1
|
Gao X, Sun Z, Hu J, Li Y, Deng Q, Li R. Identification of the enzymatic cleavage relationship between anti-aging protein α-Klotho and Alzheimer's disease biomarker BACE1. J Alzheimers Dis 2025; 104:463-472. [PMID: 39994980 DOI: 10.1177/13872877251317730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BackgroundThe α-Klotho is known to be involved in longevity and various age-related diseases, including cognitive impairment. BACE1, an important enzyme associated with the pathological process of Alzheimer's disease (AD), serves as a biomarker for predicting changes in cognitive function. Although both proteins are closely linked to age-related cognitive function, the mechanism of their interaction remains unclear.ObjectiveTo identify the enzymatic digestion relation between α-Klotho and BACE1 and the specific cleavage site.MethodsThirty elderly and forty-five young individuals were recruited. The cleavage product was identified by Coomassie blue staining, western blot, and MALDI-TOF mass spectrometry. The concentrations of plasma proteins were measured by ELISA.ResultsA new protein product was identified after the digestion reaction. BACE1 cleaved the α-Klotho peptide 951-981 at the F-T residues. When the F-T residues were replaced with K-K, BACE1 was unable to cleave the mutant peptide. The plasma levels of α-Klotho were significantly lower in elderly participants than in young participants (p < 0.0001). However, there was no significant difference in plasma BACE1 levels between elderly and young participants (p = 0.164). In elderly adults, there was a significant positive correlation between plasma BACE1 and α-Klotho protein levels (p = 0.009, r = 0.469), while this correlation was not observed in young adults (p = 0.170, r = -0.208).ConclusionsThe anti-aging protein α-Klotho is a substrate of BACE1 with a specific cleavage site at F-T. The BACE1/α-Klotho pathway may serve as a common axis for age-related cognitive decline.
Collapse
Affiliation(s)
- Xiang Gao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jia Hu
- Central Laboratory, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Naidu A, Silverglate B, Silverglate M, Grossberg GT. Safety concerns associated with BACE1 inhibitors - past, present, and future. Expert Opin Drug Saf 2025:1-6. [PMID: 39948713 DOI: 10.1080/14740338.2025.2467811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) inhibitors have shown promise in treating Alzheimer's disease (AD) by reducing amyloid-beta (Aβ) production. However, clinical trials of inhibitors such as atabecestat, verubecestat, and lanabecestat have faced challenges, including limited efficacy and significant adverse effects. AREAS COVERED This narrative review discusses randomized-controlled trials of BACE1 inhibitors. Literature searches were conducted using PubMed and Web of Science for studies from 2010 to 2024. Association with BACE1's widespread expression beyond the brain shows adverse effects such as anxiety, depressive symptoms, and hepatotoxicity. EXPERT OPINION The trial results underscore the need for CNS-specific BACE1 inhibitors to reduce adverse effects. Future research should focus on optimizing drug design and identifying additional therapeutic avenues, such as prostate cancer and insulin resistance.
Collapse
Affiliation(s)
- Aniketh Naidu
- Department of Psychiatry and Behavioral Neuroscience, Division of Geriatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bret Silverglate
- Department of Psychiatry and Behavioral Neuroscience, Division of Geriatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mary Silverglate
- College of Science Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - George T Grossberg
- Division of Geriatric Psychiatry, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Gao F, Zhang M, Wang Q, Ni M, Liu C, Deng K, Xie Q, Wang S, Shi J, Shen Y. Associations of CSF BACE1 with amyloid pathology, neurodegeneration, and cognition in Alzheimer's disease. Acta Neuropathol 2024; 147:97. [PMID: 38856925 DOI: 10.1007/s00401-024-02750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-β (Aβ) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPβ that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPβ levels and CSF Aβ40, Aβ42, and Aβ42/Aβ40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPβ levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPβ were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Mengguo Zhang
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiong Wang
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shicung Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jiong Shi
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yong Shen
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhou J, Singh N, Galske J, Hudobenko J, Hu X, Yan R. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides. Mol Neurodegener 2023; 18:31. [PMID: 37143090 PMCID: PMC10161466 DOI: 10.1186/s13024-023-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid beta peptide (Aβ) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aβ generation, is therefore being explored for the treatment of AD by reducing Aβ accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aβ uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aβ plaque load through enhanced clearance. CONCLUSION Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aβ clearance.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - James Galske
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Jacob Hudobenko
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
7
|
Müller SA, Shmueli MD, Feng X, Tüshaus J, Schumacher N, Clark R, Smith BE, Chi A, Rose-John S, Kennedy ME, Lichtenthaler SF. The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 signaling through shedding of the receptor gp130. Mol Neurodegener 2023; 18:13. [PMID: 36810097 PMCID: PMC9942414 DOI: 10.1186/s13024-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.
Collapse
Affiliation(s)
- Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ryan Clark
- Neuroscience, Merck & Co. Inc., Boston, MA, USA
| | - Brad E Smith
- Laboratory Animal Resources, Merck & Co. Inc., West Point, PA, USA
| | - An Chi
- Chemical Biology, Merck & Co. Inc., Boston, MA, USA
| | | | | | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
8
|
Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer's disease (AD): A review. Bioorg Med Chem 2022; 74:117047. [DOI: 10.1016/j.bmc.2022.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
9
|
Qiu Y, Sha L, Zhang X, Li G, Zhu W, Xu Q. Induction of A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 by a rare variant or cognitive activities reduces hippocampal amyloid-β and consequent Alzheimer’s disease risk. Front Aging Neurosci 2022; 14:896522. [PMID: 36016856 PMCID: PMC9395645 DOI: 10.3389/fnagi.2022.896522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Amyloid-β (Aβ) derived from amyloid precursor protein (APP) hydrolysis is acknowledged as the predominant hallmark of Alzheimer’s disease (AD) that especially correlates to genetics and daily activities. In 2019, meta-analysis of AD has discovered five new risk loci among which A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 (ADAMTS1) has been further suggested in 2021 and 2022. To verify the association, we re-sequenced ADAMTS1 of clinical AD samples and subsequently identified a novel rare variant c.–2067A > C with watchable relevance (whereas the P-value was not significant after adjustment). Dual-luciferase assay showed that the variant sharply stimulated ADAMTS1 expression. In addition, ADAMTS1 was also clearly induced by pentylenetetrazol-ignited neuronal activity and enriched environment (EE). Inspired by the above findings, we investigated ADAMTS1’s role in APP metabolism in vitro and in vivo. Results showed that ADAMTS1 participated in APP hydrolysis and consequently decreased Aβ generation through inhibiting β-secretase-mediated cleavage. In addition, we also verified that the hippocampal amyloid load of AD mouse model was alleviated by the introduction of ADAMTS1, and thus spatial cognition was restored as well. This study revealed the contribution of ADAMTS1 to the connection of genetic and acquired factors with APP metabolism, and its potential in reducing hippocampal amyloid and consequent risk of AD.
Collapse
Affiliation(s)
- Yunjie Qiu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuneng Zhang
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Guanjun Li
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qi Xu,
| |
Collapse
|
10
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Finding New Ways How to Control BACE1. J Membr Biol 2022; 255:293-318. [PMID: 35305135 DOI: 10.1007/s00232-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Recently, all applications of BACE1 inhibitors failed as therapeutical targets for Alzheimer´s disease (AD) due to severe side effects. Therefore, alternative ways for treatment development are a hot research topic. The present analysis investigates BACE1 protein-protein interaction networks and attempts to solve the absence of complete knowledge about pathways involving BACE1. A bioinformatics analysis matched the functions of the non-substrate interaction network with Voltage-gated potassium channels, which also appear as top priority protein nodes. Targeting BACE1 interactions with PS1 and GGA-s, blocking of BACE1 access to APP by BRI3 and RTN-s, activation of Wnt signaling and upregulation of β-catenin, and brain delivery of the extracellular domain of p75NTR, are the main alternatives to the use of BACE 1 inhibitors highlighted by the analysis. The pathway enrichment analysis also emphasized substrates and substrate candidates with essential biological functions, which cleavage must remain controlled. They include ephrin receptors, ROBO1, ROBO2, CNTN-s, CASPR-s, CD147, CypB, TTR, APLP1/APLP2, NRXN-s, and PTPR-s. The analysis of the interaction subnetwork of BACE1 functionally related to inflammation identified a connection to three cardiomyopathies, which supports the hypothesis of the common molecular mechanisms with AD. A lot of potential shows the regulation of BACE1 activity through post-translational modifications. The interaction network of BACE1 and its phosphorylation enzyme CSNK1D functionally match the Circadian clock, p53, and Hedgehog signaling pathways. The regulation of BACE1 glycosylation could be achieved through N-acetylglucosamine transferases, α-(1→6)-fucosyltransferase, β-galactoside α-(2→6)-sialyltransferases, galactosyltransferases, and mannosidases suggested by the interaction network analysis of BACE1-MGAT3. The present analysis proposes possibilities for the alternative control of AD pathology.
Collapse
|
12
|
The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol 2021; 17:703-714. [PMID: 34548654 DOI: 10.1038/s41582-021-00545-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals (>65 years) and has a long presymptomatic phase. Preventive therapies for AD are not yet available, and potential disease-modifying therapies targeting amyloid-β plaques in symptomatic stages of AD have only just been approved in the United States. Small-molecule inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; also known as β-secretase 1) reduce the production of amyloid-β peptide and are among the most advanced drug candidates for AD. However, to date all phase II and phase III clinical trials of BACE inhibitors were either concluded without benefit or discontinued owing to futility or the occurrence of adverse effects. Adverse effects included early, mild cognitive impairment that was associated with all but one inhibitor; preliminary results suggest that the cognitive effects are non-progressive and reversible. These discontinuations have raised questions regarding the suitability of BACE1 as a drug target for AD. In this Perspective, we discuss the status of BACE inhibitors and suggest ways in which the results of the discontinued trials can inform the development of future clinical trials of BACE inhibitors and related secretase modulators as preventative therapies. We also propose a series of experiments that should be performed to inform 'go-no-go' decisions in future trials with BACE inhibitors and consider the possibility that low levels of BACE1 inhibition could avoid adverse effects while achieving efficacy for AD prevention.
Collapse
|
13
|
Urban AS, Bershatskii YV, Pavlov KV, Bocharov EV. Structural Study of Membrane Glycoprotein-Precursor of β-Amyloid and Proteins Involved in Its Proteolysis. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102897. [PMID: 34068293 PMCID: PMC8153327 DOI: 10.3390/molecules26102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides (Aβ) triggers the disease. Aβ accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aβ isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aβ production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aβ is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by β- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aβ peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer's disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aβ production and nucleation.
Collapse
|
16
|
Farris F, Matafora V, Bachi A. The emerging role of β-secretases in cancer. J Exp Clin Cancer Res 2021; 40:147. [PMID: 33926496 PMCID: PMC8082908 DOI: 10.1186/s13046-021-01953-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACE1 and BACE2 belong to a class of proteases called β-secretases involved in ectodomain shedding of different transmembrane substrates. These enzymes have been extensively studied in Alzheimer's disease as they are responsible for the processing of APP in neurotoxic Aβ peptides. These proteases, especially BACE2, are overexpressed in tumors and correlate with poor prognosis. Recently, different research groups tried to address the role of BACE1 and 2 in cancer development and progression. In this review, we summarize the latest findings on β-secretases in cancer, highlighting the mechanisms that build the rationale to propose inhibitors of these proteins as a new line of treatment for different tumor types.
Collapse
Affiliation(s)
| | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
17
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2021; 21:148-166. [PMID: 31385768 DOI: 10.2174/1389450120666190806153206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.
Collapse
Affiliation(s)
- Dileep Vijayan
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Remya Chandra
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kerala Pin 670 661, India
| |
Collapse
|
19
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Sun W, Zhao J, Li C. Dexmedetomidine Provides Protection Against Hippocampal Neuron Apoptosis and Cognitive Impairment in Mice with Alzheimer's Disease by Mediating the miR-129/YAP1/JAG1 Axis. Mol Neurobiol 2020; 57:5044-5055. [PMID: 32839917 DOI: 10.1007/s12035-020-02069-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that leads to progressive cognitive, memory, and learning dysfunction that affects the aging population. Dexmedetomidine (Dex) might be beneficial for postoperative cognitive function in elderly patients. However, the exact mechanism underlying the protective role of Dex against cognitive impairment requires further elucidation. The present study aims to determine whether miR-129 is involved in the protective effect of Dex against Aβ1-42-induced hippocampal neuron apoptosis and cognitive impairment in mice. In our study, Y-shaped maze and water maze tests were conducted to evaluate the cognitive function of AD mice, while neuronal apoptosis was measured by Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick-End Labeling (TUNEL) staining. The findings showed that Dex administration resulted in the enhancement of miR-129 expression with declined hippocampal neuron apoptosis and attenuated cognitive impairment in Aβ1-42-injected mice. miR-129 targeted YAP1 and disrupted its interaction with JAG1, leading to a decline in hippocampal neuron apoptosis and attenuated cognitive impairment in Aβ1-42-injected mice. In conclusion, the miR-129/YAP1/JAG1 axis could potentially be the mechanism by which Dex protects AD mice from cognitive impairment.
Collapse
Affiliation(s)
- Weiying Sun
- Department of Pharmacy, Linyi People's Hospital, No. 27, Jiefang East Road, Lanshan District, Linyi, 276000, Shandong Province, People's Republic of China
| | - Jun Zhao
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, People's Republic of China
| | - Chunzhi Li
- Department of Pharmacy, Linyi People's Hospital, No. 27, Jiefang East Road, Lanshan District, Linyi, 276000, Shandong Province, People's Republic of China.
| |
Collapse
|
21
|
Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V, Bae JS, Oram MK, Zheng Y, Hooli B, Mullin K, Gennarino VA, Wasco W, Schmahmann JD, Albers MW, Zoghbi HY, Tanzi RE. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell 2020; 178:1159-1175.e17. [PMID: 31442405 DOI: 10.1016/j.cell.2019.07.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/21/2018] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Expansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions. Elevated BACE1 expression exacerbated Aβ deposition and gliosis in AD mouse models and impaired hippocampal neurogenesis and olfactory axonal targeting. In SCA1 mice, polyglutamine-expanded mutant ataxin-1 led to the increase of BACE1 post-transcriptionally, both in cerebrum and cerebellum, and caused axonal-targeting deficit and neurodegeneration in the hippocampal CA2 region. These findings suggest that loss of ataxin-1 elevates BACE1 expression and Aβ pathology, rendering it a potential contributor to AD risk and pathogenesis.
Collapse
Affiliation(s)
- Jaehong Suh
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Donna M Romano
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Larissa Nitschke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott P Herrick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Britt A DiMarzio
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jun-Seok Bae
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Yuejiao Zheng
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Kristina Mullin
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Wilma Wasco
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
22
|
Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis 2020; 11:98. [PMID: 32029735 PMCID: PMC7005019 DOI: 10.1038/s41419-020-2288-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023]
Abstract
Amyloid beta peptides (Aβ) proteins play a key role in vascular pathology in Alzheimer’s Disease (AD) including impairment of the blood–brain barrier and aberrant angiogenesis. Although previous work has demonstrated a pro-angiogenic role of Aβ, the exact mechanisms by which amyloid precursor protein (APP) processing and endothelial angiogenic signalling cascades interact in AD remain a largely unsolved problem. Here, we report that increased endothelial sprouting in human-APP transgenic mouse (TgCRND8) tissue is dependent on β-secretase (BACE1) processing of APP. Higher levels of Aβ processing in TgCRND8 tissue coincides with decreased NOTCH3/JAG1 signalling, overproduction of endothelial filopodia and increased numbers of vascular pericytes. Using a novel in vitro approach to study sprouting angiogenesis in TgCRND8 organotypic brain slice cultures (OBSCs), we find that BACE1 inhibition normalises excessive endothelial filopodia formation and restores NOTCH3 signalling. These data present the first evidence for the potential of BACE1 inhibition as an effective therapeutic target for aberrant angiogenesis in AD.
Collapse
|
23
|
Fan Q, He W, Gayen M, Benoit MR, Luo X, Hu X, Yan R. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci 2020; 40:1133-1144. [PMID: 31822518 PMCID: PMC6989010 DOI: 10.1523/jneurosci.1333-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
Neurofibrillary tangles likely cause neurodegeneration in Alzheimer's disease (AD). We demonstrate that the CX3CL1 C-terminal domain can upregulate neurogenesis, which may ameliorate neurodegeneration. Here we generated transgenic (Tg-CX3CL1) mice by overexpressing CX3CL1 in neurons. Tg-CX3CL1 mice exhibit enhanced neurogenesis in both subgranular and subventricular zones. This enhanced neurogenesis correlates well with elevated expression of TGF-β2 and TGF-β3, and activation of their downstream signaling molecule Smad2. Intriguingly, the enhanced adult neurogenesis was mitigated when Smad2 expression was deleted in neurons, supporting a role for the CX3CL1-TGF-β2/3-Smad2 pathway in the control of adult neurogenesis. When Tg-CX3CL1 mice were crossed with Alzheimer's PS19 mice, which overexpress a tau P301S mutation and exhibit age-dependent neurofibrillary tangles and neurodegeneration, overexpressed CX3CL1 in both male and female mice was sufficient to rescue the neurodegeneration, increase survival time, and improve cognitive function. Hence, we provide in vivo evidence that CX3CL1 is a strong activator of adult neurogenesis, and that it reduces neuronal loss and improves cognitive function in AD.SIGNIFICANCE STATEMENT This study will be the first to demonstrate that enhanced neurogenesis by overexpressed CX3CL1 is mitigated by disruption of Smad2 signaling and is independent of its interaction with CX3CR1. Overexpression of CX3CL1 lengthens the life span of PS19 tau mice by enhancing adult neurogenesis while having minimal effect on tau pathology. Enhancing neuronal CX3CL1, mainly the C-terminal fragment, is a therapeutic strategy for blocking or reversing neuronal loss in Alzheimer's disease or related neurodegenerative disease patients.
Collapse
Affiliation(s)
- Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Manoshi Gayen
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Marc Robert Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Xiangyou Hu
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut 06032
| |
Collapse
|
24
|
Rudan Njavro J, Klotz J, Dislich B, Wanngren J, Shmueli MD, Herber J, Kuhn PH, Kumar R, Koeglsperger T, Conrad M, Wurst W, Feederle R, Vlachos A, Michalakis S, Jedlicka P, Müller SA, Lichtenthaler SF. Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB J 2019; 34:2465-2482. [PMID: 31908000 DOI: 10.1096/fj.201902347r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aβ) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.
Collapse
Affiliation(s)
- Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Klotz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Pathology, University of Bern, Switzerland
| | - Johanna Wanngren
- Division of Neurogeriatrics, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Feederle
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany.,Core Facility Monoclonal Antibodies, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany.,Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
25
|
Lombardo S, Chiacchiaretta M, Tarr A, Kim W, Cao T, Sigal G, Rosahl TW, Xia W, Haydon PG, Kennedy ME, Tesco G. BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Sci Rep 2019; 9:19877. [PMID: 31882662 PMCID: PMC6934620 DOI: 10.1038/s41598-019-56329-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACE1 is the first enzyme involved in APP processing, thus it is a strong therapeutic target candidate for Alzheimer's disease. The observation of deleterious phenotypes in BACE1 Knock-out (KO) mouse models (germline and conditional) raised some concerns on the safety and tolerability of BACE1 inhibition. Here, we have employed a tamoxifen inducible BACE1 conditional Knock-out (cKO) mouse model to achieve a controlled partial depletion of BACE1 in adult mice. Biochemical and behavioural characterization was performed at two time points: 4-5 months (young mice) and 12-13 months (aged mice). A ~50% to ~70% BACE1 protein reduction in hippocampus and cortex, respectively, induced a significant reduction of BACE1 substrates processing and decrease of Aβx-40 levels at both ages. Hippocampal axonal guidance and peripheral nerve myelination were not affected. Aged mice displayed a CA1 long-term potentiation (LTP) deficit that was not associated with memory impairment. Our findings indicate that numerous phenotypes observed in germline BACE1 KO reflect a fundamental role of BACE1 during development while other phenotypes, observed in adult cKO, may be absent when partially rather than completely deleting BACE1. However, we demonstrated that partial depletion of BACE1 still induces CA1 LTP impairment, supporting a role of BACE1 in synaptic plasticity in adulthood.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Andrew Tarr
- Circuits and Behaviour Core, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - WonHee Kim
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Tingyi Cao
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Griffin Sigal
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | - Thomas W Rosahl
- External In Vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, 07033, USA
| | - Weiming Xia
- Geriatric Research, Education and Clinic Center, Bedford Veterans Affairs Medical Center, Bedford, MA, 01730, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA
| | | | - Giuseppina Tesco
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA.
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111, USA.
| |
Collapse
|
26
|
Saadipour K, Tiberi A, Lombardo S, Grajales E, Montroull L, Mañucat-Tan NB, LaFrancois J, Cammer M, Mathews PM, Scharfman HE, Liao FF, Friedman WJ, Zhou XF, Tesco G, Chao MV. Regulation of BACE1 expression after injury is linked to the p75 neurotrophin receptor. Mol Cell Neurosci 2019; 99:103395. [PMID: 31422108 DOI: 10.1016/j.mcn.2019.103395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.
Collapse
Affiliation(s)
- Khalil Saadipour
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA.
| | - Alexia Tiberi
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA; Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Sylvia Lombardo
- Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Elena Grajales
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA
| | - Laura Montroull
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ 07102, USA
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - John LaFrancois
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Michael Cammer
- DART Microscopy Laboratory, NYU Langone Medical Center, New York, NY 10016, USA
| | - Paul M Mathews
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute of Psychiatric Research, Center for Dementia Research, Orangeburg, NY 10962, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers Life Sciences Center, Rutgers University, Newark, NJ 07102, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Giueseppina Tesco
- Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York 10016, USA.
| |
Collapse
|
27
|
Fan Q, Gayen M, Singh N, Gao F, He W, Hu X, Tsai LH, Yan R. The intracellular domain of CX3CL1 regulates adult neurogenesis and Alzheimer's amyloid pathology. J Exp Med 2019; 216:1891-1903. [PMID: 31209068 PMCID: PMC6683996 DOI: 10.1084/jem.20182238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
The membrane-anchored CX3CL1 is best known to exert its signaling function through binding its receptor CX3CR1. This study demonstrates a novel function that CX3CL1 exerts. CX3CL1 is sequentially cleaved by α-, β-, and γ-secretase, and the released CX3CL1 intracellular domain (CX3CL1-ICD) would translocate into the cell nucleus to alter gene expression due to this back-signaling function. Amyloid deposition and neuronal loss were significantly reduced when membrane-anchored CX3CL1 C-terminal fragment (CX3CL1-ct) was overexpressed in Alzheimer's 5xFAD mouse model. The reversal of neuronal loss in 5xFAD can be attributed to increased neurogenesis by CX3CL1-ICD, as revealed by morphological and unbiased RNA-sequencing analyses. Mechanistically, this CX3CL1 back-signal likely enhances developmental and adult neurogenesis through the TGFβ2/3-Smad2/3 pathway and other genes important for neurogenesis. Induction of CX3CL1 back-signaling may not only be a promising novel mechanism to replenish neuronal loss but also for reducing amyloid deposition for Alzheimer's treatment.
Collapse
Affiliation(s)
- Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Manoshi Gayen
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Neuroscience, University of Connecticut Health, Farmington, CT
| | - Neeraj Singh
- Department of Neuroscience, University of Connecticut Health, Farmington, CT
| | - Fan Gao
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Neuroscience, University of Connecticut Health, Farmington, CT
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Neuroscience, University of Connecticut Health, Farmington, CT
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Neuroscience, University of Connecticut Health, Farmington, CT
| |
Collapse
|
28
|
Gómez-Pinedo U, Galán L, Matías-Guiu JA, Pytel V, Moreno T, Guerrero-Sola A, Matías-Guiu J. Notch Signalling in the Hippocampus of Patients With Motor Neuron Disease. Front Neurosci 2019; 13:302. [PMID: 31024234 PMCID: PMC6460507 DOI: 10.3389/fnins.2019.00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction The Notch signalling pathway regulates neuronal survival. It has some similarities with the APP signalling pathway, and competes with the latter for α- and γ-secretase proteolytic complexes. The objective of this study was to study the Notch signalling pathway in the hippocampi of patients with motor neuron disease. Methods We studied biological material from the autopsies of 12 patients with motor neuron disease and 4 controls. We analysed the molecular markers of the Notch and APP signalling pathways, TDP43, tau, and markers of neurogenesis. Results and Conclusion Low NICD expression suggests Notch signalling pathway inactivation in neurons. Inactivation of the pathway despite increased Notch1 expression is associated with a lack of α-secretase expression. We observed increased β-secretase expression associated with activation of the amyloid cascade of APP, leading to increases in amyloid-β and AICD peptides and decreased levels of Fe65. Inactivation of the Notch signalling pathway is an important factor in decreased neurogenic response in the hippocampi of patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Galán
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Vanesa Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa Moreno
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Guerrero-Sola
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.,Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Patel D, Mez J, Vardarajan BN, Staley L, Chung J, Zhang X, Farrell JJ, Rynkiewicz MJ, Cannon-Albright LA, Teerlink CC, Stevens J, Corcoran C, Gonzalez Murcia JD, Lopez OL, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg G, Kauwe JSK, Lunetta KL, Farrer LA. Association of Rare Coding Mutations With Alzheimer Disease and Other Dementias Among Adults of European Ancestry. JAMA Netw Open 2019; 2:e191350. [PMID: 30924900 PMCID: PMC6450321 DOI: 10.1001/jamanetworkopen.2019.1350] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Importance Some of the unexplained heritability of Alzheimer disease (AD) may be due to rare variants whose effects are not captured in genome-wide association studies because very large samples are needed to observe statistically significant associations. Objective To identify genetic variants associated with AD risk using a nonstatistical approach. Design, Setting, and Participants Genetic association study in which rare variants were identified by whole-exome sequencing in unrelated individuals of European ancestry from the Alzheimer's Disease Sequencing Project (ADSP). Data were analyzed between March 2017 and September 2018. Main Outcomes and Measures Minor alleles genome-wide and in 95 genes previously associated with AD, AD-related traits, or other dementias were tabulated and filtered for predicted functional impact and occurrence in participants with AD but not controls. Support for several findings was sought in a whole-exome sequencing data set comprising 19 affected relative pairs from Utah high-risk pedigrees and whole-genome sequencing data sets from the ADSP and Alzheimer's Disease Neuroimaging Initiative. Results Among 5617 participants with AD (3202 [57.0%] women; mean [SD] age, 76.4 [9.3] years) and 4594 controls (2719 [59.0%] women; mean [SD] age, 86.5 [4.5] years), a total of 24 variants with moderate or high functional impact from 19 genes were observed in 10 or more participants with AD but not in controls. These variants included a missense mutation (rs149307620 [p.A284T], n = 10) in NOTCH3, a gene in which coding mutations are associated with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), that was also identified in 1 participant with AD and 1 participant with mild cognitive impairment in the whole genome sequencing data sets. Four participants with AD carried the TREM2 rs104894002 (p.Q33X) high-impact mutation that, in homozygous form, causes Nasu-Hakola disease, a rare disorder characterized by early-onset dementia and multifocal bone cysts, suggesting an intermediate inheritance model for the mutation. Compared with controls, participants with AD had a significantly higher burden of deleterious rare coding variants in dementia-associated genes (2314 vs 3354 cumulative variants, respectively; P = .006). Conclusions and Relevance Different mutations in the same gene or variable dose of a mutation may be associated with result in distinct dementias. These findings suggest that minor differences in the structure or amount of protein may be associated with in different clinical outcomes. Understanding these genotype-phenotype associations may provide further insight into the pathogenic nature of the mutations, as well as offer clues for developing new therapeutic targets.
Collapse
Affiliation(s)
- Devanshi Patel
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Lyndsay Staley
- Department of Biology, Brigham Young University, Provo, Utah
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa A. Cannon-Albright
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Craig C. Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Jeffery Stevens
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | | | | | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, New York
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | | | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
30
|
Abstract
Alzheimer's disease (AD), the most common cause of age-dependent dementia, is one of the most significant healthcare problems worldwide. Aggravating this situation, drugs that are currently US Food and Drug Administration (FDA)-approved for AD treatment do not prevent or delay disease progression. Therefore, developing effective therapies for AD patients is of critical urgency. Human genetic and clinical studies over the past three decades have indicated that abnormal generation or accumulation of amyloid-β (Aβ) peptides is a likely culprit in AD pathogenesis. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1) (memapsin 2, β-secretase, Asp 2 protease) and γ-secretase. Mice deficient in BACE1 show abrogated production of Aβ. Therefore, pharmacological inhibition of BACE1 is being intensively pursued as a therapeutic approach to treat AD patients. Recent setbacks in clinical trials with BACE1 inhibitors have highlighted the critical importance of understanding how to properly inhibit BACE1 to treat AD patients. This review summarizes the recent studies on the role of BACE1 in synaptic functions as well as our views on BACE1 inhibition as an effective AD treatment.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
31
|
Vnencak M, Schölvinck ML, Schwarzacher SW, Deller T, Willem M, Jedlicka P. Lack of β-amyloid cleaving enzyme-1 (BACE1) impairs long-term synaptic plasticity but enhances granule cell excitability and oscillatory activity in the dentate gyrus in vivo. Brain Struct Funct 2019; 224:1279-1290. [PMID: 30701309 DOI: 10.1007/s00429-019-01836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
BACE1 is a β-secretase involved in the cleavage of amyloid precursor protein and the pathogenesis of Alzheimer's disease (AD). The entorhinal cortex and the dentate gyrus are important for learning and memory, which are affected in the early stages of AD. Since BACE1 is a potential target for AD therapy, it is crucial to understand its physiological role in these brain regions. Here, we examined the function of BACE1 in the dentate gyrus. We show that loss of BACE1 in the dentate gyrus leads to increased granule cell excitability, indicated by enhanced efficiency of synaptic potentials to generate granule cell spikes. The increase in granule cell excitability was accompanied by prolonged paired-pulse inhibition, altered network gamma oscillations, and impaired synaptic plasticity at entorhinal-dentate synapses of the perforant path. In summary, this is the first detailed electrophysiological study of BACE1 deletion at the network level in vivo. The results suggest that BACE1 is important for normal dentate gyrus network function. This has implications for the use of BACE1 inhibitors as therapeutics for AD therapy, since BACE1 inhibition could similarly disrupt synaptic plasticity and excitability in the entorhinal-dentate circuitry.
Collapse
Affiliation(s)
- Matej Vnencak
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany. .,Otorhinolaryngology, Head and Neck Surgery, Turku University Hospital, University of Turku, PL 52, 20521, Turku, Finland.
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| | - Michael Willem
- BioMedical Center, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany. .,ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany.
| |
Collapse
|
32
|
The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:697-712. [PMID: 30639513 DOI: 10.1016/j.bbamem.2018.11.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.
Collapse
|
33
|
Takano A, Chen L, Nag S, Brodney MA, Arakawa R, Chang C, Amini N, Doran SD, Dutra JK, McCarthy TJ, Nolan CE, O'Neill BT, Villalobos A, Zhang L, Halldin C. Quantitative Analysis of 18F-PF-06684511, a Novel PET Radioligand for Selective β-Secretase 1 Imaging, in Nonhuman Primate Brain. J Nucl Med 2018; 60:992-997. [PMID: 30530832 DOI: 10.2967/jnumed.118.217372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
β-secretase 1 (BACE1) is a key enzyme in the generation of β-amyloid, which is accumulated in the brain of Alzheimer disease patients. PF-06684511 was identified as a candidate PET ligand for imaging BACE1 in the brain and showed high specific binding in an initial assessment in a nonhuman primate (NHP) PET study using 18F-PF-06684511. In this effort, we aimed to quantitatively evaluate the regional brain distribution of 18F-PF-06684511 in NHPs under baseline and blocking conditions and to assess the target occupancy of BACE1 inhibitors. In addition, NHP whole-body PET measurements were performed to estimate the effective radiation dose. Methods: Initial brain PET measurements were performed at baseline and after oral administration of 5 mg/kg of LY2886721, a BACE1 inhibitor, in 2 cynomolgus monkeys. Kinetic analysis was performed with the radiometabolite-corrected plasma input function. In addition, a wide dose range of another BACE1 inhibitor, PF-06663195, was examined to investigate the relationship between the brain target occupancy and plasma concentration of the drug. Finally, the effective radiation dose of 18F-PF-06684511 was estimated on the basis of the whole-body PET measurements in NHPs. Results: Radiolabeling was accomplished successfully with an incorporation radiochemical yield of 4%-12% (decay-corrected) from 18F ion. The radiochemical purity was greater than 99%. The whole-brain uptake of 18F-PF-06684511 peaked (∼220% SUV) at approximately 20 min and decreased thereafter (∼100% SUV at 180 min). A 2-tissue-compartment model described the time-activity curves well. Pretreatment with LY2886721 reduced the total distribution volume of 18F-PF-06684511 by 48%-80% depending on the brain region, confirming its in vivo specificity. BACE1 occupancy of PF-06663195, estimated using the Lassen occupancy plot, showed a dose-dependent increase. The effective dose of 18F-PF-06684511 was 0.043 mSv/MBq for humans. Conclusion: 18F-PF-06684511 is the first successful PET radioligand for BACE1 brain imaging that demonstrates favorable in vivo binding and brain kinetics in NHPs.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Laigao Chen
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Michael A Brodney
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Cheng Chang
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Nahid Amini
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Shawn D Doran
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jason K Dutra
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Timothy J McCarthy
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Charles E Nolan
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Brian T O'Neill
- Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | | | - Lei Zhang
- Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
34
|
Partial, Rather than Full, BACE1 Inhibition May Be a Better Therapeutic Strategy for Alzheimer's Disease Due to Effects of Complete Loss of BACE1 Activity on Adult Hippocampal Neurogenesis. eNeuro 2018; 5:eN-RHL-0384-18. [PMID: 30406184 PMCID: PMC6220578 DOI: 10.1523/eneuro.0384-18.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Highlighted Research Paper: BACE1 Regulates Proliferation and Neuronal Differentiation of Newborn Cells in the Adult Hippocampus in Mice by, Zena K. Chatila, Eunhee Kim, Clara Berlé, Enjana Bylykbashi, Alexander Rompala, Mary K. Oram, Drew Gupta, Sang Su Kwak, Young Hye Kim, Doo Yeon Kim, Se Hoon Choi, and Rudolph E. Tanzi.
Collapse
|
35
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
36
|
Ou-Yang MH, Kurz JE, Nomura T, Popovic J, Rajapaksha TW, Dong H, Contractor A, Chetkovich DM, Tourtellotte WG, Vassar R. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med 2018; 10:eaao5620. [PMID: 30232227 PMCID: PMC11017370 DOI: 10.1126/scitranslmed.aao5620] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/09/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
β-Site APP (amyloid precursor protein) cleaving enzyme 1 (BACE1) is the β-secretase enzyme that initiates production of the toxic amyloid-β peptide that accumulates in the brains of patients with Alzheimer's disease (AD). Hence, BACE1 is a prime therapeutic target, and several BACE1 inhibitor drugs are currently being tested in clinical trials for AD. However, the safety of BACE1 inhibition is unclear. Germline BACE1 knockout mice have multiple neurological phenotypes, although these could arise from BACE1 deficiency during development. To address this question, we report that tamoxifen-inducible conditional BACE1 knockout mice in which the Bace1 gene was ablated in the adult largely lacked the phenotypes observed in germline BACE1 knockout mice. However, one BACE1-null phenotype was induced after Bace1 gene deletion in the adult mouse brain. This phenotype showed reduced length and disorganization of the hippocampal mossy fiber infrapyramidal bundle, the axonal pathway of dentate gyrus granule cells that is maintained by neurogenesis in the mouse brain. This defect in axonal organization correlated with reduced BACE1-mediated cleavage of the neural cell adhesion protein close homolog of L1 (CHL1), which has previously been associated with axon guidance. Although our results indicate that BACE1 inhibition in the adult mouse brain may avoid phenotypes associated with BACE1 deficiency during embryonic and postnatal development, they also suggest that BACE1 inhibitor drugs developed for treating AD may disrupt the organization of an axonal pathway in the hippocampus, an important structure for learning and memory.
Collapse
Affiliation(s)
- Ming-Hsuan Ou-Yang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan E Kurz
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Toshihiro Nomura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Jelena Popovic
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tharinda W Rajapaksha
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dane M Chetkovich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Warren G Tourtellotte
- Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Neuropathology, Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
BACE1 Regulates Proliferation and Neuronal Differentiation of Newborn Cells in the Adult Hippocampus in Mice. eNeuro 2018; 5:eN-NWR-0067-18. [PMID: 30079376 PMCID: PMC6073981 DOI: 10.1523/eneuro.0067-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023] Open
Abstract
β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is required for the production of β-amyloid (Aβ), one of the major pathogenic molecules of Alzheimer's disease (AD), and is therefore being actively pursued as a drug target for AD. Adult hippocampal neurogenesis (AHN) is a lifelong process that is known to be important for learning and memory and may have the potential to regenerate damaged neural tissue. In this study, we examined whether BACE1 regulates AHN, which holds important implications for its suitability as a drug target in AD. Cohorts of 2-month-old wild-type (BACE1+/+), heterozygous, and homozygous BACE1 knockout mice (BACE1+/- and BACE1-/-, respectively) were injected with 5-bromo-2'-deoxyuridine (BrdU) and sacrificed 1 day later to examine the impact of loss of BACE1 on neural precursor cell (NPC) proliferation in the adult brain. Parallel cohorts of mice were sacrificed 4 weeks after BrdU injection to determine the effects of BACE1 on survival and differentiation of newborn NPCs. We found that NPC proliferation was increased in BACE1-/- mice compared to BACE1+/+ mice, while no difference was observed in NPC survival across genotypes. Differentiation of NPCs to neuronal lineage was impaired in BACE1-/- mice. However, no differences were observed in astrogenesis, the proportion of immature neurons, or the production of oligodendrocytes across genotypes. Importantly, corresponding with a decrease in neuronal differentiation in the absence of a complementary increase in an alternate cell fate, BACE1-/- mice were found to have a pool of undifferentiated NPCs in the hippocampus compared to BACE1+/+ and BACE1+/- mice.
Collapse
|
38
|
van der Ven AT, Pape JC, Hermann D, Schloesser R, Genius J, Fischer N, Mößner R, Scherbaum N, Wiltfang J, Rujescu D, Benninghoff J. Methylene Blue (Tetramethylthionine Chloride) Influences the Mobility of Adult Neural Stem Cells: A Potentially Novel Therapeutic Mechanism of a Therapeutic Approach in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2018; 57:531-540. [PMID: 28269766 DOI: 10.3233/jad-160755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An interest in neurogenesis in the adult human brain as a relevant and targetable process has emerged as a potential treatment option for Alzheimer's disease and other neurodegenerative conditions. The aim of this study was to investigate the effects of tetramethylthionine chloride (methylene blue, MB) on properties of adult murine neural stem cells. Based on recent clinical studies, MB has increasingly been discussed as a potential treatment for Alzheimer's disease. While no differences in the proliferative capacity were identified, a general potential of MB in modulating the migratory capacity of adult neural stem cells was indicated in a cell mobility assay. To our knowledge, this is the first time that MB could be associated with neural mobility. The results of this study add insight to the spectrum of features of MB within the central nervous system and may be helpful for understanding the molecular mechanisms underlying a potential therapeutic effect of MB.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany.,Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | | | - Dirk Hermann
- Department of Neurology, Chair of Vascular Neurology and Dementia, University Hospital of Essen, Germany
| | | | - Just Genius
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Nadine Fischer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Rainald Mößner
- Department of Psychiatry, University of Tübingen, Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry, University of Göttingen, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle (Saale), Germany
| | - Jens Benninghoff
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| |
Collapse
|
39
|
Carpenter KA, Huang X. Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review. Curr Pharm Des 2018; 24:3347-3358. [PMID: 29879881 PMCID: PMC6327115 DOI: 10.2174/1381612824666180607124038] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Virtual Screening (VS) has emerged as an important tool in the drug development process, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of potential drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conducting VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on previously unseen databases to screen for novel compounds with desired drug target binding activity. OBJECTIVE The study aims to review ML-based methods used for VS and applications to Alzheimer's Disease (AD) drug discovery. METHODS To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN). RESULTS All techniques have found success in VS, but the future of VS is likely to lean more largely toward the use of neural networks - and more specifically, Convolutional Neural Networks (CNN), which are a subset of ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for potential therapeutics for AD, a complex neurodegenerative disease with no known cure and prevention. This both serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow for future implementation. CONCLUSION Different ML techniques are powerful tools for VS, and they have advantages and disadvantages albeit. ML-based VS can be applied to AD drug development.
Collapse
Affiliation(s)
- Kristy A. Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
40
|
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer's Disease Pathology. Molecules 2017; 22:molecules22101723. [PMID: 29027981 PMCID: PMC6151801 DOI: 10.3390/molecules22101723] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations.
Collapse
|
41
|
Du X, Huo X, Yang Y, Hu Z, Botchway BOA, Jiang Y, Fang M. miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol Lett 2017; 280:195-205. [PMID: 28867212 DOI: 10.1016/j.toxlet.2017.08.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/09/2022]
Abstract
One role of BACE 1 (Beta-site amyloid precursor protein cleaving enzyme 1) is to cleave the sequential amyloid precursor protein (APP) into β-Amyloid (Aβ), the accumulation of which is an important participant in the formation of the amyloid plaques and neurofibrillary tangles of Alzheimer's disease (AD). Our previous study showed BACE 1, the potential functional downstream target of miR-124, to be connected to cell death in AD cell models. Recent studies have shown that autophagy is altered in AD, however, as to whether miR-124 is involved in this alteration is not clear. In this study, 7-month-old APP/PS1 transgenic mice were transfected with miR-124 lentiviral vectors, injected bilaterally into the dentate gyrus (DG) of mice hippocampi. Following 7 days of recovery, both behavior and biochemical pathology tests were implemented. The results demonstrated learning ability improvement and specific AD pathology alleviation. Meanwhile there was down-regulation of Bcl-2 to Bax ratio expression, increase in Beclin-1 and decreases in expression of LC3II, Atg5 and p62/SQSTMl. In view of this, we hypothesis that miR-124 conducts its neuroprotective effect through BACE 1 by regulation of autophagic pathways.
Collapse
Affiliation(s)
- Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Huo
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
42
|
Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 2017; 6:23. [PMID: 28855981 PMCID: PMC5575945 DOI: 10.1186/s40035-017-0093-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors in AD therapy.
Collapse
Affiliation(s)
- Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
43
|
Moussa CEH. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer's disease. Expert Opin Investig Drugs 2017; 26:1131-1136. [PMID: 28817311 DOI: 10.1080/13543784.2017.1369527] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION BACE 1 is a protease that cleaves the transmembrane amyloid precursor protein and generates amyloid-β peptides that accumulate in AD brains. No known mutations are identified in the gene encoding BACE1 in AD. However, enzyme levels are elevated in AD and a single residue mutation in amyloid precursor protein protects against protein cleavage by BACE1, suggesting BACE involvement in disease pathogenesis. Drugs that can inhibit BACE1 would theoretically prevent Aβ accumulation and halt AD onset and progression. Areas covered: This review discusses clinical developments of BACE1 inhibitors and focuses on what is learned about these inhibitors as a potential treatment. Expert opinion: BACE1 inhibition as a therapeutic strategy to improve cognition in AD has been challening. Brain-penetrant BACE1 inhibitors have been developed and clinical trials are underway, both safety and efficacy are questionable. Several clinical trials suggest that BACE1 inhibition and other immunotherapies to reduce brain Aβ are insufficient to improve cognition in AD. This may be due to the emphasis on the amyloid hypothesis despite big failures. We may have to seriously consider shifting attention to therapeutic strategies other than BACE1 inhibition or reduction of Aβ alone and pay more attention to simultaneous clearance of tau and Aβ.
Collapse
Affiliation(s)
- Charbel E-H Moussa
- a Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program , Georgetown University Medical Center , Washington , DC , USA
| |
Collapse
|
44
|
Hou H, Fan Q, He W, Suh H, Hu X, Yan R. BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus. Stem Cell Reports 2017; 9:217-230. [PMID: 28669600 PMCID: PMC5511112 DOI: 10.1016/j.stemcr.2017.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/04/2022] Open
Abstract
BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ). Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models. To understand their origins and fates, we examined how neuroblasts in BACE1-null SPZ mature and migrate during early postnatal development. We show that such neuroblasts are destined to form Prox1-positive granule cells in the dentate granule cell layer, and mainly mature to form excitatory neurons, but not inhibitory neurons. Mechanistically, higher levels of reelin potentially contribute to abnormal neurogenesis and timely migration in BACE1-null SPZ. Altogether, we demonstrate that BACE1 is a critical regulator in forming the dentate granule cell layer through timely maturation and migration of SPZ neuroblasts. BACE1 deficiency causes abnormal neuronal clusters retained in the mouse SPZ Mis-migrated neural progenitor cells in the SPZ are destined to form granule cells Such neural progenitor cells form excitatory neurons but not inhibitor neurons Elevated levels of reelin contribute to abnormal neuronal maturation and migration
Collapse
Affiliation(s)
- Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Hoonkyo Suh
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195, USA.
| |
Collapse
|
45
|
Hu X, Hou H, Bastian C, He W, Qiu S, Ge Y, Yin X, Kidd GJ, Brunet S, Trapp BD, Baltan S, Yan R. BACE1 regulates the proliferation and cellular functions of Schwann cells. Glia 2017; 65:712-726. [PMID: 28191691 PMCID: PMC5357169 DOI: 10.1002/glia.23122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Abstract
BACE1 is an indispensable enzyme for generating β-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development. We demonstrate that BACE1 regulates the cleavage of Jagged-1 and Delta-1, two membrane-bound ligands of Notch. BACE1 deficiency induces elevated Jag-Notch signaling activity, which in turn facilitates proliferation of Schwann cells. This increase in proliferation leads to shortened internodes and decreased Schmidt-Lanterman incisures. Functionally, evoked compound action potentials in BACE1-null nerves were significantly smaller and slower, with a clear decrease in excitability. BACE1-null nerves failed to effectively use lactate as an alternative energy source under conditions of increased physiological activity. Correlatively, BACE1-null mice showed reduced performance on rotarod tests. Collectively, our data suggest that BACE1 deficiency enhances proliferation of Schwann cell due to the elevated Jag1/Delta1-Notch signaling, but fails to myelinate axons efficiently due to impaired the neuregulin1-ErbB signaling, which has been documented.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Shupeng Qiu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yingying Ge
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xinhua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
46
|
Yan R. Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2. Front Mol Neurosci 2017; 10:97. [PMID: 28469554 PMCID: PMC5395628 DOI: 10.3389/fnmol.2017.00097] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/22/2017] [Indexed: 01/18/2023] Open
Abstract
BACE1 was discovered as the β-secretase for initiating the cleavage of amyloid precursor protein (APP) at the β-secretase site, while its close homology BACE2 cleaves APP within the β-amyloid (Aβ) domain region and shows distinct cleavage preferences in vivo. Inhibition of BACE1 proteolytic activity has been confirmed to decrease Aβ generation and amyloid deposition, and thus specific inhibition of BACE1 by small molecules is a current focus for Alzheimer’s disease therapy. While BACE1 inhibitors are being tested in advanced clinical trials, knowledge regarding the properties and physiological functions of BACE is highly important and this review summarizes advancements in BACE1 research over the past several years. We and others have shown that BACE1 is not only a critical enzyme for testing the “Amyloid Hypothesis” associated with Alzheimer’s pathogenesis, but also important for various functions such as axon growth and pathfinding, astrogenesis, neurogenesis, hyperexcitation, and synaptic plasticity. BACE2 appears to play different roles such as glucose homeostasis and pigmentation. This knowledge regarding BACE1 functions is critical for monitoring the safe use of BACE1 inhibitors in humans.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, ClevelandOH, USA
| |
Collapse
|
47
|
Greco S, Zaccagnini G, Fuschi P, Voellenkle C, Carrara M, Sadeghi I, Bearzi C, Maimone B, Castelvecchio S, Stellos K, Gaetano C, Menicanti L, Martelli F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc Res 2017; 113:453-463. [DOI: 10.1093/cvr/cvx013] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/25/2017] [Indexed: 01/18/2023] Open
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Iman Sadeghi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | - Claudia Bearzi
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, Italy
| | - Biagina Maimone
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| | | | - Konstantinos Stellos
- Laboratory of RNA Metabolism and Vascular Inflammation, Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology and Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt/Main, Germany
| | - Lorenzo Menicanti
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi, 30 20097 San Donato, Milanese, Milan, Italy
| |
Collapse
|
48
|
Functions of the Alzheimer's Disease Protease BACE1 at the Synapse in the Central Nervous System. J Mol Neurosci 2016; 60:305-315. [PMID: 27456313 PMCID: PMC5059407 DOI: 10.1007/s12031-016-0800-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Inhibition of the protease β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a promising treatment strategy for Alzheimer's disease, and a number of BACE inhibitors are currently progressing through clinical trials. The strategy aims to decrease production of amyloid-β (Aβ) peptide from the amyloid precursor protein (APP), thus reducing or preventing Aβ toxicity. Over the last decade, it has become clear that BACE1 proteolytically cleaves a number of substrates in addition to APP. These substrates are not known to be involved in the pathogenesis of Alzheimer's disease but have other roles in the developing and/or mature central nervous system. Consequently, BACE inhibition and knockout in mice results in synaptic and other neuronal dysfunctions and the key substrates responsible for these deficits are still being elucidated. Of the BACE1 substrates that have been validated to date, a number may contribute to the synaptic deficits seen with BACE blockade, including neuregulin 1, close homologue of L1 and seizure-related gene 6. It is important to understand the impact that BACE blockade may have on these substrates and other proteins detected in substrate screens and, if necessary, develop substrate-selective BACE inhibitors.
Collapse
|
49
|
Yan R. Stepping closer to treating Alzheimer's disease patients with BACE1 inhibitor drugs. Transl Neurodegener 2016; 5:13. [PMID: 27418961 PMCID: PMC4944430 DOI: 10.1186/s40035-016-0061-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives. While the etiology of AD remains an enigma, excessive accumulation of β-amyloid peptide (Aβ) is widely believed to induce pathological changes and cause dementia in brains of AD patients. BACE1 was discovered to initiate the cleavage of amyloid precursor protein (APP) at the β-secretase site. Only after this cleavage does γ-secretase further cleave the BACE1-cleaved C-terminal APP fragment to release Aβ. Hence, blocking BACE1 proteolytic activity will suppress Aβ generation. Due to the linkage of Aβ to the potential cause of AD, extensive discovery and development efforts have been directed towards potent BACE1 inhibitors for AD therapy. With the recent breakthrough in developing brain-penetrable BACE1 inhibitors, targeting amyloid deposition-mediated pathology for AD therapy has now become more practical. This review will summarize various strategies that have successfully led to the discovery of BACE1 drugs, such as MK8931, AZD-3293, JNJ-54861911, E2609 and CNP520. These drugs are currently in clinical trials and their updated states will be discussed. With the promise of reducing Aβ generation and deposition with no alarming safety concerns, the amyloid cascade hypothesis in AD therapy may finally become validated.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
50
|
Wu H, Lu MH, Wang W, Zhang MY, Zhu QQ, Xia YY, Xu RX, Yang Y, Chen LH, Ma QH. Lamotrigine Reduces β-Site AβPP-Cleaving Enzyme 1 Protein Levels Through Induction of Autophagy. J Alzheimers Dis 2016; 46:863-76. [PMID: 25854934 DOI: 10.3233/jad-143162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lamotrigine (LTG), a broad-spectrum anti-epileptic drug widely used in treatment for seizures, shows potential efficacy in Alzheimer's disease (AD) therapy. Chronic LTG treatment rescues the suppressed long-term potentiation, loss of spines and cognitive deficits in AβPP/PS1 mice, known to overexpress a chimeric mouse/human mutant amyloid-β protein precursor (AβPP) and a mutant human presenilin 1 (PS1). These changes are accompanied by reduction of amyloid-β (Aβ) plaques density and of levels of β-C-terminal fragment of AβPP (β-CTF), a fragment of AβPP cleaved by β-secretase. These results suggest LTG treatment reduces Aβ production, possibly through modulation of cleavage of AβPP by β-secretase. However, the underlying mechanisms still remain unclear. In this study, decreased protein levels, but not mRNA levels of β-site AβPP-cleaving enzyme 1 (BACE1), were observed in cultured HEK293 cells and the brains of AβPP/PS1 transgenic mice upon LTG treatment. Moreover, LTG treatment suppressed mammalian target of rapamycin (mTOR) signaling, while enhancing activation of cAMP response element binding protein (CREB), two signaling pathways essential for autophagy induction. LTG treatment increased the numbers of LC3-GFP + puncta and LC3-II levels in HEK293 cells, indicating an induction of autophagy. The downregulation of BACE1 by LTG treatment was prevented by the autophagy inhibitor 3-Methyladenine. Therefore, this study shows that LTG treatment reduces the protein levels of BACE1 through activation of autophagy, possibly via inhibition of mTOR signaling and activation of CREB.
Collapse
Affiliation(s)
- Hao Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Mei-Hong Lu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Wang Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Mao-Ying Zhang
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, PLA and PhD Student Program of Southern Medical University, Beijing, China
| | - Qian-Qian Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Yuan Xia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, PLA and PhD Student Program of Southern Medical University, Beijing, China
| | - Yi Yang
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, PLA and PhD Student Program of Southern Medical University, Beijing, China
| | - Li-Hua Chen
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, PLA and PhD Student Program of Southern Medical University, Beijing, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|