1
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. Dev Biol 2025; 517:55-72. [PMID: 39306223 DOI: 10.1016/j.ydbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06110, USA
| | | |
Collapse
|
3
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
4
|
Mills M, Emori C, Kumar P, Boucher Z, George J, Bolcun-Filas E. Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578648. [PMID: 38352597 PMCID: PMC10862846 DOI: 10.1101/2024.02.02.578648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53 and TAp63, regulate primordial follicle elimination in response to DNA damage, however the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DNA damage response in wildtype and Chek2-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces a DNA damage response in ovarian cells that is solely dependent on CHEK2. DNA damage activates multiple ovarian response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pre-granulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, as well as therapeutic and environmental genotoxic exposures.
Collapse
Affiliation(s)
- Monique Mills
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Parveen Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zachary Boucher
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
5
|
Bhagi S, Chandna S. A simplified protocol for gene expression-based biological dosimetry using peripheral whole blood. Int J Radiat Biol 2023; 99:1692-1701. [PMID: 37436720 DOI: 10.1080/09553002.2023.2231531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Assessing alterations in the expression of radiation-responsive genes in peripheral blood cells is considered a promising approach for high-throughput radiation biodosimetry. However, optimization of conditions for storage and transport of blood samples would be critical for obtaining reliable results. Recent studies involved the incubation of isolated peripheral blood mononuclear cells (in cell culture medium) and/or use of RNA stabilizing agents for sample storage, immediately after the ex vivo irradiation of whole blood. We used a simpler protocol by incubating undiluted peripheral whole blood without any RNA stabilizing agent, and studied the impact of storage temperature and incubation time on the expression levels of 19 known radiation responsive genes. MATERIALS & METHODS Peripheral whole blood was γ-irradiated ex vivo at room temperature at low (0.5 Gy), moderate (1 Gy, 2 Gy) and high (4 Gy) doses and immediately incubated at two different temperatures at 4 °C or 37 °C for 2h, 4h and 24 h. Using qRT-PCR, mRNA expression levels of CDKN1A, DDB2, GADD45A, FDXR, BAX, BBC3, MYC, PCNA, XPC, ZMAT3, AEN, TRIAP1, CCNG1, RPS27L, CD70, EI24, C12orf5, TNFRSF10B, ASCC3 were analyzed at respective time-points and compared with the sham-irradiated controls. RESULTS Transcriptional responses of all 19 genes did not alter significantly upon incubation of whole blood samples at 4 °C, as compared to untreated controls. However, incubation at 37 °C for 24 h resulted in significant radiation-induced overexpression in 14 out of the 19 genes analyzed (except CDKN1A, BBC3, MYC, CD 70 and EI24). Detailed patterns during incubation at 37 °C revealed time-dependent up-regulation of these genes, with DDB2 and FDXR showing significant up-regulation both at 4 and 24 h with the highest fold-change observed. CONCLUSION Overall, the undiluted whole blood incubated at 37 °C for 24 h was found to elicit most optimal transcriptional response in the genes studied, with most profound overexpression of DDB2 and FDXR. We propose that sample storage/transport/post-transit incubation at the physiological temperature for up to 24 h may enhance the sensitivity of gene expression based biodosimetry and facilitate its usage for triage application.
Collapse
Affiliation(s)
- Shuchi Bhagi
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Sudhir Chandna
- Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Brig SK Mazumdar Marg, Delhi, 110054, India
| |
Collapse
|
6
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Szwarc MM, Guarnieri AL, Joshi M, Duc HN, Laird MC, Pandey A, Khanal S, Dohm E, Bui AK, Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. FAM193A is a positive regulator of p53 activity. Cell Rep 2023; 42:112230. [PMID: 36897777 PMCID: PMC10164416 DOI: 10.1016/j.celrep.2023.112230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna L Guarnieri
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison C Laird
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dohm
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aimee K Bui
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Pavani M, Chiroli E, Cancrini C, Gross F, Bonaiuti P, Villa S, Giavazzi F, Matafora V, Bachi A, Fava LL, Lischetti T, Ciliberto A. Triap1 upregulation promotes escape from mitotic-slippage-induced G1 arrest. Cell Rep 2023; 42:112215. [PMID: 36917609 DOI: 10.1016/j.celrep.2023.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Elena Chiroli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Camilla Cancrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Fridolin Gross
- ImmunoConcEpT, CNRS UMR5164, Université de Bordeaux, 33076 Bordeaux, France
| | - Paolo Bonaiuti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Tiziana Lischetti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Andrea Ciliberto
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary.
| |
Collapse
|
9
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
10
|
Nedara K, Reinhardt C, Lebraud E, Arena G, Gracia C, Buard V, Pioche-Durieu C, Castelli F, Colsch B, Bénit P, Rustin P, Albaud B, Gestraud P, Baulande S, Servant N, Deutsch E, Verbavatz JM, Brenner C, Milliat F, Modjtahedi N. Relevance of the TRIAP1/p53 axis in colon cancer cell proliferation and adaptation to glutamine deprivation. Front Oncol 2022; 12:958155. [DOI: 10.3389/fonc.2022.958155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.
Collapse
|
11
|
Transcriptomic Analysis Reveals That Granulocyte Colony-Stimulating Factor Trigger a Novel Signaling Pathway (TAF9-P53-TRIAP1-CASP3) to Protect Retinal Ganglion Cells after Ischemic Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23158359. [PMID: 35955492 PMCID: PMC9368818 DOI: 10.3390/ijms23158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. The granulocyte colony-stimulating factor (GCSF) protects the RGC after ON infarct. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. To investigate the complex mechanisms involved, the transcriptome profiles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy (rAION) were analyzed by microarray and bioinformatics analyses. GCSF treatment influenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively. ONH infarct led to changes in 702 and 179 genes on days 3 and 7 post rAION, respectively. After cluster analysis, the levels of TATA box-binding protein (TBP)-associated factor were significantly reduced after ONH infarct, but these significantly increased after GCSF treatment. The network analysis revealed that TBP associated factor 9 (TAF9) can bind to P53 to induce TP53-regulated inhibitor of apoptosis 1 (TRIAP1) expression. To evaluate the function of TAF9 in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in an rAION model. The RGC densities in the GCSF plus TAF9 siRNA-treated rAION group were 1.95-fold (central retina) and 1.75-fold (midperipheral retina) lower than that in the GCSF-treated rAION group (p < 0.05). The number of apoptotic RGC in the GCSF plus TAF9 siRNA-treated group was threefold higher than that in the GCSF-treated group (p < 0.05). Treatment with TAF9 siRNA significantly reduced GCSF-induced TP53 and TRIAP1 expression by 2.4-fold and 4.7-fold, respectively, in the rAION model. Overexpression of TAF9 significantly reduced apoptotic RGC and CASP3 levels, and induced TP53 and TRIAP1 expression in the rAION model. Therefore, we have demonstrated that GCSF modulated a new pathway, TAF9-P53-TRIAP1-CASP3, to control RGC death and survival after ON infarct.
Collapse
|
12
|
Yahya N, Linge A, Leger K, Maile T, Kemper M, Haim D, Jöhrens K, Troost EGC, Krause M, Löck S. Assessment of gene expressions from squamous cell carcinoma of the head and neck to predict radiochemotherapy-related xerostomia and dysphagia. Acta Oncol 2022; 61:856-863. [PMID: 35657056 DOI: 10.1080/0284186x.2022.2081931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE We tested the hypothesis that gene expressions from biopsies of locally advanced head and neck squamous cell carcinoma (HNSCC) patients can supplement dose-volume parameters to predict dysphagia and xerostomia following primary radiochemotherapy (RCTx). MATERIAL AND METHODS A panel of 178 genes previously related to radiochemosensitivity of HNSCC was considered for nanoString analysis based on tumour biopsies of 90 patients with locally advanced HNSCC treated by primary RCTx. Dose-volume parameters were extracted from the parotid, submandibular glands, oral cavity, larynx, buccal mucosa, and lips. Normal tissue complication probability (NTCP) models were developed for acute, late, and for the improvement of xerostomia grade ≥2 and dysphagia grade ≥3 using a cross-validation-based least absolute shrinkage and selection operator (LASSO) approach combined with stepwise logistic regression for feature selection. The final signatures were included in a logistic regression model with optimism correction. Performance was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS NTCP models for acute and late xerostomia and the improvement of dysphagia resulted in optimism-corrected AUC values of 0.84, 0.76, and 0.70, respectively. The minimum dose to the contralateral parotid was selected for both acute and late xerostomia and the minimum dose to the larynx was selected for dysphagia improvement. For the xerostomia endpoints, the following gene expressions were selected: RPA2 (cellular response to DNA damage), TCF3 (salivary gland cells development), GBE1 (glycogen storage and regulation), and MAPK3 (regulation of cellular processes). No gene expression features were selected for the prediction of dysphagia. CONCLUSION This hypothesis-generating study showed the potential of improving NTCP models using gene expression data for HNSCC patients. The presented models require independent validation before potential application in clinical practice.
Collapse
Affiliation(s)
- Noorazrul Yahya
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Annett Linge
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Karoline Leger
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Till Maile
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Max Kemper
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Otorhinolaryngology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dominik Haim
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Korinna Jöhrens
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Esther G. C. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Mechthild Krause
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Steffen Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Kushnareva Y, Moraes V, Suess J, Peters B, Newmeyer DD, Kuwana T. Disruption of mitochondrial quality control genes promotes caspase-resistant cell survival following apoptotic stimuli. J Biol Chem 2022; 298:101835. [PMID: 35304098 PMCID: PMC9018395 DOI: 10.1016/j.jbc.2022.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed "minority MOMP." In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vivian Moraes
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Julian Suess
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Bjoern Peters
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald D Newmeyer
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tomomi Kuwana
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
14
|
Li W, Zhou S, Jia M, Li X, Li L, Wang Q, Qi Z, Zhou P, Li Y, Wang Z. Early Biomarkers Associated with P53 Signaling for Acute Radiation Injury. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010099. [PMID: 35054492 PMCID: PMC8778477 DOI: 10.3390/life12010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/18/2023]
Abstract
Accurate dose assessment within 1 day or even 12 h after exposure through current methods of dose estimation remains a challenge, in response to a large number of casualties caused by nuclear or radiation accidents. P53 signaling pathway plays an important role in DNA damage repair and cell apoptosis induced by ionizing radiation. The changes of radiation-induced P53 related genes in the early stage of ionizing radiation should compensate for the deficiency of lymphocyte decline and γ-H2AX analysis as novel biomarkers of radiation damage. Bioinformatic analysis was performed on previous data to find candidate genes from human peripheral blood irradiated in vitro. The expression levels of candidate genes were detected by RT-PCR. The expressions of screened DDB2, AEN, TRIAP1, and TRAF4 were stable in healthy population, but significantly up-regulated by radiation, with time specificity and dose dependence in 2–24 h after irradiation. They are early indicators for medical treatment in acute radiation injury. Their effective combination could achieve a more accurate dose assessment for large-scale wounded patients within 24 h post exposure. The effective combination of p53-related genes DDB2, AEN, TRIAP1, and TRAF4 is a novel biodosimetry for a large number of people exposed to acute nuclear accidents.
Collapse
Affiliation(s)
- Weihong Li
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Shixiang Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Meng Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Xiaoxin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Lin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Qi Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Zhenhua Qi
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Yaqiong Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| | - Zhidong Wang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| |
Collapse
|
15
|
Carlsen L, El-Deiry WS. Differential p53-Mediated Cellular Responses to DNA-Damaging Therapeutic Agents. Int J Mol Sci 2021; 22:ijms222111828. [PMID: 34769259 PMCID: PMC8584119 DOI: 10.3390/ijms222111828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The gene TP53, which encodes the tumor suppressor protein p53, is mutated in about 50% of cancers. In response to cell stressors like DNA damage and after treatment with DNA-damaging therapeutic agents, p53 acts as a transcription factor to activate subsets of target genes which carry out cell fates such as apoptosis, cell cycle arrest, and DNA repair. Target gene selection by p53 is controlled by a complex regulatory network whose response varies across contexts including treatment type, cell type, and tissue type. The molecular basis of target selection across these contexts is not well understood. Knowledge gained from examining p53 regulatory network profiles across different DNA-damaging agents in different cell types and tissue types may inform logical ways to optimally manipulate the network to encourage p53-mediated tumor suppression and anti-tumor immunity in cancer patients. This may be achieved with combination therapies or with p53-reactivating targeted therapies. Here, we review the basics of the p53 regulatory network in the context of differential responses to DNA-damaging agents; discuss recent efforts to characterize differential p53 responses across treatment types, cell types, and tissue types; and examine the relevance of evaluating these responses in the tumor microenvironment. Finally, we address open questions including the potential relevance of alternative p53 transcriptional functions, p53 transcription-independent functions, and p53-independent functions in the response to DNA-damaging therapeutics.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
16
|
Increased expression of TCF3, transcription factor 3, is a defense response against methylmercury toxicity in mouse neuronal C17.2 cells. Toxicol Res 2021; 37:451-458. [PMID: 34631502 DOI: 10.1007/s43188-021-00087-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022] Open
Abstract
Methylmercury is an environmental pollutant that induces potent neurotoxicity. We previously identified transcription factor 3 (TCF3) as a transcription factor that is activated in the brains of mice treated with methylmercury, and reported that methylmercury sensitivity was increased in cells in which TCF3 expression was suppressed. However, the mechanisms involved in the activation of TCF3 by methylmercury and in the reduction of methylmercury toxicity by TCF3 remained unclear. We found that treatment of mouse neuronal C17.2 cells with methylmercury increased TCF3 protein levels and promoted the binding of TCF3 to DNA consensus sequences. In cells treated with actinomycin D, a transcription inhibitor, an increase in TCF3 protein levels was also observed under methylmercury exposure. However, in the presence of cycloheximide, a translation inhibitor, methylmercury delayed the degradation of TCF3 protein. In addition, treatment with MG132, a proteasome inhibitor, increased TCF3 protein levels, and there was not significant increase in TCF3 protein levels by methylmercury under these conditions. These results suggest that methylmercury may activate TCF3 by increasing its levels through inhibition of TCF3 degradation by the proteasome. It has been previously reported that the induction of apoptosis in neurons is involved in methylmercury-induced neuronal damage in the brain. Although apoptosis was induced in C17.2 cells treated with methylmercury, this induction was largely suppressed by overexpression of TCF3. These results indicate that TCF3, which is increased in the brain upon exposure to methylmercury, may be a novel defense factor against methylmercury-induced neurotoxicity.
Collapse
|
17
|
López-Menéndez C, Vázquez-Naharro A, Santos V, Dubus P, Santamaría PG, Martínez-Ramírez Á, Portillo F, Moreno-Bueno G, Faraldo MM, Cano A. E2A Modulates Stemness, Metastasis, and Therapeutic Resistance of Breast Cancer. Cancer Res 2021; 81:4529-4544. [PMID: 34145034 PMCID: PMC7611611 DOI: 10.1158/0008-5472.can-20-2685] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSC) are considered responsible for tumor initiation, therapeutic resistance, and metastasis. A comprehensive knowledge of the mechanisms governing the acquisition and maintenance of cancer stemness is crucial for the development of new therapeutic approaches in oncology. E2A basic helix-loop-helix (bHLH) transcription factors are associated with epithelial-mesenchymal transition (EMT) and tumor progression, but knowledge of their functional contributions to cancer biology is still limited. Using a combination of in vivo and in vitro analyses in a novel PyMT-E2A conditional knockout mouse model and derived primary tumor cell lines, we report here an essential role of E2A in stemness, metastasis, and therapeutic resistance in breast cancer. Targeted deletion of E2A in the mammary gland impaired tumor-initiating ability and dedifferentiation potential and severely compromised metastatic competence of PyMT-driven mammary tumors. Mechanistic studies in PyMT-derived cell lines indicated that E2A actions are mediated by the upregulation of Snai1 transcription. Importantly, high E2A and SNAIL1 expression occurred in aggressive human basal-like breast carcinomas, highlighting the relevance of the E2A-Snail1 axis in metastatic breast cancer. In addition, E2A factors contributed to the maintenance of genomic integrity and resistance to PARP inhibitors in PyMT and human triple-negative breast cancer cells. Collectively, these results support the potential for E2A transcription factors as novel targets worthy of translational consideration in breast cancer. SIGNIFICANCE: These findings identify key functions of E2A factors in breast cancer cell stemness, metastasis, and drug resistance, supporting a therapeutic vulnerability to targeting E2A proteins in breast cancer.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Alberto Vázquez-Naharro
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Pierre Dubus
- Université de Bordeaux, INSERM, Bordeaux, France
- CHU de Bordeaux, Talence, France
| | - Patricia G Santamaría
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Ángel Martínez-Ramírez
- Cytogenetic Unit. MD Anderson Cancer Center Madrid, Spain
- Oncohematology Cytogenetics Lab, Eurofins-Megalab, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, INSERM, Paris, France
- Sorbonne Universités, UPMC Université de Paris VI; Paris, France
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols", (CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red, área de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| |
Collapse
|
18
|
Wee Y, Liu Y, Zhao M. Identification of consistent post-translational regulatory triplets related to oncogenic and tumour suppressive modulators in childhood acute lymphoblastic leukemia. PeerJ 2021; 9:e11803. [PMID: 34316412 PMCID: PMC8286060 DOI: 10.7717/peerj.11803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer. It can be caused by mutations that turn on oncogenes or turn off tumour suppressor genes. For instance, changes in certain genes including Rb and p53 are common in ALL cells. Oncogenes and TSGs may serve as a modulator gene to regulate the gene expression level via their respective target genes. To investigate the regulatory relationship between oncogenes, tumour suppressor genes and transcription factors at the post translational level in childhood ALL, we performed an integrative network analysis on the gene regulation in the post-translational level for childhood ALL based on many publicly available cancer gene expression data including TARGET and GEO database. Methods We collected 259 childhood ALL-related genes from the latest online leukemia database, Leukemia Gene Literature Database. These 259 genes were selected from a comprehensive systematic literature with experimental evidences. The identified and curated genes were also associated with patient survival cases and we incorporated this pediatric ALL-related gene list into our analysis. We extracted the known human TFs from the TRRUST database. Among 259 childhood ALL-related genes, 101 unique regulators were mapped to the list of oncogene and tumour suppressor genes (TSGs) from the ONGene and the TSGene databases, and these included 74 TSGs, 62 oncogenes and 46 TF genes. Results The resulted regulation was presented as a hierarchical regulatory network with transcription factors (TFs) as intermediate regulators connecting the top modulators (oncogene and TSGs) to the common target genes. Cross-validation was applied to the results from the TARGET dataset by identifying the consistent regulatory motifs based on three independent ALL expression datasets. A three-layer regulatory network of consistent positive modulators in childhood ALL was constructed in which 74 modulators (40 oncogenes, 34 TSGs) are considered as the most important regulators. The middle layer and the bottom layer contain 34 TFs and 176 target genes, respectively. Oncogenes mostly participated in positive regulation of gene expression and the transcription process of RNA II polymerase, while TSGs were mainly involved in the negative regulation of gene expression. In addition, the oncogene-specific targets were enriched with regulators of the MAPK cascade while tumour suppressor-specific targets were associated with cell death. Conclusion The results revealed that oncogenes and TSGs possess a different functional regulatory pattern with regard to not only their biological functions but also their specific target genes in childhood ALL cancer progression. Taken together, our findings could contribute to a better understanding of the important regulatory mechanisms and this method could be used to analyse the targeted genes at the post-translational level in childhood ALL through integrative network analysis.
Collapse
Affiliation(s)
- YongKiat Wee
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
19
|
Sohail M, Shkreta L, Toutant J, Rabea S, Babeu JP, Huard C, Coulombe-Huntington J, Delannoy A, Placet M, Geha S, Gendron FP, Boudreau F, Tyers M, Grierson DS, Chabot B. A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer 2021; 3:zcab019. [PMID: 34316707 PMCID: PMC8210162 DOI: 10.1093/narcan/zcab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Safwat Rabea
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Aurélie Delannoy
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Morgane Placet
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Innes AJ, Sun B, Wagner V, Brookes S, McHugh D, Pombo J, Porreca RM, Dharmalingam G, Vernia S, Zuber J, Vannier JB, García-Escudero R, Gil J. XPO7 is a tumor suppressor regulating p21 CIP1-dependent senescence. Genes Dev 2021; 35:379-391. [PMID: 33602872 PMCID: PMC7919420 DOI: 10.1101/gad.343269.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/11/2021] [Indexed: 01/07/2023]
Abstract
Senescence is a key barrier to neoplastic transformation. To identify senescence regulators relevant to cancer, we screened a genome-wide shRNA library. Here, we describe exportin 7 (XPO7) as a novel regulator of senescence and validate its function in telomere-induced, replicative, and oncogene-induced senescence (OIS). XPO7 is a bidirectional transporter that regulates the nuclear-cytoplasmic shuttling of a broad range of substrates. Depletion of XPO7 results in reduced levels of TCF3 and an impaired induction of the cyclin-dependent kinase inhibitor p21CIP1 during OIS. Deletion of XPO7 correlates with poorer overall survival in several cancer types. Moreover, depletion of XPO7 alleviated OIS and increased tumor formation in a mouse model of liver cancer. Our results suggest that XPO7 is a novel tumor suppressor that regulates p21CIP1 expression to control senescence and tumorigenesis.
Collapse
Affiliation(s)
- Andrew J Innes
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Bin Sun
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Verena Wagner
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sharon Brookes
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Domhnall McHugh
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Joaquim Pombo
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Rosa María Porreca
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Santiago Vernia
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Jean-Baptiste Vannier
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Ramón García-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Research Institute 12 de Octubre (i+12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
21
|
Lucendo-Villarin B, Nell P, Hellwig B, Filis P, Feuerborn D, O'Shaughnessy PJ, Godoy P, Rahnenführer J, Hengstler JG, Cherianidou A, Sachinidis A, Fowler PA, Hay DC. Genome-wide expression changes induced by bisphenol A, F and S in human stem cell derived hepatocyte-like cells. EXCLI JOURNAL 2020; 19:1459-1476. [PMID: 33312107 PMCID: PMC7726493 DOI: 10.17179/excli2020-2934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The debate about possible adverse effects of bisphenol A (BPA) has been ongoing for decades. Bisphenol F (BPF) and S (BPS) have been suggested as “safer” alternatives. In the present study we used hepatocyte-like cells (HLCs) derived from the human embryonic stem cell lines Man12 and H9 to compare the three bisphenol derivatives. Stem cell-derived progenitors were produced using an established system and were exposed to BPA, BPF and BPS for 8 days during their transition to HLCs. Subsequently, we examined cell viability, inhibition of cytochrome P450 (CYP) activity, and genome-wide RNA profiles. Sub-cytotoxic, inhibitory concentrations (IC50) of CYP3A were 20, 9.5 and 25 µM for BPA, BPF and BPS in Man12 derived HLCs, respectively. The corresponding concentrations for H9-derived HLCs were 19, 29 and 31 µM. These IC50 concentrations were used to study global expression changes in this in vitro study and are higher than unconjugated BPA in serum of the general population. A large overlap of up- as well as downregulated genes induced by the three bisphenol derivatives was seen. This is at least 28-fold higher compared to randomly expected gene expression changes. Moreover, highly significant correlations of expression changes induced by the three bisphenol derivatives were obtained in pairwise comparisons. Dysregulated genes were associated with reduced metabolic function, cellular differentiation, embryonic development, cell survival and apoptosis. In conclusion, no major differences in cytochrome inhibitory activities of BPA, BPF and BPS were observed and gene expression changes showed a high degree of similarity.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - P Nell
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - B Hellwig
- Department of Statistics, Technical University Dortmund, Dortmund, Germany
| | - P Filis
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - D Feuerborn
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, UK
| | - P Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - J Rahnenführer
- Department of Statistics, Technical University Dortmund, Dortmund, Germany
| | - J G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - A Cherianidou
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - A Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - P A Fowler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - D C Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Hao CC, Luo JN, Xu CY, Zhao XY, Zhong ZB, Hu XN, Jin XM, Ge X. TRIAP1 knockdown sensitizes non-small cell lung cancer to ionizing radiation by disrupting redox homeostasis. Thorac Cancer 2020; 11:1015-1025. [PMID: 32096592 PMCID: PMC7113066 DOI: 10.1111/1759-7714.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Radioresistance of some non‐small cell lung cancer (NSCLC) types increases the risk of recurrence or metastasis in afflicted patients, following radiotherapy. As such, further improvements to NSCLC radiotherapy are needed. The expression of oncogene TP53‐regulated inhibitor of apoptosis 1 (TRIAP1) in NSCLC is increased following irradiation. Furthermore, gene set enrichment analysis (GSEA) has suggested that TRIAP1 might be involved in maintaining redox homeostasis. This in turn might enhance cell radioresistance. Methods In this study we irradiated human NSCLC cell lines (A549 and H460), while knocking down TRIAP1, to determine whether a disrupted redox homeostasis could attenuate radioresistance. Results Irradiation notably increased both mRNA and protein levels of TRIAP1. In addition, TRIAP1 knockdown decreased the expression of several antioxidant proteins, including thioredoxin‐related transmembrane protein (TMX) 1, TMX2, thioredoxin (TXN), glutaredoxin (GLRX) 2, GLRX3, peroxiredoxin (PRDX) 3, PRDX4, and PRDX6 in A549 and H460 cells. In addition, silencing TRIAP1 impaired the radiation‐induced increase of the aforementioned proteins. Continuing along this line, we observed a radiation‐induced reduction of cell viability and invasion, as well as increased apoptosis and intracellular reactive oxygen species following TRIAP1 knockdown. Conclusions In summary, we identified TRIAP1 as a key contributor to the radioresistance of NSCLC by maintaining redox homeostasis.
Collapse
Affiliation(s)
- Chun-Cheng Hao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Jia-Ning Luo
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Cui-Yang Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Xin-Yu Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Zhen-Bin Zhong
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Xiao-Nan Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| | - Xiao-Ming Jin
- Department of Pathology, Harbin Medical University, Harbin City, China
| | - Xiaofeng Ge
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin City, China
| |
Collapse
|
24
|
Cai P, Li J, Chen G, Peng B, Yu L, Zhao B, Yu Y. MicroRNA-107 may regulate lung cancer cell proliferation and apoptosis by targeting TP53 regulated inhibitor of apoptosis 1. Oncol Lett 2020; 19:1958-1966. [PMID: 32194690 DOI: 10.3892/ol.2020.11248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancer causes over 1.6 million mortalities worldwide annually. MicroRNAs (miRs) are involved in various types of cancer-associated processes. The present study investigated the possible mechanism of miR-107 in the development of lung cancer in order to identify novel targets for clinical treatment. The expression levels of miR-107 and its putative target gene TP53 regulated inhibitor of apoptosis 1 (TRIAP1) were measured in lung cancer tumor tissues and non-tumor adjacent tissues. Subsequently, the association between TRIAP1 and miR-107 was investigated using a dual-luciferase reporter assay. Following transfection, the effects of miR-107 and TRIAP1 on the proliferation and apoptosis of lung cancer cell lines in vitro were investigated using Cell Counting Kit-8 and flow cytometry assays, respectively. Furthermore, the regulatory effect of miR-107 on the expression levels of TRIAP1 and associated proteins was analyzed using a western blot assay. The results revealed lower expression levels of miR-107 and higher expression levels of TRIAP1 in lung cancer tumor tissues compared with non-tumor adjacent tissues. The dual-luciferase reporter assay demonstrated that TRIAP1 is a target gene of miR-107. Additionally, the results revealed that overexpression of miR-107 resulted in a lower proliferation rate and higher apoptosis rate of A549 cells, compared with the negative control (NC) and control groups (P<0.01). The variation of cell proliferation and apoptosis induced by miR-107 mimics was reversed by co-transfection with pcDNA3.1-TRIAP1. Furthermore, the expression levels of cyclin D1 and proliferating cell nuclear antigen were markedly decreased in the miR-107 mimics group compared with the NC group (P<0.01). The expression levels of BCL2 associated X apoptosis regulator, tumor protein p53 and caspase 3 were upregulated and the expression levels of TRIAP1 and BCL2 apoptosis regulator were significantly reduced in the miR-107 mimics group compared with the NC group (P<0.01). The results of the present study suggested that miR-107 regulates lung cancer cell proliferation and apoptosis by targeting TRIAP1.
Collapse
Affiliation(s)
- Peng Cai
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Jingjing Li
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Guiming Chen
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Bing Peng
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Liuyang Yu
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Bolin Zhao
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yi Yu
- Department of Oncology, Wuhan Hankou Hospital, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
25
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
26
|
Liu Y, Yang N, Peng X, Liu G, Zhong H, Liu L. One-lincRNA and five-mRNA based signature for prognosis of multiple myeloma patients undergoing proteasome inhibitors therapy. Biomed Pharmacother 2019; 118:109254. [PMID: 31357080 DOI: 10.1016/j.biopha.2019.109254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is the second largest malignant tumor of the blood system. Proteasome inhibitors (PIs) currently are effective drugs for some myeloma patients, but their prognosis varies. We extracted the transcriptome expression data and clinical information of myeloma patients from MMRF CoMMpass database, and used the Random Survival Forest Variable Hunting (RSF-VH) algorithm to select 6 highly prognosis-related genes and to develop a 6-genes scoring model, by which the risk score predicted were significantly associated with the progress-free survival (PFS, P<0.001). The median PFS of the high-risk group is 21 months, while it is 29 months in the low-risk group. The scoring model was further validated in the testing cohort. Furthermore, Analysis revealed that the risk score performed better in predicting the multiple myeloma patients' prognosis than the existed staging system, including R-ISS. The risk score is independent with the most existed clinical risk indicators, and the prognostic effectiveness of 6-genes scoring model is homogenous in patients with different clinical observations. Further bioinformatic analysis revealed that the risk score is not only significantly associated with multiple myeloma-related pathways, including immune response, but also with the infiltration of many kinds of immune cells that associated with clinical malignancy. Collectively, the model we developed using one lincRNA and five mRNAs is a robust and effective indicator for myeloma patients' prognosis undergoing proteasome inhibitors therapy.
Collapse
Affiliation(s)
- Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Ning Yang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China
| | - Xueqing Peng
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Gang Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China.
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| |
Collapse
|
27
|
Luo Y, Hua T, You X, Lou J, Yang X, Tang N. Effects of MiR-107 on The Chemo-drug Sensitivity of Breast Cancer Cells. Open Med (Wars) 2019; 14:59-65. [PMID: 31346547 PMCID: PMC6642800 DOI: 10.1515/med-2019-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A growing body of evidence indicates that aberrant expression of miR-107 plays a core role in cancers. This study aims to demonstrate the function of miR-107 and its roles in chemo-drug resistance in breast cancer cells. METHODOLOGY CCK-8 assays were carried out to test the effect of miR-107 mimics on the proliferation of MCF-7 cells. The apoptosis level of each group was detected by flow cytometry. miR-107 level, mRNA levels of Bcl-2/Bax and TRIAP1 were detected by quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis. Protein levels of Bcl-2/Bax, p-Akt/Akt in MCF-7 cells were detected by using Western Blot. Lastly, the dual luciferase reporter gene assay system was used to confirm interaction between miR-107 and its target gene TRIAP1. RESULTS CCK-8 assays indicated that miR-107 mimics augmented Taxol-induced cell viability inhibition. Flow cytometry showed that miR-107 mimics augmented Taxol-induced elevation of cell apoptosis. qRT-PCR analysis revealed that miR-107 mimics inhibited the mRNA expression of Bcl-2 and induced the mRNA level of Bax. Western Blotting indicated that miR-107 mimics inhibited the expression of proteins Bcl-2 and p-Akt, and induced the expression of Bax, while showing no significant effects on Akt. The relative luciferase activity revealed that oncogene TRIAP1 is a potential target gene of miR-107. CONCLUSIONS miR-107 plays a role in regulating chemo-drug sensitivity in mammary cancer cell by targeting TRIAP1.
Collapse
Affiliation(s)
- Yong Luo
- Breast and Thyroid Surgery, Ningbo Medical Center LiHuili Eastern Hospital, Ningbo 315000, Zhejiang, China
| | - Tebo Hua
- Breast and Thyroid Surgery, Ningbo Medical Center LiHuili Eastern Hospital, Ningbo 315000, Zhejiang, China
| | - Xia You
- Department Of Quality Control, Mindong Hospital Affiliated to Fujian Medical University, Fu’an 355000, Fujian, China
| | - Jinfeng Lou
- Department Of Quality Control, Mindong Hospital Affiliated to Fujian Medical University, Fu’an 355000, Fujian, China
| | - Xuxiong Yang
- Oncological Surgery, Mindong Hospital Affiliated to Fujian Medical University, Fu’an 355000, Fujian, China
| | - Ningwen Tang
- Mindong Hospital Affiliated to Fujian Medical University, NO. 89 Heshan Road, Fu’an 355000, Fujian, China
| |
Collapse
|
28
|
Zhang J, Cong R, Zhao K, Wang Y, Song N, Gu M. High TRIAP1 expression in penile carcinoma is associated with high risk of recurrence and poor survival. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:330. [PMID: 31475200 DOI: 10.21037/atm.2019.06.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background TP53-regulated inhibitor of apoptosis 1 (TRIAP1), also known as p53 cell survival factor or p53CSV, is reported to be associated with resistance of apoptosis in different human malignancies, but the potential role of TRIAP1 in penile carcinoma (PeCa) has not been well studied. This study aimed to analyze the association between TRIAP1 expression and clinical outcome in PeCa patients. Methods Bioinformatics was used to analyze the differential TRIAP1 expression in PeCa compared with normal tissues in Gene Expression Omnibus (GEO) Dataset (GSE57955). The expression of TRIAP1 in tumor specimens from 57 patients undergoing radical penile surgery was detected by immunohistochemistry (IHC). Differential TRIAP1 expression in various human malignancies was also assessed by GEPIA web-tool based on The Cancer Genome Atlas (TCGA) Datasets. Subsequently, the relationship between TRIAP1 expression and clinical prognosis of PeCa patients was analyzed. Results Both IHC and GEO Dataset (GSE57955) showed that TRIAP1 was significantly overexpressed in PeCa tissues when compared with normal tissues. Based on patient data and IHC on clinical specimens, we found that strong intensity of TRIAP1 expression was significantly related with higher histological grade (P=0.049) and elevated local recurrence rate (P=0.023), suggesting TRIAP1 as a potential predictor in recurrence. Further, high TRIAP1 expression was identified to be a hazardous prognostic factor for local recurrence-free survival (RFS). Conclusions High TRIAP1 expression in PeCa is associated with high risk of recurrence and poor survival, suggesting TRIAP1 may become a potential prognostic factor for PeCa.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rong Cong
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Zhao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ninghong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
29
|
Moreno-Villanueva M, Zhang Y, Feiveson A, Mistretta B, Pan Y, Chatterjee S, Wu W, Clanton R, Nelman-Gonzalez M, Krieger S, Gunaratne P, Crucian B, Wu H. Single-Cell RNA-Sequencing Identifies Activation of TP53 and STAT1 Pathways in Human T Lymphocyte Subpopulations in Response to Ex Vivo Radiation Exposure. Int J Mol Sci 2019; 20:ijms20092316. [PMID: 31083348 PMCID: PMC6539494 DOI: 10.3390/ijms20092316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA.
- Human Performance Research Center, University of Konstanz, 78457 Konstanz, Germany.
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL 32899, USA.
| | | | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Yinghong Pan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Sujash Chatterjee
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Winston Wu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Ryan Clanton
- NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|
30
|
Ketteler J, Panic A, Reis H, Wittka A, Maier P, Herskind C, Yagüe E, Jendrossek V, Klein D. Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. J Clin Med 2019; 8:jcm8030348. [PMID: 30871022 PMCID: PMC6462938 DOI: 10.3390/jcm8030348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour resistance to chemo- and radiotherapy, as well as molecularly targeted therapies, limits the effectiveness of current cancer treatments. We previously reported that the radiation response of human prostate tumours is critically regulated by CAV1 expression in stromal fibroblasts and that loss of stromal CAV1 expression in advanced tumour stages may contribute to tumour radiotherapy resistance. Here we investigated whether fibroblast secreted anti-apoptotic proteins could induce radiation resistance of prostate cancer cells in a CAV1-dependent manner and identified TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1) as a resistance-promoting CAV1-dependent factor. TRIAP1 expression and secretion was significantly higher in CAV1-deficient fibroblasts and secreted TRIAP1 was able to induce radiation resistance of PC3 and LNCaP prostate cancer cells in vitro, as well as of PC3 prostate xenografts derived from co-implantation of PC3 cells with TRIAP1-expressing fibroblasts in vivo. Immunohistochemical analyses of irradiated PC3 xenograft tumours, as well as of human prostate tissue specimen, confirmed that the characteristic alterations in stromal-epithelial CAV1 expression were accompanied by increased TRIAP1 levels after radiation in xenograft tumours and within advanced prostate cancer tissues, potentially mediating resistance to radiation treatment. In conclusion, we have determined the role of CAV1 alterations potentially induced by the CAV1-deficient, and more reactive, stroma in radio sensitivity of prostate carcinoma at a molecular level. We suggest that blocking TRIAP1 activity and thus avoiding drug resistance may offer a promising drug development strategy for inhibiting resistance-promoting CAV1-dependent signals.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Andrej Panic
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital, Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
31
|
Scully KM, Lahmy R, Signaevskaia L, Sasik R, Medal R, Kim H, French R, James B, Wu Y, Lowy AM, Itkin-Ansari P. E47 Governs the MYC-CDKN1B/p27 KIP1-RB Network to Growth Arrest PDA Cells Independent of CDKN2A/p16 INK4A and Wild-Type p53. Cell Mol Gastroenterol Hepatol 2018; 6:181-198. [PMID: 30003124 PMCID: PMC6039985 DOI: 10.1016/j.jcmgh.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/08/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated β-galactosidase activity assays identified cellular senescence. RESULTS E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated β-galactosidase activity and altered expression of senescence markers. CONCLUSIONS E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.
Collapse
Key Words
- CDK, cyclin-dependent kinase
- CDKN1B/p27KIP1, CDKN1B/p27Kinase Inhibitory Protein 1
- CDKN2A/p16INK4A, CDKN2A/p16Inhibitor of CDK 4A
- CEBP-α, CCAAT/enhancer binding protein alpha
- CENP-A, centromere protein A
- CIP, Cyclin-Dependent Kinase Inhibitor 1
- Cell Cycle
- DDR, DNA damage response
- ERK, extracellular signal–regulated kinase
- GO, Gene Ontology
- INK, Inhibitor of CDK
- KIP, Kinase Inhibitory Protein
- MSCV, murine stem cell virus
- OIS, oncogene-induced senescence
- PCR, polymerase chain reaction
- PDA, pancreatic ductal adenocarcinoma
- Pancreatic Ductal Adenocarcinoma
- RB, retinoblastoma
- RNA-seq, RNA sequencing
- SA-βgal, senescence-associated β-galactosidase
- SKP, S-phase Kinase-associated
- Senescence
- bHLH
- bHLH, basic helix-loop-helix
- lfdr, local false discovery rate
- mRNA, messenger RNA
- shRB, short hairpin RNA directed against RB
- shRNA, short hairpin RNA
- si-p27, small interfering RNA directed against p27
Collapse
Affiliation(s)
- Kathleen M. Scully
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Reyhaneh Lahmy
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lia Signaevskaia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, School of Medicine, University of California San Diego, La Jolla, California
| | - Rachel Medal
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Heejung Kim
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Randall French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Brian James
- Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yifan Wu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Pediatrics, University of California San Diego, La Jolla, California
| |
Collapse
|
32
|
Ishizawa J, Nakamaru K, Seki T, Tazaki K, Kojima K, Chachad D, Zhao R, Heese L, Ma W, Ma MCJ, DiNardo C, Pierce S, Patel KP, Tse A, Davis RE, Rao A, Andreeff M. Predictive Gene Signatures Determine Tumor Sensitivity to MDM2 Inhibition. Cancer Res 2018; 78:2721-2731. [PMID: 29490944 DOI: 10.1158/0008-5472.can-17-0949] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Early clinical trials using murine double minute 2 (MDM2) inhibitors demonstrated proof-of-concept of p53-induced apoptosis by MDM2 inhibition in cancer cells; however, not all wild-type TP53 tumors are sensitive to MDM2 inhibition. Therefore, more potent inhibitors and biomarkers predictive of tumor sensitivity are needed. The novel MDM2 inhibitor DS-3032b is 10-fold more potent than the first-generation inhibitor nutlin-3a. TP53 mutations were predictive of resistance to DS-3032b, and allele frequencies of TP53 mutations were negatively correlated with sensitivity to DS-3032b. However, sensitivity to DS-3032b of TP53 wild-type tumors varied greatly. We thus used two methods to create predictive gene signatures. First, by comparing sensitivity to MDM2 inhibition with basal mRNA expression profiles in 240 cancer cell lines, a 175-gene signature was defined and validated in patient-derived tumor xenograft models and ex vivo human acute myeloid leukemia (AML) cells. Second, an AML-specific 1,532-gene signature was defined by performing random forest analysis with cross-validation using gene expression profiles of 41 primary AML samples. The combination of TP53 mutation status with the two gene signatures provided the best positive predictive values (81% and 82%, compared with 62% for TP53 mutation status alone). In addition, the top-ranked 50 genes selected from the AML-specific 1,532-gene signature conserved high predictive performance, suggesting that a more feasible size of gene signature can be generated through this method for clinical implementation. Our model is being tested in ongoing clinical trials of MDM2 inhibitors.Significance: This study demonstrates that gene expression profiling combined with TP53 mutational status predicts antitumor effects of MDM2 inhibitors in vitro and in vivoCancer Res; 78(10); 2721-31. ©2018 AACR.
Collapse
Affiliation(s)
- Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenji Nakamaru
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Takahiko Seki
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Koichi Tazaki
- Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga University, Saga, Japan
| | - Dhruv Chachad
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ran Zhao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Heese
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man Chun John Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archie Tse
- Daiichi Sankyo, Inc., Edison, New Jersey
| | - R Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
33
|
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ 2017; 25:133-143. [PMID: 29125602 PMCID: PMC5729533 DOI: 10.1038/cdd.2017.174] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
p53 is a transcription factor that suppresses tumor growth through regulation of dozens of target genes with diverse biological functions. The activity of this master transcription factor is inactivated in nearly all tumors, either by mutations in the TP53 locus or by oncogenic events that decrease the activity of the wild-type protein, such as overexpression of the p53 repressor MDM2. However, despite decades of intensive research, our collective understanding of the p53 signaling cascade remains incomplete. In this review, we focus on recent advances in our understanding of mechanisms of p53-dependent transcriptional control as they relate to five key areas: (1) the functionally distinct N-terminal transactivation domains, (2) the diverse regulatory roles of its C-terminal domain, (3) evidence that p53 is solely a direct transcriptional activator, not a direct repressor, (4) the ability of p53 to recognize many of its enhancers across diverse chromatin environments, and (5) mechanisms that modify the p53-dependent transcriptional program in a context-dependent manner.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80203, USA
| |
Collapse
|
34
|
Kalmodia S, Parameswaran S, Ganapathy K, Yang W, Barrow CJ, Kanwar JR, Roy K, Vasudevan M, Kulkarni K, Elchuri SV, Krishnakumar S. Characterization and Molecular Mechanism of Peptide-Conjugated Gold Nanoparticle Inhibiting p53-HDM2 Interaction in Retinoblastoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:349-364. [PMID: 29246314 PMCID: PMC5684491 DOI: 10.1016/j.omtn.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023]
Abstract
Inhibition of the interaction between p53 and HDM2 is an effective therapeutic strategy in cancers that harbor a wild-type p53 protein such as retinoblastoma (RB). Nanoparticle-based delivery of therapeutic molecules has been shown to be advantageous in localized delivery, including to the eye, by overcoming ocular barriers. In this study, we utilized biocompatible gold nanoparticles (GNPs) to deliver anti-HDM2 peptide to RB cells. Characterization studies suggested that GNP-HDM2 was stable in biologically relevant solvents and had optimal cellular internalization capability, the primary requirement of any therapeutic molecule. GNP-HDM2 treatment in RB cells in vitro suggested that they function by arresting RB cells at the G2M phase of the cell cycle and initiating apoptosis. Analysis of molecular changes in GNP-HDM2-treated cells by qRT-PCR and western blotting revealed that the p53 protein was upregulated; however, transactivation of its downstream targets was minimal, except for the PUMA-BCl2 and Bax axis. Global gene expression and in silico bioinformatic analysis of GNP-HDM2-treated cells suggested that upregulation of p53 might presumptively mediate apoptosis through the induction of p53-inducible miRNAs.
Collapse
Affiliation(s)
- Sushma Kalmodia
- Department of Nano Biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai 600 006, India; Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus, Waurn Ponds, VIC 3216, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai 600 006, India
| | - Kalaivani Ganapathy
- Department of Nano Biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai 600 006, India
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus, Waurn Ponds, VIC 3216, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong Campus, Waurn Ponds, VIC 3216, Australia
| | - Jagat R Kanwar
- Nanomedicine -Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medicine Research (C-MMR), Deakin University, Geelong Campus, Waurn Ponds, VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine -Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medicine Research (C-MMR), Deakin University, Geelong Campus, Waurn Ponds, VIC 3217, Australia
| | | | | | - Sailaja V Elchuri
- Department of Nano Biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai 600 006, India
| | - Subramanian Krishnakumar
- Department of Nano Biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai 600 006, India.
| |
Collapse
|
35
|
Luo L, Zhang H, Nian S, Lv C, Ni B, Wang D, Tian Z. Up-regulation of Transcription Factor 3 Is Correlated With Poor Prognosis in Cervical Carcinoma. Int J Gynecol Cancer 2017; 27:1422-1430. [PMID: 28604457 DOI: 10.1097/igc.0000000000001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Transcription factor 3 (TCF3, or E2A) is a multifunctional bHLH (basic helix loop helix) transcription factor. The role of TCF3 expression in cancer and the multiple cell signaling pathways that regulate or are influenced by TCF3 are unclear. Therefore, the expression level of TCF3 in patients with cervical squamous cell carcinoma (CSCC) is discussed in this study. METHODS Total RNA was extracted using real-time quantitative reverse transcription-polymerase chain reaction. Western blotting was applied to confirm the results. Immunohistochemistry was used to characterize the expression patterns of TCF3 in CSCC specimens. The close relationship between the expression levels of TCF3 and the 5-year overall survival time was described by survival curves. The association between TCF3 expression and clinicopathological characteristics of 119 CSCC patients was analyzed by Chi-square, Fisher exact test, and Cox regression analysis. TCF3 was overexpressed or inhibited by plasmid transfection, and the proliferation, invasion, and migration of cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, and Transwell assays. RESULTS The expression of TCF3 was higher in CSCC tissues than in nonmalignant cervical tissues. Messenger RNA (mRNA) and protein in patient tissues were increased compared with nonmalignant cervical tissues. Moreover, the level of expression in early-stage disease was higher than in the advanced stage. From FIGO (International Federation of Gynecology and Obstetrics) stages I to IV, immunohistochemistry staining intensity gradually increased. A high level of expression was closely related to clinical stages. The expression of TCF3 was negatively correlated with overall survival time. TCF3 can promote HeLa cell growth, invasion, and migration in vitro. CONCLUSIONS Based on our results, TCF3 is clearly associated with the progression of CSCC. This is the first time that it has been reported that TCF3 can act as a tumor promoter in cervical cancer and thus might be of great significance in the prognosis of CSCC.
Collapse
Affiliation(s)
- Liwen Luo
- *Department of Pathophysiology and High Altitude Pathology, †Institute of Immunology, PLA, and ‡Battalion 13 of Cadet Brigade, Third Military Medical University; §Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University; and ∥Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
ZNF509S1 downregulates PUMA by inhibiting p53K382 acetylation and p53-DNA binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:962-972. [DOI: 10.1016/j.bbagrm.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
|
37
|
Shuptrine CW, Ajina R, Fertig EJ, Jablonski SA, Kim Lyerly H, Hartman ZC, Weiner LM. An unbiased in vivo functional genomics screening approach in mice identifies novel tumor cell-based regulators of immune rejection. Cancer Immunol Immunother 2017; 66:1529-1544. [PMID: 28770278 DOI: 10.1007/s00262-017-2047-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023]
Abstract
The clinical successes of immune checkpoint therapies for cancer make it important to identify mechanisms of resistance to anti-tumor immune responses. Numerous resistance mechanisms have been identified employing studies of single genes or pathways, thereby parsing the tumor microenvironment complexity into tractable pieces. However, this limits the potential for novel gene discovery to in vivo immune attack. To address this challenge, we developed an unbiased in vivo genome-wide RNAi screening platform that leverages host immune selection in strains of immune-competent and immunodeficient mice to select for tumor cell-based genes that regulate in vivo sensitivity to immune attack. Utilizing this approach in a syngeneic triple-negative breast cancer (TNBC) model, we identified 709 genes that selectively regulated adaptive anti-tumor immunity and focused on five genes (CD47, TGFβ1, Sgpl1, Tex9 and Pex14) with the greatest impact. We validated the mechanisms that underlie the immune-related effects of expression of these genes in different TNBC lines, as well as tandem synergistic interactions. Furthermore, we demonstrate the impact of different genes with previously unknown immune functions (Tex9 and Pex14) on anti-tumor immunity. Thus, this innovative approach has utility in identifying unknown tumor-specific regulators of immune recognition in multiple settings to reveal novel targets for future immunotherapies.
Collapse
Affiliation(s)
- Casey W Shuptrine
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC, 20057, USA.,Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Reham Ajina
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC, 20057, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Sandra A Jablonski
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC, 20057, USA
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Zachary C Hartman
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Louis M Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC, 20057, USA.
| |
Collapse
|
38
|
Wang B, Zuo Z, Lv F, Zhao L, Du M, Gao Y. MiR-107 inhibits proliferation of lung cancer cells through regulating TP53 regulated inhibitor of apoptosis 1 (TRIAP1). Open Life Sci 2017. [DOI: 10.1515/biol-2017-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractAimsAccumulating evidence indicates that aberrant expression of miR-107 plays a crucial role in cancers. This study aims to display the function of miR-107 and its novel target genes in the progression of lung cancer.Methods and MaterialMiR-107 or miR-107 inhibitor was transfected into lung cancer cells A549. The levels of miR-107 and TP53 regulated inhibition of apoptosis 1 (TRIAP1) were examined by quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis and Western Blot. Functionally, MTT and colony formation assays were carried out to test the effect of miR-107 inhibitor and/or small interference RNA (siRNA) targeting TRIAP1 mRNA on proliferation of lung cancer cells. Levels of miR-107 or TRIAP1 were detected in clinical lung cancer samples by using qRT-PCR analysis.ResultsQRT-PCR analysis revealed that miR-107 inhibitor or miR-107 was successfully transfected into A549 cells. Western Blot indicated that miR-107 decreased the expression of TRIAP1 protein in the cells. In contrast, miR-107 inhibitor augmented the levels of TRIAP1 protein. Functionally, miR-107 inhibitor remarkably suppressed A549 cell proliferation, whereas, TRIAP1 siRNAs could abrogate the miR-107 inhibitor-induced proliferation of cells. Then, we validated that TRIAP1 was increased in clinical lung cancer samples. MiR-107 expression was negatively related to TRIAP1 expression in clinical lung cancer samples.ConclusionsMiR-107 suppresses cell proliferation by targeting TRIAP1 in lung cancer. Our finding allows new insights into the mechanisms of lung cancer that is mediated by miR-107.
Collapse
Affiliation(s)
- Bing Wang
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed police Beijing Corps Hospital, Beijing100027, China
| | - Fang Lv
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Liang Zhao
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Minjun Du
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Yushun Gao
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| |
Collapse
|
39
|
Liu P, Qi X, Bian C, Yang F, Lin X, Zhou S, Xie C, Zhao X, Yi T. MicroRNA-18a inhibits ovarian cancer growth via directly targeting TRIAP1 and IPMK. Oncol Lett 2017; 13:4039-4046. [PMID: 28588697 PMCID: PMC5452870 DOI: 10.3892/ol.2017.5961] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
The role of microRNA-18a (miRNA/miR-18a) as a tumor suppressor or promoter in a number of different types of cancer has been reported. However, to date, the expression and the effects of miR-18a in epithelial ovarian cancer (EOC) remain elusive. In the present study, the expression of miR-18a in patient EOC tissues and ovarian cancer cell lines was investigated using the reverse transcription-quantitative polymerase chain reaction. Luciferase assays and western blotting were performed to detect the potential direct targets of miR-18a. An A2780cp intraperitoneal mouse model, and Cell Counting Kit 8, flow cytometry and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays, were used to investigate the effect of miR-18a on tumor growth in vivo and in vitro. The results indicated that the expression of miR-18a was reduced in EOC tissue and in the investigated ovarian cancer cell lines compared with non-malignant (normal) ovarian tissues and the human ovarian epithelium cell line, respectively. Overexpression of miR-18a in the A2780s and A2780cp cell lines significantly induced cell cycle arrest and apoptosis. It was demonstrated that miR-18a directly targets tumor protein p53-regulating inhibitor of apoptosis gene 1 and inositol phosphate multikinase, hence regulating the expression of downstream targets. The A2780cp intraperitoneal mouse model was employed and the results indicated that miR-18a may inhibit A2780cp intraperitoneal tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Together, the results of the present study demonstrated that miR-18a has a role as a tumor suppressor by inhibiting proliferation and inducing apoptosis. Assessment of miR-18a expression may provide a novel method for diagnosis and be a therapeutic target for EOC.
Collapse
Affiliation(s)
- Ping Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Lin
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chuan Xie
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
40
|
Shen X, Yuan J, Zhang M, Li W, Ni B, Wu Y, Jiang L, Fan W, Tian Z. The increased expression of TCF3 is correlated with poor prognosis in Chinese patients with nasopharyngeal carcinoma. Clin Otolaryngol 2017; 42:824-830. [PMID: 28107608 DOI: 10.1111/coa.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Regulatory factors controlling stem cell identity and self-renewal are often active in aggressive cancers and are thought to promote cancer growth and progression. B-cell-specific transcription factor 3 (TCF3/E2A) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family that is central to regulating epidermal and embryonic stem cell identity. It has been reported that TCF3 was connected with the development and progression of a number of human cancers. In this study, we aimed to identify the expression of TCF3 in human nasopharyngeal carcinoma (NPC) and evaluate its clinical significance. DESIGN To investigate the expression of TCF3 in NPC and its relationship to prognosis. SETTING An in vitro study. MAIN OUTCOME MEASURES We analysed the expression of TCF3 in NPC and in non-tumourous nasopharyngeal tissues by quantitative RT-PCR and Western blotting. The expression patterns of TCF3 in 117 archived paraffin-embedded NPC specimens were characterised by immunohistochemistry, and the correlation between the TCF3 protein expression and the clinicopathological features of NPC was analysed. RESULTS We observed that TCF3 had a higher expression in NPC than in non-tumourous nasopharyngeal tissues of 117 archived paraffin-embedded NPC specimens, and 80 (68.4%) biopsy tissues revealed high levels of TCF3 expression. Furthermore, statistical analyses demonstrated that the increased expression of TCF3 was closely related to clinical stage, locoregional recurrence and distant metastasis of NPC. NPC patients with high levels of TCF3 expression had a shorter survival time, whereas patients with lower levels of TCF3 expression survived longer. Moreover, multivariate analysis suggested that the upregulation of TCF3 was a critical prognostic factor for NPC. CONCLUSIONS Our observations suggest, for the first time, that TCF3 is significantly associated with the development and progression of NPC, which can be used as an important prognostic marker for patients with NPC and may be an effective target for the treatment of NPC.
Collapse
Affiliation(s)
- X Shen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - J Yuan
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - M Zhang
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - W Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - B Ni
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - Y Wu
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - L Jiang
- Department of Infectious Diseases, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - W Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Z Tian
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription. G3-GENES GENOMES GENETICS 2016; 6:2671-8. [PMID: 27334938 PMCID: PMC4978920 DOI: 10.1534/g3.116.031534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription.
Collapse
|
42
|
Lee K, Shin W, Kim B, Lee S, Choi Y, Kim S, Jeon M, Tan AC, Kang J. HiPub: translating PubMed and PMC texts to networks for knowledge discovery. Bioinformatics 2016; 32:2886-8. [PMID: 27485446 DOI: 10.1093/bioinformatics/btw511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED We introduce HiPub, a seamless Chrome browser plug-in that automatically recognizes, annotates and translates biomedical entities from texts into networks for knowledge discovery. Using a combination of two different named-entity recognition resources, HiPub can recognize genes, proteins, diseases, drugs, mutations and cell lines in texts, and achieve high precision and recall. HiPub extracts biomedical entity-relationships from texts to construct context-specific networks, and integrates existing network data from external databases for knowledge discovery. It allows users to add additional entities from related articles, as well as user-defined entities for discovering new and unexpected entity-relationships. HiPub provides functional enrichment analysis on the biomedical entity network, and link-outs to external resources to assist users in learning new entities and relations. AVAILABILITY AND IMPLEMENTATION HiPub and detailed user guide are available at http://hipub.korea.ac.kr CONTACT kangj@korea.ac.kr, aikchoon.tan@ucdenver.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kyubum Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Korea
| | - Wonho Shin
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Korea
| | - Byounggun Kim
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Korea
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Korea
| | - Yonghwa Choi
- Department of Computer Science and Engineering, Korea University, Seoul, Korea
| | - Sunkyu Kim
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Korea
| | - Minji Jeon
- Department of Computer Science and Engineering, Korea University, Seoul, Korea
| | - Aik Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Korea Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Korea
| |
Collapse
|
43
|
Overexpression of Mitochondria Mediator Gene TRIAP1 by miR-320b Loss Is Associated with Progression in Nasopharyngeal Carcinoma. PLoS Genet 2016; 12:e1006183. [PMID: 27428374 PMCID: PMC4948882 DOI: 10.1371/journal.pgen.1006183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
The therapeutic strategy for advanced nasopharyngeal carcinoma (NPC) is still challenging. It is an urgent need to uncover novel treatment targets for NPC. Therefore, understanding the mechanisms underlying NPC tumorigenesis and progression is essential for the development of new therapeutic strategies. Here, we showed that TP53-regulated inhibitor of apoptosis (TRIAP1) was aberrantly overexpressed and associated with poor survival in NPC patients. TRIAP1 overexpression promoted NPC cell proliferation and suppressed cell death in vitro and in vivo, whereas TRIAP1 knockdown inhibited cell tumorigenesis and enhanced apoptosis through the induction of mitochondrial fragmentation, membrane potential alteration and release of cytochrome c from mitochondria into the cytosol. Intersecting with our previous miRNA data and available bioinformatic algorithms, miR-320b was identified and validated as a negative regulator of TRIAP1. Further studies showed that overexpression of miR-320b suppressed NPC cell proliferation and enhanced mitochondrial fragmentation and apoptosis both in vitro and in vivo, while silencing of miR-320b promoted tumor growth and suppressed apoptosis. Additionally, TRIAP1 restoration abrogated the proliferation inhibition and apoptosis induced by miR-320b. Moreover, the loss of miR-320b expression was inversely correlated with TRIAP1 overexpression in NPC patients. This newly identified miR-320b/TRIAP1 pathway provides insights into the mechanisms leading to NPC tumorigenesis and unfavorable clinical outcomes, which may represent prognostic markers and potential therapeutic targets for NPC treatment.
Collapse
|
44
|
TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) stable silencing increases late apoptosis by upregulation of caspase 9 and APAF1 in RPMI8226 multiple myeloma cell line. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1105-10. [DOI: 10.1016/j.bbadis.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022]
|
45
|
Flinders C, Lam L, Rubbi L, Ferrari R, Fitz-Gibbon S, Chen PY, Thompson M, Christofk H, B Agus D, Ruderman D, Mallick P, Pellegrini M. Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma. Genome Med 2016; 8:54. [PMID: 27146673 PMCID: PMC4857420 DOI: 10.1186/s13073-016-0305-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genetic origins of chemotherapy resistance are well established; however, the role of epigenetics in drug resistance is less well understood. To investigate mechanisms of drug resistance, we performed systematic genetic, epigenetic, and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a series of resistant lines derived by drug dose escalation. Methods Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drug-resistant mouse Burkitt’s lymphoma cell lines. Whole genome sequencing, DNA microarrays, reduced representation bisulfite sequencing, and chromatin immunoprecipitation sequencing were used to identify alterations in DNA sequence, mRNA expression, CpG methylation, and H3K27me3 occupancy, respectively, that were associated with increased resistance. Results Our data suggest that acquired resistance cannot be explained by genetic alterations. Based on integration of transcriptional profiles with transcription factor binding data, we hypothesize that resistance is driven by epigenetic plasticity. We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the parental lines. Moreover, we observed DNA methylation changes in the promoters of genes regulated by E2a and members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of E2a. The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance. By integrating our results with data from the Immunological Genome Project (Immgen.org), we showed that these transcriptional changes track the B-cell maturation axis. Conclusions Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0305-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Flinders
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Larry Lam
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Pao-Yang Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Michael Thompson
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Heather Christofk
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - David B Agus
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Daniel Ruderman
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Parag Mallick
- Canary Center, Stanford University, Palo Alto, CA, 94305, USA. .,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
47
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
48
|
Watson GW, Wickramasekara S, Maier CS, Williams DE, Dashwood RH, Ho E. Assessment of global proteome in LNCaP cells by 2D-RP/RP LC-MS/MS following sulforaphane exposure. EUPA OPEN PROTEOMICS 2015; 9:34-40. [PMID: 26640761 DOI: 10.1016/j.euprot.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The phytochemical sulforaphane can induce cell cycle arrest and apoptosis in metastatic prostate cancer cells, though the mechanism of action is not fully known. We conducted a global proteome analysis in LNCaP metastatic prostate cancer cells to characterize how global protein signature responds to sulforaphane. We conducted parallel analyses to evaluate semi-quantitative 1-dimensional versus 2-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS) and their utility in characterizing whole cell lysate. We show that 2-dimensional LC-MS/MS can be a useful tool for characterizing global protein profiles and identify TRIAP1 as a novel regulator of cell proliferation in LNCaP metastatic prostate cancer cells.
Collapse
Affiliation(s)
- Gregory W Watson
- Molecular and Cellular Biology, Oregon State University, Corvallis, OR ; Biological and Population Health Sciences, Oregon State University, Corvallis, OR
| | | | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR
| | - David E Williams
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR ; Linus Pauling Institute, Oregon State University, Corvallis, OR
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M Science Center, Houston, TX ; Department of Nutrition & Food Science, Texas A&M University, College Station, TX ; Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX ; Department of Molecular & Cellular Medicine, Texas A&M University College of Medicine, College Station, TX
| | - Emily Ho
- Biological and Population Health Sciences, Oregon State University, Corvallis, OR ; Linus Pauling Institute, Oregon State University, Corvallis, OR
| |
Collapse
|
49
|
Davis SL, Robertson KM, Pitts TM, Tentler JJ, Bradshaw-Pierce EL, Klauck PJ, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Ecsedy JA, Arcaroli JJ, Messersmith WA, Tan AC, Eckhardt SG. Combined inhibition of MEK and Aurora A kinase in KRAS/PIK3CA double-mutant colorectal cancer models. Front Pharmacol 2015; 6:120. [PMID: 26136684 PMCID: PMC4468631 DOI: 10.3389/fphar.2015.00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Aurora A kinase and MEK inhibitors induce different, and potentially complementary, effects on the cell cycle of malignant cells, suggesting a rational basis for utilizing these agents in combination. In this work, the combination of an Aurora A kinase and MEK inhibitor was evaluated in pre-clinical colorectal cancer models, with a focus on identifying a subpopulation in which it might be most effective. Increased synergistic activity of the drug combination was identified in colorectal cancer cell lines with concomitant KRAS and PIK3CA mutations. Anti-proliferative effects were observed upon treatment of these double-mutant cell lines with the drug combination, and tumor growth inhibition was observed in double-mutant human tumor xenografts, though effects were variable within this subset. Additional evaluation suggests that degree of G2/M delay and p53 mutation status affect apoptotic activity induced by combination therapy with an Aurora A kinase and MEK inhibitor in KRAS and PIK3CA mutant colorectal cancer. Overall, in vitro and in vivo testing was unable to identify a subset of colorectal cancer that was consistently responsive to the combination of a MEK and Aurora A kinase inhibitor.
Collapse
Affiliation(s)
- S Lindsey Davis
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Kelli M Robertson
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Todd M Pitts
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - John J Tentler
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Erica L Bradshaw-Pierce
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; Department of Drug Metabolism and Pharmacokinetics, Takeda California, Inc. San Diego, CA, USA
| | - Peter J Klauck
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Stacey M Bagby
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Stephanie L Hyatt
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Heather M Selby
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Anna Spreafico
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Jeffrey A Ecsedy
- Department of Translational Medicine, Millenium Pharmaceuticals, Inc., A wholly owned Subsidiary of a Takeda Pharmaceutical Company Limited Cambridge, MA, USA
| | - John J Arcaroli
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - S Gail Eckhardt
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA ; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|
50
|
Sheffield BS, Tinker AV, Shen Y, Hwang H, Li-Chang HH, Pleasance E, Ch'ng C, Lum A, Lorette J, McConnell YJ, Sun S, Jones SJM, Gown AM, Huntsman DG, Schaeffer DF, Churg A, Yip S, Laskin J, Marra MA. Personalized oncogenomics: clinical experience with malignant peritoneal mesothelioma using whole genome sequencing. PLoS One 2015; 10:e0119689. [PMID: 25798586 PMCID: PMC4370594 DOI: 10.1371/journal.pone.0119689] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
Peritoneal mesothelioma is a rare and sometimes lethal malignancy that presents a clinical challenge for both diagnosis and management. Recent studies have led to a better understanding of the molecular biology of peritoneal mesothelioma. Translation of the emerging data into better treatments and outcome is needed. From two patients with peritoneal mesothelioma, we derived whole genome sequences, RNA expression profiles, and targeted deep sequencing data. Molecular data were made available for translation into a clinical treatment plan. Treatment responses and outcomes were later examined in the context of molecular findings. Molecular studies presented here provide the first reported whole genome sequences of peritoneal mesothelioma. Mutations in known mesothelioma-related genes NF2, CDKN2A, LATS2, amongst others, were identified. Activation of MET-related signaling pathways was demonstrated in both cases. A hypermutated phenotype was observed in one case (434 vs. 18 single nucleotide variants) and was associated with a favourable outcome despite sarcomatoid histology and multifocal disease. This study represents the first report of whole genome analyses of peritoneal mesothelioma, a key step in the understanding and treatment of this disease.
Collapse
Affiliation(s)
- Brandon S Sheffield
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Anna V Tinker
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Harry Hwang
- PhenoPath Laboratories, Seattle, Washington, United States of America
| | - Hector H Li-Chang
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Carolyn Ch'ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Amy Lum
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Julie Lorette
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Yarrow J McConnell
- University of British Columbia, Department of Surgery, Surgical Oncology, Vancouver, Canada
| | - Sophie Sun
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Allen M Gown
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada; PhenoPath Laboratories, Seattle, Washington, United States of America
| | - David G Huntsman
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - David F Schaeffer
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Andrew Churg
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Stephen Yip
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Janessa Laskin
- British Columbia Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| |
Collapse
|