1
|
Zhang Q, Li Y, Zhang J, Cui Y, Sun S, Chen W, Shi L, Zhang Y, Hou Z. IL-17A is a key regulator of neuroinflammation and neurodevelopment in cognitive impairment induced by sevoflurane. Free Radic Biol Med 2025; 227:12-26. [PMID: 39581388 DOI: 10.1016/j.freeradbiomed.2024.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Increasing numbers of animal studies have shown that repeat sevoflurane exposure during developmental stage may lead to long-term cognitive impairment. Nevertheless, the exact pathogenesis remains unclear. Interleukin 17A (IL-17A) has been associated with cognitive decline in various neurological disorders. Here we found that the expression of IL-17A was up-regulated in hippocampus of sevoflurane exposed neonatal mice. Genetic deletion of IL-17A or inhibition of IL-17A improved behavioral function and down-regulated neuroinflammation related genes, interleukin 1β (IL-1β), interleukin 6 (IL-6), Nicotinamide adenine dinucleotide phosphate(NADPH) oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) in hippocampus of sevoflurane exposed neonatal mice. Moreover, negative regulation of IL-17A/Interleukin 17A receptor(IL-17RA) promoted the extracellular signal-regulated protein kinase (ERK) signaling pathway and nucleation of cyclic adenosine monophosphate (cAMP) response element-binding (CREB) in neurons of cognitive impaired mice. Knockdown of IL-17A in vivo identified neurons-localized IL-17A as a major factor in neuroinflammation and neurodevelopment. Collectively, our results suggested that IL-17A was required for the pathogenesis of neuroinflammatory response and identify IL-17A as a potential therapeutic target for cognitive impairment exposed by general anesthetics during infancy.
Collapse
Affiliation(s)
- Qi Zhang
- Postdoctoral Mobile Station of the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, PR China; Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China; Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Hebei, PR China
| | - Jiajie Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Suzhen Sun
- Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, PR China; Department of Neurology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lei Shi
- Department of Anesthesiology, Hebei Children's Hospital Affiliated to Hebei Medical University, Hebei, 050031, PR China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China; Orthopaedic Research Institute of Hebei Province, Shijiazhuang, Hebei, PR China; NHC Key Laboratory of Intelligent Orthopaedic Equipment (the Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
2
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Shrader SH, Mellen N, Cai J, Barnes GN, Song ZH. Cannabidiol is a behavioral modulator in BTBR mouse model of idiopathic autism. Front Neurosci 2024; 18:1359810. [PMID: 38784096 PMCID: PMC11112039 DOI: 10.3389/fnins.2024.1359810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The prevalence of Autism Spectrum Disorder (ASD) has drastically risen over the last two decades and is currently estimated to affect 1 in 36 children in the U.S., according to the center for disease control (CDC). This heterogenous neurodevelopmental disorder is characterized by impaired social interactions, communication deficits, and repetitive behaviors plus restricted interest. Autistic individuals also commonly present with a myriad of comorbidities, such as attention deficit hyperactivity disorder, anxiety, and seizures. To date, a pharmacological intervention for the treatment of core autistic symptoms has not been identified. Cannabidiol (CBD), the major nonpsychoactive constituent of Cannabis sativa, is suggested to have multiple therapeutic applications, but its effect(s) on idiopathic autism is unknown. We hypothesized that CBD will effectively attenuate the autism-like behaviors and autism-associated comorbid behaviors in BTBR T+Itpr3tf/J (BTBR) mice, an established mouse model of idiopathic ASD. Methods Male BTBR mice were injected intraperitoneally with either vehicle, 20 mg/kg CBD or 50 mg/kg CBD daily for two weeks beginning at postnatal day 21 ± 3. On the final treatment day, a battery of behavioral assays were used to evaluate the effects of CBD on the BTBR mice, as compared to age-matched, vehicle-treated C57BL/6 J mice. Results High dose (50 mg/kg) CBD treatment attenuated the elevated repetitive self-grooming behavior and hyperlocomotion in BTBR mice. The social deficits exhibited by the control BTBR mice were rescued by the 20 mg/kg CBD treatment. Discussion Our data indicate that different doses for CBD are needed for treating specific ASD-like behaviors. Together, our results suggest that CBD may be an effective drug to ameliorate repetitive/restricted behaviors, social deficits, and autism-associated hyperactivity.
Collapse
Affiliation(s)
- Sarah H. Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nicholas Mellen
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Gregory N. Barnes
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
4
|
Assiri MA, Albekairi TH, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Aldossari AA, Almutairi MM, Almanaa TN, Alwetaid MY, Ahmad SF. The Exposure to Lead (Pb) Exacerbates Immunological Abnormalities in BTBR T + Itpr 3tf/J Mice through the Regulation of Signaling Pathways Relevant to T Cells. Int J Mol Sci 2023; 24:16218. [PMID: 38003408 PMCID: PMC10671427 DOI: 10.3390/ijms242216218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.
Collapse
Affiliation(s)
- Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
5
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Ahmad SF. Aflatoxin B 1 Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T +Itpr3 tf/J Mouse Model of Autism. Brain Sci 2023; 13:1519. [PMID: 38002479 PMCID: PMC10669727 DOI: 10.3390/brainsci13111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Shan Y, Wang L, Sun J, Chang S, Di W, Lv H. Exercise preconditioning attenuates cerebral ischemia-induced neuronal apoptosis, Th17/Treg imbalance, and inflammation in rats by inhibiting the JAK2/STAT3 pathway. Brain Behav 2023; 13:e3030. [PMID: 37143406 PMCID: PMC10275560 DOI: 10.1002/brb3.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Exercise preconditioning (EP) is essential for preventing ischemic stroke. Recent studies have shown that EP exerts neuroprotective effects in the cerebral ischemia-reperfusion injury model. Nonetheless, there have been few reports on the relationship between EP and the Th17/Treg balance. Moreover, it is unclear whether the JAK2/STAT3 pathway is responsible for the neuroprotective effect of EP. Therefore, we aimed to explore the impact of EP, other than the anti-inflammatory and antiapoptotic functions, on the Th17/Treg balance via the JAK2/STAT3 pathway in a middle cerebral artery occlusion (MCAO)-induced model. RESULTS Fifty rats were randomly allocated into five groups, including the sham group (n = 10), EP+sham group (n = 10), MCAO group (n = 10), EP+MCAO group (n = 10), and EP+MCAO+JAK2/STAT3 pathway agonist (coumermycin A1, CA1) group (n = 10). The results indicated that EP alleviated neurological deficits, reduced infarct volume, and ameliorated neuronal apoptosis induced by MCAO. Additionally, the MCAO-induced Th17/Treg imbalance could be rectified by EP. The decreased levels of IL-10 and Foxp3 and increased IL-17 and RORα in the MCAO group were reversed by EP treatment. Regarding inflammation, EP reduced the concentrations of IL-6 and IL-17 and elevated those of IL-10 and TGF-β. The neuroprotective effects of EP were accompanied by decreased phosphorylation of JAK2 and STAT3. Furthermore, CA1 pretreatment diminished all the beneficial effects of EP partially. CONCLUSION Our findings suggest that EP contributes to attenuating neuronal apoptosis, Th17/Treg imbalance, and inflammation induced by MCAO via inhibiting the JAK2/STAT3 pathway, indicating its therapeutic potential in ischemic stroke.
Collapse
Affiliation(s)
- Yuan Shan
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Le Wang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Jingying Sun
- Central Research LaboratoryShaanxi Provincial People's HospitalXi'anChina
| | - Sha Chang
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Wei Di
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| | - Hua Lv
- Department of NeurologyShaanxi Provincial People's HospitalXi'anChina
| |
Collapse
|
7
|
Garcia CP, Licht-Murava A, Orr AG. Effects of adenosine A 2A receptors on cognitive function in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:121-154. [PMID: 37741689 DOI: 10.1016/bs.irn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine A2A receptors have been studied extensively in the context of motor function and movement disorders such as Parkinson's disease. In addition to these roles, A2A receptors have also been increasingly implicated in cognitive function and cognitive impairments in diverse conditions, including Alzheimer's disease, schizophrenia, acute brain injury, and stress. We review the roles of A2A receptors in cognitive processes in health and disease, focusing primarily on the effects of reducing or enhancing A2A expression levels or activities in animal models. Studies reveal that A2A receptors in neurons and astrocytes modulate multiple aspects of cognitive function, including memory and motivation. Converging evidence also indicates that A2A receptor levels and activities are aberrantly increased in aging, acute brain injury, and chronic disorders, and these increases contribute to neurocognitive impairments. Therapeutically targeting A2A receptors with selective modulators may alleviate cognitive deficits in diverse neurological and neuropsychiatric conditions. Further research on the exact neural mechanisms of these effects as well as the efficacy of selective A2A modulators on cognitive alterations in humans are important areas for future investigation.
Collapse
Affiliation(s)
- Cinthia P Garcia
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States; Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, United States
| | - Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
8
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alomar HA, Al-Mazroua HA, Ibrahim KE, Alshamrani AA, Al-Hamamah MA, Alfardan AS, Attia SM. CXCR3 antagonist NBI-74330 mitigates joint inflammation in Collagen-Induced arthritis model in DBA/1J mice. Int Immunopharmacol 2023; 118:110099. [PMID: 37018975 DOI: 10.1016/j.intimp.2023.110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. We used the CXCR3-specific antagonist NBI-74330 to block T-cell-mediated signaling in a DBA/1J mouse model of collagen-induced arthritis (CIA). After CIA induction, DBA/1J mice were treated with NBI-74330 (100 mg/kg) daily from day 21 until day 34 and evaluated for arthritic score and histopathological changes. Furthermore, using flow cytometry, we investigated the effects of NBI-74330 on Th1 (IFN-γ, TNF-α, T-bet, STAT4, Notch-3, and RANKL), Th17 (IL-21, IL-17A, STAT3, and RORγt), and Th22 (IL-22) cells in splenic CD4+ and CXCR3+T-cells. We also used RT-PCR to assess the effect of mRNA levels of IFN-γ, TNF-α, T-bet, RANKL, IL-17A, RORγt, and IL-22 in knee tissues. The IFN-γ, TNF-α, and IL-17A serum protein levels were measured using ELISA. Compared to vehicle-treated CIA mice, the severity of arthritic scores and histological severity of inflammation decreased significantly in NBI-74330-treated CIA mice. Moreover, compared to vehicle-treated CIA mice, the percentages of CD4+IFN-γ+, CD4+TNF-α+, CD4+T-bet+, CD4+STAT4+, CD4+Notch-3+, CXCR3+IFN-γ+, CXCR3+TNF-α+, CXCR3+T-bet+, CXCR3+STAT4+, CXCR3+Notch-3+, CD4+RANKL+, CD4+IL-21+, CD4+IL-17A+, CD4+STAT3+, CD4+RORγt+, and CD4+IL-22+ cells decreased in NBI-74330-treated CIA mice. Furthermore, NBI-74330-treatment downregulated IFN-γ, TNF-α, T-bet, RANKL, STAT3, IL-17A, RORγt, and IL-22 mRNA levels. Serum IFN-γ, TNF-α, and IL-17A levels were significantly lower in NBI-74330-treated CIA mice than in vehicle-treated CIA mice. This study demonstrates the antiarthritic effects of NBI-74330 in CIA mice. Therefore, these data suggest that NBI-74330 could be considered a potential RA treatment.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Kaminski VDL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, Roman T, Chies JAB. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023; 9:e15593. [PMID: 37305482 PMCID: PMC10256833 DOI: 10.1016/j.heliyon.2023.e15593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders usually observed in early life, with impacts on behavioral and social skills. Incidence of ASD has been dramatically increasing worldwide, possibly due to increase in awareness/diagnosis as well as to genetic and environmental triggers. Currently, it is estimated that ∼1% of the world population presents ASD symptoms. In addition to its genetic background, environmental and immune-related factors also influence the ASD etiology. In this context, maternal immune activation (MIA) has recently been suggested as a component potentially involved in ASD development. In addition, extracellular vesicles (EVs) are abundant at the maternal-fetal interface and are actively involved in the immunoregulation required for a healthy pregnancy. Considering that alterations in concentration and content of EVs have also been associated with ASD, this article raises a debate about the potential roles of EVs in the processes surrounding MIA. This represents the major differential of the present review compared to other ASD studies. To support the suggested correlations and hypotheses, findings regarding the roles of EVs during pregnancy and potential influences on ASD are discussed, along with a review and update concerning the participation of infections, cytokine unbalances, overweight and obesity, maternal anti-fetal brain antibodies, maternal fever, gestational diabetes, preeclampsia, labor type and microbiota unbalances in MIA and ASD.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Rafael Tomoya Michita
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil - ULBRA, Canoas, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Degani Veit
- Instituto de Ciências Básicas da Saúde, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Mazroua HA, Alomar HA, Al-Hamamah MA, Attia SM. S3I-201, a selective stat3 inhibitor, ameliorates clinical symptoms in a mouse model of experimental autoimmune encephalomyelitis through the regulation of multiple intracellular signalling in Th1, Th17, and treg cells. Mult Scler Relat Disord 2023; 73:104658. [PMID: 36989705 DOI: 10.1016/j.msard.2023.104658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
CD4+ T cells, specifically Th cells (Th1 and Th17) and regulatory T cells (Tregs), play a pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease of the CNS. STAT3 inhibitors are potential therapeutic targets for several immune disorders. In this study, we investigated the role of a well-known STAT3 inhibitor, S3I-201, in experimental autoimmune encephalomyelitis (EAE), a model of MS. Following induction of EAE, mice were intraperitoneally administered S3I-201 (10 mg/kg) each day, beginning on day 14 and continuing till day 35 and were evaluated for clinical signs. Flow cytometry was used to investigate further the effect of S3I-201 on Th1 (IFN-γ, STAT1, pSTAT1, and T-bet), Th17 (IL-17A, STAT3, pSTAT3, and RORγt), and regulatory T cells (Treg, IL-10, TGF-β1, and FoxP3) expressed in splenic CD4+ T cells. Moreover, we analyzed the effects of S3I-201 on mRNA and protein expression of IFN-γ, T-bet, IL-17A, STAT1, STAT3, pSTAT1, pSTAT3, RORγ, IL-10, TGF-β1, and FoxP3 in the brains of EAE mice. The severity of clinical scores decreased in S3I-201-treated EAE mice compared to vehicle-treated EAE mice. S3I-201 treatment significantly decreased CD4+IFN-γ+, CD4+STAT1+, CD4+pSTAT1+, CD4+T-bet+, CD4+IL-17A+, CD4+STAT3+, CD4+pSTAT3+, and CD4+RORγt+ and increased CD4+IL-10+, CD4+TGF-β1+, and CD4+FoxP3+ in the spleens of EAE mice. Additionally, S3I-201 administration in EAE mice significantly decreased the mRNA and protein expression of Th1 and Th17 and increased those of Treg. These results suggest that S3I-201 may have novel therapeutic potential against MS.
Collapse
|
11
|
Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almutairi MM, Albekairi TH, Hussein MH, Al-Hamamah MA, Ahmad SF. Cadmium Exposure Is Associated with Behavioral Deficits and Neuroimmune Dysfunction in BTBR T+ Itpr3tf/J Mice. Int J Mol Sci 2023; 24:ijms24076575. [PMID: 37047547 PMCID: PMC10095149 DOI: 10.3390/ijms24076575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Alomar HA, Nadeem A, Ansari MA, Attia SM, Bakheet SA, Al-Mazroua HA, Alhazzani K, Assiri MA, Alqinyah M, Almudimeegh S, Ahmad SF. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res Bull 2023; 194:45-53. [PMID: 36646144 DOI: 10.1016/j.brainresbull.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease leading to demyelination, followed by consequent axonal degeneration, causing sensory, motor, cognitive, and visual symptoms. Experimental autoimmune encephalomyelitis (EAE) is the most well-studied animal model of MS. Most current MS treatments are not completely effective, and severe side effects remain a great challenge. In this study, we report the therapeutic efficacy of PD98059, a potent mitogen-activated protein kinase inhibitor, on proteolipid protein (PLP)139-151-induced EAE in SJL/J mice. Following the induction of EAE, mice were intraperitoneally treated with PD98059 (5 mg/kg for 14 days) daily from day 14 to day 28. This study investigated the effects of PD98059 on C-C motif chemokine receptor 6 (CCR6), CD14, NF-κB p65, IκBα, GM-CSF, iNOS, IL-6, TNF-α in CD45R+ B lymphocytes using flow cytometry. Furthermore, we analyzed the effect of PD98059 on CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA and protein expression levels using qRT-PCR analysis in brain tissues. Mechanistic investigations revealed that PD98059-treated in mice with EAE had reduced CD45R+CCR6+, CD45R+CD14+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+iNOS+, CD45R+IL-6+, and CD45R+TNF-α+ cells and increased CD45R+IκBα+ cells compared with vehicle-treated control mice in the spleen. Moreover, downregulation of CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA expression level was observed in PD98059-treated mice with EAE compared with vehicle-treated control mice in the brain tissue. The results of this study demonstrate that PD98059 modulates inflammatory mediators through multiple cellular mechanisms. The results of this study suggest that PD98059 may be pursued as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
13
|
Dutra ML, Dias P, Freiberger V, Ventura L, Comim CM, Martins DF, Bobinski F. Maternal immune activation induces autism-like behavior and reduces brain-derived neurotrophic factor levels in the hippocampus and offspring cortex of C57BL/6 mice. Neurosci Lett 2023; 793:136974. [PMID: 36414133 DOI: 10.1016/j.neulet.2022.136974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Prenatal factors such as viral or bacterial infections occurring mainly during the first trimesters of pregnancy can increase the incidence of autism spectrum disorder (ASD) in children. In an animal model, it is already known that maternal immune activation (MIA) induces autistic-like behavior. However, it is unclear whether this behavior presents itself in young animals. In this preclinical experimental study, we investigated in the offspring of C57BL/6 female mice submitted to MIA with lipopolysaccharide (LPS), typically altered behaviors in ASD, such as social interaction and stereotyped self-grooming movement, as well as the levels of the brain-derived neurotrophic factor (BDNF) and interleukin 17A (IL-17A) in the hippocampus and cortex, at 28 and 60 days. Adult animals aged 60 days, offspring of females submitted to MIA, showed a decrease in the time of social interaction and an increase in the number of self-cleaning movements. In the hippocampus of the offspring of females submitted to MIA, a decrease in BDNF levels was found at 28 days and 60 days of life, and a decrease in IL-17A levels only at 60 days. The levels of BDNF and IL-17A did not change in the cortex of the offspring of mice submitted to MIA at the evaluated times. Young animals aged 28 days still showed typical behavior, without social deficits and stereotyped movements that characterize ASD, which suggests that at this age it is still not possible to observe the repercussions of MIA in this model. In the neurochemical issues of the hippocampal region, impairment of BDNF levels has already been demonstrated, which may be an important factor for the observation of ASD-like behaviors in adult mice at 60 days.
Collapse
Affiliation(s)
- Matheus Luchini Dutra
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Paula Dias
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Viviane Freiberger
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Leticia Ventura
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil.
| |
Collapse
|
14
|
He H, Chen Q, Fan H, Leng XY, Zhu F, Gao F, Zhou Q, Dong Y, Yang J. Extracellular vesicles produced by bone marrow mesenchymal stem cells overexpressing programmed death-ligand 1 ameliorate dextran sodium sulfate-induced ulcerative colitis in rats by regulating Th17/Treg cell balance through PTEN/PI3K/AKT/mTOR axis. J Gastroenterol Hepatol 2022; 37:2243-2254. [PMID: 36044618 PMCID: PMC10087423 DOI: 10.1111/jgh.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Programmed death-ligand 1 (PD-L1) was involved in regulating Th17/Treg cell balance in ulcerative colitis (UC). Extracellular vesicles (EVs) from genetically modified bone marrow mesenchymal stem cells (BMSCs) can serve as a stable delivery system to overexpress PD-L1. The study was designed to evaluate the therapeutic mechanism of BMSC-EVs overexpressing PD-L1 (PD-L1-EVs) on ulcerative colitis. METHODS Experimental model of UC was established in rats by drinking 5% dextran sulfate sodium (DSS). Apoptosis-related proteins, inflammatory response-related factors and oxidative stress related mediators were detected. Westernblot was used to detecte key proteins in the PI3K/AKT signaling pathway and its downstream effectors. The CD4+ Foxp3+ Treg cells and CD4+ IL-17A+ Th17 cells in spleen and mesenteric lymph nodes (MLNs) was detected by flow cytometry. RESULTS PD-L1-EVs significantly alleviated the manifestations and pathological damage of UC rats by inhibiting the expression of IFN-γ, IL-1β, IL-8, IL-6, IL-2, BAX, NF-κB, TNF-α, MPO, and MDA, and up-regulating the expression of IL-4, BCL-2, SOD, and GSH. Furthermore, the proportions of Th17 cells were decreased and that of Treg cells were upregulated by PD-L1-EVs treatment. PTEN inhibitors (bpv) partially abolished the inhibitory effect of PD-L1-EVs on PI3K-AKT signaling and impaired the therapeutic efficacy of PD-L1-EVs. CONCLUSIONS PD-L1-EVs mitigated colonal inflammation, apoptosis and oxidative stress through blocking the activation of PI3K/Akt/mTOR pathway and regulating the balance of Th17/Treg cells.
Collapse
Affiliation(s)
- Hongxia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiaoli Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
15
|
Tokano M, Matsushita S, Takagi R, Yamamoto T, Kawano M. Extracellular adenosine induces hypersecretion of IL-17A by T-helper 17 cells through the adenosine A2a receptor. Brain Behav Immun Health 2022; 26:100544. [PMID: 36467126 PMCID: PMC9712818 DOI: 10.1016/j.bbih.2022.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
Extracellular adenosine, produced from ATP secreted by neuronal or immune cells, may play a role in endogenous regulation of inflammatory responses. Studies show that adenosine induces hypersecretion of IL-17A by CD4+ T cells upon treatment with an A2aR agonist (PSB0777), and that adenosine-mediated IL-17A hypersecretion is suppressed by the A2aR antagonist (Istradefylline) in humans. However, it is unclear whether A2aR downstream signaling is involved in IL-17A hypersecretion. Here, we show that inhibitors of adenyl cyclase (AC), protein kinase A (PKA), and cAMP response element binding protein (CREB) (which are signaling molecules downstream of the Gs protein coupled to the A2aR), suppress IL-17A production, suggesting that activation of A2aR signaling induces IL-17A production by CD4+ T cells. Furthermore, immune subset studies revealed that adenosine induces hypersecretion of IL-17A by T-helper (Th)17 cells. These results indicate that adenosine is an endogenous modulator of neutrophilic inflammation. Administration of an A2aR antagonist to mice with experimental autoimmune encephalomyelitis led to marked amelioration of symptoms. Thus, inhibitors of the novel A2aR-AC-cAMP-PKA-CREB signaling pathway for IL-17A hypersecretion by TCR-activated Th17 cells suppresses adenosine-mediated IL-17A production, suggesting that it may be an effective treatment for Th17-related autoimmune diseases.
Collapse
Affiliation(s)
- Mieko Tokano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Department of Infectious Disease and Infection Control, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Toshimasa Yamamoto
- Department of Neurology, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
16
|
Majerczyk D, Ayad E, Brewton K, Saing P, Hart P. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 2022; 42:BSR20220713. [PMID: 36300375 PMCID: PMC9670245 DOI: 10.1042/bsr20220713] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that manifests during early development, impacting individuals through their ways of communicating, social behaviors, and their ability to perform day-to-day activities. There have been different proposed mechanisms on how ASD precipitates within a patient, one of which being the impact cytokines have on fetal development once a mother's immune system has been activated (referred to as maternal immune activation, MIA). The occurrence of ASD has long been associated with elevated levels of several cytokines, including interleukin-6 (IL-6) and interferon gamma (IFN-γ). These proinflammatory cytokines can achieve high systemic levels in response to immune activating pathogens from various extrinsic sources. Transfer of cytokines such as IL-6 across the placental barrier allows accumulation in the fetus, potentially inducing neuroinflammation and consequently altering neurodevelopmental processes. Individuals who have been later diagnosed with ASD have been observed to have elevated levels of IL-6 and other proinflammatory cytokines during gestation. Moreover, the outcome of MIA has been associated with neurological effects such as impaired social interaction and an increase in repetitive behavior in animal models, supporting a mechanistic link between gestational inflammation and development of ASD-like characteristics. The present review attempts to provide a concise overview of the available preclinical and clinical data that suggest cross-talk between IL-6 and IFN-γ through both extrinsic and intrinsic factors as a central mechanism of MIA that may promote the development of ASD.
Collapse
Affiliation(s)
- Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
- Loyola Medicine, Berwyn, Illinois 60402, U.S.A
| | - Elizabeth G. Ayad
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Kari L. Brewton
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Pichrasmei Saing
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| |
Collapse
|
17
|
Li X, Xiao S, Li F, Fang K, Wen J, Gong H. Max interacting protein 1 induces IL-17-producing T helper/regulatory T imbalance in osteoarthritis by upregulating tectonic family member 2. Tissue Cell 2022; 78:101906. [PMID: 36049372 DOI: 10.1016/j.tice.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIM Osteoarthritis (OA) is a common total joint disorder associated with regulatory T cell (Treg)/IL-17-producing T helper (Th17) cell imbalance. This study elucidated the mechanism underlying Th17/Treg imbalance during OA progression. METHODS CD4+ T cells were isolated and induced to differentiate and obtain Th17 and Treg cells, and an OA mouse model was established by anterior cruciate ligament transection surgery, followed by loss- and gain-of-function assays. Max interacting protein 1 (MXI1), tectonic family member 2 (TCTN2), Forkhead Box Protein P3 (Foxp3), signal transducer and activator of transcription 3 (STAT3), and retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt) expression was determined in cells and mice, accompanied by the measurement of the proportion of Th17 and Treg cells and the levels of interleukin (IL)- 1β, tumor necrosis factor (TNF)-α, and interferon (INF)-γ. Articular cartilage histopathology was observed by hematoxylin and eosin staining and Safranin O-Fast Green staining. Relationship between MXI1 and TCTN2 was assessed. RESULTS Bioinformatics analysis identified MXI1 and TCTN2 upregulation in OA patients. Mechanistically, MXI1 bound to TCTN2 promoter to promote its transcription. Upregulated MXI1 boosted INF-γ, STAT3, IL-1β, TNF-α, and RORγt levels and Th17 cell differentiation, but restricted Foxp3 expression and Treg cell differentiation in CD4+ T cells. Effects caused by overexpressed MXI1 were negated by silenced TCTN2. Also, the impacts of MXI1 overexpression on Th17/Treg imbalance and IL-1β, STAT3, TNF-α, Foxp3, INF-γ, and RORγt expression were further validated in OA mice, accompanied by aggravated articular cartilage degeneration. CONCLUSION Conclusively, MXI1 facilitated Th17/Treg imbalance to accelerate OA progression.
Collapse
Affiliation(s)
- Xin Li
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China.
| | - Sheng Xiao
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China
| | - Fanling Li
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China
| | - Ke Fang
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China
| | - Jie Wen
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China
| | - Haoli Gong
- Department of Orthopaedic, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, PR China
| |
Collapse
|
18
|
Attia SM, Ahmad SF, Nadeem A, Attia M, Ansari MA, Al-Hamamah MA, Hussein MH, Alameen AA, Alasmari AF, Bakheet SA. Multiple exposure to methylmercury aggravates DNA damage in the BTBR T + Itpr3 tf/J autistic mouse model: the role of DNA repair efficiency. Toxicology 2022; 477:153277. [PMID: 35914580 DOI: 10.1016/j.tox.2022.153277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Environmental and genetic factors have been recognized to play major roles in the pathogenesis of autism. Here we examined the BTBR T+Itpr3tf/J (BTBR) mice's susceptibility, an autistic model, to the genotoxic effects and DNA repair dysregulation of methylmercury. Micronuclei formation and oxidative DNA damage were analyzed using the micronucleus/fluorescence in situ hybridization test and modified comet assay, respectively. The results showed higher centromeric-positive micronuclei and oxidative DNA damage in BTBR mice exposed to methylmercury than the unexposed mice, which indicates that mutagenesis aggravated in BTBR mice after methylmercury exposure. Lipid peroxides in BTBR mice were significantly elevated, with a decrease in reduced/oxidized glutathione ratio after methylmercury exposure, indicating an augmenting oxidant-antioxidant imbalance. The expression of several genes involved in DNA repair was markedly altered in BTBR mice after methylmercury exposure as evaluated via PCR array and RT-PCR analyses. Declining of the antioxidant defense and dysregulation in DNA repair process after methylmercury exposure may explain the aggravated genotoxic susceptibility of BTBR mice. Thus, autistic individuals exposed to methylmercury must be under regular medical follow-up through standard timetabled medical laboratory inquiry to allow for early recognition of any mutagenic changes. Additionally, strategies that elevate cellular antioxidants/DNA repair efficiency may counteract methylmercury-induced genotoxicity.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Msm Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Shahid M, Al-Mazroua HA, As Sobeai HM, Alasmari AF, Alanazi MM, Alhamed AS, Aldossari AA, Attia SM. CC chemokine receptor 5 antagonist alleviates inflammation by regulating IFN-γ/IL-10 and STAT4/Smad3 signaling in a mouse model of autoimmune encephalomyelitis. Cell Immunol 2022; 379:104580. [PMID: 35872534 DOI: 10.1016/j.cellimm.2022.104580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is an immunopathological disease that causes demyelination and recurrent episodes of T cell-mediated immune attack in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model of MS. The roles of T cells in MS/EAE have been well investigated, but little is known about the role of CCR5+ cells. In the present study, we investigated whether treatment with DAPTA, a selective CCR5 antagonist, could modulate the progression of EAE in the SJL/J mice. EAE mice were treated with DAPTA (0.01 mg/kg) intraperitoneally daily from day 14 to day 42, and the clinical scores were evaluated. We further investigated the effects of DAPTA on IFN-γ-, TGF-β-, IL-10-, IL-17A-, IL-22-, T-bet, STAT4-, RORγT-, AhR-, Smad3-, and Foxp3-expressing CCR5+ spleen cells using flow cytometry analysis. We further explored the effects of DAPTA on mRNA/protein expression of IFN-γ, IL-10, IL-17A, IL-22, TGF-β, T-bet, STAT4, RORγT, AhR, Foxp3, and NF-H in the brain tissue. The severity of clinical scores decreased in DAPTA-treated EAE mice as compared to that in the EAE control mice. Moreover, the percentage of CCR5+IFN-γ+, CCR5+T-bet+, CCR5+STAT4+, CCR5+IL-17A+, CCR5+RORγt+, CCR5+IL-22+, and CCR5+AhR+ cells decreased while CCR5+TGF-β+, CCR5+IL-10+, CCR5+Smad3+, and CCR5+Foxp3+ increased in DAPTA-treated EAE mice. Furthermore, DAPTA treatment significantly mitigated the EAE-induced expression of T-bet, STAT4, IL-17A, RORγT, IL-22, and AhR but upregulated Foxp3, IL-10, and NF-H expression in the brain tissue. Taken together, our data demonstrated that DAPTA could ameliorate EAE progression through the downregulation of the inflammation-related cytokines and transcription factors signaling, which may be useful for the clinical therapy of MS.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
21
|
Thawley AJ, Veneziani LP, Rabelo-da-Ponte FD, Riederer I, Mendes-da-Cruz DA, Bambini-Junior V. Aberrant IL-17 Levels in Rodent Models of Autism Spectrum Disorder: A Systematic Review. Front Immunol 2022; 13:874064. [PMID: 35757754 PMCID: PMC9226456 DOI: 10.3389/fimmu.2022.874064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 12/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterised by stereotyped behaviours, specific interests, and impaired communication skills. Elevated levels of pro-inflammatory cytokines, such as interleukin-17A (IL-17A or IL-17), have been implicated as part of immune alterations that may contribute to this outcome. In this context, rodent models have helped elucidate the role of T-cell activation and IL-17 secretion in the pathogenesis of ASD. Regarding the preclinical findings, the data available is contradictory in offspring but not in the pregnant dams, pointing to IL-17 as one of the main drivers of altered behaviour in some models ASD, whilst there are no alterations described in IL-17 levels in others. To address this gap in the literature, a systematic review of altered IL-17 levels in rodent models of ASD was conducted. In total, 28 studies that explored IL-17 levels were included and observed that this cytokine was generally increased among the different models of ASD. The data compiled in this review can help the choice of animal models to study the role of cytokines in the development of ASD, seeking a parallel with immune alterations observed in individuals with this condition.
Collapse
Affiliation(s)
- Alexandra Jade Thawley
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Luciana Peixoto Veneziani
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Francisco Diego Rabelo-da-Ponte
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre (RS), Brazil
| | - Ingo Riederer
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Daniella Areas Mendes-da-Cruz
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
22
|
Almutairi MM, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Albekairi TH, Alhosaini K, Algahtani M, Alsaad AMS, Al-Mazroua HA, Ahmad SF. Lead (Pb) exposure exacerbates behavioral and immune abnormalities by upregulating Th17 and NF-κB-related signaling in BTBR T + Itpr3 tf/J autistic mouse model. Neurotoxicology 2022; 91:340-348. [PMID: 35760230 DOI: 10.1016/j.neuro.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that are characterized by abnormal social interaction impairments in communication and repetitive and restricted activities or interests. Even though the exact etiology of ASD remains unknown. Lead (Pb) is a toxin known to harm many organs in the body, it is one of the most ubiquitous metal exposures which is associated with neurological deficits. Previous studies have shown that the exposure to Pb may play a role in ASD. BTBR T+ Itpr3tf/J (BTBR) mouse model is commonly used as a preclinical model for ASD. In this study, we investigated the effects of Pb exposure on sociability, self-grooming and marble burying behaviors tests in BTBR mice. We further examined the effects of Pb on IL-17A- RORγT-, STAT3-, NF-κB p65-, iNOS-, TLR-2- and TLR-4-producing CD45+ cells in spleen using flow cytometry. We also explored the effects of Pb on IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA expression in the brain tissue using RT-PCR analysis. Our results demonstrated that Pb exposure substantially increased repetitive behavior, marble burying and decrease social interactions in BTBR mice. In addition, in spleen cells, Pb exposure exaggerated CD45+IL-17A+, CD45+RORγT+, CD45+STAT3+, CD45+NF-κB p65+, CD45+iNOS+, CD45+TLR-2+ and CD45+TLR-4+ in BTBR mice. We also found that Pb significantly increased IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA in the brain tissue. Therefore, Pb exposure exacerbates behavioral and neuroimmune function in BTBR mice, suggesting a potentially strong role for Pb in ASD.
Collapse
Affiliation(s)
- Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohammad Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Abdulaziz M S Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia.
| |
Collapse
|
23
|
Pangrazzi L, Genovesi S, Balasco L, Cerilli E, Robol C, Zunino G, Piazza S, Provenzano G, Bozzi Y. Immune dysfunction in the cerebellum of mice lacking the autism candidate gene Engrailed 2. J Neuroimmunol 2022; 367:577870. [DOI: 10.1016/j.jneuroim.2022.577870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022]
|
24
|
Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23031219. [PMID: 35163142 PMCID: PMC8835915 DOI: 10.3390/ijms23031219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.
Collapse
|
25
|
Mou KJ, Shen KF, Li YL, Wu ZF, Duan W. Adenosine A 2A Receptor in Bone Marrow-Derived Cells Mediated Macrophages M2 Polarization via PPARγ-P65 Pathway in Chronic Hypoperfusion Situation. Front Aging Neurosci 2022; 13:792733. [PMID: 35046793 PMCID: PMC8761901 DOI: 10.3389/fnagi.2021.792733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The role of adenosine A2A receptor (A2AR) in the ischemic white matter damage induced by chronic cerebral hypoperfusion remains obscure. Here we investigated the role of A2AR in the process of macrophage polarizations in the white matter damage induced by chronic cerebral hypoperfusion and explored the involved signaling pathways. Methods: We combined mouse model and macrophage cell line for our study. White matter lesions were induced in A2AR knockout mice, wild-type mice, and chimeric mice generated by bone marrow cells transplantation through bilateral common carotid artery stenosis. Microglial/macrophage polarization in the corpus callosum was detected by immunofluorescence. For the cell line experiments, RAW264.7 macrophages were treated with the A2AR agonist CHS21680 or A2AR antagonist SCH58261 for 30 min and cultured under low-glucose and hypoxic conditions. Macrophage polarization was examined by immunofluorescence. The expression of peroxisome proliferator activated receptor gamma (PPARγ) and transcription factor P65 was examined by western blotting and real-time polymerase chain reaction (RT-PCR). Inflammatory cytokine factors were assessed by enzyme-linked immunosorbent assay (ELISA) and RT-PCR. Results: Both global A2AR knockout and inactivation of A2AR in bone marrow-derived cells enhanced M1 marker expression in chronic ischemic white matter lesions. Under low-glucose and hypoxic conditions, CGS21680 treatment promoted macrophage M2 polarization, increased the expression of PPARγ, P65, and interleukin-10 (IL-10) and suppressed the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The CGS21680-induced upregulation of P65 and IL-10 was abolished in macrophages upon PPARγ knockdown. The downregulation of TNF-α and IL-1β by CGS21680 was less affected by PPARγ knockdown. Conclusions: In the cerebral hypoperfusion induced white matter damage, A2AR signaling in bone marrow-derived cells induces macrophage M2 polarization and increases the expression of the anti-inflammatory factor IL-10 via the PPARγ-P65 pathway, both of which might explain its neuroprotective effect.
Collapse
Affiliation(s)
- Ke-Jie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan-Ling Li
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhi-Feng Wu
- Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Voluntary exercise attenuates nociceptive abnormalities with no significant alterations of social interaction deficits in the BTBR mouse model of autism. Behav Brain Res 2021; 420:113727. [PMID: 34954299 DOI: 10.1016/j.bbr.2021.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022]
Abstract
Due to the financial burden and undesired side effects of treatment options, researchers have begun exploring alternative methods of treating autism spectrum disorder (ASD). Based on research suggesting impressive health benefits of engaging in physical activity, exercise treatment to alleviate symptoms could be a more cost effective alternative to pharmaceutical interventions. This study examined the effects of physical exercise on nociceptive responses and social interactions in an autism mouse model (BTBR T+ Itpr3tf/J). Subjects (n = 32) were separated into groups (BTBR vs B6 controls) based on the genetic strain and activity condition they were assigned. When compared to B6 controls, the BTBR mice demonstrated thermal hypoalgesia that normalized following 5 weeks of voluntary wheel running. However, exercise did not significantly attenuate social interaction deficits in BTBR mice, despite scores trending toward a positive direction. These results suggest that exercise could serve as a potential additive to other therapies for abnormal nociception in individuals with Autism Spectrum Disorder.
Collapse
|
27
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
28
|
5-Aminoisoquinolinone, a PARP-1 Inhibitor, Ameliorates Immune Abnormalities through Upregulation of Anti-Inflammatory and Downregulation of Inflammatory Parameters in T Cells of BTBR Mouse Model of Autism. Brain Sci 2021; 11:brainsci11020249. [PMID: 33671196 PMCID: PMC7922312 DOI: 10.3390/brainsci11020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders involving impairments in communication and repetitive and stereotyped patterns of behavior and reciprocal social interaction. 5-Aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor, has neuroprotective and anti-inflammatory effects. We investigated the influence of 5-AIQ-treatment in BTBR T+ Itpr3tf/J (BTBR) mice as an autism model and used flow cytometry to assess the effect of 5-AIQ on FOXP3, Helios, GATA3, IL-9, IL-10 and IL-17A production by CXCR6+ and CD4+ T cells in the spleen. We also confirmed the effect of 5-AIQ treatment on expression of FOXP3, Helios, GATA3, IL-17A, IL-10, and IL-9 mRNA and protein expression levels in the brain tissue by quantitative PCR and western blotting. Our results demonstrated that 5-AIQ-treated BTBR mice had significantly increased numbers of CXCR6+FOXP3+, CXCR6+IL-10+, and CXCR6+Helios+ cells and decreased numbers of CD4+GATA3+, CD4+IL-9+, and CD4+IL-17A+ cells as compared with those in untreated BTBR mice. Our results further demonstrated that treatment with 5-AIQ in BTBR mice increased expression for FOXP3, IL-10, and Helios, and decreased expression for GATA3, IL-17A, and IL-9 mRNA. Our findings support the hypotheses that 5-AIQ has promising novel therapeutic effects on neuroimmune dysfunction in autism and is associated with modulation of Treg and Th17 cells.
Collapse
|
29
|
Uddin MN, Yao Y, Manley K, Lawrence DA. Development, phenotypes of immune cells in BTBR T +Itpr3 tf/J mice. Cell Immunol 2020; 358:104223. [PMID: 33137646 DOI: 10.1016/j.cellimm.2020.104223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by a lack of social interaction, decreased verbal and non-verbal communication skills, and stereotyped repetitive behavior. There is strong evidence that a dysregulated immune response may influence neurodevelopment and thus may have a role in the development of ASD. This study focuses on the characterization of immune cell phenotypes in the BTBR T+Itpr3tf/J (BTBR) mouse strain, a widely used animal model for autism research. Our study demonstrated that BTBR mice have a different immune profile compared to C57BL/6J (B6) mice, which do not display ASD-like characteristics. Thymic cells of BTBR mice have more single positive (SP) CD4+ and CD8+ T cells and fewer double positive (DP) T cells than B6 mice. The development of T cells is increased in BTBR mice with regard to the double negative (DN4) population being much higher in BTBR mice. The spleens and blood of BTBR mice also have more T helper type 1 (Th1), T helper type 2 (Th2) and T regulatory (Treg) cells compared to B6 mice. Aire expression in the thymus and spleen of BTBR mice compared to B6 mice was equivalent and lower, respectively. The mature natural killer (NK) innate immune cell population in blood and spleen is lower in BTBR than B6 mice; NK cell development is blocked prior to the double positive (DN) CD11b+CD27+ stage in BTBR mice. Since BTBR mice have more CD4+ T cells and elevated numbers of Th1 (T-bet+) and Th2 (GATA3+) cells, their low defense against pathogen may be explained by the lower number of NK cells and the significantly lower Th1 to Th2 ratio. The elevated number of plasma cells and autoantibodies of BTBR mice may be due to less presence and function of splenic AIRE.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; University at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
30
|
Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Alanazi MM, Aldossari AA, Assiri MA, Mahmood HM, Al-Mazroua HA, Ahmad SF. CXC chemokine receptor 3 antagonist AMG487 shows potent anti-arthritic effects on collagen-induced arthritis by modifying B cell inflammatory profile. Immunol Lett 2020; 225:74-81. [PMID: 32590119 DOI: 10.1016/j.imlet.2020.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Several studies have suggested that chemokine receptors are important mediators of inflammatory response in rheumatoid arthritis (RA). B cells are also known to play an important role in RA pathology. C-X-C chemokine receptor type 3 (CXCR3) is considered a potential therapeutic target in different inflammatory diseases; however, the mechanism remains unclear. Here, we evaluated the potentially protective effect of AMG487, a selective CXCR3 antagonist, in collagen-induced arthritis (CIA) mouse model. CIA mice were treated with AMG487 (5 mg/kg) every 48 h, from day 21 until day 41. We then investigated the effect of AMG487 on NF-κB p65-, NOS2-, MCP-1-, TNF-α-, IFN-γ, IL-4-, and IL-27-producing CD19+ B cells in the spleen through flow cytometry. We also evaluated the mRNA and protein expression levels of these molecules using RT-PCR and western blotting in the knee tissues. Our results revealed that AMG487-treated mice showed decreased NF-κB p65-, NOS2-, MCP-1-, and TNF-α-, and increased IL-4-, and IL-27-producing CD19+ B cells compared with the control mice. Additionally, AMG487 treatment significantly down regulated NF-κB p65, NOS2, TNF-α, and IFN-γ, and upregulated IL-4 and IL-27 mRNA and protein expression levels compared with the control. Thus, our study shows that AMG487 exerts its anti-arthritic effect by potently downregulating inflammatory B cell signaling. Based on our observations, we propose that AMG487 could serve as a potential novel therapeutic agent for inflammatory and autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bader S Alrwashied
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
31
|
The Adenosine A2A Receptor Agonist Accelerates Bone Healing and Adjusts Treg/Th17 Cell Balance through Interleukin 6. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2603873. [PMID: 32382539 PMCID: PMC7195650 DOI: 10.1155/2020/2603873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to explore the effect of adenosine A2A receptor agonists on fracture healing and the regulation of the immunity system after bone fracture. We implanted fibrin gel containing adenosine A2A receptor agonist CGS 21680/inhibitor ZM 241385/saline locally in rat tibial fracture models, finding that the adenosine A2A receptor agonist could promote fracture healing. At the same time, the adenosine A2A receptor agonist decreased the level of IL-6 in blood and the fracture area, increased Treg cells, and decreased Th17 cells in blood of bone fracture rats. Further, tibial fracture rats implanted with the adenosine A2A receptor agonist gel were injected with IL-6. We found that IL-6 could reverse the effect of adenosine A2A receptor agonists on fracture healing and Treg/Th17 cells in blood. Through the above results, we believe that the adenosine A2A receptor agonist can promote fracture healing and regulate Treg/Th17 cells in blood of rats with fractures. These effects are related to IL-6.
Collapse
|
32
|
Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Assiri MA, Alqahtani F, Ibrahim KE, Ahmad SF. CXCR3 antagonist AMG487 inhibits glucocorticoid-induced tumor necrosis factor-receptor-related protein and inflammatory mediators in CD45 expressing cells in collagen-induced arthritis mouse model. Int Immunopharmacol 2020; 84:106494. [PMID: 32304993 DOI: 10.1016/j.intimp.2020.106494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease classified by uncontrolled joint inflammation leading to the destruction of both cartilage and joints. Despite progress made in RA treatment in the past decade, new drugs with high efficacy and fewer long-term adverse effects are still needed; thus, safe anti-inflammatory therapies for RA are urgently needed. Previous results demonstrated that the CXCR3 antagonist is an extremely attractive therapeutic target for the treatment of several autoimmune diseases, suggesting that it might have an inhibitory effect on RA. In this study, we investigated the effect of AMG487, a selective CXCR3 antagonist, on collagen-induced arthritis (CIA) in mice and evaluated its potential therapeutic mechanism.Following induction of CIA, mice were treated with AMG487 (5 mg/kg, intraperitoneally), to investigate their protective effects against CIA. CD4, CD25, CCR6, IL-9, NF-κB, IL-6, IL-17A, IL-21, STAT6 and Foxp3 expressing GITR+ and CD45+ cells were measured in the spleen using flow cytometry to assess anti-inflammatory effects of AMG487. The mRNA and protein expression of GITR, CCR6, IL-9, and IL-21 were measured using quantitative real-time PCR and western blot analysis in knee tissue. AMG487 significantly alleviated joint inflammation by decreasing GITR+CD25+, GITR+CD45+, GITR+IL-9+, GITR+NF-κB+ CD45+CD4+, CD45+CCR6+, CD45+IL-6+ cells, CD45+IL-17A+, and CD45+IL-21+, and increasing GITR+Foxp3+ and GITR+STAT6+ cells. There was a significant decrease in mRNA and protein expression of GITR, CD4, CCR6, IL-6, IL-9, and IL-21 in knee tissue of CIA mice. This study demonstrates that AMG487 has a potential therapeutic effect on RA and could explore novel anti-inflammatory therapies for its treatment.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bader S Alrwashied
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alsanea S, Al-Hosaini KA, Mahmood HM, Alzahrani MZ, Attia SM. Inhibition of tyrosine kinase signaling by tyrphostin AG126 downregulates the IL-21/IL-21R and JAK/STAT pathway in the BTBR mouse model of autism. Neurotoxicology 2019; 77:1-11. [PMID: 31811869 DOI: 10.1016/j.neuro.2019.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) comprises a broad range of neurodevelopmental disorders that are associated with deficits in social interaction and communication. The tyrosine kinase inhibitor tyrphostin AG126 represents a promising therapeutic agent for several neuroinflammatory disorders. There are currently no treatments available that can improve ASD and we previously showed that AG126 treatment exerts beneficial effects on BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD; however, the immunological mechanisms and molecular targets associated with this effect were previously unclear. This study was undertaken to delineate the neuroprotective effect of AG126 on BTBR mice. Here, using this mouse model, we investigated the effects of AG126 administration on IL-21R, IL-21, IL-22, TNF-α, NOS2, STAT3, IL-27, and Foxp3 production by CD8+ T cells in the spleen by flow cytometry. We further explored the mRNA and protein expression of IL-21, IL-22, IL-1β, TNF-α, NOS2, JAK1, STAT3, IL-27, and Foxp3 in brain tissue by RT-PCR, and western blotting. We found that BTBR mice treated with AG126 exhibited significant decreases in IL-21R-, IL-21-, IL-22-, TNF-α-, NOS2-, STAT3-producing, and increases in IL-27- and Foxp3-producing, CD8+ T cells. Our results further demonstrated that AG126 treatment effectively decreased IL-21, IL-22, IL-1β, TNF-α, NOS2, JAK1, and STAT3, and increased IL-27 and Foxp3 mRNA and protein expression in brain tissues. Our findings suggest that AG126 elicits a neuroprotective response through downregulation of the IL-21/IL-21R and JAK/STAT pathway in BTBR mice, which could represent a promising novel therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled A Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Behmanesh H, Moghaddam HS, Mohammadi MR, Akhondzadeh S. Risperidone Combination Therapy With Propentofylline for Treatment of Irritability in Autism Spectrum Disorders: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Clin Neuropharmacol 2019; 42:189-196. [DOI: 10.1097/wnf.0000000000000368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives
Propentofylline is a xanthine phosphodiesterase inhibitor and adenosine reuptake blocker with neuroprotective effects linked to anti-inflammatory and antiexcitatory properties. This is a double-blind, placebo-controlled trial investigating the potential beneficial effects of propentofylline, as an adjunctive treatment with risperidone, on the severity and behavioral abnormalities of autism spectrum disorder (ASD).
Methods
A total of 48 children with ASD were randomly allocated into 2 groups of risperidone (initiating at 0.5 mg/d) plus propentofylline (initiating at 300 mg/d) and risperidone plus placebo. The Aberrant Behavior Checklist—Community (ABC-C) and Childhood Autism Rating Scale (CARS) were used for the evaluation of ASD severity and behavioral disruptions at baseline, week 4, and week 10. Primary outcome measure of the study was ABC-C irritability subscale score, whereas CARS score along with other 4 subscales of ABC-C (lethargy/social withdrawal, stereotypic behavior, hyperactivity/noncompliance, and inappropriate speech subscales) were considered as secondary outcome measures.
Results
Results from the general linear model repeated measures analysis demonstrated significant time-treatment interaction on irritability subscale (F
1.55 = 3.45; P = 0.048) and CARS (F
1.41 = 4.08; P = 0.034) scores. Compared with the placebo group, children receiving propentofylline showed greater improvements in the CARS score (P = 0.037) from baseline to the study endpoint. Our results found no significant time-treatment effect on other subscales of ABC-C. Two trial groups were comparable based on the frequency of adverse effects.
Conclusions
Our findings demonstrated that adjunctive treatment with propentofylline is effective in alleviating disease severity and improving irritability in ASD patients. However, larger studies with longer durations are required to confirm these results.
Collapse
|
35
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alasmari F, Alasmari AF, Al-Kharashi LA, Al-Qahtani Q, Attia SM. The potent immunomodulatory compound VGX-1027 regulates inflammatory mediators in CD4+ T cells, which are concomitant with the prevention of neuroimmune dysregulation in BTBR T+ Itpr3tf/J mice. Life Sci 2019; 237:116930. [DOI: 10.1016/j.lfs.2019.116930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
|
36
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alanazi AZ, Alsanea S, As Sobeai HM, Almutairi MM, Mahmood HM, Attia SM. The Stat3 inhibitor, S3I-201, downregulates lymphocyte activation markers, chemokine receptors, and inflammatory cytokines in the BTBR T+ Itpr3tf/J mouse model of autism. Brain Res Bull 2019; 152:27-34. [DOI: 10.1016/j.brainresbull.2019.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
37
|
Bakheet SA, Ansari MA, Nadeem A, Attia SM, Alhoshani AR, Gul G, Al-Qahtani QH, Albekairi NA, Ibrahim KE, Ahmad SF. CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal 2019; 64:109395. [PMID: 31449849 DOI: 10.1016/j.cellsig.2019.109395] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by uncontrolled joint inflammation and damage to bone and cartilage. Previous studies have shown that chemokine receptors have important roles in RA development, and that blocking these receptors effectively inhibits RA progression. Our study was undertaken to investigate the role of AMG487, a selective CXCR3 antagonist, in DBA/1J mice bearing collagen-induced arthritis (CIA). Following induction of CIA, animals were treated with 5 mg/kg AMG487 intraperitoneally every 48 h, starting from day 21 until day 41 and evaluated for clinical score, and histological hallmarks of arthritic inflammation. We further investigated the effect of AMG487 on Th1 (T-bet), Th17 (IL-17A, RORγt, STAT3), Th22 (IL-22), and T regulatory (Treg; Foxp3 and IL-10) cells in splenic CXCR3+ and CD4+ T cells using flow cytometry. We also assessed the effect of AMG487 on T-bet, RORγt, IL-17A, IL-22, Foxp3, and IL-10 at both mRNA and protein levels using RT-PCR and Western blot analyses of knee samples. The severity of clinical scores, and histological inflammatory damage decreased significantly in AMG487-treated compared with CIA control mice. Moreover, the percentage of Th1, Th17, and Th22 cells decreased significantly and that of Treg cells increased in AMG487-treated mice. We further observed that AMG487-treatment downregulated T-bet, IL-17A, RORγt, and IL-22, whereas it upregulated Foxp3 and IL-10 mRNA and protein levels. This study demonstrates the antiarthritic effects of AMG487 in CIA animal model and supports the development of CXCR3 antagonists as a novel strategy for the treatment of inflammatory and arthritic conditions.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gazala Gul
- Department of Pathology, College of Medicine, Yenepoya University, Mangaluru, Karnataka, India
| | - Q H Al-Qahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Lewis MH, Rajpal H, Muehlmann AM. Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice. Pharmacol Biochem Behav 2019; 181:110-116. [PMID: 31054946 DOI: 10.1016/j.pbb.2019.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
Abstract
Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fos positive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.
Collapse
Affiliation(s)
- Mark H Lewis
- Department of Psychiatry, University of Florida, United States of America
| | - Hemangi Rajpal
- Department of Psychiatry, University of Florida, United States of America
| | - Amber M Muehlmann
- Department of Psychiatry, University of Florida, United States of America.
| |
Collapse
|
39
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alotaibi MR, Alasmari AF, Alshammari MA, Al-Mazroua HA, Attia SM. DAPTA, a C-C chemokine receptor 5 (CCR5) antagonist attenuates immune aberrations by downregulating Th9/Th17 immune responses in BTBR T + Itpr3tf/J mice. Eur J Pharmacol 2019; 846:100-108. [PMID: 30658114 DOI: 10.1016/j.ejphar.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by deficits in social interaction, communication, and repetitive behaviors. BTBR T+ Itpr3tf/J (BTBR) mice, a preclinical autistic model featuring ASD symptoms as defined by social relations, was used in this study. We evaluated the potentially protective effect of D-Ala-peptide T-amide (DAPTA), a selective C-C chemokine receptor 5 (CCR5) antagonist, in BTBR mice. CCR5 is considered a potential therapeutic target in different neurodegenerative disorders. BTBR and C57 mice were intraperitoneally (i.p) treated with the DAPTA (0.01 mg/kg, i.p, once daily) for 7 days. We examined the effect of DAPTA by evaluating marble burying and administering repetitive behavior tests. We employed flow cytometry to assess the effect of DAPTA on CCR5+, CD4+CCR5+, CCR5+IL-6+, CCR5+IL-9+, CCR5+IL-17A+, CCR5+RORγT+, CCR5+IL-10+, and CCR5+Foxp3+ in spleen cells. We further explored the effects of DAPTA on IL-6, IL-9, IL-17A, RORγT, IL-10, and Foxp3 protein and mRNA expression levels in the brain tissues. DAPTA administration significantly decreased marble burying and repetitive behavior in BTBR mice. Additionally, DAPTA treatment inhibited CCR5+, CD4+CCR5+, CCR5+IL-6+, CCR5+IL-9+, CCR5+IL-17A+, CCR5+RORγT+, and upregulated CCR5+IL-10+, and CCR5+Foxp3+ production. We further observed that DAPTA downregulated IL-6, IL-9, IL-17A, and RORγT, and increased IL-10 and Foxp3 protein and mRNA expression. Therefore, our results suggest that DAPTA administration represents a potential treatment strategy for patients with ASD.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
40
|
Shen HY, Huang N, Reemmer J, Xiao L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:482. [PMID: 30581380 PMCID: PMC6292987 DOI: 10.3389/fncel.2018.00482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jesica Reemmer
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
41
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alshammari MA, Khan MR, Alsaad AM, Attia SM. S3I-201, a selective Stat3 inhibitor, restores neuroimmune function through upregulation of Treg signaling in autistic BTBR T+ Itpr3tf/J mice. Cell Signal 2018; 52:127-136. [DOI: 10.1016/j.cellsig.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
|
42
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alshammari MA, Attia SM. The PPARδ agonist GW0742 restores neuroimmune function by regulating Tim-3 and Th17/Treg-related signaling in the BTBR autistic mouse model. Neurochem Int 2018; 120:251-261. [DOI: 10.1016/j.neuint.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
43
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alshammari MA, Attia SM. Protection by tyrosine kinase inhibitor, tyrphostin AG126, through the suppression of IL-17A, RORγt, and T-bet signaling, in the BTBR mouse model of autism. Brain Res Bull 2018; 142:328-337. [DOI: 10.1016/j.brainresbull.2018.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
|
44
|
Guo Q, Yin X, Qiao M, Jia Y, Chen D, Shao J, Lebaron TW, Gao Y, Shi H, Jia B. Hydrogen-Rich Water Ameliorates Autistic-Like Behavioral Abnormalities in Valproic Acid-Treated Adolescent Mice Offspring. Front Behav Neurosci 2018; 12:170. [PMID: 30127728 PMCID: PMC6087877 DOI: 10.3389/fnbeh.2018.00170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Due to its anti-inflammatory and anti-oxidative effects, recent research has demonstrated that molecular hydrogen can serve as a new medical approach for depression, anxiety and traumatic brain injury. However, its potential effects on neurodevelopmental diseases, such as autism are still elusive. The present study aims to investigate the potential effects of hydrogen-rich water (HRW) administration on valproic acid (VPA)-induced autistic-like behavioral deficits, and the associated underlying mechanism in adolescent mice offspring. Pregnant ICR mice were randomly divided into five groups (n = 6). One group was injected with saline (NAV group) and provided hydrogen-free water. The other four groups were injected with VPA (600 mg/kg, intraperitoneally, i.p.) on pregnant day (PND) 12.5. One group was provided with hydrogen-free water (VEH group) and the other three groups were provided HRW at different segments, postnatal day 1 (PND 1) to PND 21 (PHV group), PND 13 to PND 21 (PVS group) or from PND 13 to postnatal day 42 (PVL group). Behavioral tests, including open field, novelty suppressed feeding (NSF), hot plate, social interaction (SI) and contextual fear memory tests were conducted between postnatal day 35–42. We found that HRW administration significantly reversed the autistic-like behaviors induced by maternal VPA exposure in the adolescent offspring of both male and female adolescent offspring. Furthermore, HRW administration significantly reversed the alternation of serum levels of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), but without any effects on the BDNF levels in maternal VPA-exposed mice offspring. These data suggest the need for additional research on HRW as a potential preventive strategy for autism and related disorders. Lay Summary: Maternal VPA injection induces autistic-like behavioral deficits in adolescent mice offspring. HRW administration ameliorates autistic-like behavioral deficits. HRW administration reverses the alternation of serum levels of IL-6 and TNF-α induced by VPA.
Collapse
Affiliation(s)
- Qingjun Guo
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Xi Yin
- Department of Functional Region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Meng Qiao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yujiao Jia
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dandan Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Juan Shao
- Department of Senile Disease, The Third Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | | | - Yuan Gao
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Shijiazhuang, China.,Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medicial University, Shijiazhuang, China
| | - Bin Jia
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China.,Lingshui General Hospital, Lingshui, China
| |
Collapse
|
45
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alzahrani MZ, Alshammari MA, Alanazi WA, Alasmari AF, Attia SM. Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T + Itpr3 tf/J autistic mice. Eur J Pharmacol 2018; 829:70-78. [PMID: 29654783 DOI: 10.1016/j.ejphar.2018.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by qualitative impairment in communication, social interaction, and repetitive stereotypic behavior. Resveratrol plays a role in several disorders such as neuroimmune, autoimmune, and allergic disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism, show several behavioral deficits that are physiological characteristics similar to those observed in patients with autism. Previous studies have shown that JAK-STAT signaling pathway is associated with many neurodevelopmental disorders. We investigated the possible role of resveratrol on IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ T spleen cells in BTBR mice as compared to C57BL/6J mice. We also assessed the effect of resveratrol treatment on IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels in the brain tissue. We further assessed IL-6, IFN-γ, TNF-α, phosphorylated (p) JAK1, and pSTAT3 (Tyr705) protein expression levels in the brain tissue. Resveratrol (20 and 40 mg/kg)-treated mice had significantly decreased in IL-6+, TNF-α+, IFN-γ+, and STAT3+ in CD4+ spleen cells as compared with BTBR control mice. Resveratrol treatment also decreased IL-6, TNF-α, IFN-γ, JAK1, and STAT3 mRNA expression levels as compared with BTBR control mice in the brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression levels of IL-6, IFN-γ, TNF-α, pJAK1, and pSTAT3 (Tyr705) as compared with BTBR control mice in the brain tissues. Taken together, these results indicate the efficacy of resveratrol in reducing cytokines and JAK-1/STAT3 signaling in BTBR mice, which is a novel and important finding and might be important for future therapies in neuroimmune dysfunction.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
46
|
Ahmad SF, Ansari MA, Nadeem A, Alzahrani MZ, Bakheet SA, Attia SM. Resveratrol Improves Neuroimmune Dysregulation Through the Inhibition of Neuronal Toll-Like Receptors and COX-2 Signaling in BTBR T + Itpr3 tf/J Mice. Neuromolecular Med 2018; 20:133-146. [PMID: 29468499 DOI: 10.1007/s12017-018-8483-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in qualitative impairments in communication, repetitive and social interaction, restricted, and stereotyped patterns of behavior. Resveratrol has been extensively studied pharmacologically and biologically and has anti-inflammatory, antioxidant, and neuroprotective effects on neuronal damage in neurodegenerative disorders. The BTBR T+ Itpr3tf/J (BTBR) autistic mouse model has been explored for treatment of autism, which shows low reciprocal social interactions, impaired juvenile play, and decreased social approach. Here, we explored whether resveratrol treatment decreases neuroimmune dysregulation mediated through toll-like receptor (TLR4) and nuclear factor-κB (NF-κB) signaling pathway in BTBR mice. We investigated the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, and inducible nitric oxide synthase (iNOS or NOS2) levels in CD4 spleen cells. We also assessed the effect of resveratrol treatment on TLR2, TLR3, TLR4, NF-κB, iNOS, and cyclooxygenase (COX-2) mRNA expression levels in the brain tissue. We further explored TLR2, TLR4, NF-κB, iNOS, and COX-2 protein expression levels in the brain tissue. Resveratrol treatment on BTBR mice significantly decreased CD4+TLR2+, CD4+TLR3+, CD4+TLR4+ CD4+NF-κB+, and CD4+iNOS+ levels in spleen cells. Resveratrol treatment on BTBR mice decreased TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 mRNA expression levels in brain tissue. Moreover, resveratrol treatment resulted in decreased protein expression of TLR2, TLR3, TLR4, NF-κB, iNOS, and COX-2 in brain tissue. Taken together, these results indicate that resveratrol treatment improves neuroimmune dysregulation through the inhibition of proinflammatory mediators and TLRs/NF-κB transcription factor signaling, which might be help devise future therapies for neuroimmune disorders.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Ma Y, Gao Z, Xu F, Liu L, Luo Q, Shen Y, Wu X, Wu X, Sun Y, Wu X, Xu Q. A novel combination of astilbin and low-dose methotrexate respectively targeting A 2AAR and its ligand adenosine for the treatment of collagen-induced arthritis. Biochem Pharmacol 2018; 153:269-281. [PMID: 29410374 DOI: 10.1016/j.bcp.2018.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
Methotrexate (MTX) is widely used for rheumatoid arthritis (RA) treatment with frequently serious adverse effects. Therefore, combination of low-dose MTX with other drugs is often used in clinic. In this study, we investigated the improvement of astilbin and low-dose MTX combination on collagen-induced arthritis in DBA/1J mice. Results showed that the clinic score, incidence rate, paw swelling, pathological changes of joints and rheumatoid factors were more alleviated in combination therapy than MTX or astilbin alone group. Elevated antibodies (IgG, IgG1, IgG2a, IgM and anti-collagen IgG) and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ and IL-17A) in serum were significantly inhibited, while anti-inflammatory cytokine, IL-10, was enhanced by combination therapy. Further studies indicated that combination therapy significantly decreased Th1 and Th17 cell differentiation and increased Treg cell differentiation. Mechanisms analysis demonstrated combination therapy greatly inhibited Con A-activated MAPK and inflammatory transcriptional signals. Moreover, MTX activated adenosine release and astilbin specifically up-regulated A2A adenosine receptor (A2AAR) expression simultaneously, which most probably contributed to the synergistic efficacy of combination therapy. ZM241385, a specific antagonist of A2AAR, greatly blocked the effects of combination therapy on T cell functions and downstream pathways. All these findings suggest that astilbin is a valuable candidate for low-dose MTX combined therapy in RA via increasing A2AAR/adenosine system and decreasing ERK/NFκB/STATs signals.
Collapse
Affiliation(s)
- Yuxiang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhe Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Fang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
48
|
Vianna P, Gomes JDA, Boquett JA, Fraga LR, Schuch JB, Vianna FSL, Schuler-Faccini L. Zika Virus as a Possible Risk Factor for Autism Spectrum Disorder: Neuroimmunological Aspects. Neuroimmunomodulation 2018; 25:320-327. [PMID: 30630174 DOI: 10.1159/000495660] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
The recent outbreak of the Zika virus (ZIKV) and the discovery that perinatal Zika exposure can lead to the Congenital Zika Syndrome has promoted a call for prevention measures. Due to the increased number of babies born with microcephaly, structural brain abnormalities, and neurological alterations in regions affected by ZIKV, investigations were carried out in order to better understand this process. The maternal immune system directly influences the fetal central nervous system, and complications during pregnancy have been associated with neurodevelopmental disorders. Autism spectrum disorder (ASD), a neurodevelopmental disorder commonly manifested in the first years of life, is a disease with multifactorial etiology and is manifested typically by social and communication impairments, as well as stereotyped behaviors. Brain abnormalities, including both anatomically and functionally, can be observed in this disorder, suggesting delays in neuronal maturation and altered brain connectivity. It is known that some viral congenital infections, such as rubella, and cytomegalovirus can interfere with brain development, being associated with brain calcification, microcephaly, and ASD. Here, we reviewed a range of studies evaluating the aspects concerning brain development, immunological status during pregnancy, and neuroimmunomodulation in congenital viral infections, and we discuss if the fetal brain infection caused by ZIKV could predispose to ASD. Finally, we suggest a mechanism encompassing neurological and immunological pathways that could play a role in the development of ASD in infants after ZIKV infection in pregnancy.
Collapse
Affiliation(s)
- Priscila Vianna
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Juliano André Boquett
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jaqueline Bohrer Schuch
- Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil,
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil,
| |
Collapse
|
49
|
Amodeo DA, Cuevas L, Dunn JT, Sweeney JA, Ragozzino ME. The adenosine A 2A receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism Res 2017; 11:223-233. [PMID: 29193861 DOI: 10.1002/aur.1901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/14/2017] [Indexed: 11/11/2022]
Abstract
Restricted interests and repetitive behaviors (RRBs) are a defining feature of autism spectrum disorder (ASD). To date there are limited options for treating this core symptomology. Treatments that stimulate adenosine A2A receptors may represent a promising approach for reducing RRBs in ASD. This is because A2A receptors are expressed on striatal neurons of the basal ganglia indirect pathway. Under activation of this pathway has been associated with RRBs while activation of A2A receptors leads to increased activity of the indirect basal ganglia pathway. The present studies investigated whether acute, systemic treatment with CGS21680, an A2A receptor agonist attenuates elevated self-grooming and a probabilistic reversal learning deficit in the BTBR T+ Itpr3tf /J (BTBR) mouse model of idiopathic autism. The effects of this treatment were also investigated in C57BL/6J (B6) mice as a comparison strain. Using a spatial reversal learning test with 80/20 probabilistic feedback, comparable to one in which ASD individuals exhibit deficits, CGS 21680 (0.005 and 0.01mg/kg) attenuated a reversal learning deficit in BTBR mice. Enhancement in probabilistic reversal learning performance resulted from CGS 21680 improving the consistent maintenance of new adaptive behavioral choice patterns after reversal. CGS 21680 at 0.01 mg, but not 0.005 mg, also reduced self-grooming behavior in BTBR mice. CGS 21680 did not affect self-grooming or reversal learning in B6 mice. These findings demonstrate that A2A receptor agonists may be a promising receptor target in the treatment of RRBs in ASD. Autism Res 2018, 11: 223-233. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY The present experiments determined whether the drug, CGS 21680, that facilitates activation of adenosine A2A receptors in the brain, would reduce repetitive and inflexible behaviors in the BTBR mouse model of idiopathic autism. CGS 21680 treatment in BTBR mice reduced repetitive and inflexible behaviors. In the control C57BL/6J (B6) mouse strain, CGS 21680 did not affect performance. These findings suggest that stimulation of brain adenosine A2A receptors may be a promising therapeutic strategy in ASD.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137.,Department of Psychology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA, 92407-2393
| | - Laura Cuevas
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| | - Jeffrey T Dunn
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street [M/C 285], Chicago, IL, 60607-7137
| |
Collapse
|
50
|
Toll-like receptors, NF-κB, and IL-27 mediate adenosine A2A receptor signaling in BTBR T + Itpr3 tf/J mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:184-191. [PMID: 28668513 DOI: 10.1016/j.pnpbp.2017.06.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Autism is a predominant neurodevelopmental disorder characterized by impaired communication, social deficits, and repetitive behaviors. Recent research has proposed that the impairment of innate immunity may play an important role in autism. Toll-like receptors (TLRs) are potential therapeutic targets against neuroinflammation. The BTBR T+ Itpr3tf/J (BTBR) mouse is a well-known model of autism, showing repetitive behaviors such as cognitive inflexibility and increased grooming as compared to C57BL/6 (B6) mice. Adenosine A2A receptor (A2AR) signaling is involved in inflammation, brain injury, and lymphocyte infiltration into the CNS, but the role of A2AR in autism remains unknown. We investigated the effect of A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on the expression levels of TLRs, IL-27, NF-κB p65, and IκBα in BTBR mice. Treatment of BTBR mice with SCH increased the percentage of splenic CD14+TLR2+ cells, CD14+TLR3+ cells, CD14+TLR4+ cells, and decreased the percentage of CD14+IL-27+ cells, as compared to the untreated BTBR mice. Our results reveal that BTBR mice treated with CGS had reversal of SCH-induced immunological responses. Moreover, mRNA and protein expression analyses confirmed increased expression of TLR2, TLR3, TLR4, and NF-κB p65 in brain tissue, and decreased IL-27 and IκBα expression following SCH treatment, as compared to the untreated-BTBR and CGS-treated BTBR mice. Together, these results suggest that the A2AR agonist corrects neuroimmune dysfunction observed in BTBR mice, and thus has the potential as a therapeutic approach in autism.
Collapse
|