1
|
Lei X, Sun E, Ru X, Quan Y, Chen X, Zhang Q, Lu Y, Huang Q, Chen Y, Li W, Feng H, Yang Y, Hu R. Acetylation of α-tubulin restores endothelial cell injury and blood-brain barrier disruption after intracerebral hemorrhage in mice. Exp Mol Med 2025:10.1038/s12276-025-01454-9. [PMID: 40335634 DOI: 10.1038/s12276-025-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025] Open
Abstract
Damage to endothelial cells (ECs) is a key factor in blood-brain barrier (BBB) disruption after intracerebral hemorrhage (ICH). While microtubules are essential for EC structure, their role in BBB injury remains unclear. Here we investigated the role of acetylated α-tubulin (α-Ac-Tub) in BBB integration after ICH. Using an autologous blood injection model in the striatum, we showed that the expression of α-Ac-Tub and MEC17, an α-tubulin acetyltransferase, significantly decreased along the vessels around the hematoma after ICH. Conditional MEC17 knockout in ECs further reduced α-Ac-Tub levels and exacerbated BBB leakage, brain edema, hematoma expansion, inflammation and motor dysfunction. Conversely, selective α-Ac-Tub upregulation in ECs via intravenous delivery of AAV-BI30-MEC17-GFP alleviated BBB dysfunction and improved motor recovery. Similarly, the HDAC6 inhibitor tubastatin A enhanced α-Ac-Tub levels, mitigating BBB damage and neurological deficits. Mechanistically, α-Ac-Tub deficiency in ECs reduced tight junction proteins (ZO-1 and Claudin5) and increased F-actin stress fibers through RhoA activation. Together, our findings highlighted α-Ac-Tub as a therapeutic target for restoring BBB function and reducing brain injury after ICH.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Eryi Sun
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulian Quan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Pathology, Public Health Medical Center, Chongqing, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yougling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
- Department of Neurosurgery, The 904th Hospital of PLA, Anhui Medical University, Wuxi, China.
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Lee H, Kang J, Lee SH, Lee D, Chung CH, Lee J. Neuroprotective role of Hippo signaling by microtubule stability control in Caenorhabditis elegans. eLife 2025; 13:RP102001. [PMID: 40178516 PMCID: PMC11968107 DOI: 10.7554/elife.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.
Collapse
Affiliation(s)
- Hanee Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Junsu Kang
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Sang-Hee Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Dowoon Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Christine H Chung
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Junho Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Lu YM, Yan S, Ti SC, Zheng C. Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 2024; 13:RP94583. [PMID: 38949652 PMCID: PMC11216746 DOI: 10.7554/elife.94583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of β-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.
Collapse
Affiliation(s)
- Yu-Ming Lu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| | - Shan Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| |
Collapse
|
5
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Zhang Y, Huang P, Cao M, Chen Y, Zhao X, He X, Xu L. ATAT1 deficiency enhances microglia/macrophage-mediated erythrophagocytosis and hematoma absorption following intracerebral hemorrhage. Neural Regen Res 2024; 19:1072-1077. [PMID: 37862210 PMCID: PMC10749593 DOI: 10.4103/1673-5374.382984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 10/22/2023] Open
Abstract
MIcroglia/macrophage-mediated erythrophagocytosis plays a crucial role in hematoma clearance after intracerebral hemorrhage. Dynamic cytoskeletal changes accompany phagocytosis. However, whether and how these changes are associated with microglia/macrophage-mediated erythrophagocytosis remain unclear. In this study, we investigated the function of acetylated α-tubulin, a stabilized microtubule form, in microglia/macrophage erythrophagocytosis after intracerebral hemorrhage both in vitro and in vivo. We first assessed the function of acetylated α-tubulin in erythrophagocytosis using primary DiO GFP-labeled red blood cells co-cultured with the BV2 microglia or RAW264.7 macrophage cell lines. Acetylated α-tubulin expression was significantly decreased in BV2 and RAW264.7 cells during erythrophagocytosis. Moreover, silencing α-tubulin acetyltransferase 1 (ATAT1), a newly discovered α-tubulin acetyltransferase, decreased Ac-α-tub levels and enhanced the erythrophagocytosis by BV2 and RAW264.7 cells. Consistent with these findings, in ATAT1-/- mice, we observed increased ionized calcium binding adapter molecule 1 (Iba1) and Perls-positive microglia/macrophage phagocytes of red blood cells in peri-hematoma and reduced hematoma volume in mice with intracerebral hemorrhage. Additionally, knocking out ATAT1 alleviated neuronal apoptosis and pro-inflammatory cytokines and increased anti-inflammatory cytokines around the hematoma, ultimately improving neurological recovery of mice after intracerebral hemorrhage. These findings suggest that ATAT1 deficiency accelerates erythrophagocytosis by microglia/macrophages and hematoma absorption after intracerebral hemorrhage. These results provide novel insights into the mechanisms of hematoma clearance and suggest ATAT1 as a potential target for the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Cao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Chen
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinhu Zhao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuzhi He
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
8
|
Feng T, Du H, Yang C, Wang Y, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 2024; 147:62. [PMID: 38526799 PMCID: PMC11924916 DOI: 10.1007/s00401-024-02702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Ya Wang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Feng T, Du H, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566707. [PMID: 38014238 PMCID: PMC10680640 DOI: 10.1101/2023.11.11.566707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Puri D, Sharma S, Samaddar S, Ravivarma S, Banerjee S, Ghosh-Roy A. Muscleblind-1 interacts with tubulin mRNAs to regulate the microtubule cytoskeleton in C. elegans mechanosensory neurons. PLoS Genet 2023; 19:e1010885. [PMID: 37603562 PMCID: PMC10470942 DOI: 10.1371/journal.pgen.1010885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (β tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Dharmendra Puri
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sunanda Sharma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sarbani Samaddar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sruthy Ravivarma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sourav Banerjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
12
|
Wang W, Sherry T, Cheng X, Fan Q, Cornell R, Liu J, Xiao Z, Pocock R. An intestinal sphingolipid confers intergenerational neuroprotection. Nat Cell Biol 2023; 25:1196-1207. [PMID: 37537365 PMCID: PMC10415181 DOI: 10.1038/s41556-023-01195-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
In animals, maternal diet and environment can influence the health of offspring. Whether and how maternal dietary choice impacts the nervous system across multiple generations is not well understood. Here we show that feeding Caenorhabditis elegans with ursolic acid, a natural plant product, improves axon transport and reduces adult-onset axon fragility intergenerationally. Ursolic acid provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate, a bioactive sphingolipid. Intestine-to-oocyte sphingosine-1-phosphate transfer is required for intergenerational neuroprotection and is dependent on the RME-2 lipoprotein yolk receptor. Sphingosine-1-phosphate acts intergenerationally by upregulating the transcription of the acid ceramidase-1 (asah-1) gene in the intestine. Spatial regulation of sphingolipid metabolism is critical, as inappropriate asah-1 expression in neurons causes developmental axon outgrowth defects. Our results show that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system. The ability of specific lipid metabolites to act as messengers between generations may have broad implications for dietary choice during reproduction.
Collapse
Affiliation(s)
- Wenyue Wang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Qi Fan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhicheng Xiao
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
14
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
15
|
Zhao P, Mondal S, Martin C, DuPlissis A, Chizari S, Ma KY, Maiya R, Messing RO, Jiang N, Ben-Yakar A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat Methods 2023; 20:590-599. [PMID: 36928074 DOI: 10.1038/s41592-023-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/26/2023] [Indexed: 03/18/2023]
Abstract
Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.
Collapse
Affiliation(s)
- Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chris Martin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew DuPlissis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Chizari
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Niu X, Mao CX, Wang S, Wang X, Zhang Y, Hu J, Bi R, Liu Z, Shan J. α-Tubulin acetylation at lysine 40 regulates dendritic arborization and larval locomotion by promoting microtubule stability in Drosophila. PLoS One 2023; 18:e0280573. [PMID: 36827311 PMCID: PMC9955671 DOI: 10.1371/journal.pone.0280573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Posttranslational modification of tubulin increases the dynamic complexity and functional diversity of microtubules. Acetylation of α-tubulin at Lys-40 is a highly conserved posttranslational modification that has been shown to improve the flexibility and resilience of microtubules. Here we studied the in vivo functions of α-tubulin acetylation by knocking-out Atat, the Drosophila α-tubulin acetyltransferase, and by mutating Lys-40 to Arg in α1-tubulin. We found a reduction in the dendritic arborization of larval class I dendritic arborization (da) neurons in both mutants. The dendritic developmental defects in atat mutants could be reversed by enhancing the stability of microtubules either through knocking down the microtubule severing protein Katanin 60 or through overexpressing tubulin-specific chaperone E, suggesting that α-tubulin deacetylation impairsed dendritic morphology by decreasing the stability of microtubules. Using time-lapse recordings, we found that atat and α1-tubulinK40R mutations dramatically increased the number of dendritic protrusions that were likely to be immature dendritic precursors. Finally, we showed that both Atat and α-tubulin acetylation were required in class I da neurons to control larval locomotion. These findings add novel insight into the current knowledge of the role of α-tubulin acetylation in regulating neuronal development and functions.
Collapse
Affiliation(s)
- Xiaoxiao Niu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Shan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Xiongxiong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Youyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
- * E-mail: (SJ); (ZL)
| | - Jin Shan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
- * E-mail: (SJ); (ZL)
| |
Collapse
|
17
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
18
|
Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 2022; 12:14003. [PMID: 35977998 PMCID: PMC9385713 DOI: 10.1038/s41598-022-18333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and β-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.
Collapse
|
19
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
20
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
21
|
Vijayaraghavan T, Dhananjay S, Neumann B. DYN-1/dynamin regulates microtubule dynamics after axon injury. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000549. [PMID: 35622508 PMCID: PMC9005196 DOI: 10.17912/micropub.biology.000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022]
Abstract
Microtubules play essential roles in the regeneration of axons after injury, but precisely how their growth is regulated remains to be resolved. Here, we studied the influence of the
C. elegans
DYN-1/dynamin GTPase protein on microtubule growth after axon injury. Before injury, loss of DYN-1 had no effect on microtubule dynamics compared to wild-type animals. However, significant increases in microtubule dynamics were observed after axotomy in animals lacking DYN-1. Moreover, a greater proportion of these animals displayed microtubule growth in the retrograde direction compared to wild-type controls. These data establish a role for DYN-1 in regulating microtubule dynamics after injury in
C. elegans
.
Collapse
Affiliation(s)
- Tarika Vijayaraghavan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samiksha Dhananjay
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
,
Correspondence to: Brent Neumann (
)
| |
Collapse
|
22
|
Lu YM, Zheng C. The Expression and Function of Tubulin Isotypes in Caenorhabditis elegans. Front Cell Dev Biol 2022; 10:860065. [PMID: 35399537 PMCID: PMC8987236 DOI: 10.3389/fcell.2022.860065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules, made from the polymerization of the highly conserved α/β-tubulin heterodimers, serve as important components of the cytoskeleton in all eukaryotic cells. The existence of multiple tubulin isotypes in metazoan genomes and a dazzling variety of tubulin posttranslational modifications (PTMs) prompted the “tubulin code” hypothesis, which proposed that microtubule structure and functions are determined by the tubulin composition and PTMs. Evidence for the tubulin code has emerged from studies in several organisms with the characterization of specific tubulins for their expression and functions. The studies of tubulin PTMs are accelerated by the discovery of the enzymes that add or remove the PTMs. In tubulin research, the use of simple organisms, such as Caenorhabditis elegans, has been instrumental for understanding the expression and functional specialization of tubulin isotypes and the effects of their PTMs. In this review, we summarize the current understanding of the expression patterns and cellular functions of the nine α-tubulin and six β-tubulin isotypes. Expression studies are greatly facilitated by the CRISPR/Cas9-mediated endogenous GFP knock-in reporters and the organism-wide single cell transcriptomic studies. Meanwhile, functional studies benefit from the ease of genetic manipulation and precise gene replacement in C. elegans. These studies identified both ubiquitously expressed tubulin isotypes and tissue-specific isotypes. The isotypes showed functional redundancy, as well as functional specificity, which is likely caused by the subtle differences in their amino acid sequences. Many of these differences concentrate at the C-terminal tails that are subjected to several PTMs. Indeed, tubulin PTM, such as polyglutamylation, is shown to modulate microtubule organization and properties in both ciliated and non-ciliated neurons. Overall, studies from C. elegans support the distinct expression and function patterns of tubulin isotypes and the importance of their PTMs and offer the promise of cracking the tubulin code at the whole-genome and the whole-organism level.
Collapse
|
23
|
Bonacossa-Pereira I, Coakley S, Hilliard MA. Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain. Cell Rep 2022; 38:110501. [PMID: 35263583 DOI: 10.1016/j.celrep.2022.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
Collapse
Affiliation(s)
- Igor Bonacossa-Pereira
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Saunders HAJ, Johnson-Schlitz DM, Jenkins BV, Volkert PJ, Yang SZ, Wildonger J. Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Curr Biol 2022; 32:614-630.e5. [PMID: 35081332 PMCID: PMC8843987 DOI: 10.1016/j.cub.2021.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 02/09/2023]
Abstract
Microtubules are essential to neuron shape and function. Acetylation of tubulin has the potential to directly tune the behavior and function of microtubules in cells. Although proteomic studies have identified several acetylation sites in α-tubulin, the effects of acetylation at these sites remains largely unknown. This includes the highly conserved residue lysine 394 (K394), which is located at the αβ-tubulin dimer interface. Using a fly model, we show that α-tubulin K394 is acetylated in the nervous system and is an essential residue. We found that an acetylation-blocking mutation in endogenous α-tubulin, K394R, perturbs the synaptic morphogenesis of motoneurons and reduces microtubule stability. Intriguingly, the K394R mutation has opposite effects on the growth of two functionally and morphologically distinct motoneurons, revealing neuron-type-specific responses when microtubule stability is altered. Eliminating the deacetylase HDAC6 increases K394 acetylation, and the over-expression of HDAC6 reduces microtubule stability similar to the K394R mutant. Thus, our findings implicate α-tubulin K394 and its acetylation in the regulation of microtubule stability and suggest that HDAC6 regulates K394 acetylation during synaptic morphogenesis.
Collapse
Affiliation(s)
- Harriet A. J. Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Dena M. Johnson-Schlitz
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Brian V. Jenkins
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Peter J. Volkert
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Biochemistry Scholars Program, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | - Sihui Z. Yang
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Cellular & Molecular Biology Graduate Program, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA,Current address: Pediatrics Department and Biological Sciences Division, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Lead and author for correspondence:
| |
Collapse
|
25
|
Yun T, Ko HR, Jo DG, Park KW, Cho SW, Kim J, Ahn JY. Inhibitor of DNA binding 2 (Id2) mediates microtubule polymerization in the brain by regulating αK40 acetylation of α-tubulin. Cell Death Discov 2021; 7:257. [PMID: 34548475 PMCID: PMC8455547 DOI: 10.1038/s41420-021-00652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Acetylation of α-tubulin lysine 40 (αK40) contributes to microtubule (MT) stability and is essential for neuronal development and function, whereas excessive αK40 deacetylation is observed in neurodegenerative disorders including Alzheimer’s disease (AD). Here we identified inhibitor of DNA binding 2 (Id2) as a novel MT-binding partner that interacts with α-tubulin and enhances αK40 acetylation, leading to MT polymerization in the neurons. Commensurate with our finding that the low levels of Id2 expression along with a reduced αK40 acetylation in the postmortem human AD patient and 5X-FAD, AD model mice brain, Id2 upregulation in the hippocampus of 5X-FAD, which exhibit high levels of Sirt2 expression, increased αK40 acetylation and reconstitutes axon growth. Hence our study suggests that Id2 is critical for maintaining MT stability during neural development and the potential of Id2 to counteract pathogenic Sirt2 activity in AD.
Collapse
Affiliation(s)
- Taegwan Yun
- Department of Molecular Cell Biology, University School of Medicine, 16419, Suwon, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, University School of Medicine, 16419, Suwon, Korea.,Single Cell Network Research Center Sungkyunkwan, University School of Medicine, 16419, Suwon, Korea
| | - Dong-Gyu Jo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, 06351, Seoul, Korea.,School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 16419, Suwon, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, 05505, Seoul, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, University School of Medicine, 16419, Suwon, Korea. .,Single Cell Network Research Center Sungkyunkwan, University School of Medicine, 16419, Suwon, Korea. .,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, 06351, Seoul, Korea. .,Samsung Biomedical Research Institute, Samsung Medical Center, 06351, Seoul, Korea.
| |
Collapse
|
26
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Cappelletti G, Calogero AM, Rolando C. Microtubule acetylation: A reading key to neural physiology and degeneration. Neurosci Lett 2021; 755:135900. [PMID: 33878428 DOI: 10.1016/j.neulet.2021.135900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Neurons are the perfect example of cells where microtubules are essential to achieve an extraordinary degree of morphological and functional complexity. Different tubulin isoforms and associated post-translational modifications are the basis to establish the diversity in biochemical and biophysical properties of microtubules including their stability and the control of intracellular transport. Acetylation is one of the key tubulin modifications and it can influence important structural, mechanical and biological traits of the microtubule network. Here, we present the emerging evidence for the essential role of microtubule acetylation in the control of neuronal and glial function in healthy and degenerative conditions. In particular, we discuss the pathogenic role of tubulin acetylation in neurodegenerative disorders and focus on Parkinson's disease. We also provide a critical analysis about the possibility to target tubulin acetylation as a novel therapeutic intervention for neuroprotective strategies.
Collapse
Affiliation(s)
- Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| | | | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
29
|
Coombes CE, Saunders HAJ, Mannava AG, Johnson-Schlitz DM, Reid TA, Parmar S, McClellan M, Yan C, Rogers SL, Parrish JZ, Wagenbach M, Wordeman L, Wildonger J, Gardner MK. Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons. Curr Biol 2020; 30:610-623.e5. [PMID: 31928876 DOI: 10.1016/j.cub.2019.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery. We hypothesized that α-tubulin acetyltransferase (αTAT), which both stabilizes long-lived microtubules against mechanical stress via acetylation and has been implicated in promoting microtubule dynamics, could play a role in this process. Using the Drosophila neuromuscular junction as a model, we found that non-enzymatic dαTAT activity limits the growth of synaptic boutons by affecting dynamic, but not stable, microtubules. Loss of dαTAT results in the formation of ectopic boutons. These ectopic boutons can be similarly suppressed by resupplying enzyme-inactive dαTAT or by treatment with a low concentration of the microtubule-targeting agent vinblastine, which acts to suppress microtubule dynamics. Biophysical reconstitution experiments revealed that non-enzymatic αTAT1 activity destabilizes dynamic microtubules but does not substantially impact the stability of long-lived microtubules. Further, during microtubule growth, non-enzymatic αTAT1 activity results in increasingly extended tip structures, consistent with an increased rate of acceleration of catastrophe frequency with microtubule age, perhaps via tip structure remodeling. Through these mechanisms, αTAT enriches for stable microtubules at the expense of dynamic ones. We propose that the specific suppression of dynamic microtubules by non-enzymatic αTAT activity regulates the remodeling of microtubule networks during synaptic bouton development.
Collapse
Affiliation(s)
- Courtney E Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harriet A J Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anirudh G Mannava
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Connie Yan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Stephen L Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael Wagenbach
- Department of Physiology and Biophysics, The University of Washington, Seattle, WA 98195, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, The University of Washington, Seattle, WA 98195, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Coakley S, Ritchie FK, Galbraith KM, Hilliard MA. Epidermal control of axonal attachment via β-spectrin and the GTPase-activating protein TBC-10 prevents axonal degeneration. Nat Commun 2020; 11:133. [PMID: 31919407 PMCID: PMC6952388 DOI: 10.1038/s41467-019-13795-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022] Open
Abstract
Neurons are subjected to strain due to body movement and their location within organs and tissues. However, how they withstand these forces over the lifetime of an organism is still poorly understood. Here, focusing on touch receptor neuron-epidermis interactions using Caenorhabditis elegans as a model system, we show that UNC-70/β-spectrin and TBC-10, a conserved GTPase-activating protein, function non-cell-autonomously within the epidermis to dynamically maintain attachment of the axon. We reveal that, in response to strain, UNC-70/β-spectrin and TBC-10 stabilize trans-epidermal hemidesmosome attachment structures which otherwise become lost, causing axonal breakage and degeneration. Furthermore, we show that TBC-10 regulates axonal attachment and maintenance by inactivating RAB-35, and reveal functional conservation of these molecules with their vertebrate orthologs. Finally, we demonstrate that β-spectrin functions in this context non-cell-autonomously. We propose a model in which mechanically resistant epidermal attachment structures are maintained by UNC-70/β-spectrin and TBC-10 during movement, preventing axonal detachment and degeneration.
Collapse
Affiliation(s)
- Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kate M Galbraith
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
31
|
Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I, Le Bail R, Shilian M, Freeman S, Magiera MM, Jijumon AS, Krusy N, Malgrange B, Brone B, Dietrich P, Dragatsis I, Janke C, Saudou F, Weil M, Nguyen L. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. SCIENCE ADVANCES 2019; 5:eaax2705. [PMID: 31897425 PMCID: PMC6920029 DOI: 10.1126/sciadv.aax2705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Microtubules are polymerized dimers of α- and β-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.
Collapse
Affiliation(s)
- Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Giovanni Morelli
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Loïc Broix
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Chiara Scaramuzzino
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Silvia Turchetto
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Romain Le Bail
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Stephen Freeman
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Maria M. Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - A. S. Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Nathalie Krusy
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Bert Brone
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Paula Dietrich
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
32
|
Dan Wei, Gao N, Li L, Zhu JX, Diao L, Huang J, Han QJ, Wang S, Xue H, Wang Q, Wu QF, Zhang X, Bao L. α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons. Cereb Cortex 2019; 28:3332-3346. [PMID: 28968698 DOI: 10.1093/cercor/bhx225] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Indexed: 11/14/2022] Open
Abstract
Axon growth is tightly controlled to establish functional neural circuits during brain development. Despite the belief that cytoskeletal dynamics is critical for cell morphology, how microtubule acetylation regulates axon development in the mammalian central nervous system remains unclear. Here, we report that loss of α-tubulin acetylation by ablation of MEC-17 in mice predisposes neurons to axon overbranching and overgrowth. Introduction of MEC-17F183A lacking α-tubulin acetyltransferase activity into MEC-17-deficient neurons failed to rescue axon defects. Moreover, loss of α-tubulin acetylation led to increases in microtubule debundling, microtubule invasion into filopodia and growth cones, and microtubule plus-end dynamics along the axon. Taxol application dampened microtubule hyperdynamics and suppressed axon overbranching and overgrowth in MEC-17-deficient neurons. Thus, our study reveals that α-tubulin acetylation acts as a brake for axon overbranching and overgrowth by dampening microtubule dynamics, providing insight into the role of microtubule post-translational modifications in regulating neural development.
Collapse
Affiliation(s)
- Dan Wei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nannan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Xiang Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiansong Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qing-Jian Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaogang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huaqing Xue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
33
|
Berry KP, Lu QR. Chromatin modification and epigenetic control in functional nerve regeneration. Semin Cell Dev Biol 2019; 97:74-83. [PMID: 31301357 DOI: 10.1016/j.semcdb.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration. For instance, the regulatory mechanisms required for oligodendrocyte lineage progression could potentially play fundamental roles in myelin repair. In recent years, epigenetic chromatin modifications have been implicated in CNS myelination and functional nerve restoration. The pro-regenerative transcriptional program is likely silenced or repressed in adult neural cells including neurons and myelinating cells in the central and peripheral nervous systems limiting the capacity for repair after injury. In this review, we will discuss the roles of epigenetic mechanisms, including histone modifications, chromatin remodeling, and DNA methylation, in the maintenance and establishment of the myelination program during normal oligodendrocyte development and regeneration. We also discuss how these epigenetic processes impact myelination and axonal regeneration, and facilitate the improvement of current preclinical therapeutics for functional nerve regeneration in neurodegenerative disorders or after injury.
Collapse
Affiliation(s)
- Kalen P Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
34
|
Yang WH, Chen CY, Wang KL, Kwok HL, Stern A, Lo SJ, Yang HC. Reflex and habituation behavior of Caenorhabditis elegans assessed by a mechanical vibration system and image analysis. J Neurosci Methods 2019; 328:108415. [PMID: 31470028 DOI: 10.1016/j.jneumeth.2019.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The nematode Caenorhabditis elegans is an emerging invertebrate animal model for investigating neuronal functions in behavioral assays. C. elegans mechanosensation was characterized by the use of a constant mechanical stimulation transmitter followed by quantitative imaging. NEW METHOD C. elegans reflex and habituation behaviors were characterized by mechanical vibration followed by image analysis. A custom-designed system consists of an aluminum alloy Petri dish holder frame coupled with a mechanical vibration buzzer delivering adjustable pulsed vibration to an agar plate. The basal and evoked movements of C. elegans were recorded by a microscopic digital camera followed by quantitative analysis using microscopic imaging software. RESULTS Application of the platform in C. elegans was demonstrated with three proof-of-concept experiments: (1) Evaluation of the reflex response stimulated by tapping and mechanical vibration with a mechano-sensation defective mutant. (2) Comparison of the reflex response stimulated by mechanical vibration between wild type and aging mutants. (3) Assessment of the efficacy of the mechanical vibration system on long-term memory for habituation. COMPARISON WITH EXISTING METHODS Conventional C. elegans mechanosensation techniques depend on stimulation either by manually touching a single animal or tapping the Petri dish followed by scoring via visual observation from the examiner. The mechanical vibration method has greater capacity compared to conventional methods which are labor-intensive, have low throughput and lack quantifiable parameters. CONCLUSIONS The mechanical vibration system followed by image analysis is a convenient and integrated platform for investigatingC. elegans reflex and habituation in aging and neural behavioral assays.
Collapse
Affiliation(s)
- Wan-Hua Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Chia-Yi Chen
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Hong Luen Kwok
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Arnold Stern
- New York University School of Medicine, New York, USA
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. Int J Mol Sci 2019; 20:E2287. [PMID: 31075828 PMCID: PMC6540147 DOI: 10.3390/ijms20092287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| |
Collapse
|
36
|
Kelliher MT, Saunders HA, Wildonger J. Microtubule control of functional architecture in neurons. Curr Opin Neurobiol 2019; 57:39-45. [PMID: 30738328 DOI: 10.1016/j.conb.2019.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/20/2023]
Abstract
Neurons are exquisitely polarized cells whose structure and function relies on microtubules. Microtubules in signal-receiving dendrites and signal-sending axons differ in their organization and microtubule-associated proteins. These differences, coupled with microtubule post-translational modifications, combine to locally regulate intracellular transport, morphology, and function. Recent discoveries provide new insight into the regulation of non-centrosomal microtubule arrays in neurons, the relationship between microtubule acetylation and mechanosensation, and the spatial patterning of microtubules that regulates motor activity and cargo delivery in axons and dendrites. Together, these new studies bring us closer to understanding how microtubule function is locally tuned to match the specialized tasks associated with signal reception and transmission.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet Aj Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Borgen MA, Giles AC, Wang D, Grill B. Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. eLife 2019; 8:44040. [PMID: 30652969 PMCID: PMC6355192 DOI: 10.7554/elife.44040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Synapse formation is comprised of target cell recognition, synapse assembly, and synapse maintenance. Maintaining established synaptic connections is essential for generating functional circuitry and synapse instability is a hallmark of neurodegenerative disease. While many molecules impact synapse formation generally, we know little about molecules that affect synapse maintenance in vivo. Using genetics and developmental time course analysis in C.elegans, we show that the α-tubulin acetyltransferase ATAT-2 and the signaling hub RPM-1 are required presynaptically to maintain stable synapses. Importantly, the enzymatic acetyltransferase activity of ATAT-2 is required for synapse maintenance. Our analysis revealed that RPM-1 is a hub in a genetic network composed of ATAT-2, PTRN-1 and DLK-1. In this network, ATAT-2 functions independent of the DLK-1 MAPK and likely acts downstream of RPM-1. Thus, our study reveals an important role for tubulin acetyltransferase activity in presynaptic maintenance, which occurs via the RPM-1/ATAT-2 pathway.
Collapse
Affiliation(s)
- Melissa A Borgen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
38
|
Lee CC, Cheng YC, Chang CY, Lin CM, Chang JY. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep 2018; 8:17477. [PMID: 30504808 PMCID: PMC6269487 DOI: 10.1038/s41598-018-35392-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
MEC-17, a newly identified alpha-tubulin-N-acetyltransferase 1, serves as the major α-tubulin acetyltransferase to promote α-tubulin acetylation in vitro and in vivo. Alteration of α-tubulin acetylation may be involved in morphology regulation, cell migration, and tumour metastasis. However, MEC-17’s role in cell physiology and its effect on epithelial–mesenchymal transition (EMT) and cell polarity remain elusive. In the present study, we characterized the overexpressed or downregulated cell models through gene targeting as MEC-17 gain- or loss-of-function. Overexpression of MEC-17 enhanced the cell spreading area, suppressed pseudopods formation in a three-dimensional (3D) culture system, and inhibited cancer cell migratory and invasive ability and tumour metastasis by orthotopic lung cancer animal model. Furthermore, morphological change and migration inhibition of cancer cells were accompanied by EMT repression, Golgi reorientation, and polarity disruption caused by alteration of cdc42 activity via a decrease in Rho-GAP, ARHGAP21. By contrast, a reduction in endogenous MEC-17 accelerated the pseudopods formation and EMT, and facilitated cell migration and invasion. These results demonstrated the crucial role of MEC-17 in the modulation of intrinsic cell morphogenesis, migration, and invasive function through regulation of EMT and cell polarity.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan
| | - Yun-Ching Cheng
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Changhua, ROC, Taiwan
| | - Chi-Yen Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan
| | - Chi-Min Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan
| | - Jang-Yang Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan. .,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan.
| |
Collapse
|
39
|
Yang Y, Zhang K, Zhong J, Wang J, Yu Z, Lei X, Chen X, Quan Y, Xian J, Chen Y, Liu X, Feng H, Tan L. Stably maintained microtubules protect dopamine neurons and alleviate depression-like behavior after intracerebral hemorrhage. Sci Rep 2018; 8:12647. [PMID: 30140021 PMCID: PMC6107628 DOI: 10.1038/s41598-018-31056-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022] Open
Abstract
Mesolimbic dopamine (DA) system lesion plays a key role in the pathophysiology of depression, and our previous study demonstrated that reduced microtubule (MT) stability aggravated nigrostriatal pathway impairment after intracerebral hemorrhage (ICH). This study aimed to further investigate the occurrence regularity of depression-like behavior after ICH and determine whether maintaining MT stabilization could protect DA neurons in ventral tegmental area (VTA) and alleviate depression-like behavior after ICH. An intrastriatal injection of 20 μl of autologous blood or MT depolymerization reagent nocodazole (Noco) was used to mimic the pathology of ICH model in mice. The concentration of DA, number of DA neurons and acetylated α-tubulin (a marker for stable MT) in VTA were checked, and depression-related behavior tests were performed after ICH. A MT-stabilizing agent, epothilone B (EpoB), was administered to explore the effects of MT stabilization on DA neurons and depression-like behavior after ICH. The results showed that obvious depression-like behavior occurred at 7, 14, and 28 days (P < 0.01) after ICH. These time-points were related to significant decreases in the concentration of DA (P < 0.01) and number of DA neurons (P < 0.01) in VTA. Moreover, The decrease of acetylated α-tubulin expression after ICH and Noco injection contributed to DA neurons' impairment in VTA, and Noco injecton also aggravate ICH-induced depression-like behaviors and DA neurons' injury. Furthermore, EpoB treatment significantly ameliorated ICH and Noco-induced depression-like behaviors (P < 0.05) and increased the concentration of DA (P < 0.05) and number of DA neurons (P < 0.05) in VTA by increasing the level of acetylated α-tubulin. The results indicate that EpoB can protect DA neurons by enhancing MT stability, and alleviate post-ICH depressive behaviors. This MT-targeted therapeutic strategy shows promise as a bench-to-bedside translational method for treating depression after ICH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Kaiyuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Jun Zhong
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Zhongyuan Yu
- Battalion 3 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Yulian Quan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China.
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 29 Gaotanyan Street, 400038, China.
| |
Collapse
|
40
|
The Heterochronic Gene lin-14 Controls Axonal Degeneration in C. elegans Neurons. Cell Rep 2018; 20:2955-2965. [PMID: 28930688 DOI: 10.1016/j.celrep.2017.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
The disproportionate length of an axon makes its structural and functional maintenance a major task for a neuron. The heterochronic gene lin-14 has previously been implicated in regulating the timing of key developmental events in the nematode C. elegans. Here, we report that LIN-14 is critical for maintaining neuronal integrity. Animals lacking lin-14 display axonal degeneration and guidance errors in both sensory and motor neurons. We demonstrate that LIN-14 functions both cell autonomously within the neuron and non-cell autonomously in the surrounding tissue, and we show that interaction between the axon and its surrounding tissue is essential for the preservation of axonal structure. Furthermore, we demonstrate that lin-14 expression is only required during a short period early in development in order to promote axonal maintenance throughout the animal's life. Our results identify a crucial role for LIN-14 in preventing axonal degeneration and in maintaining correct interaction between an axon and its surrounding tissue.
Collapse
|
41
|
α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein. eNeuro 2018; 5:eN-NWR-0240-17. [PMID: 29497702 PMCID: PMC5830348 DOI: 10.1523/eneuro.0240-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Damage to the CNS results in neuronal and axonal degeneration, and subsequent neurological dysfunction. Endogenous repair in the CNS is impeded by inhibitory chemical and physical barriers, such as chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon regeneration. Previously, it has been demonstrated that the inhibition of axonal histone deacetylase-6 (HDAC6) can promote microtubule α-tubulin acetylation and restore the growth of CSPGs- and MAG-inhibited axons. Since the acetylation of α-tubulin is regulated by two opposing enzymes, HDAC6 (deacetylation) and α-tubulin acetyltransferase-1 (αTAT1; acetylation), we have investigated the regulation of these enzymes downstream of a growth inhibitory signal. Our findings show that exposure of primary mouse cortical neurons to soluble CSPGs and MAG substrates cause an acute and RhoA-kinase-dependent reduction in α-tubulin acetylation and αTAT1 protein levels, without changes to either HDAC6 levels or HDAC6 activity. The CSPGs- and MAG-induced reduction in αTAT1 occurs primarily in the distal and middle regions of neurites and reconstitution of αTAT1, either by Rho-associated kinase (ROCK) inhibition or lentiviral-mediated αTAT1 overexpression, can restore neurite growth. Lastly, we demonstrate that CSPGs and MAG signaling decreases αTAT1 levels posttranscriptionally via a ROCK-dependent increase in αTAT1 protein turnover. Together, these findings define αTAT1 as a novel potential therapeutic target for ameliorating CNS injury characterized by growth inhibitory substrates that are prohibitive to axonal regeneration.
Collapse
|
42
|
Yang Y, Zhang X, Ge H, Liu W, Sun E, Ma Y, Zhao H, Li R, Chen W, Yuan J, Chen Q, Chen Y, Liu X, Zhang JH, Hu R, Fan X, Feng H. Epothilone B Benefits Nigrostriatal Pathway Recovery by Promoting Microtubule Stabilization After Intracerebral Hemorrhage. J Am Heart Assoc 2018; 7:JAHA.117.007626. [PMID: 29348323 PMCID: PMC5850167 DOI: 10.1161/jaha.117.007626] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Many previous clinical studies have demonstrated that the nigrostriatal pathway, which plays a vital role in movement adjustment, is significantly impaired after stroke, according to medical imaging and autopsies. However, the basic pathomorphological changes have been poorly investigated to date. This study was designed to explore the pathomorphological changes, mechanism, and therapeutic method of nigrostriatal impairment after intracerebral hemorrhage (ICH). Methods and Results Intrastriatal injection of autologous blood or microtubule depolymerization reagent nocodazole was performed to mimic the pathology of ICH in C57/BL6 mice. Immunofluorescence, Western blotting, electron microscopy, functional behavioral tests, and anterograde and retrograde neural circuit tracking techniques were used in these mice. The data showed that the number of dopamine neurons and the dopamine concentration were severely decreased and that fine motor function was impaired after ICH. Microtubule depolymerization was the main contributor to the loss of dopamine neurons and to motor function deficits after ICH, as was also proven by intrastriatal injection of nocodazole. Moreover, administration of the microtubule stabilizer epothilone B (1.5 mg/kg) improved the integrity of the nigrostriatal pathway neural circuit, increased the number of dopamine neurons (4598±896 versus 3125±355; P=0.034) and the dopamine concentration (4.28±0.99 versus 3.08±0.75 ng/mg; P=0.041), and enhanced fine motor functional recovery associated with increased acetylated α‐tubulin expression to maintain microtubule stabilization after ICH. Conclusions Our results clarified the pathomorphological changes of the nigrostriatal pathway after ICH and found that epothilone B helped alleviate nigrostriatal pathway injury after ICH, associated with promoting α‐tubulin acetylation to maintain microtubule stabilization, thus facilitating motor recovery.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Eryi Sun
- Neurosurgery Department of Guizhou, Medical University Affiliated Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Ma
- Department of Basic Nursing, School of Nursing, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongwei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weixiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, Marinkovich MP, Théry M, Nachury MV. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 2017; 356:328-332. [PMID: 28428427 DOI: 10.1126/science.aai8764] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells rely on long-lived microtubules for intracellular transport and as compression-bearing elements. We considered that long-lived microtubules are acetylated inside their lumen and that microtubule acetylation may modify microtubule mechanics. Here, we found that tubulin acetylation is required for the mechanical stabilization of long-lived microtubules in cells. Depletion of the tubulin acetyltransferase TAT1 led to a significant increase in the frequency of microtubule breakage. Nocodazole-resistant microtubules lost upon removal of acetylation were largely restored by either pharmacological or physical removal of compressive forces. In in vitro reconstitution experiments, acetylation was sufficient to protect microtubules from mechanical breakage. Thus, acetylation increases mechanical resilience to ensure the persistence of long-lived microtubules.
Collapse
Affiliation(s)
- Zhenjie Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. .,Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305-5168, USA
| | - Laura Schaedel
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - Didier Portran
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Andrea Aguilar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jérémie Gaillard
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France
| | - M Peter Marinkovich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305-5168, USA.,Division of Dermatology, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94305, USA
| | - Manuel Théry
- CytoMorpho Laboratory, Laboratory of Cell and Plant Physiology (LPCV), UMR 5168, Biosciences and Biotechnology Institute of Grenoble, CEA/INRA/CNRS/Université Grenoble-Alpes, 17 rue des Martyrs, 38054 Grenoble, France.,CytoMorpho Laboratory, A2T, UMRS 1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
44
|
Jenkins BV, Saunders HAJ, Record HL, Johnson-Schlitz DM, Wildonger J. Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 2017; 130:4120-4131. [PMID: 29122984 PMCID: PMC5769580 DOI: 10.1242/jcs.210203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
Microtubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules. However, the cellular role of microtubule acetylation remains controversial. To resolve how microtubule acetylation might affect neuronal morphogenesis, we mutated endogenous α-tubulin in vivo using a new Drosophila strain that facilitates the rapid knock-in of designer αTub84B alleles (the predominant α-tubulin-encoding gene in flies). Leveraging our new strain, we found that microtubule acetylation, as well as polyglutamylation and (de)tyrosination, is not essential for survival. However, we found that dendrite branch refinement in sensory neurons relies on α-tubulin K40. Mutagenesis of K40 reveals moderate yet significant changes in dendritic lysosome transport, microtubule polymerization and Futsch protein distribution in dendrites but not in axons. Our studies point to an unappreciated role for α-tubulin K40 and acetylation in dendrite morphogenesis. While our results are consistent with the idea that acetylation tunes microtubule function within neurons, they also suggest there may be an acetylation-independent requirement for α-tubulin K40. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Neurons are enriched in post-translationally modified microtubules. Targeted mutagenesis of endogenous α-tubulin in flies reveals that dendrite branch refinement is altered by acetylation-blocking mutations.
Collapse
Affiliation(s)
- Brian V Jenkins
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Harriet A J Saunders
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helena L Record
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
45
|
Pan S, Chan JR. Regulation and dysregulation of axon infrastructure by myelinating glia. J Cell Biol 2017; 216:3903-3916. [PMID: 29114067 PMCID: PMC5716274 DOI: 10.1083/jcb.201702150] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Pan and Chan discuss the role of myelinating glia in axonal development and the impact of demyelination on axon degeneration. Axon loss and neurodegeneration constitute clinically debilitating sequelae in demyelinating diseases such as multiple sclerosis, but the underlying mechanisms of secondary degeneration are not well understood. Myelinating glia play a fundamental role in promoting the maturation of the axon cytoskeleton, regulating axon trafficking parameters, and imposing architectural rearrangements such as the nodes of Ranvier and their associated molecular domains. In the setting of demyelination, these changes may be reversed or persist as maladaptive features, leading to axon degeneration. In this review, we consider recent insights into axon–glial interactions during development and disease to propose that disruption of the cytoskeleton, nodal architecture, and other components of axon infrastructure is a potential mediator of pathophysiological damage after demyelination.
Collapse
Affiliation(s)
- Simon Pan
- Department of Neurology, University of California, San Francisco, San Francisco, CA .,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, CA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
46
|
Phosphatidylserine save-me signals drive functional recovery of severed axons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E10196-E10205. [PMID: 29109263 PMCID: PMC5703272 DOI: 10.1073/pnas.1703807114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nervous system injury can cause lifelong disability, because repair rarely leads to reconnection with the target tissue. In the nematode Caenorhabditis elegans and in several other species, regeneration can proceed through a mechanism of axonal fusion, whereby regrowing axons reconnect and fuse with their own separated fragments, rapidly and efficiently restoring the original axonal tract. We have found that the process of axonal fusion restores full function to damaged neurons. In addition, we show that injury-induced changes to the axonal membrane that result in exposure of lipid “save-me” signals mediate the level of axonal fusion. Thus, our results establish axonal fusion as a complete regenerative mechanism that can be modulated by changing the level of save-me signals exposed after injury. Functional regeneration after axonal injury requires transected axons to regrow and reestablish connection with their original target tissue. The spontaneous regenerative mechanism known as axonal fusion provides a highly efficient means of achieving targeted reconnection, as a regrowing axon is able to recognize and fuse with its own detached axon segment, thereby rapidly reestablishing the original axonal tract. Here, we use behavioral assays and fluorescent reporters to show that axonal fusion enables full recovery of function after axotomy of Caenorhabditis elegans mechanosensory neurons. Furthermore, we reveal that the phospholipid phosphatidylserine, which becomes exposed on the damaged axon to function as a “save-me” signal, defines the level of axonal fusion. We also show that successful axonal fusion correlates with the regrowth potential and branching of the proximal fragment and with the retraction length and degeneration of the separated segment. Finally, we identify discrete axonal domains that vary in their propensity to regrow through fusion and show that the level of axonal fusion can be genetically modulated. Taken together, our results reveal that axonal fusion restores full function to injured neurons, is dependent on exposure of phospholipid signals, and is achieved through the balance between regenerative potential and level of degeneration.
Collapse
|
47
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
48
|
Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci 2017; 18:ijms18102207. [PMID: 29065455 PMCID: PMC5666887 DOI: 10.3390/ijms18102207] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Microtubules are hollow tube-like polymeric structures composed of α,β-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
49
|
Augustin H, McGourty K, Allen MJ, Madem SK, Adcott J, Kerr F, Wong CT, Vincent A, Godenschwege T, Boucrot E, Partridge L. Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies. PLoS Biol 2017; 15:e2001655. [PMID: 28902870 PMCID: PMC5597081 DOI: 10.1371/journal.pbio.2001655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. Insulin and insulin-like growth factors play an important role in the nervous system development and function. Reduced insulin signaling, however, can improve symptoms of neurodegenerative diseases in different model organisms and protect against age-associated decline in neuronal function extending lifespan. Here, we analyze the effects of genetically attenuated insulin signaling on the escape response pathway in the fruit fly Drosophila melanogaster. This simple neuronal circuit is dominated by electrical synapses composed of the gap junctional shaking-B protein, which allows for the transfer of electrical impulses between cells. Transmission through the circuit is known to slow down with age. We show that this functional decline is prevented by systemic or circuit-specific suppression of insulin signaling due to the preservation of the number of gap junctional proteins in aging animals. Our experiments in a human cell culture system reveal increased membrane targeting of gap junctional proteins via small proteins Rab4 and Rab11 under reduced insulin conditions. We also find that increasing the level of these recycling-mediating proteins in flies preserves the escape response circuit output in old flies and suggests ways of improving the function of neuronal circuits dominated by electrical synapses during aging.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Kieran McGourty
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Marcus J. Allen
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Sirisha Kudumala Madem
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jennifer Adcott
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Fiona Kerr
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Chi Tung Wong
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Alec Vincent
- Max Planck Institute for Biology of Aging, Köln, Germany
| | - Tanja Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Emmanuel Boucrot
- Department of Structural and Molecular Biology, London, United Kingdom
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Köln, Germany
- Institute of Healthy Aging, and Genetics, Evolution, and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
O'Hare Doig RL, Chiha W, Giacci MK, Yates NJ, Bartlett CA, Smith NM, Hodgetts SI, Harvey AR, Fitzgerald M. Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neurosci 2017; 18:62. [PMID: 28806920 PMCID: PMC5557315 DOI: 10.1186/s12868-017-0380-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/05/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Wissam Chiha
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nathanael J Yates
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Experimental and Regenerative Neurosciences, School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia. .,Perron Institute for Neurological and Translational Science, Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|