1
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
2
|
Wu X, Wu H, Zhong M, Chen Y, Su W, Li P. Epigenetic regulation by naringenin and naringin: A literature review focused on the mechanisms underlying its pharmacological effects. Fitoterapia 2025; 181:106353. [PMID: 39706348 DOI: 10.1016/j.fitote.2024.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries. Naringenin and naringin exhibit a broad spectrum of biological activities and pharmacological effects, including anti-cancer, cardiovascular disease improving, anti-inflammatory, and anti-oxidant activities, all of which are advantageous for human health. Recent studies have uncovered that naringenin and naringin influence gene expression by modulating epigenetic pathways, including microRNA (miRNA) regulation. This mechanism plays a crucial role in the therapeutic potential for various diseases. This paper reviews the epigenetic researches on the physiological activities of naringenin and naringin. It highlights how these compounds can exert diverse effects through different signaling pathways, thereby ameliorating associated diseases. These findings provide valuable insights for the future applications of naringenin and naringin.
Collapse
Affiliation(s)
- Xiao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yixuan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Tong L, Fu W, Zhang C, Liu Z, Guo M. Calnexin interacts with B-cell receptor-associated protein 31 (Bap31) to mediate coelomocyte phagocytosis and Vibrio splendidus clearance in Apostichopus japonicus. Int J Biol Macromol 2024; 283:137901. [PMID: 39571859 DOI: 10.1016/j.ijbiomac.2024.137901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Calnexin serves as a lectin chaperone located on the endoplasmic reticulum membrane and functions in glycoprotein folding and synthesis quality control, as well as in Ca2+ storage. Calnexin is extensively documented to participate in host immunity in the endoplasmic reticulum. However, the functions and fundamental mechanisms of calnexin in the invertebrate innate defence remain largely unknown. In this research, the complete cDNA sequence for calnexin from Apostichopus japonicus (Ajcalnexin) was cloned, revealing a 1779 bp open reading frame that codes for 592 amino acids, 113 bp 5'-Untranslated Region (UTR), and 3251 bp 3'-UTR. Upon Vibrio splendidus infection, both AjCalnexin mRNA and protein levels were significantly increased in coelomocytes. Knocking down Ajcalnexin with specific siRNAs significantly decreased coelomocyte phagocytosis, reducing the intracellular load of V. splendidus. By contrast, overexpression of AjCalnexin using recombinant AjCalnexin protein (rAjCalnexin) had the opposite effect. Moreover, B-cell receptor-associated protein 31 of A. japonicus (AjBap31) was identified as an interacting partner of AjCalnexin, which positively regulates AjBap31 expression. Silencing Ajbap31 also decreased coelomocyte phagocytosis and inhibited the intracellular load of V. splendidus. Furthermore, phagocytosis levels and intracellular loads of V. splendidus in the coelomocytes of sea cucumbers treated with rAjCalnexin and siAjBap31 were significantly lower than those in rAjCalnexin- and siNC-treated sea cucumbers. Collectively, we provide the first functional evidence that the AjCalnexin-AjBap31 axis plays a crucial role in host immune defence by mediating coelomocyte phagocytosis in A. japonicus during V. splendidus infection. These findings enhance understanding of the regulatory mechanism of phagocytosis in echinoderms and offer theoretical insights for preventing and controlling skin ulcer syndrome in sea cucumbers.
Collapse
Affiliation(s)
- Lei Tong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chunyan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zichang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
4
|
Zeng H, Liu Y, Liu X, Li J, Lu L, Xue C, Wu X, Zhang X, Zheng Z, Lu G. Interplay of α-Synuclein Oligomers and Endoplasmic Reticulum Stress in Parkinson'S Disease: Insights into Cellular Dysfunctions. Inflammation 2024:10.1007/s10753-024-02156-6. [PMID: 39382817 DOI: 10.1007/s10753-024-02156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Oligomeric forms of α-synuclein (α-syn) are critical in the formation of α-synuclein fibrils, exhibiting neurotoxic properties that are pivotal in the pathogenesis of Parkinson's disease (PD). A salient feature of this pathology is the disruption of the protein folding capacity of the endoplasmic reticulum (ER), leading to a perturbation in the ER's protein quality control mechanisms. The accumulation of unfolded or misfolded proteins instigates ER stress. However, the onset of ER stress and the consequent activation of the Unfolded Protein Response (UPR) and Endoplasmic Reticulum-Associated Degradation (ERAD) pathways do not merely culminate in apoptosis when they fail to restore cellular homeostasis. More critically, this condition initiates a cascade of reactions involving ER-related structures and organelles, resulting in multifaceted cellular damage and, potentially, a feedback loop that precipitates neuroinflammation. In this review, we elucidate the interplay between UPR and ERAD, as well as the intricate crosstalk among the ER and other organelles such as mitochondria, lysosomes, and the Golgi apparatus, underscoring their roles in the neurodegenerative process.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ye Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinjie Liu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jianwei Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixuan Lu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Cheng Xue
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiao Wu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinran Zhang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Li H, Zhang X, Xu H, Liu H, Zhang Y, Zhang L, Zhou Y, Zhang Y, Liu J, Jing M, Zhang P, Yang P. Alternation of gene expression in brain-derived exosomes after cerebral ischemic preconditioning in mice. Heliyon 2024; 10:e35936. [PMID: 39224379 PMCID: PMC11367060 DOI: 10.1016/j.heliyon.2024.e35936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Cerebral ischemic preconditioning is a neuroprotective therapy against cerebral ischemia and ischemia-reperfusion injury. This study aims to demonstrate the alternation of gene expression in exosomes from brain tissue of mice after ischemic preconditioning and their potential functions. Methods Ten mice were divided into the sham and the cerebral ischemic preconditioning groups. Their brain tissues were harvested, from which the exosomes were extracted. The characteristics and protective effects of exosomes were evaluated. Whole transcriptome sequencing was used to demonstrate the gene expression discrepancy between the exosomes from the two groups of mice brains. Volcano graphs and heatmaps were used to picture the difference in expression quantity of mRNA, lncRNA, and circRNA. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to demonstrate the functions of differentially expressed RNAs. Results Exosomes were successfully extracted, and those from the cerebral ischemic preconditioning group had better protective effects on cells that received oxygen-glucose deprivation and restoration injury. A total of 306 mRNAs and 374 lncRNAs were significantly upregulated, and 320 mRNAs and 405 lncRNAs were significantly downregulated in the preconditioning group. No circRNAs were differentially expressed between the two groups. GO and KEGG pathway analysis indicated that the functions of differentially expressed RNAs were related to both neural protective and injurious effects. Conclusion The brain-derived exosomes may participate in the neuroprotective effect of cerebral ischemic preconditioning. Thorough research is necessary to investigate exosome functions derived from the ischemic preconditioned brain.
Collapse
Affiliation(s)
- He Li
- Emergency Department, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongxin Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mei Jing
- Emergency Department, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Neurology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Inukai R, Mori K, Maki M, Takahara T, Shibata H. Cytoprotective Role of Autophagy in CDIP1 Expression-Induced Apoptosis in MCF-7 Breast Cancer Cells. Int J Mol Sci 2024; 25:6520. [PMID: 38928226 PMCID: PMC11203953 DOI: 10.3390/ijms25126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Cell death-inducing p53-target protein 1 (CDIP1) is a proapoptotic protein that is normally expressed at low levels and is upregulated by genotoxic and endoplasmic reticulum stresses. CDIP1 has been reported to be localized to endosomes and to interact with several proteins, including B-cell receptor-associated protein 31 (BAP31) and apoptosis-linked gene 2 (ALG-2). However, the cellular and molecular mechanisms underlying CDIP1 expression-induced apoptosis remain unclear. In this study, we first demonstrated that CDIP1 was upregulated after treatment with the anticancer drug adriamycin in human breast cancer MCF-7 cells but was degraded rapidly in the lysosomal pathway. We also demonstrated that treatment with the cyclin-dependent kinase 5 (CDK5) inhibitor roscovitine led to an increase in the electrophoretic mobility of CDIP1. In addition, a phosphomimetic mutation at Ser-32 in CDIP1 resulted in an increase in CDIP1 expression-induced apoptosis. We also found that CDIP1 expression led to the induction of autophagy prior to apoptosis. Treatment of cells expressing CDIP1 with SAR405, an inhibitor of the class III phosphatidylinositol 3-kinase VPS34, caused a reduction in autophagy and promoted apoptosis. Therefore, autophagy is thought to be a defense mechanism against CDIP1 expression-induced apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (M.M.); (T.T.)
| |
Collapse
|
7
|
Jiang X, Zhu B, Li G, Cui S, Yang J, Jiang R, Wang B. p20BAP31 promotes cell apoptosis via interaction with GRP78 and activating the PERK pathway in colorectal cancer. Int J Biol Macromol 2024; 272:132870. [PMID: 38844291 DOI: 10.1016/j.ijbiomac.2024.132870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. Although various treatments for CRC have made progress, they have limitations. Therefore, the search for new effective molecular targets is important for the treatment of CRC. p20BAP31 induces apoptosis through diverse pathways and exhibits greater sensitivity in CRC. Therefore, a comprehensive exploration of the molecular functions of p20BAP31 is important for its application in anti-tumor therapy. In this study, we showed that exogenous p20BAP31 was still located in the ER and significantly activated the unfolded protein response (UPR) through the PERK pathway. The activation of the PERK pathway is prominent in p20BAP31-induced reactive oxygen species (ROS) accumulation and apoptosis. We found, for the first time, that p20BAP31 leads to ER stress and markedly attenuates tumor cell growth in vivo. Importantly, mechanistic investigations indicated that p20BAP31 competitively binds to GRP78 from PERK and causes hyperactivation of the UPR. Furthermore, p20BAP31 upregulates the expression of GRP78 by promoting HSF1 nuclear translocation and enhancing its binding to the GRP78 promoter. These findings reveal p20BAP31 as a regulator of ER stress and a potential target for tumor therapy, and elucidate the underlying mechanism by which p20BAP31 mediates signal transduction between ER and mitochondria.
Collapse
Affiliation(s)
- Xiaohan Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Benzhi Zhu
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Guoxun Li
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Shuyu Cui
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Jiaying Yang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Rui Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| | - Bing Wang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Jiang X, Li G, Zhu B, Yang J, Cui S, Jiang R, Wang B. p20BAP31 Induces Autophagy in Colorectal Cancer Cells by Promoting PERK-Mediated ER Stress. Int J Mol Sci 2024; 25:5101. [PMID: 38791141 PMCID: PMC11121724 DOI: 10.3390/ijms25105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum (ER) membrane protein involved in apoptosis and autophagy by communication with ER and mitochondria. BAP31 is cleaved by caspase-8 and generates a proapoptotic fragment, p20BAP31, which has shown to induce ER stress and apoptosis through multiple pathways. In this study, we found that p20BAP31 significantly increased the agglomeration of LC3 puncta, suggesting the occurrence of autophagy. Therefore, it is meaningful to explore the mechanism of p20BAP31-induced autophagy, and further analyze the relationships among p20BAP31-induced autophagy, ER stress and apoptosis. The data showed that p20BAP31 induced autophagy by inhibition of the PI3K/AKT/mTOR signaling in colorectal cells. ER stress inhibitor 4-PBA and PERK siRNA alleviated p20BAP31-induced autophagy; in turn, autophagy inhibitors 3-MA and CQ did not affect p20BAP31-induced ER stress, suggesting that p20BAP31-induced ER stress is the upstream of autophagy. We also discovered that ROS inhibitor NAC inhibited p20BAP31-induced autophagy. Furthermore, inhibition of autophagy by CQ suppressed p20BAP31-induced apoptosis and ameliorated cell proliferation. Importantly, p20BAP31 markedly reduced the tumor size in vivo, and significantly enhanced the autophagy levels in the tumor tissues. Collectively, p20BAP31 initiates autophagy by inhibiting the PI3K/AKT/mTOR signaling and activating the PERK-mediated ROS accumulation, further promotes p20BAP31-induced apoptosis and ultimately results in cell death. This study comprehensively reveals the potential mechanism of p20BAP31-induced cell death, which may provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Jiang
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China; (X.J.); (G.L.); (B.Z.); (J.Y.); (S.C.)
| | - Bing Wang
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China; (X.J.); (G.L.); (B.Z.); (J.Y.); (S.C.)
| |
Collapse
|
9
|
Jiang Q, Wang H, Qiao Z, Hou Y, Sui Z, Zhao B, Liang Z, Jiang B, Zhang Y, Zhang L. Metal organic layers enabled cell surface engineering coupling biomembrane fusion for dynamic membrane proteome profiling. Chem Sci 2023; 14:11727-11736. [PMID: 37920345 PMCID: PMC10619618 DOI: 10.1039/d3sc03725h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Systematically dissecting the highly dynamic and tightly communicating membrane proteome of living cells is essential for the system-level understanding of fundamental cellular processes and intricate relationship between membrane-bound organelles constructed through membrane traffic. While extensive efforts have been made to enrich membrane proteins, their comprehensive analysis with high selectivity and deep coverage remains a challenge, especially at the living cell state. To address this problem, we developed the cell surface engineering coupling biomembrane fusion method to map the whole membrane proteome from the plasma membrane to various organelle membranes taking advantage of the exquisite interaction between two-dimensional metal-organic layers and phospholipid bilayers on the membrane. This approach, which bypassed conventional biochemical fractionation and ultracentrifugation, facilitated the enrichment of membrane proteins in their native phospholipid bilayer environment, helping to map the membrane proteome with a specificity of 77% and realizing the deep coverage of the HeLa membrane proteome (5087 membrane proteins). Furthermore, membrane N-phosphoproteome was profiled by integrating the N-phosphoproteome analysis strategy, and the dynamic membrane proteome during apoptosis was deciphered in combination with quantitative proteomics. The features of membrane protein N-phosphorylation modifications and many differential proteins during apoptosis associated with mitochondrial dynamics and ER homeostasis were found. The method provided a simple and robust strategy for efficient analysis of membrane proteome, offered a reliable platform for research on membrane-related cell dynamic events and expanded the application of metal-organic layers.
Collapse
Affiliation(s)
- Qianqian Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yutong Hou
- Dalian Medical University Dalian 116044 China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
10
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
11
|
Yan G, Lei W. Role of ELK1 in regulating colorectal cancer progression: miR-31-5p/CDIP1 axis in CRC pathogenesis. PeerJ 2023; 11:e15602. [PMID: 37547727 PMCID: PMC10399563 DOI: 10.7717/peerj.15602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Objective Colorectal cancer (CRC) is a malignant tumor that affects the digestive system. With the increased of modernization of society, the incidence of colorectal cancer has increased throughout the world. As a transcription factor, ELK1 has been widely studied in colorectal cancer. However, there are still many unknown factors regarding its specific mechanism of action.This study explored the role of ELK1 and its downstream pathway in CRC pathogenesis. Methods Based on clinical samples, this study examined miR-31-5p expression in CRC cells and its impact on malignant behaviors (migration, invasion, apoptosis) and autophagy. The promoter sequence of miR-31-5p was obtained from the UCSC database, and ELK1 was identified as its transcription factor. In ELK1-knockdown CRC cells, miR-31-5p was overexpressed, and its response in malignant behaviors and autophagy was analyzed. The target gene CDIP1 was predicted and verified using a dual-luciferase assay. The influence of CDIP1 on malignant behavior in CRC cells was assessed, and CDIP1 siRNA was used as a rescue treatment for miR-31-5p inhibition. The role of ELK1/miR-31-5p in tumor growth was validated in vivo. Results miR-31-5p expression was upregulated in the colorectal cancer tissues and cells. The knockdown of miR-31-5p markedly inhibited cancer cells' malignant behaviors and mediated autophagy. ELK1 was confirmed to bind with the miR-31-5p promoter and enhance miR-31-5p transcription. miR-31-5p was found to bind with the CDIP1 3'UTR and inhibit CDIP1 expression. CDIP1 siRNA partially rescued the effects of miR-31-5p knockdown on cell metastatic ability, autophagy, and apoptosis. Based on the in vivo experiments, results showed that the ELK1/miR-31-5p axis positively regulated tumor growth in nude mice. Conclusion Our findings indicate that ELK1 regulates the progression of colorectal cancer via an miR-31-5p/CDIP1 axis, and the ELK1/miR-31-5p/CDIP1 axis could be a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Guoqiang Yan
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wang Lei
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y, Jiang J, Zhang J. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death Dis 2023; 14:356. [PMID: 37296105 PMCID: PMC10256786 DOI: 10.1038/s41419-023-05868-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
B cell receptor associated protein 31 (BAP31) is closely associated with tumor progression, while the role and mechanism of BAP31 in gastric cancer (GC) remains unknown. This study explored that BAP31 was upregulated in GC tissues and high expression indicated poor survival of GC patients. BAP31 knockdown inhibited cell growth and induced G1/S arrest. Moreover, BAP31 attenuation increased the lipid peroxidation level of the membrane and facilitated cellular ferroptosis. Mechanistically, BAP31 regulated cell proliferation and ferroptosis by directly binding to VDAC1 and affected VDAC1 oligomerization and polyubiquitination. HNF4A was bound to BAP31 at the promoter and increased its transcription. Furthermore, knockdown of BAP31 inclined to make GC cells vulnerable to 5-FU and ferroptosis inducer, erastin, in vivo and in vitro. Our work suggests that BAP31 may serve as prognostic factor for gastric cancer and act as potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tengfei Liu
- Department of Oncology, Ren ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenjing Qian
- Operating Room, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Overmeyer C, Jorgensen K, Vohra BPS. The Translocase of the Outer Mitochondrial Membrane (TOM40) is required for mitochondrial dynamics and neuronal integrity in Dorsal Root Ganglion Neurons. Mol Cell Neurosci 2023; 125:103853. [PMID: 37100265 DOI: 10.1016/j.mcn.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kylie Jorgensen
- Department of Biology, William Jewell College Liberty, MO 64068
| | | |
Collapse
|
14
|
Li G, Jiang X, Liang X, Hou Y, Zang J, Zhu B, Jia C, Niu K, Liu X, Xu X, Jiang R, Wang B. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model. Life Sci 2023; 313:121310. [PMID: 36549351 DOI: 10.1016/j.lfs.2022.121310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism. MAIN METHODS Our study used the shBAP31 endothelium cell lines and endothelial-specific BAP31 conditional knockdown mice constructed via Cre/loxP system. Hematoxylin and eosin staining was used to observe the histopathological manifestations. The adhesion of neutrophils to vascular wall was examined by intravital microscopy. The nuclear translocation of NF-κB was observed by immunofluorescence staining assay. Flow cytometric, real-time polymerase chain reaction and Western blot assay were performed to determine the expression of CAMs and key proteins in MyD88/NF-κB-related signaling pathway. Luciferase reporter and chromatin immunoprecipitation assay were analyzed for transcriptional activity of ICAM-1 and VCAM-1. KEY FINDINGS Mechanistic investigations indicated that endothelium-specific BAP31 depletion dramatically reduced the capacity of neutrophils adherence to endothelial cells (ECs), which was mainly attributed to the significant downregulation of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.05) expression. Interestingly, BAP31 knockdown apparently deactivated MyD88/TRAF6-mediated TAK1/NF-κB and PI3K/Akt signaling cascades, resulting in the inhibition of NF-κB activation and nuclear translocation. SIGNIFICANCE Our data furnished convincing evidence that BAP31 deficiency performs a mitigative effect on ALI by decreasing neutrophils-ECs adhesion. These findings identified BAP31 as a promising protein for regulating the pathogenesis process of ALI.
Collapse
Affiliation(s)
- Guoxun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaohan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jingnan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Benzhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoli Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
15
|
Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol 2022; 221:e202205135. [PMID: 36108241 PMCID: PMC9481738 DOI: 10.1083/jcb.202205135] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Machihara K, Kageyama S, Oki S, Makino H, Sasaki M, Iwahashi H, Namba T. Lotus germ extract rejuvenates aging fibroblasts via restoration of disrupted proteostasis by the induction of autophagy. Aging (Albany NY) 2022; 14:7662-7691. [PMID: 36170016 PMCID: PMC9596218 DOI: 10.18632/aging.204303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
Cell aging attenuates cellular functions, resulting in time-dependent disruption of cellular homeostasis, which maintains the functions of proteins and organelles. Mitochondria are important organelles responsible for cellular energy production and various metabolic processes, and their dysfunction is strongly related to the progression of cellular aging. Here we demonstrate that disruption of proteostasis attenuates mitochondrial function before the induction of DNA damage signaling by proliferative and replicative cellular aging. We found that lotus (Nelumbo nucifera Gaertn.) germ extract clears abnormal proteins and agglutinates via autophagy-mediated restoration of mitochondrial function and cellular aging phenotypes. Pharmacological analyses revealed that DAPK1 expression was suppressed in aging cells, and lotus germ extract upregulated DAPK1 expression by stimulating the acetylation of histones and then induced autophagy by activating the DAPK1-Beclin1 signaling pathway. Furthermore, treatment of aging fibroblasts with lotus germ extract stimulated collagen production and increased contractile ability in three-dimensional cell culture. Thus, time-dependent accumulation of abnormal proteins and agglutinates suppressed mitochondrial function in cells in the early stage of aging, and reactivation of mitochondrial function by restoring proteostasis rejuvenated aging cells. Lotus germ extract rejuvenates aging fibroblasts via the DAPK1-Beclin1 pathway-induced autophagy to clear abnormal proteins and agglutinates.
Collapse
Affiliation(s)
- Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Shoma Oki
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Hiroki Makino
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Masamichi Sasaki
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Fukuyama City, Hiroshima 729-3102, Japan
| | - Hiroyasu Iwahashi
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Fukuyama City, Hiroshima 729-3102, Japan
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi 783-8505, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| |
Collapse
|
17
|
Gong M, Wang J, Gao W, Liu Q, Chen J, Wang G, Zhang Q. Establishment of an endoplasmic reticulum stress-related signature predicting outcomes of gastric adenocarcinoma patients. Front Genet 2022; 13:944105. [PMID: 36147499 PMCID: PMC9486073 DOI: 10.3389/fgene.2022.944105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Gastric adenocarcinoma (GAC) is a common clinical malignancy with a poor prognosis. Endoplasmic reticulum (ER) stress plays important roles in the progression, immune filtration, and chemoresistance of cancers. However, whether ER stress-related gene signatures can predict the prognosis of GAC patients remains unknown. Methods: GAC patient RNA-seq data downloaded from The Cancer Genome Atlas and gastric cancer patient microarray data from Gene Expression Omnibus datasets were analyzed using LASSO regression to construct an ER stress-related signature. Survival analysis, time-dependent receiver operating characteristic (ROC) curves, and Cox regression analysis were used to verify the efficacy of the signature. Immune infiltration, somatic mutation, immune checkpoint, and copy number variation analyses were utilized to explore the potential biological significance of the signature. Results: In the present study, eight ER stress-related gene signatures were constructed. Survival analysis showed that patients in the high-risk group had a significantly worse prognosis. The area under the time-dependent ROC curves was 0.65, 0.70, and 0.63 at 1, 3, and 5 years, respectively, in the training cohort. Cox regression analysis showed that the signature is an independent prognostic factor. To predict GAC patients’ prognosis meeting individual needs, a nomogram was constructed with good accuracy. In addition, gene set enrichment and immune infiltration analyses showed that the ER stress-related signature is associated with cancer-related pathway activation and an immunosuppressive tumor microenvironment in GAC. Conclusion: In the current study, we established an ER stress-related signature. This prognostic signature has good predictive power and could facilitate the development of novel strategies for the clinical treatment of GAC.
Collapse
Affiliation(s)
- Meiyuan Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingtao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenfang Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxing Chen
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guojun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Guojun Wang, ; Qi Zhang,
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Guojun Wang, ; Qi Zhang,
| |
Collapse
|
18
|
Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7086807. [PMID: 36052160 PMCID: PMC9427242 DOI: 10.1155/2022/7086807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
Collapse
|
19
|
Carreras-Sureda A, Kroemer G, Cardenas JC, Hetz C. Balancing energy and protein homeostasis at ER-mitochondria contact sites. Sci Signal 2022; 15:eabm7524. [DOI: 10.1126/scisignal.abm7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva, Switzerland
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Julio Cesar Cardenas
- Center for Integrative Biology, Mayor University, 7510041 Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, 70086 Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, 70086 Santiago, Chile
| |
Collapse
|
20
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Han L, Shi J, Zhao L, Deng J, Li Y, Zhao H, Wang H, Yan Y, Zou F. BCAP31 is involved in modulating colorectal cancer cell proliferation via the Emerin/β-catenin axis. Exp Cell Res 2022; 418:113265. [PMID: 35716785 DOI: 10.1016/j.yexcr.2022.113265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood. In the present study, BCAP31 expression and its correlation with the clinical stage were analyzed based on TCGA database. We demonstrated that loss of BCAP31 suppressed CRC cell proliferation in vitro and tumor growth in vivo. Mechanistically, we demonstrated that Emerin was an interaction partner and downstream molecule of BCAP31. Knockdown of BCAP31 promoted the nuclear envelope localization of Emerin, leading to a reduction of β-catenin accumulation in the nucleus, which resulted in downregulation of Wnt/β-catenin downstream target genes, including c-Myc, cyclin D1, Survivin, and Mcl-1. Moreover, downregulation of Emerin partially restored the BCAP31 depletion-mediated β-catenin protein level and tumor suppressive effects in CRC cells.Our data highlights the pivotal role of BCAP31 depletion in inhibiting cell proliferation in CRC cells, and mechanistically via Emerin/β-catenin signaling, which may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Liping Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Junyang Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lili Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huani Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fangdong Zou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
22
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
23
|
Luan Y, Luan Y, Yuan RX, Feng Q, Chen X, Yang Y. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
Affiliation(s)
- Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui-Xia Yuan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Xing Chen
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
24
|
Liang H, Dong J, Cheng Z, Li Q, Feng D, Ling B. B-cell receptor-associated protein 31 promotes migration and invasion in ovarian cancer cells. Exp Ther Med 2021; 22:858. [PMID: 34178131 DOI: 10.3892/etm.2021.10290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
B cell receptor associated protein 31 (BAP31) is a member of the B cell receptor that functions as a transporter for numerous types of newly formed proteins from the endoplasmic reticulum to the Golgi apparatus. Previous studies found that that BAP31 serves an important role in the pathogenesis of malignancy but its specific effect on ovarian cancer is not clear. The present study aimed to investigate whether BAP31 affects ovarian cancer and its underlying mechanism. In the present study, ovarian cancer tissue, human ovarian normal epithelial cell line IOSE80 and five ovarian cancer cell lines (A2780, Hey-T30, COC1, SKOV3 and OVCAR3) underwent reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8, Transwell and co-immunoprecipitation (Co-IP) assay and transcriptome sequencing. Previous studies showed that compared with healthy tissues, the expression level of BAP31 protein was found to be significantly higher in various types of cancer tissues, implying that BAP31 may serve an important role in the pathogenesis of cancer. The present study found that BAP31 expression was upregulated in five ovarian cancer cell lines and ovarian cancer tissue, such that BAP31 knockdown [performed using two short hairpin (sh)RNA plasmids] decreased proliferation, invasion and migration. In addition, BAP31 knockdown was found to downregulate the expression of N-cadherin and upregulate the expression of E-cadherin on transcriptional level by controlling the nuclear aggregation of TWIST1, a transcriptional regulator of N-cadherin and E-cadherin. There was no interaction between BAP31 and E-cadherin or N-cadherin using Co-IP detection, while BAP31, E-cadherin and N-cadherin interacted with TWIST1 protein. E-cadherin and N-cadherin expression levels recovered when TWIST1 was overexpressed in the shBCAP31 cells. These results suggest that BAP31 can regulate the migration and invasion of ovarian cancer cells through the epithelial-mesenchymal transition pathway at the transcriptional level, which may be beneficial for the identification of potentially novel targets for ovarian cancer therapy.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jiqiao Dong
- GeneX Health Life Co., Ltd., Beijing 100195, P.R. China
| | - Ziyan Cheng
- The Experimental High School Attached To Beijing Normal University, Beijing 100032, P.R. China
| | - Qian Li
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dingqing Feng
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Bin Ling
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
25
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
26
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca 2+ signaling in cancer progression: Fueling the monster. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
Collapse
Affiliation(s)
- Galdo Bustos
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Andrea Puebla
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.
| | - J Cesar Cardenas
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
27
|
Yang X, Wang X, Lei L, Sun L, Jiao A, Zhu K, Xie T, Liu H, Zhang X, Su Y, Zhang C, Shi L, Zhang D, Zheng H, Zhang J, Liu X, Wang X, Zhou X, Sun C, Zhang B. Age-Related Gene Alteration in Naïve and Memory T cells Using Precise Age-Tracking Model. Front Cell Dev Biol 2021; 8:624380. [PMID: 33644036 PMCID: PMC7905051 DOI: 10.3389/fcell.2020.624380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
In aged individuals, age-related changes in immune cells, especially T cell deficiency, are associated with an increased incidence of infection, tumor, and autoimmune disease, as well as an impaired response to vaccination. However, the features of gene expression levels in aged T cells are still unknown. Our previous study successfully tracked aged T cells generated from one wave of developing thymocytes of young age by a lineage-specific and inducible Cre-controlled reporter (TCRδCreERR26ZsGreen mouse strain). In this study, we utilized this model and genome-wide transcriptomic analysis to examine changes in gene expression in aged naïve and memory T cell populations during the aging process. We identified profound gene alterations in aged CD4 and CD8 T cells. Both aged CD4+ and CD8+ naïve T cells showed significantly decreased organelle function. Importantly, genes associated with lymphocyte activation and function demonstrated a significant increase in aged memory T cells, accompanied by upregulation of immunosuppressive markers and immune checkpoints, revealing an abnormal T cell function in aged cells. Furthermore, aging significantly affects T cell survival and death signaling. While aged CD4 memory T cells exhibited pro-apoptotic gene signatures, aged CD8 memory T cells expressed anti-apoptotic genes. Thus, the transcriptional analysis of gene expression and signaling pathways in aged T cell subsets shed light on our understanding of altered immune function with aging, which will have great potential for clinical interventions for older adults.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lina Sun
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.,Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiahui Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobin Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
28
|
Inukai R, Mori K, Kuwata K, Suzuki C, Maki M, Takahara T, Shibata H. The Novel ALG-2 Target Protein CDIP1 Promotes Cell Death by Interacting with ESCRT-I and VAPA/B. Int J Mol Sci 2021; 22:ijms22031175. [PMID: 33503978 PMCID: PMC7865452 DOI: 10.3390/ijms22031175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.
Collapse
Affiliation(s)
- Ryuta Inukai
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Kanako Mori
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Chihiro Suzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; (R.I.); (K.M.); (C.S.); (M.M.); (T.T.)
- Correspondence:
| |
Collapse
|
29
|
Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, Hintze M, Pu Q, Yuan Z, Lv L, Chen H, Lai B, Feng S, Qi X, Cai D. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Am J Cancer Res 2021; 11:268-291. [PMID: 33391474 PMCID: PMC7681094 DOI: 10.7150/thno.47021] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Promotion of cardiac angiogenesis in ischemic myocardium is a critical strategy for repairing and regenerating the myocardium after myocardial infarction (MI). Currently, effective methods to aid in the survival of endothelial cells, to avoid apoptosis in ischemic myocardium and to achieve long-term cardiac angiogenesis are still being pursued. Here, we investigated whether cardiac telocyte (CT)-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells to facilitate cardiac angiogenesis during MI. Methods: CT exosomes were isolated from CT conditioned medium, and their miRNA profile was characterized by small RNA sequencing. A rat model of left anterior descending coronary artery ligation (LAD)-mediated MI was assessed with histology for infarct size and fibrosis, immunostaining for angiogenesis and cell apoptosis and echocardiography to evaluate the therapeutic effects. Cardiac microvascular endothelial cells (CMECs) and the LAD-MI model treated with CT exosomes or CT exosomal miRNA-21-5p in vitro and in vivo were assessed with cellular and molecular techniques to demonstrate the underlying mechanism. Results: CTs exert therapeutic effects on MI via the potent paracrine effects of CT exosomes to facilitate the inhibition of apoptosis and survival of CMECs and promote cardiac angiogenesis. A novel mechanism of CTs is revealed, in which CT-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells in the pathophysiological myocardium. CT exosomal miRNA-21-5p targeted and silenced the cell death inducing p53 target 1 (Cdip1) gene and thus down-regulated the activated caspase-3, which then inhibited the apoptosis of recipient endothelial cells under ischemic and hypoxic conditions, facilitating angiogenesis and regeneration following MI. Conclusions: The present study is the first to show that CTs inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted Cdip1 silencing to improve angiogenesis in myocardial infarction. It is believed that these novel findings and the discovery of cellular and molecular mechanisms will provide new opportunities to tailor novel cardiac cell therapies and cell-free therapies for the functional and structural regeneration of the injured myocardium.
Collapse
|
30
|
Zhang X, Jiang D, Yang S, Sun Y, Liu Y, Shi J, Hu C, Pan J, Liu T, Jin B, Yang K. BAP31 Promotes Tumor Cell Proliferation by Stabilizing SERPINE2 in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:607906. [PMID: 33363167 PMCID: PMC7759511 DOI: 10.3389/fcell.2020.607906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingyu Pan
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Tianyue Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Silencing of Long Noncoding RNA Zinc Finger Antisense 1 Protects Against Hypoxia/Reoxygenation-induced Injury in HL-1 Cells Through Targeting the miR-761/Cell Death Inducing p53 Target 1 Axis. J Cardiovasc Pharmacol 2020; 76:564-573. [DOI: 10.1097/fjc.0000000000000896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Gao P, Yang W, Sun L. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3120539. [PMID: 32952849 PMCID: PMC7487091 DOI: 10.1155/2020/3120539] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for interorganelle communication in eukaryotic cells and play multifunctional roles in various biological pathways. A defect in ER-mitochondria signaling or MAMs dysfunction has pleiotropic effects on a variety of intracellular events, which results in disturbances of the mitochondrial quality control system, Ca2+ dyshomeostasis, apoptosis, ER stress, and inflammasome activation, which all contribute to the onset and progression of kidney disease. Here, we review the structure and molecular compositions of MAMs as well as the experimental methods used to study these interorganellar contact sites. We will specifically summarize the downstream signaling pathways regulated by MAMs, mainly focusing on mitochondrial quality control, oxidative stress, ER-mitochondria Ca2+ crosstalk, apoptosis, inflammasome activation, and ER stress. Finally, we will discuss how alterations in MAMs integrity contribute to the pathogenesis of kidney disease and offer directions for future research.
Collapse
Affiliation(s)
- Peng Gao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Kidney Disease & Blood Purification, in Hunan Province, Changsha, Hunan, 410011, China
- Institute of Nephrology, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
33
|
Lai CH, Barik P, Hsieh DJY, Day CH, Ho TJ, Chen RJ, Kuo WW, Padma VV, Shibu MA, Huang CY. Inhibition of cell death-inducing p53 target 1 through miR-210-3p overexpression attenuates reactive oxygen species and apoptosis in rat adipose-derived stem cells challenged with Angiotensin II. Biochem Biophys Res Commun 2020; 532:347-354. [PMID: 32888650 DOI: 10.1016/j.bbrc.2020.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/31/2022]
Abstract
Hypoxic preconditioning is a well-known strategy to improve the survival and therapeutic potential of stem cells against various challenges including hemodynamic and neurohormonal modulations. However, the mechanism involved in hypoxia-induced benefits on stem cells is still ambiguous. In pathological hypertension, the elevation of the neurohormonal mediator Angiotensin II (Ang II) causes the adverse effects to stem cells. In this study, we investigate the effect and mechanism of action of short term hypoxia-inducible miRNA in suppressing the effects of AngII on stem cells. According to the results obtained, Ang II affects the normal cell cycle and triggers apoptosis in rADSCs with a corresponding increase in the expression of cell death-inducing p53 target 1 (CDIP1) protein. However, the short term hypoxia-inducible miRNA-miR-210-3p was found to target CDIP1 and reduce their levels upon the Ang II challenge. CDIP1 induces stress-mediated apoptosis involving the extrinsic apoptosis pathway via Bid/Bax/cleaved caspase3 activation. Administration of mimic miR-210-3p targets CDIP1 mRNA by binding to the 3' UTR region as confirmed by dual luciferase assay and also reduced Ang II-induced mitochondrial ROS accumulation as analyzed by MitoSOX staining. Moreover, the present study demonstrates the mechanism of miR-210-3p in the regulation of Ang II-induced CDIP1-associated apoptotic pathway in rADSCs.
Collapse
Affiliation(s)
- Chin-Hu Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, 41152, Taiwan; National Defense Medical Center, Taipei, Taiwan
| | - Parthasarathi Barik
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Cecilia Husan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002, Taiwan; School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
34
|
Xu L, Wang X, Tong C. Endoplasmic Reticulum-Mitochondria Contact Sites and Neurodegeneration. Front Cell Dev Biol 2020; 8:428. [PMID: 32626703 PMCID: PMC7314981 DOI: 10.3389/fcell.2020.00428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are dynamic contact regions with a distance of 10-30 nm between the endoplasmic reticulum and mitochondria. Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, including lipid transfer, calcium homeostasis, autophagy, and mitochondrial dynamics. The dysfunction of ERMCS is closely associated with various neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. In this review, we will summarize the current knowledge of the components and organization of ERMCSs, the methods for monitoring ERMCSs, and the physiological functions of ERMCSs in different model systems. Additionally, we will emphasize the current understanding of the malfunction of ERMCSs and their potential roles in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingna Xu
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi Wang
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Tanman Ü, Yangın S, Cansaran-Duman D. Determination of Dysregulated miRNA Expression Levels by qRT-PCR after the Application of Usnic Acid to Breast Cancer. Anticancer Agents Med Chem 2020; 20:548-558. [DOI: 10.2174/1871520619666190923163552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
Background and Purpose:
Breast cancer still remains to be one of the most threatening cancer types
in women. Recent studies have allowed scientists to better investigate the potential use of natural compounds in
the treatment of breast cancers. Usnic acid is a secondary metabolite extracted from lichen species and has many
biological activities. The response of microRNAs regulated by drug molecules may provide useful diagnostic
and prognostic biomarkers, as well as potential therapeutics for breast cancers. Although the aberrant expression
of microRNAs was observed after drug treatment, the regulatory mechanisms remain partially known. Micro
RNAs (miRNAs) play an important role in gene regulation at the post-transcriptional level.
Methods:
In this study, we used quantitative Real-Time PCR (qRT-PCR) technology to demonstrate that usnic
acid significantly changes the expression profile of miRNAs.
Results:
Eleven miRNAs were significantly and differentially expressed in breast cancer cells after treatment
with usnic acid. Three miRNAs were up-regulated, while eight were down-regulated in usnic acid treated cells.
Target prediction and GO analysis revealed many target genes and their related pathways that are potentially
regulated by usnic acid regulated differentially expressed miRNAs. We found that usnic acid treatment caused
significant changes in the expression of hsa-miR-5006-5p, hsa-miR-892c-3p, hsa-miR-4430, hsa-miR-5194,
hsa-miR-3198, hsa-miR-3171, hsa-miR-933 and hsa-miR-185-3p in breast cancer cells.
Conclusions:
Usnic acid response miRNAs might play important regulatory roles in the tumorigenesis and
development of breast cancer, and they could serve as prognostic predictors for breast cancer patients.
Collapse
Affiliation(s)
- Ümmügülsüm Tanman
- Ankara University, Biotechnology Institute, System Biotechnology Advance Research Unit, Tandogan, Ankara, Turkey
| | - Sevcan Yangın
- Ankara University, Biotechnology Institute, System Biotechnology Advance Research Unit, Tandogan, Ankara, Turkey
| | - Demet Cansaran-Duman
- Ankara University, Biotechnology Institute, System Biotechnology Advance Research Unit, Tandogan, Ankara, Turkey
| |
Collapse
|
36
|
Machihara K, Namba T. Kuanoniamine C stimulates bortezomib-induced cell death via suppression of glucose-regulated protein 78 in osteosarcoma. Biochem Biophys Res Commun 2020; 527:289-296. [PMID: 32446382 DOI: 10.1016/j.bbrc.2020.04.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is the most frequent and intractable malignancy of the bone in children and young adults. Surgical operation requires extensive excision of the cancer tissue and neighboring normal tissues. In addition, anticancer drugs and radiation therapy are thought to be almost ineffective. Glucose-regulated protein 78 (GRP78), a cell-protective endoplasmic reticulum (ER) chaperone protein, is one of the most promising anticancer targets for osteosarcoma. Here, by analyzing the molecular mechanisms of kuanoniamine C, we report that kuanoniamine C suppresses GRP78 expression via GRP78 mRNA degradation in an ER stress response-independent manner. Interestingly, kuanoniamine C-induced cell death and downregulation of GRP78 expression was regulated by p53 signaling. Moreover, co-treatment with bortezomib, which is a newly identified anticancer drug for osteosarcoma, and kuanoniamine C suppressed GRP78 protein expression, which is essential for the stimulation of bortezomib-induced cell death. These results suggest that co-treatment with bortezomib and kuanoniamine C is a novel therapeutic strategy for the treatment of osteosarcoma that enhances bortezomib-dependent cell death by the downregulation of GRP78, and this combination selectively targets the major cell population of osteosarcoma, which expresses wild-type p53.
Collapse
Affiliation(s)
- Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi, 783-8505, Japan; Graduate School of Medicine, Kochi University, Nankoku, 783-8502, Japan
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi, 783-8505, Japan; Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|
37
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
BCAP31, a cancer/testis antigen-like protein, can act as a probe for non-small-cell lung cancer metastasis. Sci Rep 2020; 10:4025. [PMID: 32132574 PMCID: PMC7055246 DOI: 10.1038/s41598-020-60905-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents most of lung cancers, is often diagnosed at an advanced metastatic stage. Therefore, exploring the mechanisms underlying metastasis is key to understanding the development of NSCLC. The expression of B cell receptor-associated protein 31 (BCAP31), calreticulin, glucose-regulated protein 78, and glucose-regulated protein 94 were analyzed using immunohistochemical staining of 360 NSCLC patients. It resulted that the high-level expression of the four proteins, but particularly BCAP31, predicted inferior overall survival. What’s more, BCAP31 was closely associated with histological grade and p53 status, which was verified by seven cohorts of NSCLC transcript microarray datasets. Then, three NSCLC cell lines were transfected to observe behavior changes BCAP31 caused, we found the fluctuation of BCAP31 significantly influenced the migration, invasion of NSCLC cells. To identify the pathway utilized by BCAP31, Gene Set Enrichment Analysis was firstly performed, showing Akt/m-TOR/p70S6K pathway was the significant one, which was verified by immunofluorescence, kinase phosphorylation and cellular behavioral observations. Finally, the data of label-free mass spectroscopy implied that BCAP31 plays a role in a fundamental biological process. This study provides the first demonstration of BCAP31 as a novel prognostic factor related to metastasis and suggests a new therapeutic strategy for NSCLC.
Collapse
|
39
|
Liu X, Jiao K, Jia CC, Li GX, Yuan Q, Xu JK, Hou Y, Wang B. BAP31 regulates IRAK1-dependent neuroinflammation in microglia. J Neuroinflammation 2019; 16:281. [PMID: 31883536 PMCID: PMC6935200 DOI: 10.1186/s12974-019-1661-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia, the mononuclear immune cells of the central nervous system (CNS), are essential for the maintenance of CNS homeostasis. BAP31, a resident and ubiquitously expressed protein of the endoplasmic reticulum, serves as a sorting factor for its client proteins, mediating the subsequent export, retention, and degradation or survival. Recently, BAP31 has been defined as a regulatory molecule in the CNS, but the function of BAP31 in microglia has yet to be determined. In the present study, we investigated whether BAP31 is involved in the inflammatory response of microglia. METHODS This study used the BV2 cell line and BAP31 conditional knockdown mice generated via the Cre/LoxP system. A BAP31 knockdown experiment was performed to elucidate the role of BAP31 in the endogenous inflammatory cytokine production by microglial BV2 cells. A mouse model of lipopolysaccharide (LPS)-induced cognitive impairment was established to evaluate the neuroprotective effect of BAP31 against neuroinflammation-induced memory deficits. Behavioral alterations were assessed with the open field test (OFT), Y maze, and Morris water maze. The activation of microglia in the hippocampus of mice was observed by immunohistochemistry. Western blot, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and reverse transcription quantitative real-time polymerase chain reaction (RT-PCR) were used to clarify the mechanisms. RESULTS BAP31 deficiency upregulates LPS-induced proinflammatory cytokines in BV2 cells and mice by upregulating the protein level of IRAK1, which in turn increases the translocation and transcriptional activity of NF-κB p65 and c-Jun, and moreover, knockdown of IRAK1 or use of an IRAK1 inhibitor reverses these functions. In the cognitive impairment animal model, the BAP31 knockdown mice displayed increased severity in memory deficiency accompanied by an increased expression of proinflammatory factors in the hippocampus. CONCLUSIONS These findings indicate that BAP31 may modulate inflammatory cytokines and cognitive impairment induced by neuroinflammation through IRAK1, which demonstrates that BAP31 plays an essential role in microglial inflammation and prevention of memory deficits caused by neuroinflammation.
Collapse
Affiliation(s)
- Xia Liu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Kun Jiao
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Cong-Cong Jia
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Guo-Xun Li
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Qing Yuan
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Ji-Kai Xu
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China
| | - Yue Hou
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China.
| | - Bing Wang
- College of Life and Health Science, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning, 110819, People's Republic of China.
| |
Collapse
|
40
|
Worfolk JC, Bell S, Simpson LD, Carne NA, Francis SL, Engelbertsen V, Brown AP, Walker J, Viswanath YK, Benham AM. Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC. Antioxid Redox Signal 2019; 31:1117-1132. [PMID: 31436131 DOI: 10.1089/ars.2018.7647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins. Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue. Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients. Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jack C Worfolk
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Steven Bell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Lee D Simpson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Naomi A Carne
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Sarah L Francis
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vibecke Engelbertsen
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julie Walker
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Adam M Benham
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
41
|
BAP31 Inhibits Cell Adaptation to ER Stress Conditions, Negatively Regulating Autophagy Induction by Interaction with STX17. Cells 2019; 8:cells8111350. [PMID: 31671609 PMCID: PMC6912744 DOI: 10.3390/cells8111350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer cells modulate their metabolism to proliferate and survive under the metabolic stress condition, which is known as endoplasmic reticulum (ER) stress. Therefore, cancer cells should suppress ER stress-mediated cell death and induce autophagy—which recycles metabolites to provide energy and new macromolecules. In this study, we demonstrate that the ER membrane protein BAP31 acts to suppress adaptation to ER stress conditions, induce cell death, and suppress autophagy by forming a BAP31-STX17 protein complex. The loss of BAP31 stimulates tumor growth in metabolic stress conditions in vivo and enhances invasion activity. Therefore, BAP31 stimulates cell death and inhibits autophagy, and it can be considered a novel tumor suppressor factor that acts by preventing ER stress adaptation.
Collapse
|
42
|
Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, Zhu H. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J Cell Physiol 2019; 235:2847-2856. [PMID: 31535369 DOI: 10.1002/jcp.29190] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Septic cardiomyopathy is associated with mitochondrial damage and endoplasmic reticulum (ER) dysfunction. However, the upstream mediator of mitochondrial injury and ER stress has not been identified and thus little drug is available to treat septic cardiomyopathy. Here, we explored the role of B-cell receptor-associated protein 31 (BAP31) in septic cardiomyopathy and figure out whether melatonin could attenuate sepsis-mediated myocardial depression via modulating BAP31. Lipopolysaccharide (LPS) was used to establish the septic cardiomyopathy model. Pathway analysis was performed via western blot, quantitative polymerase chain reaction and immunofluorescence. Mitochondrial function and ER stress were detected via enzyme-linked immunosorbent assay, western blot, and immunofluorescence. After exposure to LPS, cardiac function was reduced due to excessive inflammation response and extensive cardiomyocyte death. Mechanistically, melatonin treatment could dose-dependently improve cardiomyocyte viability via preserving mitochondrial function and reducing ER stress. Further, we found that BAP31 transcription was repressed by LPS whereas melatonin could restore BAP31 expression; this effect was dependent on the MAPK-ERK pathway. Inhibition of the ERK pathway and/or knockdown of BAP31 could attenuate the beneficial effects of melatonin on mitochondrial function and ER homeostasis under LPS stress. Altogether, our results indicate that ERK-BAP31 pathway could be used as a critical mediator for mitochondrial function and ER homeostasis in sepsis-related myocardial injury. Melatonin could stabilize BAP31 via the ERK pathway and thus contribute to the preservation of cardiac function in septic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhang
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Leili Wang
- Center of Project Management, Department of Aerospace Systems, Strategic Support Force, China
| | - Wei Xie
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hao Zhou
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, Wyoming
| | - Pingjun Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hang Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| |
Collapse
|
43
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
44
|
Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, Fukuda T, Matsushita N, Ishido S, Iwawaki T, Uehara T, Inatome R, Yanagi S. MITOL prevents ER stress-induced apoptosis by IRE1α ubiquitylation at ER-mitochondria contact sites. EMBO J 2019; 38:e100999. [PMID: 31368599 PMCID: PMC6669929 DOI: 10.15252/embj.2018100999] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.
Collapse
Affiliation(s)
- Keisuke Takeda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Shun Nagashima
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Isshin Shiiba
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Aoi Uda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Takeshi Tokuyama
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Naoki Ito
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Toshifumi Fukuda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Nobuko Matsushita
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Satoshi Ishido
- Department of MicrobiologyHyogo College of MedicineNishinomiyaJapan
| | - Takao Iwawaki
- Medical Research InstituteKanazawa Medical UniversityIshikawaJapan
| | - Takashi Uehara
- Department of Medicinal PharmacologyGraduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ryoko Inatome
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Shigeru Yanagi
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| |
Collapse
|
45
|
Namba T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. SCIENCE ADVANCES 2019; 5:eaaw1386. [PMID: 31206022 PMCID: PMC6561740 DOI: 10.1126/sciadv.aaw1386] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/10/2019] [Indexed: 05/26/2023]
Abstract
The endoplasmic reticulum (ER) is composed of large membrane-bound compartments, and its membrane subdomain appears to be in close contact with mitochondria via ER-mitochondria contact sites. Here, I demonstrate that the ER membrane protein, BAP31, acts as a key factor in mitochondrial homeostasis to stimulate the constitution of the mitochondrial complex I by forming an ER-mitochondria bridging protein complex. Within this complex, BAP31 interacts with mitochondria-localized proteins, including Tom40, to stimulate the translocation of NDUFS4, the component of complex I from the cytosol to the mitochondria. Disruption of the BAP31-Tom40 complex inhibits mitochondrial complex I activity and oxygen consumption by the decreased NDUFS4 localization to the mitochondria. Thus, the BAP31-Tom40 ER-mitochondria bridging complex mediates the regulation of mitochondrial function and plays a role as a previously unidentified stress sensor, representing a mechanism for the establishment of ER-mitochondria communication via contact sites between these organelles.
Collapse
Affiliation(s)
- Takushi Namba
- Science Research Center, Kochi University, Nankoku 783-8505, Japan
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan.
| |
Collapse
|
46
|
Identification of biosynthetic genes for the β-carboline alkaloid kitasetaline and production of the fluorinated derivatives by heterologous expression. ACTA ACUST UNITED AC 2019; 46:739-750. [DOI: 10.1007/s10295-019-02151-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Abstract
β-Carboline alkaloids exhibit a broad spectrum of pharmacological and biological activities and are widely distributed in nature. Genetic information on the biosynthetic mechanism of β-carboline alkaloids has not been accumulated in bacteria, because there are only a few reports on the microbial β-carboline compounds. We previously isolated kitasetaline, a mercapturic acid derivative of a β-carboline compound, from the genetically modified Kitasatospora setae strain and found a plausible biosynthetic gene cluster for kitasetaline. Here, we identified and characterized three kitasetaline (ksl) biosynthetic genes for the formation of the β-carboline core structure and a gene encoding mycothiol-S-conjugate amidase for the modification of the N-acetylcysteine moiety by using heterologous expression. The proposed model of kitasetaline biosynthesis shows unique enzymatic systems for β-carboline alkaloids. In addition, feeding fluorotryptophan to the heterologous Streptomyces hosts expressing the ksl genes led to the generation of unnatural β-carboline alkaloids exerting novel/potentiated bioactivities.
Collapse
|
47
|
Carroll WL, Evensen NA. Targeting a major hub of cell fate decisions - the mitochondrial-associated membrane. Haematologica 2019; 104:419-421. [PMID: 30819833 DOI: 10.3324/haematol.2018.208355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- William L Carroll
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Nikki A Evensen
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| |
Collapse
|
48
|
Romero-Garcia S, Prado-Garcia H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol 2019; 54:1155-1167. [PMID: 30720054 DOI: 10.3892/ijo.2019.4696] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
In addition to their role in providing cellular energy, mitochondria fulfill a key function in cellular calcium management. The present review provides an integrative view of cellular and mitochondrial calcium homeostasis, and discusses how calcium regulates mitochondrial dynamics and functionality, thus affecting various cellular processes. Calcium crosstalk exists in the domain created between the endoplasmic reticulum and mitochondria, which is known as the mitochondria‑associated membrane (MAM), and controls cellular homeostasis. Calcium signaling participates in numerous biochemical and cellular processes, where calcium concentration, temporality and durability are part of a regulated, finely tuned interplay in non‑transformed cells. In addition, cancer cells modify their MAMs, which consequently affects calcium homeostasis to support mesenchymal transformation, migration, invasiveness, metastasis and autophagy. Alterations in calcium homeostasis may also support resistance to apoptosis, which is a serious problem facing current chemotherapeutic treatments. Notably, mitochondrial dynamics are also affected by mitochondrial calcium concentration to promote cancer survival responses. Dysregulated levels of mitochondrial calcium, alongside other signals, promote mitoflash generation in tumor cells, and an increased frequency of mitoflashes may induce epithelial‑to‑mesenchymal transition. Therefore, cancer cells remodel their calcium balance through numerous mechanisms that support their survival and growth.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
49
|
Natural modulators of the hallmarks of immunogenic cell death. Biochem Pharmacol 2019; 162:55-70. [PMID: 30615863 DOI: 10.1016/j.bcp.2018.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Natural compounds act as immunoadjuvants as their therapeutic effects trigger cancer stress response and release of damage-associated molecular patterns (DAMPs). These reactions occur through an increase in the immunogenicity of cancer cells that undergo stress followed by immunogenic cell death (ICD). These processes result in a chemotherapeutic response with a potent immune-mediating reaction. Natural compounds that induce ICD may function as an interesting approach in converting cancer into its own vaccine. However, multiple parameters determine whether a compound can act as an ICD inducer, including the nature of the inducer, the premortem stress pathways, the cell death pathways, the intrinsic antigenicity of the cell, and the potency and availability of an immune cell response. Thus, the identification of hallmarks of ICD is important in determining the prognostic biomarkers for new therapeutic approaches and combination treatments.
Collapse
|
50
|
Huang Q, Lan T, Lu J, Zhang H, Zhang D, Lou T, Xu P, Ren J, Zhao D, Sun L, Li X, Wang J. DiDang Tang Inhibits Endoplasmic Reticulum Stress-Mediated Apoptosis Induced by Oxygen Glucose Deprivation and Intracerebral Hemorrhage Through Blockade of the GRP78-IRE1/PERK Pathways. Front Pharmacol 2018; 9:1423. [PMID: 30564125 PMCID: PMC6288198 DOI: 10.3389/fphar.2018.01423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
DiDang Tang (DDT), a Chinese traditional medicine formula, contains 4 Chinese traditional medicine substances, has been widely used to treat intracerebral hemorrhage (ICH) patients. However, the molecular mechanisms of DDT for protecting neurons from oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress and apoptosis after ICH still remains elusive. In this study, high-performance liquid chromatography fingerprint analysis was performed to learn the features of the chemical compositions of DDT. OGD-induced ER stress, Ca2+ overload, and mitochondrial apoptosis were investigated in nerve growth factor -induced PC12, primary neuronal cells, and ICH rats to evaluate the protective effect of DDT. We found that DDT treatment protected neurons against OGD-induced damage and apoptosis by increasing cell viability and reducing the release of lactate dehydrogenase. DDT decreased OGD-induced Ca2+ overload and ER stress through the blockade of the glucose-regulated protein 78 (GRP78)- inositol-requiring protein 1α (IRE1)/ protein kinase RNA-like ER kinase (PERK) pathways and also inhibited apoptosis by decreasing mitochondrial damage. Moreover, we observed similar findings when we studied DDT for inhibition of ER stress in a rat model of ICH. In addition, our experiments further confirmed the neuroprotective potential of DDT against tunicamycin (TM)-induced neural damage. Our in vitro and in vivo results indicated that the neuroprotective effect of DDT against ER stress damage and apoptosis occurred mainly by blocking the GPR78-IRE1/PERK pathways. Taken together, it provides reliable experimental evidence and explains the molecular mechanism of DDT for the treatment of patients with ICH.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Tianye Lan
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Scientific Research Office, Changchun University of Chinese Medicine, Changchun, China
| | - Tingting Lou
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Xu
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Jixiang Ren
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|