatform was successfully developed to achieve targeted and synergistic therapy against cardiac deterioration post-MI. We envision that the integration of multiple therapeutic agents through supramolecular self-assembly would offer new insight for the systematic and targeted treatment of cardiovascular diseases.
Collapse
|
39
|
Katsi V, Pavlidis G, Charalambous G, Tousoulis D, Toutouzas K. COVID-19, Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Inhibition: Implications for Practice. Curr Hypertens Rev 2021; 18:3-10. [PMID: 33475077 DOI: 10.2174/1573402117666210121100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies suggested that patients with coronavirus disease 2019 (COVID-19) who use renin-angiotensin system (RAS) inhibitors have an increased risk of respiratory failure and death. The hypothesis was that angiotensin-converting enzyme inhibitor (ACEIs) or angiotensin receptor blocker (ARBs) may up-regulate ACE2 expression that is used as receptor for viral entry into cells. OBJECTIVE The purpose of this review is to discuss the existing evidence on the interaction between COVID-19 infection, ACE2 and ACEIs or ARBs and to examine the main implications for clinical practice. In addition, novel therapeutic strategies for blocking ACE2-mediated COVID-19 infection will be displayed. METHODS We performed a comprehensive review of the literature to identify data from clinical and experimental studies for the association between COVID-19 infection, ACE2 and RAS inhibition. RESULTS The current clinical and experimental evidence for ACEIs or ARBs to facilitate severe acute respiratory distress syndrome-coronavirus-2 (SARS-CoV-2) is insufficient to suggest discontinuing these drugs. Several observational studies arrive at the conclusion that the continued use of RAS inhibitors is unlike to be harmful in COVID-19-positive patients. CONCLUSIONS Further randomized trials are needed to answer definitely the question of whether RAS inhibitors are harmful or beneficial to patients with COVID-19.
Collapse
Affiliation(s)
- Vasiliki Katsi
- 1 st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens. Greece
| | - George Pavlidis
- Emergency Department, 'Hippokration' General Hospital, Athens. Greece
| | | | - Dimitrios Tousoulis
- 1 st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens. Greece
| | - Konstantinos Toutouzas
- 1 st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens. Greece
| |
Collapse
|
40
|
Fakhri S, Piri S, Majnooni MB, Farzaei MH, Echeverría J. Targeting Neurological Manifestations of Coronaviruses by Candidate Phytochemicals: A Mechanistic Approach. Front Pharmacol 2021; 11:621099. [PMID: 33708124 PMCID: PMC7941749 DOI: 10.3389/fphar.2020.621099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard, growing evidence is focusing on COVID-19 neurological associations; however, there is a lack of established pathophysiological mechanisms and related treatments. Accordingly, a comprehensive review was conducted, using electronic databases, including PubMed, Scopus, Web of Science, and Cochrane, along with the author's expertize in COVID-19 associated neuronal signaling pathways. Besides, potential phytochemicals have been provided against neurological signs of COVID-19. Considering a high homology among SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise pathophysiological mechanisms seems to pave the road for the treatment of COVID-19 neural manifestations. There is a complex pathophysiological mechanism behind central manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/spike proteins, RNA-dependent RNA polymerase and protease are of special attention. So, employing multi-target therapeutic agents with considerable safety and efficacy seems to show a bright future in fighting COVID-19 neurological manifestations. Nowadays, natural secondary metabolites are highlighted as potential multi-target phytochemicals in combating several complications of COVID-19. In this review, central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has been provided. Besides, in terms of pharmacological mechanisms, phytochemicals have been introduced as potential multi-target agents in combating COVID-19 central nervous system complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
41
|
Lung adenocarcinoma patients have higher risk of SARS-CoV-2 infection. Aging (Albany NY) 2021; 13:1620-1632. [PMID: 33429366 PMCID: PMC7880402 DOI: 10.18632/aging.202375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
Both lung adenocarcinoma and coronavirus disease 2019 would cause pulmonary inflammation. Angiotensin-converting enzyme 2, the functional receptor of SARS-CoV-2, also plays a key role in lung adenocarcinoma. To study the risk of SARS-CoV-2 infection in lung adenocarcinoma patients, mRNA and microRNA profiles were obtained from The Cancer Genome Atlas and Gene Expression Omnibus followed by bioinformatics analysis. A network which regards angiotensin-converting enzyme 2 as the center was structured. In addition, via immunological analysis to explore the essential mechanism of SARS-CoV-2 susceptibility in lung adenocarcinoma. Compared with normal tissue, angiotensin-converting enzyme 2 was increased in lung adenocarcinoma patients. Furthermore, a total of 7 correlated differently expressed mRNAs (ACE2, CXCL9, MMP12, IL6, AZU1, FCN3, HYAL1 and IRAK3) and 5 correlated differently expressed microRNAs (miR-125b-5p, miR-9-5p, miR-130b-5p, miR-381-3p and miR-421) were screened. Interestingly, the most frequent toll-like receptor signaling pathway was enriched by mRNA (interlukin 6) and miRNA (miR-125b-5p) sets simultaneously. In conclusion, it was assumed that miR-125b-5p-ACE2-IL6 axis could alter the risk of SARS-CoV-2 infection in lung adenocarcinoma patients.
Collapse
|
42
|
Tian C, Li N, Bai Y, Xiao H, Li S, Ge QG, Shen N, Ma QB. Angiotensin converting enzymes inhibitors or angiotensin receptor blockers should be continued in COVID-19 patients with hypertension. World J Clin Cases 2021; 9:47-60. [PMID: 33511171 PMCID: PMC7809663 DOI: 10.12998/wjcc.v9.i1.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies have revealed that sustained ingestion of angiotensin converting enzymes inhibitors or angiotensin receptor blockers (ACEIs/ARBs) had no harmful effects on coronavirus disease 2019 (COVID-19) patients complicated with hypertension. AIM To investigate the impact on COVID-19 patients complicated with hypertension who discontinued using ACEIs/ARBs. METHODS All COVID-19 patients complicated with hypertension admitted to our isolated unit were consecutively recruited in this study. Some patients switched from ACEIs/ARBs to calcium channel blocker (CCBs) after admission, while others continued using non-ACEIs/ARBs. We compared characteristics and clinical outcomes between these two groups of patients. RESULTS A total of 53 patients were enrolled, 27 patients switched from ACEIs/ARBs to CCBs while 26 patients continued with non-ACEIs/ARBs. After controlling potential confounding factors using the Cox proportional hazards model, hospital stay was longer in patients who discontinued ACEIs/ARBs, with a hazard ratio of 0.424 (95% confidence interval: 0.187-0.962; P = 0.040), upon discharge than patients using other anti-hypertensive drugs. A sub-group analysis showed that the effect of discontinuing use of ACEIs/ARBs was stronger in moderate cases [hazard ratio = 0.224 (95% confidence interval: 0.005-0.998; P = 0.0497)]. CONCLUSION Patients in the discontinued ACEIs/ARBs group had longer hospital stays. Our findings suggest that COVID-19 patients complicated with hypertension should continue to use ACEIs/ARBs.
Collapse
Affiliation(s)
- Ci Tian
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Yi Bai
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shu Li
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Qing-Gang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Department of Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Qing-Bian Ma
- Department of Emergency Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
43
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
44
|
Nakamaru R, Nakagami H, Hayashi H, Sun J, Tenma A, Yamamoto K, Shimamura M, Morishita R, Rakugi H. A novel angiotensin II peptide vaccine without an adjuvant in mice. J Hypertens 2021; 39:181-189. [PMID: 32667158 PMCID: PMC7752219 DOI: 10.1097/hjh.0000000000002597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/03/2022]
Abstract
OBJECTIVES We recently developed a novel peptide, AJP001, that possesses both a mouse T-cell epitope and adjuvant action. Direct conjugation to the antigen is useful for peptide vaccines without the addition of adjuvants. In this study, the efficacy of an angiotensin (Ang) II and AJP001-conjugated peptide vaccine (AJ-Ang II) was evaluated in mice. METHODS The anti-Ang II antibody titer was measured in Balb/C mice following three injections of AJ-Ang II at 2-week intervals. SBP was measured during vaccination of Balb/C mice treated with Ang II infusion (1 μg/kg per min). RESULTS AJ-Ang II treatment resulted in an increase in the anti-Ang II antibody titer in a dose-dependent manner without the addition of adjuvants. In the analysis of the humoral immune response, AJ-Ang II mainly elicited IgG1 antibodies and IL-4 and IL-10 production, as measured by an enzyme-linked immune absorbent spot assay, which suggests the induction of a Th2 response. Importantly, cotreatment with purified antibodies attenuated Ang II-induced extracellular signal-regulated kinase phosphorylation and nuclear factor (NF)-κB activation in cultured vascular smooth muscle cells. The SBP in immunized mice was significantly lower than that in nonimmunized mice (135.9 ± 8.5 vs. 154.9 ± 16.8 mmHg, P = 0.02). Furthermore, Ang II-induced perivascular fibrosis in the heart was significantly attenuated in immunized mice, which also exhibited decreased mRNA expression of collagen I/III and transforming growth factor-β. CONCLUSION AJ-Ang II may be a simple and useful therapeutic peptide vaccine without the addition of any adjuvants.
Collapse
Affiliation(s)
| | | | | | - Jiao Sun
- Department of Health Development and Medicine
| | - Akiko Tenma
- Department of Health Development and Medicine
| | | | | | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
45
|
Thohan V, Michel K, Purohit A, Malick O, Downey FX, Oaks M. The effect of pre-transplant and post-transplant anti-AT1R antibodies in heart transplant recipients. TRANSPLANTATION REPORTS 2020. [DOI: 10.1016/j.tpr.2020.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Song T, Lv M, Zhang L, Zhang X, Song G, Huang M, Zheng L, Zhao M. The Protective Effects of Tripeptides VPP and IPP against Small Extracellular Vesicles from Angiotensin II-Induced Vascular Smooth Muscle Cells Mediating Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13730-13741. [PMID: 33180478 DOI: 10.1021/acs.jafc.0c05698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Endothelial dysfunction is a common disorder of vascular homeostasis in hypertension characterized by oxidative stress, malignant migration, inflammatory response, and active adhesion response of endothelial cells. The extracellular vesicles (EVs), a vital participant in vascular cell communication, have been considered responsible for vascular disease progression. However, the potential mechanism of antihypertensive peptides against the EVs-induced endothelial dysfunction is still unclear. In this study, we investigated whether the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) ameliorate the effects of EVs from Ang II-induced vascular smooth muscles (VSMCs) on the endothelial dysfunction. The dihydroethidium staining, wound healing assay, 3D cell culture, and co-culture with U937 monocyte were used to investigate the oxidant/antioxidant balance, migration, tube formation, and cell adhesion in EV-induced human umbilical vein endothelial cells. VPP and IPP treatment reduced the level of reactive oxygen species and EV-induced expression of adhesion molecules and restored the ability of tube formation by upregulating endothelial nitric oxide synthase expression. VPP and IPP reduced the protein levels of IL-6 to 227.34 ± 10.56 and 273.84 ± 22.28 pg/mL, of IL-1β protein to 131.56 ± 23.18 and 221.14 ± 13.8 pg/mL, and of MCP-1 to 301.48 ± 19.75 and 428.68 ± 9.59 pg/mL. These results suggested that the VPP and IPP are potential agents that can improve the endothelial dysfunction caused by EVs from Ang II-induced VSMCs.
Collapse
Affiliation(s)
- Tianyuan Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lixia Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Xun Zhang
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Guohui Song
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Institute of Agricultural Products Processing, Henan Academy of Agriculture Sciences, 116 Huayuan Road, Zhengzhou 450002, P.R. China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, P.R. China
| |
Collapse
|
47
|
Potential Roles of the Renin-Angiotensin System in the Pathogenesis and Treatment of COVID-19. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7520746. [PMID: 33204713 PMCID: PMC7656237 DOI: 10.1155/2020/7520746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023]
Abstract
The spread of pathogenic severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) poses a global health emergency. Based on the symptomatic treatment and supporting therapy, prevention of complications is the major treatment option. Therefore, it is necessary to illustrate the potential mechanisms for the pathogenesis of COVID-19. Angiotensin-converting enzyme 2 (ACE2), the major receptor of SARS-CoV-2, is one of the major members of the renin-angiotensin system (RAS). In this review, we aimed to summarize the crucial roles of ACE2 in the pathogenesis of COVID-19, followed by illustrating potential treatment options relating to ACE2 and the RAS.
Collapse
|
48
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
49
|
Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cell Signal 2020; 74:109721. [PMID: 32711111 PMCID: PMC7375293 DOI: 10.1016/j.cellsig.2020.109721] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA virus that causes the potentially lethal Covid-19 respiratory tract infection. It does so by binding to host cell angiotensin converting enzyme 2 (ACE2) receptors, leading to endocytosis with the receptor, and subsequently using the host cell's machinery to replicate copies of itself and invade new cells. The extent of the spread of infection in the body is dependent on the pattern of ACE2 expression and overreaction of the immune system. Additionally, by inducing an imbalance in the renin-angiotensin-aldosterone system (RAAS) and the loss of ACE2 would favour the progression of inflammatory and thrombotic processes in the lungs. No drug or vaccine has yet been approved to treat human coronaviruses. Hundreds of clinical trials on existing approved drugs from different classes acting on a multitude of targets in the virus life cycle are ongoing to examine potential effectiveness for the prevention and treatment of the infection. This review summarizes the SARS-CoV-2 virus life cycle in the host cell and provides a biological and pathological point of view for repurposed and experimental drugs for this novel coronavirus. The viral life cycle provides potential targets for drug therapy.
Collapse
Affiliation(s)
- Ramarao Poduri
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India.
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, India.
| | - Gowraganahalli Jagadeesh
- Office of Cardiology, Hematology, Endocrinology and Nephrology, CDER, FDA, Silver Spring, MD, USA.
| |
Collapse
|
50
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|