1
|
Wickner RB, Hayashi Y, Edskes HK. Anti-Prion Systems in Saccharomyces cerevisiae. J Neurochem 2025; 169:e70045. [PMID: 40130511 PMCID: PMC11934224 DOI: 10.1111/jnc.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025]
Abstract
[PSI+] is a prion (infectious protein) of Sup35p, a subunit of the translation termination factor, and [URE3] is a prion of Ure2p, a mediator of nitrogen catabolite repression. Here, we trace the history of these prions and describe the array of anti-prion systems in S. cerevisiae. These systems work together to block prion infection, prion generation, prion propagation, prion segregation, and the lethal (and near-lethal) effects of most variants of these prions. Each system lowers the appearance of prions 2- to 15-fold, but together, ribosome-associated chaperones, the Hsp104 disaggregase, and the Sup35p-binding Upf proteins lower the frequency of [PSI+] appearance by ~5000-fold. [PSI+] variants can be categorized by their sensitivity to the various anti-prion systems, with the majority of prion isolates sensitive to all three of the above-mentioned systems. Yeast prions have been used to screen for human anti-prion proteins, and five of the Bag protein family members each have such activity. We suggest that manipulation of human anti-prion systems may be useful in preventing or treating some of the many human amyloidoses currently found to be prions with the same amyloid architecture as the yeast prions.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Yuho Hayashi
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Herman K. Edskes
- Laboratory of Biochemistry and GeneticsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
2
|
Chang C, Wang H, Liu Y, Xie Y, Xue D, Zhang F. A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae. Biotechnol Lett 2024; 46:1121-1131. [PMID: 39083116 DOI: 10.1007/s10529-024-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 11/10/2024]
Abstract
Rpd3L is a highly conserved histone deacetylase complex in eukaryotic cells and participates in various cellular processes. However, the roles of the Rpd3L component in filamentous fungi remain to be delineated ultimately. In this study, we constructed two knockout mutants of Rpd3L's Rxt3 subunit and characterized their biological functions in A. oryzae. Phenotypic analysis showed that AoRxt3 played a positive role in hyphal growth and conidia formation. Deletion of Aorxt3 resulted in augmented tolerance to multiple stresses, including cell wall stress, cell membrane stress, endoplasmic reticulum stress, osmotic stress and oxidative stress. Noteworthily, we found that Aorxt3-deleting mutants showed a higher kojic acid production than the control strain. However, the loss of Aorxt3 led to a significant decrease in amylase synthesis. Our findings lay the foundation for further exploring the role of other Rpd3L subunits and provide a new strategy to improve kojic acid production in A. oryzae.
Collapse
Affiliation(s)
- Chaofeng Chang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Herui Wang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yiling Liu
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yiting Xie
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Dingxiang Xue
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Feng Zhang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
3
|
Morgan JAM, Singh A, Kurz L, Nadler-Holly M, Ruwolt M, Ganguli S, Sharma S, Penkert M, Krause E, Liu F, Bhandari R, Fiedler D. Extensive protein pyrophosphorylation revealed in human cell lines. Nat Chem Biol 2024; 20:1305-1316. [PMID: 38664588 PMCID: PMC11427299 DOI: 10.1038/s41589-024-01613-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/27/2024] [Indexed: 09/28/2024]
Abstract
Reversible protein phosphorylation is a central signaling mechanism in eukaryotes. Although mass-spectrometry-based phosphoproteomics has become routine, identification of non-canonical phosphorylation has remained a challenge. Here we report a tailored workflow to detect and reliably assign protein pyrophosphorylation in two human cell lines, providing, to our knowledge, the first direct evidence of endogenous protein pyrophosphorylation. We manually validated 148 pyrophosphosites across 71 human proteins, the most heavily pyrophosphorylated of which were the nucleolar proteins NOLC1 and TCOF1. Detection was consistent with previous biochemical evidence relating the installation of the modification to inositol pyrophosphates (PP-InsPs). When the biosynthesis of PP-InsPs was perturbed, proteins expressed in this background exhibited no signs of pyrophosphorylation. Disruption of PP-InsP biosynthesis also significantly reduced rDNA transcription, potentially by lowering pyrophosphorylation on regulatory proteins NOLC1, TCOF1 and UBF1. Overall, protein pyrophosphorylation emerges as an archetype of non-canonical phosphorylation and should be considered in future phosphoproteomic analyses.
Collapse
Affiliation(s)
- Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Leonie Kurz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Max Ruwolt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sheenam Sharma
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Zhou Y, Chapagain P, Desmarini D, Uredi D, Rameh LE, Djordjevic JT, Blind RD, Wang X. Design, synthesis and cellular characterization of a new class of IPMK kinase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593371. [PMID: 38798512 PMCID: PMC11118372 DOI: 10.1101/2024.05.09.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many genetic studies have established the kinase activity of inositol phosphate multikinase (IPMK) is required for the synthesis of higher-order inositol phosphate signaling molecules, the regulation of gene expression and control of the cell cycle. These genetic studies await orthogonal validation by specific IPMK inhibitors, but no such inhibitors have been synthesized. Here, we report complete chemical synthesis, cellular characterization, structure-activity relationships and rodent pharmacokinetics of a novel series of highly potent IPMK inhibitors. The first-generation compound 1 (UNC7437) decreased cellular proliferation and tritiated inositol phosphate levels in metabolically labeled human U251-MG glioblastoma cells. Compound 1 also regulated the transcriptome of these cells, selectively regulating genes that are enriched in cancer, inflammatory and viral infection pathways. Further optimization of compound 1 eventually led to compound 15 (UNC9750), which showed improved potency and pharmacokinetics in rodents. Compound 15 specifically inhibited cellular accumulation of InsP 5 , a direct product of IPMK kinase activity, while having no effect on InsP 6 levels, revealing a novel metabolic signature detected for the first time by rapid chemical attenuation of cellular IPMK activity. These studies designed, optimized and synthesized a new series of IPMK inhibitors, which reduces glioblastoma cell growth, induces a novel InsP 5 metabolic signature, and reveals novel aspects inositol phosphate cellular metabolism and signaling.
Collapse
|
5
|
Sowd GA, Stivison EA, Chapagain P, Hale AT, Poland JC, Rameh LE, Blind RD. IPMK regulates HDAC3 activity and histone H4 acetylation in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591660. [PMID: 38746349 PMCID: PMC11092501 DOI: 10.1101/2024.04.29.591660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules in vitro , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs in vitro . Here, we generated IPMK knockout (IKO) human U251 glioblastoma cells, which decreased cellular inositol phosphate levels and increased histone H4-acetylation by mass spectrometry. ChIP-seq showed IKO increased H4-acetylation at IKO-upregulated genes, but H4-acetylation was unchanged at IKO-downregulated genes, suggesting gene-specific responses to IPMK knockout. HDAC deacetylase enzyme activity was decreased in HDAC3 immunoprecipitates from IKO vs . wild-type cells, while deacetylase activity of other Class 1 HDACs had no detectable changes in activity. Wild-type IPMK expression in IKO cells fully rescued HDAC3 deacetylase activity, while kinase-dead IPMK expression had no effect. Further, the deficiency in HDAC3 activity in immunoprecipitates from IKO cells could be fully rescued by addition of synthesized IP4 (Ins(1,4,5,6)P4) to the enzyme assay, while control inositol had no effect. These data suggest that cellular IPMK-dependent inositol phosphates are required for full HDAC3 enzyme activity and proper histone H4-acetylation. Implications for targeting IPMK in HDAC3-dependent diseases are discussed.
Collapse
|
6
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
7
|
Sunder S, Bauman JS, Decker SJ, Lifton AR, Kumar A. The yeast AMP-activated protein kinase Snf1 phosphorylates the inositol polyphosphate kinase Kcs1. J Biol Chem 2024; 300:105657. [PMID: 38224949 PMCID: PMC10851228 DOI: 10.1016/j.jbc.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S Bauman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart J Decker
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra R Lifton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
9
|
Bhat SA, Malla AB, Oddi V, Sen J, Bhandari R. Inositol hexakisphosphate kinase 1 is essential for cell junction integrity in the mouse seminiferous epithelium. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119596. [PMID: 37742721 DOI: 10.1016/j.bbamcr.2023.119596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are enzymes that catalyse the synthesis of the inositol pyrophosphate 5-IP7 which is involved in the regulation of many physiological processes in mammals. The IP6K paralog IP6K1 is expressed at high levels in the mammalian testis, and its deletion leads to sterility in male mice. Here, we show that the loss of IP6K1 in mice causes a delay in the first wave of spermatogenesis. Testes from juvenile Ip6k1 knockout mice show downregulation of transcripts that are involved in cell adhesion and formation of the testis-specific inter-Sertoli cell impermeable junction complex known as the blood-testis barrier (BTB). We demonstrate that loss of IP6K1 in the mouse testis causes BTB disruption associated with transcriptional misregulation of the tight junction protein claudin 3, and subcellular mislocalization of the gap junction protein connexin 43. In addition to BTB disruption, we also observe a loss of germ cell adhesion in the seminiferous epithelium of Ip6k1 knockout mice, ultimately resulting in premature sloughing of round spermatids into the epididymis. Mechanistically, we show that loss of IP6K1 in the testis enhances cofilin dephosphorylation in conjunction with increased AKT/ERK and integrin signalling, resulting in destabilization of the actin-based cytoskeleton in Sertoli cells and germ cell loss.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Aushaq Bashir Malla
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| |
Collapse
|
10
|
Cecil JH, Padilla CM, Lipinski AA, Langlais PR, Luo X, Capaldi AP. The Molecular Logic of Gtr1/2 and Pib2 Dependent TORC1 Regulation in Budding Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570342. [PMID: 38106135 PMCID: PMC10723367 DOI: 10.1101/2023.12.06.570342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Target of Rapamycin kinase Complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here we report that this dual regulator system pushes TORC1 into three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 off, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way, to drive a multi-level response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.
Collapse
Affiliation(s)
- Jacob H. Cecil
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Cristina M. Padilla
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | | | - Paul R. Langlais
- Department of Medicine, University of Arizona, Tucson, AZ, 85721
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
11
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
12
|
Enkhbaatar T, Skoneczny M, Stępień K, Mołoń M, Skoneczna A. Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging (Albany NY) 2023; 15:9965-9983. [PMID: 37815879 PMCID: PMC10599738 DOI: 10.18632/aging.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Aging is inevitable and affects all cell types, thus yeast cells are often used as a model in aging studies. There are two approaches to studying aging in yeast: replicative aging, which describes the proliferative potential of cells, and chronological aging, which is used for studying post-mitotic cells. While analyzing the chronological lifespan (CLS) of diploid Saccharomyces cerevisiae cells, we discovered a remarkable phenomenon: ploidy reduction during aging progression. To uncover the mechanism behind this unusual process we used yeast strains undergoing a CLS assay, looking for various aging parameters. Cell mortality, regrowth ability, autophagy induction and cellular DNA content measurements indicated that during the CLS assay, dying cells lost their DNA, and only diploids survived. We demonstrated that autophagy was responsible for the gradual loss of DNA. The nucleophagy marker activation at the start of the CLS experiment correlated with the significant drop in cell viability. The activation of piecemeal microautophagy of nucleus (PMN) markers appeared to accompany the chronological aging process until the end. Our findings emphasize the significance of maintaining at least one intact copy of the genome for the survival of post-mitotic diploid cells. During chronological aging, cellular components, including DNA, are exposed to increasing stress, leading to DNA damage and fragmentation in aging cells. We propose that PMN-dependent clearance of damaged DNA from the nucleus helps prevent genome rearrangements. However, as long as one copy of the genome can be rebuilt, cells can still survive.
Collapse
Affiliation(s)
- Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, Rzeszów 35-959, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów 35-601, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
13
|
Panessa GM, Tassoni-Tsuchida E, Pires MR, Felix RR, Jekabson R, de Souza-Pinto NC, da Cunha FM, Brandman O, Cussiol JRR. Opi1-mediated transcriptional modulation orchestrates genotoxic stress response in budding yeast. Genetics 2023; 225:iyad130. [PMID: 37440469 PMCID: PMC10691878 DOI: 10.1093/genetics/iyad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.
Collapse
Affiliation(s)
- Giovanna Marques Panessa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Eduardo Tassoni-Tsuchida
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Marina Rodrigues Pires
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rodrigo Rodrigues Felix
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rafaella Jekabson
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | | | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - José Renato Rosa Cussiol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| |
Collapse
|
14
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Tian J, Pu M, Chen B, Wang G, Li C, Zhang X, Yu Y, Wang Z, Kong Z. Verticillium dahliae Asp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization. Environ Microbiol 2023; 25:738-750. [PMID: 36537236 DOI: 10.1111/1462-2920.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Verticillium dahliae is a devastating pathogenic fungus that causes severe vascular wilts in more than 400 dicotyledonous plants. The conidiation of V. dahliae in plant vascular tissues is the key strategy for its adaptation to the nutrient-poor environment and is required for its pathogenicity. However, it remains unclear about the regulatory mechanism of conidium production of V. dahliae in vascular tissues. Here, we found that VdAsp1, encoding an inositol polyphosphate kinase, is indispensable for the pathogenicity of V. dahliae. Loss of VdAsp1 function does not affect the invasion of the host, but it impairs the colonization and proliferation in vascular tissues. The ΔVdAsp1 mutant shows defective initiation of conidiophore formation and reduced expression of genes associated with the central developmental pathway. By live-cell imaging, we observed that some of ΔVdAsp1 mutant hyphae are swollen, and microtubule arrangements at the apical region of these hyphae are disorganized. These results indicate that VdAsp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization, which is essential for V. dahliae to colonize and proliferate in vascular tissues. These findings provided a potential new direction in the control of vascular wilt pathogen by targeting conidium production in vascular tissues.
Collapse
Affiliation(s)
- Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mengli Pu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
16
|
Wang W, Wang Y, Lu Y, Tian X, Chen S, Wu B, Du J, Xiao Y, Cai W. Inositol hexaphosphate promotes intestinal adaptation in short bowel syndrome via an HDAC3-mediated epigenetic pathway. Food Nutr Res 2023; 67:8694. [PMID: 36794012 PMCID: PMC9899046 DOI: 10.29219/fnr.v67.8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Short bowel syndrome (SBS) has high morbidity and mortality rates, and promoting intestinal adaptation of the residual intestine is a critical treatment. Dietary inositol hexaphosphate (IP6) plays an important role in maintaining intestinal homeostasis, but its effect on SBS remains unclear. This study aimed at investigating the effect of IP6 on SBS and clarified its underlying mechanism. Methods Forty male Sprague-Dawley rats (3-week-old) were randomly assigned into four groups (Sham, Sham + IP6, SBS, and SBS + IP6 groups). Rats were fed standard pelleted rat chow and underwent resection of 75% of the small intestine after 1 week of acclimation. They received 1 mL IP6 treatment (2 mg/g) or sterile water daily for 13 days by gavage. Intestinal length, levels of inositol 1,4,5-trisphosphate (IP3), histone deacetylase 3 (HDAC3) activity, and proliferation of intestinal epithelial cell-6 (IEC-6) were detected. Results IP6 treatment increased the length of the residual intestine in rats with SBS. Furthermore, IP6 treatment caused an increase in body weight, intestinal mucosal weight, and IEC proliferation, and a decrease in intestinal permeability. IP6 treatment led to higher levels of IP3 in feces and serum, and higher HDAC3 activity of the intestine. Interestingly, HDAC3 activity was positively correlated with the levels of IP3 in feces (r = 0.49, P = 0.01) and serum (r = 0.44, P = 0.03). Consistently, IP3 treatment promoted the proliferation of IEC-6 cells by increasing HDAC3 activity in vitro. IP3 regulated the Forkhead box O3 (FOXO3)/Cyclin D1 (CCND1) signaling pathway. Conclusion IP6 treatment promotes intestinal adaptation in rats with SBS. IP6 is metabolized to IP3 to increase HDAC3 activity to regulate the FOXO3/CCND1 signaling pathway and may represent a potential therapeutic approach for patients with SBS.
Collapse
Affiliation(s)
- Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Chen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Yongtao Xiao Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Wei Cai Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, 200092 Shanghai, China.
| |
Collapse
|
17
|
Lin H, Leman LJ, Krishnamurthy R. One-pot chemical pyro- and tri-phosphorylation of peptides by using diamidophosphate in water. Chem Sci 2022; 13:13741-13747. [PMID: 36544739 PMCID: PMC9713773 DOI: 10.1039/d2sc04160j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
Protein (pyro)phosphorylation is emerging as a post-translational modification (PTM) in signalling pathways involved in many cellular processes. However, access to synthetic pyrophosphopeptides that can serve as tools for understanding protein pyrophosphorylation is quite limited. Herein, we report a chemical phosphorylation method that enables the synthesis of pyrophosphopeptides in aqueous medium without the need for protecting groups. The strategy employs diamidophosphate (DAP) in a one-pot sequential phosphorylation-hydrolysis of mono-phosphorylated peptide precursors. This operationally simple method exploits the intrinsic nucleophilicity of a phosphate moiety installed on serine, threonine or tyrosine residues in complex peptides with excellent chemoselectivity and good yields under mild conditions. We demonstrate the installation of the pyrophosphate group within a wide range of model peptides and showcase the potential of this methodology by selectively pyrophosphorylating the highly functionalized Nopp140 peptide fragment. The potential to produce higher (poly)phosphorylated peptides was demonstrated as a proof-of-principle experiment where we synthesized the triphosphorylated peptides using this one-pot strategy.
Collapse
Affiliation(s)
- Huacan Lin
- Department of Chemistry, The Scripps Research InstituteLa JollaCalifornia 92037USA
| | - Luke J. Leman
- Department of Chemistry, The Scripps Research InstituteLa JollaCalifornia 92037USA
| | | |
Collapse
|
18
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
19
|
Vallabhaneni AR, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Ahmed S, Conrad-Webb H. HSF1 induces RNA polymerase II synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Curr Genet 2021; 67:937-951. [PMID: 34363098 PMCID: PMC8594204 DOI: 10.1007/s00294-021-01197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The resource intensive process of accurate ribosome synthesis is essential for cell viability in all organisms. Ribosome synthesis regulation centers on RNA polymerase I (pol I) transcription of a 35S rRNA precursor that is processed into the mature 18S, 5.8S and 25S rRNAs. During nutrient deprivation or stress, pol I synthesis of rRNA is dramatically reduced. Conversely, chronic stress such as mitochondrial dysfunction induces RNA polymerase II (pol II) to transcribe functional rRNA using an evolutionarily conserved cryptic pol II rDNA promoter suggesting a universal phenomenon. However, this polymerase switches and its role in regulation of rRNA synthesis remain unclear. In this paper, we demonstrate that extended nitrogen deprivation induces the polymerase switch via components of the environmental stress response. We further show that the switch is repressed by Sch9 and activated by the stress kinase Rim15. Like stress-induced genes, the switch requires not only pol II transcription machinery, including the mediator, but also requires the HDAC, Rpd3 and stress transcription factor Hsf1. The current work shows that the constitutive allele, Hsf1PO4* displays elevated levels of induction in non-stress conditions while binding to a conserved site in the pol II rDNA promoter upstream of the pol I promoter. Whether the polymerase switch serves to provide rRNA when pol I transcription is inhibited or fine-tunes pol I initiation via RNA interactions is yet to be determined. Identifying the underlying mechanism for this evolutionary conserved phenomenon will help understand the mechanism of pol II rRNA synthesis and its role in stress adaptation.
Collapse
Affiliation(s)
- Arjuna Rao Vallabhaneni
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Merita Kabashi
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Matt Haymowicz
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Kushal Bhatt
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.,Department of Bioinformatics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, Texas, 75390, USA
| | - Violet Wayman
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Shazia Ahmed
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Heather Conrad-Webb
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.
| |
Collapse
|
20
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Chung WH. Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms. J Microbiol Biotechnol 2021; 31:171-180. [PMID: 33397827 PMCID: PMC9706025 DOI: 10.4014/jmb.2011.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 0369, Republic of Korea,Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,Corresponding author Phone: +82-2-901-8737 Fax: +82-2-901-8386 E-mail:
| |
Collapse
|
22
|
Wang Z, Jork N, Bittner T, Wang H, Jessen HJ, Shears SB. Rapid stimulation of cellular Pi uptake by the inositol pyrophosphate InsP 8 induced by its photothermal release from lipid nanocarriers using a near infra-red light-emitting diode. Chem Sci 2020; 11:10265-10278. [PMID: 33659052 PMCID: PMC7891704 DOI: 10.1039/d0sc02144j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Inositol pyrophosphates (PP-InsPs), including diphospho-myo-inositol pentakisphosphate (5-InsP7) and bis-diphospho-myo-inositol tetrakisphosphate (1,5-InsP8), are highly polar, membrane-impermeant signaling molecules that control many homeostatic responses to metabolic and bioenergetic imbalance. To delineate their molecular activities, there is an increasing need for a toolbox of methodologies for real-time modulation of PP-InsP levels inside large populations of cultured cells. Here, we describe procedures to package PP-InsPs into thermosensitive phospholipid nanocapsules that are impregnated with a near infra-red photothermal dye; these liposomes are readily accumulated into cultured cells. The PP-InsPs remain trapped inside the liposomes until the cultures are illuminated with a near infra-red light-emitting diode (LED) which permeabilizes the liposomes to promote PP-InsP release. Additionally, so as to optimize these procedures, a novel stably fluorescent 5-InsP7 analogue (i.e., 5-FAM-InsP7) was synthesized with the assistance of click-chemistry; the delivery and deposition of the analogue inside cells was monitored by flow cytometry and by confocal microscopy. We describe quantitatively-controlled PP-InsP release inside cells within 5 min of LED irradiation, without measurable effect upon cell integrity, using a collimated 22 mm beam that can irradiate up to 106 cultured cells. Finally, to interrogate the biological value of these procedures, we delivered 1,5-InsP8 into HCT116 cells and showed it to dose-dependently stimulate the rate of [33P]-Pi uptake; these observations reveal a rheostatic range of concentrations over which 1,5-InsP8 is biologically functional in Pi homeostasis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Nikolaus Jork
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Tamara Bittner
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Huanchen Wang
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| | - Henning J Jessen
- Institute of Organic Chemistry , CIBSS , Center for Integrative Biological Signalling Studies , University of Freiburg , 79104 Freiburg , Germany
| | - Stephen B Shears
- Signal Transduction Laboratory , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , NC 27709 , USA . ; Tel: +1-984-287-3483
| |
Collapse
|
23
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
24
|
Wickner RB, Edskes HK, Son M, Wu S, Niznikiewicz M. How Do Yeast Cells Contend with Prions? Int J Mol Sci 2020; 21:ijms21134742. [PMID: 32635197 PMCID: PMC7369894 DOI: 10.3390/ijms21134742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear β-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.
Collapse
|
25
|
Morrissette VA, Rolfes RJ. The intersection between stress responses and inositol pyrophosphates in Saccharomyces cerevisiae. Curr Genet 2020; 66:901-910. [PMID: 32322930 DOI: 10.1007/s00294-020-01078-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Saccharomyces cerevisiae adapts to oxidative, osmotic stress and nutrient deprivation through transcriptional changes, decreased proliferation, and entry into other developmental pathways such as pseudohyphal formation and sporulation. Inositol pyrophosphates are necessary for these cellular responses. Inositol pyrophosphates are molecules composed of the phosphorylated myo-inositol ring that carries one or more diphosphates. Mutations in the enzymes that metabolize these molecules lead to altered patterns of stress resistance, altered morphology, and defective sporulation. Mechanisms to alter the synthesis of inositol pyrophosphates have been recently described, including inhibition of enzyme activity by oxidation and by phosphorylation. Cells with increased levels of 5-diphosphoinositol pentakisphosphate have increased nuclear localization of Msn2 and Gln3. The altered localization of these factors is consistent with the partially induced environmental stress response and increased expression of genes under the control of Msn2/4 and Gln3. Other transcription factors may also exhibit increased nuclear localization based on increased expression of their target genes. These transcription factors are each regulated by TORC1, suggesting that TORC1 may be inhibited by inositol pyrophosphates. Inositol pyrophosphates affect stress responses in other fungi (Aspergillus nidulans, Ustilago maydis, Schizosaccharomyces pombe, and Cryptococcus neoformans), in human and mouse, and in plants, suggesting common mechanisms and possible novel drug development targets.
Collapse
Affiliation(s)
- Victoria A Morrissette
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Reiss Science Building 406, Washington, DC, 20057, USA.
| |
Collapse
|
26
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
27
|
Steidle EA, Morrissette VA, Fujimaki K, Chong L, Resnick AC, Capaldi AP, Rolfes RJ. The InsP 7 phosphatase Siw14 regulates inositol pyrophosphate levels to control localization of the general stress response transcription factor Msn2. J Biol Chem 2019; 295:2043-2056. [PMID: 31848224 DOI: 10.1074/jbc.ra119.012148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14 Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1 Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.
Collapse
Affiliation(s)
| | | | - Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Lucy Chong
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Adam C Resnick
- Division of Neurosurgery, Colket Translational Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057.
| |
Collapse
|
28
|
You ST, Jhou YT, Kao CF, Leu JY. Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering. PLoS Biol 2019; 17:e3000433. [PMID: 31613873 PMCID: PMC6814240 DOI: 10.1371/journal.pbio.3000433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/25/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Cell-to-cell heterogeneity within an isogenic population has been observed in prokaryotic and eukaryotic cells. Such heterogeneity often manifests at the level of individual protein abundance and may have evolutionary benefits, especially for organisms in fluctuating environments. Although general features and the origins of cellular noise have been revealed, details of the molecular pathways underlying noise regulation remain elusive. Here, we used experimental evolution of Saccharomyces cerevisiae to select for mutations that increase reporter protein noise. By combining bulk segregant analysis and CRISPR/Cas9-based reconstitution, we identified the methyltransferase Hmt1 as a general regulator of noise buffering. Hmt1 methylation activity is critical for the evolved phenotype, and we also show that two of the Hmt1 methylation targets can suppress noise. Hmt1 functions as an environmental sensor to adjust noise levels in response to environmental cues. Moreover, Hmt1-mediated noise buffering is conserved in an evolutionarily distant yeast species, suggesting broad significance of noise regulation. Experimental evolution in yeast reveals that the methyltransferase Hmt1 functions as a mediator connecting environmental stimuli to cellular noise; Hmt1-mediated noise buffering is conserved in an evolutionarily distant yeast.
Collapse
Affiliation(s)
- Shu-Ting You
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Structural analyses of inositol phosphate second messengers bound to signaling effector proteins. Adv Biol Regul 2019; 75:100667. [PMID: 31648945 DOI: 10.1016/j.jbior.2019.100667] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
The higher-order inositol phosphate second messengers inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) are important signaling molecules that regulate DNA-damage repair, cohesin dynamics, RNA-editing, retroviral assembly, nuclear transport, phosphorylation, acetylation, crotonylation, and ubiquitination. This functional diversity has made understanding how inositol polyphosphates regulate cellular processes challenging to dissect. However, some inositol phosphates have been unexpectedly found in X-ray crystal structures, occasionally revealing structural and mechanistic details of effector protein regulation before functional consequences have been described. This review highlights a sampling of crystal structures describing the interaction between inositol phosphates and protein effectors. This list includes the RNA editing enzyme "adenosine deaminase that acts on RNA 2" (ADAR2), the Pds5B regulator of cohesin dynamics, the class 1 histone deacetylases (HDACs) HDAC1 and HDAC3, and the PH domain of Bruton's tyrosine kinase (Btk). One of the most important enzymes responsible for higher-order inositol phosphate synthesis is inositol polyphosphate multikinase (IPMK), which plays dual roles in both inositol and phosphoinositide signaling. Structures of phosphoinositide lipid binding proteins have also revealed new aspects of protein effector regulation, as mediated by the nuclear receptors Steroidogenic Factor-1 (SF-1, NR5A2) and Liver Receptor Homolog-1 (LRH-1, NR5A2). Together, these studies underscore the structural diversity in binding interactions between effector proteins and inositol phosphate small signaling molecules, and further support that detailed structural studies can lead to new biological discovery.
Collapse
|
30
|
Zwinderman MRH, de Weerd S, Dekker FJ. Targeting HDAC Complexes in Asthma and COPD. EPIGENOMES 2019; 3:19. [PMID: 34968229 PMCID: PMC8594684 DOI: 10.3390/epigenomes3030019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Around three million patients die due to airway inflammatory diseases each year. The most notable of these diseases are asthma and chronic obstructive pulmonary disease (COPD). Therefore, new therapies are urgently needed. Promising targets are histone deacetylases (HDACs), since they regulate posttranslational protein acetylation. Over a thousand proteins are reversibly acetylated, and acetylation critically influences aberrant intracellular signaling pathways in asthma and COPD. The diverse set of selective and non-selective HDAC inhibitors used in pre-clinical models of airway inflammation show promising results, but several challenges still need to be overcome. One such challenge is the design of HDAC inhibitors with unique selectivity profiles, such as selectivity towards specific HDAC complexes. Novel strategies to disrupt HDAC complexes should be developed to validate HDACs further as targets for new anti-inflammatory pulmonary treatments.
Collapse
Affiliation(s)
| | | | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands (M.R.H.Z.) (S.d.W.)
| |
Collapse
|
31
|
Kunkel J, Luo X, Capaldi AP. Integrated TORC1 and PKA signaling control the temporal activation of glucose-induced gene expression in yeast. Nat Commun 2019; 10:3558. [PMID: 31395866 PMCID: PMC6687784 DOI: 10.1038/s41467-019-11540-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2019] [Indexed: 01/04/2023] Open
Abstract
The growth rate of a yeast cell is controlled by the target of rapamycin kinase complex I (TORC1) and cAMP-dependent protein kinase (PKA) pathways. To determine how TORC1 and PKA cooperate to regulate cell growth, we performed temporal analysis of gene expression in yeast switched from a non-fermentable substrate, to glucose, in the presence and absence of TORC1 and PKA inhibitors. Quantitative analysis of these data reveals that PKA drives the expression of key cell growth genes during transitions into, and out of, the rapid growth state in glucose, while TORC1 is important for the steady-state expression of the same genes. This circuit design may enable yeast to set an exact growth rate based on the abundance of internal metabolites such as amino acids, via TORC1, but also adapt rapidly to changes in external nutrients, such as glucose, via PKA.
Collapse
Affiliation(s)
- Joseph Kunkel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA.
| |
Collapse
|
32
|
Marcum RD, Radhakrishnan I. Inositol phosphates and core subunits of the Sin3L/Rpd3L histone deacetylase (HDAC) complex up-regulate deacetylase activity. J Biol Chem 2019; 294:13928-13938. [PMID: 31358618 DOI: 10.1074/jbc.ra119.009780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/25/2019] [Indexed: 11/06/2022] Open
Abstract
The constitutively nuclear histone deacetylases (HDACs) 1, 2, and 3 erase acetyl marks on acetyllysine residues, alter the landscape of histone modifications, and modulate chromatin structure and dynamics and thereby crucially regulate gene transcription in higher eukaryotes. Nuclear HDACs exist as at least six giant multiprotein complexes whose nonenzymatic subunits confer genome targeting specificity for these enzymes. The deacetylase activity of HDACs has been shown previously to be enhanced by inositol phosphates, which also bridge the catalytic domain in protein-protein interactions with SANT (Swi3, Ada2, N-Cor, and TFIIIB) domains in all HDAC complexes except those that contain the Sin3 transcriptional corepressors. Here, using purified recombinant proteins, coimmunoprecipitation and HDAC assays, and pulldown and NMR experiments, we show that HDAC1/2 deacetylase activity in one of the most ancient and evolutionarily conserved Sin3L/Rpd3L complexes is inducibly up-regulated by inositol phosphates but involves interactions with a zinc finger motif in the Sin3-associated protein 30 (SAP30) subunit that is structurally unrelated to SANT domains, indicating convergent evolution at the functional level. This implies that this mode of regulation has evolved independently multiple times and provides an evolutionary advantage. We also found that constitutive association with another core subunit, Rb-binding protein 4 chromatin-binding factor (RBBP4), further enhances deacetylase activity, implying both inducible and constitutive regulatory mechanisms within the same HDAC complex. Our results indicate that inositol phosphates stimulate HDAC activity and that the SAP30 zinc finger motif performs roles similar to that of the unrelated SANT domain in promoting the SAP30-HDAC1 interaction and enhancing HDAC activity.
Collapse
Affiliation(s)
- Ryan Dale Marcum
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|
33
|
Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. Fungal Kinases With a Sweet Tooth: Pleiotropic Roles of Their Phosphorylated Inositol Sugar Products in the Pathogenicity of Cryptococcus neoformans Present Novel Drug Targeting Opportunities. Front Cell Infect Microbiol 2019; 9:248. [PMID: 31380293 PMCID: PMC6660261 DOI: 10.3389/fcimb.2019.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Cecilia Li
- Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat Cell Biol 2019; 21:442-451. [DOI: 10.1038/s41556-019-0294-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022]
|
35
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
Mutlu N, Kumar A. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet 2018; 65:119-125. [PMID: 30101372 DOI: 10.1007/s00294-018-0874-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
In response to various environmental stimuli and stressors, the budding yeast Saccharomyces cerevisiae can initiate a striking morphological transition from its classic growth mode as isolated single cells to a filamentous form in which elongated cells remain connected post-cytokinesis in multi-cellular pseudohyphae. The formation of pseudohyphal filaments is regulated through an expansive signaling network, encompassing well studied and highly conserved pathways enabling changes in cell polarity, budding, cytoskeletal organization, and cell adhesion; however, changes in metabolite levels underlying the pseudohyphal growth transition are less well understood. We have recently identified a function for second messenger inositol polyphosphates (InsPs) in regulating pseudohyphal growth. InsPs are formed through the cleavage of membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2), and these soluble compounds are now being appreciated as important regulators of diverse processes, from phosphate homeostasis to cell migration. We find that kinases in the InsP pathway are required for wild-type pseudohyphal growth, and that InsP species exhibit characteristic profiles under conditions promoting filamentation. Ratios of the doubly phosphorylated InsP7 isoforms 5PP-InsP5 to 1PP-InsP5 are elevated in mutants exhibiting exaggerated pseudohyphal growth. Interestingly, S. cerevisiae mutants deleted of the mitogen-activated protein kinases (MAPKs) Kss1p or Fus3p or the AMP-activated kinase (AMPK) family member Snf1p display mutant InsP profiles, suggesting that these signaling pathways may contribute to the regulatory mechanism controlling InsP levels. Consequently, analyses of yeast pseudohyphal growth may be informative in identifying mechanisms regulating InsPs, while indicating a new function for these conserved second messengers in modulating cell stress responses and morphogenesis.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Norman KL, Shively CA, De La Rocha AJ, Mutlu N, Basu S, Cullen PJ, Kumar A. Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genet 2018; 14:e1007493. [PMID: 29939992 PMCID: PMC6034902 DOI: 10.1371/journal.pgen.1007493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/06/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
Pseudohyphal growth is a nutrient-regulated program in which budding yeast form multicellular filaments of elongated and connected cells. Filamentous growth is required for virulence in pathogenic fungi and provides an informative model of stress-responsive signaling. The genetics and regulatory networks modulating pseudohyphal growth have been studied extensively, but little is known regarding the changes in metabolites that enable pseudohyphal filament formation. Inositol signaling molecules are an important class of metabolite messengers encompassing highly phosphorylated and diffusible inositol polyphosphates (InsPs). We report here that the InsP biosynthesis pathway is required for wild-type pseudohyphal growth. Under nitrogen-limiting conditions that can induce filamentation, InsPs exhibit characteristic profiles, distinguishing the InsP7 pyrophosphate isoforms 1PP-InsP5 and 5PP-InsP5. Deletion and overexpression analyses of InsP kinases identify elevated levels of 5PP-InsP5 relative to 1PP-InsP5 in mutants exhibiting hyper-filamentous growth. Overexpression of KCS1, which promotes formation of inositol pyrophosphates, is sufficient to drive pseudohyphal filamentation on medium with normal nitrogen levels. We find that the kinases Snf1p (AMPK), Kss1p, and Fus3p (MAPKs), required for wild-type pseudohyphal growth, are also required for wild-type InsP levels. Deletion analyses of the corresponding kinase genes indicate elevated InsP3 levels and an absence of exaggerated 5PP-InsP5 peaks in trace profiles from snf1Δ/Δ and kss1Δ/Δ mutants exhibiting decreased pseudohyphal filamentation. Elevated 5PP-InsP5:1PP-InsP5 ratios are present in the hyperfilamentous fus3 deletion mutant. Collectively, the data identify the presence of elevated 5PP-InsP5 levels relative to other inositol pyrophosphates as an in vivo marker of hyper-filamentous growth, while providing initial evidence for the regulation of InsP signaling by pseudohyphal growth kinases. Changes in metabolite levels underlie important biological processes, including cellular responses to nutrient stress. One such response encompasses the nitrogen stress-induced transition of budding yeast cells into multicellular filaments, relevant as a model of directional growth and fungal pathogenesis. We report here that a conserved family of charged lipid-derived metabolites, inositol polyphosphates, exhibits characteristic changes as yeast cell form filaments in response to conditions of nitrogen limitation. The ratios of doubly charged inositol pyrophosphates consistently match with the degree of filament formation. Enzymes of the inositol polyphosphate synthesis pathway are required for filament formation, and inositol polyphosphate levels are dependent on kinases that enable wild-type filamentation. Our data indicate that inositol polyphosphates mark filamentous growth states, highlighting a new regulatory role for these ubiquitous eukaryotic second messengers.
Collapse
Affiliation(s)
- Kaitlyn L. Norman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christian A. Shively
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amberlene J. De La Rocha
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
39
|
Wickner RB, Bezsonov EE, Son M, Ducatez M, DeWilde M, Edskes HK. Anti-Prion Systems in Yeast and Inositol Polyphosphates. Biochemistry 2018; 57:1285-1292. [PMID: 29377675 PMCID: PMC7321833 DOI: 10.1021/acs.biochem.7b01285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amyloid-based yeast prions are folded in-register parallel β-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| |
Collapse
|
40
|
Kang HA. Emerging roles of inositol pyrophosphates as key modulators of fungal pathogenicity. Virulence 2018; 9:563-565. [PMID: 29338603 PMCID: PMC7000206 DOI: 10.1080/21505594.2017.1421832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/27/2022] Open
Abstract
Inositol pyrophosphates (PP-IPs) are energy-rich small molecules that are omnipresent in eukaryotic cells, from yeast to mammals, playing central roles in overall cellular homeostasis as a diverse and multifaceted class of intracellular messengers. Recent studies of the metabolic pathways and physiological roles of PP-IPs in the human pathogenic fungus Cryptococcus neoformans have revealed that the PP-IP5 (IP7) is a key metabolite essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. This suggests the PP-IP biosynthesis pathway, comprising phospholipase C1 (Plc1) and a series of sequentially acting inositol polyphosphate kinases (IPKs), as a new virulence-related signaling pathway in C. neoformans. Given that fungal species have a reduced array of the kinases required for the synthesis of PP-IPs and that the homology between human and fungal IPKs is restricted to a few catalytically important residues, identification of IPK inhibitors specifically targeting the kinases of pathogenic fungi has emerged as a desirable and achievable strategy for antifungal drug development.
Collapse
Affiliation(s)
- Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
41
|
Prion propagation and inositol polyphosphates. Curr Genet 2017; 64:571-574. [PMID: 29243174 DOI: 10.1007/s00294-017-0788-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023]
Abstract
The [PSI+] prion is a folded in-register parallel β-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.
Collapse
|
42
|
Wickner RB, Kelly AC, Bezsonov EE, Edskes HK. [PSI+] prion propagation is controlled by inositol polyphosphates. Proc Natl Acad Sci U S A 2017; 114:E8402-E8410. [PMID: 28923943 PMCID: PMC5635934 DOI: 10.1073/pnas.1714361114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast prions [PSI+] and [URE3] are folded in-register parallel β-sheet amyloids of Sup35p and Ure2p, respectively. In a screen for antiprion systems curing [PSI+] without protein overproduction, we detected Siw14p as an antiprion element. An array of genetic tests confirmed that many variants of [PSI+] arising in the absence of Siw14p are cured by restoring normal levels of the protein. Siw14p is a pyrophosphatase specifically cleaving the β phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5), suggesting that increased levels of this or some other inositol polyphosphate favors [PSI+] propagation. In support of this notion, we found that nearly all variants of [PSI+] isolated in a WT strain were lost upon loss of ARG82, which encodes inositol polyphosphate multikinase. Inactivation of the Arg82p kinase by D131A and K133A mutations (preserving Arg82p's nonkinase transcription regulation functions) resulted the loss of its ability to support [PSI+] propagation. The loss of [PSI+] in arg82Δ is independent of Hsp104's antiprion activity. [PSI+] variants requiring Arg82p could propagate in ipk1Δ (IP5 kinase), kcs1Δ (IP6 5-kinase), vip1Δ (IP6 1-kinase), ddp1Δ (inositol pyrophosphatase), or kcs1Δ vip1Δ mutants but not in ipk1Δ kcs1Δ or ddp1Δ kcs1Δ double mutants. Thus, nearly all [PSI+] prion variants require inositol poly-/pyrophosphates for their propagation, and at least IP6 or 5PP-IP4 can support [PSI+] propagation.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | - Amy C Kelly
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Shears SB. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J Cell Physiol 2017; 233:1897-1912. [PMID: 28542902 DOI: 10.1002/jcp.26017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates are small, diffusible signaling molecules that possess the most concentrated three-dimensional array of phosphate groups in Nature; up to eight phosphates are crammed around a six-carbon inositol ring. This review discusses the physico-chemical properties of these unique molecules, and their mechanisms of action. Also provided is information on the enzymes that regulate the levels and hence the signaling properties of these molecules. This review pursues the idea that many of the biological effects of inositol pyrophosphates can be rationalized by their actions at the interface of cell signaling and metabolism that is essential to cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Shah A, Ganguli S, Sen J, Bhandari R. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules. J Indian Inst Sci 2017; 97:23-40. [PMID: 32214696 PMCID: PMC7081659 DOI: 10.1007/s41745-016-0011-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the β-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein’s activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights
many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
| |
Collapse
|
45
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
46
|
Baughman BM, Wang H, An Y, Kireev D, Stashko MA, Jessen HJ, Pearce KH, Frye SV, Shears SB. A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS One 2016; 11:e0164378. [PMID: 27736936 PMCID: PMC5063353 DOI: 10.1371/journal.pone.0164378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/24/2016] [Indexed: 11/22/2022] Open
Abstract
Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 μM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 μM) and UNC10225498 (Kd = 1.37 ± 0.03 μM). These Kd values lie within the 1-10 μM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 μM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Yi An
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Stashko
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
47
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
48
|
Couso I, Evans BS, Li J, Liu Y, Ma F, Diamond S, Allen DK, Umen JG. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas. THE PLANT CELL 2016; 28:2026-2042. [PMID: 27600537 PMCID: PMC5059802 DOI: 10.1105/tpc.16.00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 05/17/2023]
Abstract
The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8 Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation.
Collapse
Affiliation(s)
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jia Li
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yu Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Fangfang Ma
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Spencer Diamond
- Earth and Planetary Science, University of California, Berkeley, California 94720
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Agricultural Research Service, U.S. Department of Agriculture, St. Louis, Missouri 63132
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
49
|
Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 ( IP6K3 ) gene promoter to the susceptibility to late onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1766-73. [DOI: 10.1016/j.bbadis.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 01/16/2023]
|
50
|
Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 2016; 40:593-605. [PMID: 26333405 DOI: 10.1007/s12038-015-9549-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.
Collapse
Affiliation(s)
- Swarna Gowri Thota
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | |
Collapse
|