1
|
Patel RP, Lim LRJ, Saleh R, Schenk D, Lee MK, Lelliott E, Rao AD, Arabi S, Smith L, Trigos AS, Haynes N, McArthur GA, Sheppard KE. Sensitivity to immune checkpoint inhibitors in BRAF/MEK inhibitor refractory melanoma. J Immunother Cancer 2025; 13:e011551. [PMID: 40379272 PMCID: PMC12083385 DOI: 10.1136/jitc-2025-011551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Resistance to BRAF and MEK inhibitors (BRAFi/MEKi) in metastatic melanoma frequently results in cross-resistance to immune checkpoint inhibitors (ICI), limiting effective treatment options. However, a subset of BRAFi/MEKi-resistant patients remains responsive to second-line ICI, suggesting heterogeneous underlying resistance mechanisms. This study aimed to explore the tumor immune microenvironment in BRAFi/MEKi-resistant melanoma to uncover factors influencing sensitivity to second-line ICI therapy. METHOD To investigate mechanisms underlying resistance and responsiveness to second-line ICIs, BRAFi/MEKi-resistant melanoma mouse models were used. Flow cytometry was employed to analyze immune cell populations within the tumor microenvironment, focusing on changes in CD8+T effector cells and other key immune subsets. RNA sequencing was performed to profile transcriptomic changes in resistant tumors, providing insights into the signaling pathways associated with resistance. Clinical samples from BRAFi/MEKi-resistant patients were further evaluated for correlations between immune profiles and key signaling pathways to support findings from the preclinical models. RESULTS Using BRAFi/MEKi-resistant melanoma mouse models, we observed distinct alterations in the tumor-immune microenvironment. Tumors exhibiting resistance showed a significant increase in CD8+T effector cells following BRAFi/MEKi treatment, suggesting an immune-stimulatory response. Mechanistic analysis identified the activation of the EGFR-STAT signaling pathway as a key driver of intrinsic resistance in these models. Notably, these tumors retained sensitivity to second-line ICI therapy, contrasting with NRAS-driven BRAFi/MEKi-resistant tumors, which demonstrated cross-resistance to ICIs. Supporting these findings, clinical samples from BRAFi/MEKi-resistant patients revealed a correlation between elevated EGFR activation and higher immune scores, indicating potential sensitivity to ICI therapy in this subset of patients. CONCLUSION EGFR overexpression emerges as a potential predictive biomarker for responsiveness to second-line ICIs in BRAFi/MEKi-resistant melanoma. These findings underscore the need for stratified therapeutic approaches and highlight EGFR as a target for improving outcomes in ICI therapy.
Collapse
Affiliation(s)
- Riyaben P Patel
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lydia Rui Jia Lim
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Darius Schenk
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael K Lee
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Lelliott
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- La Trobe University, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research Melbourne, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Aparna D Rao
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shaghayegh Arabi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lorey Smith
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna S Trigos
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicole Haynes
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karen E Sheppard
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Tu TH, Bennani FE, Masroori N, Liu C, Nemati A, Rozza N, Grunbaum AM, Kremer R, Milhalcioiu C, Roy DC, Rudd CE. The identification of a SARs-CoV2 S2 protein derived peptide with super-antigen-like stimulatory properties on T-cells. Commun Biol 2025; 8:14. [PMID: 39762551 PMCID: PMC11704208 DOI: 10.1038/s42003-024-07350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3). Computational modeling predicts P3 binding to sites on MHC class I/II and the TCR that partially overlap with sites for the binding of staphylococcal enterotoxins B and H. Like SEB and SEH derived peptides, P3 stimulated 25-40% of human CD4+ and CD8 + T-cells, increasing IFN-γ and granzyme B production. viSNE and SPADE profiling identified overlapping and distinct IFN-γ+ and GZMB+ subsets. The super-antigenic properties of P3 were further evident by its selective expansion of T-cells expressing specific TCR Vα and Vβ chain repertoires. In vivo experiments in mice revealed that the administration of P3 led to a significant upregulation of proinflammatory cytokines IL-1β, IL-6, and TNF-α. While the clinical significance of P3 in COVID-19 remains unclear, its homology to other mammalian proteins suggests a potential role for this peptide family in human inflammation and autoimmunity.
Collapse
Affiliation(s)
- Thai Hien Tu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Fatima Ezzahra Bennani
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasser Masroori
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chen Liu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Atena Nemati
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Nicholas Rozza
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Amichai Meir Grunbaum
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Richard Kremer
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Catalin Milhalcioiu
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Medical Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada.
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada.
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco.
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
3
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Kamali Z, Esmaeil N, Thio CHL, Vaez A, Snieder H. Pathway-Based Mendelian Randomization for Pre-Infection IL-6 Levels Highlights Its Role in Coronavirus Disease. Genes (Basel) 2024; 15:889. [PMID: 39062668 PMCID: PMC11275426 DOI: 10.3390/genes15070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES Interleukin 6 (IL-6) levels at hospital admission have been suggested for disease prognosis, and IL-6 antagonists have been suggested for the treatment of patients with severe COVID-19. However, less is known about the relationship between pre-COVID-19 IL-6 levels and the risk of severe COVID-19. To fill in this gap, here we extensively investigated the association of genetically instrumented IL-6 pathway components with the risk of severe COVID-19. METHODS We used a two-sample Mendelian randomization study design and retrieved genetic instruments for blood biomarkers of IL-6 activation, including IL-6, soluble IL-6 receptor, IL-6 signal transducer, and CRP, from respective large available GWASs. To establish associations of these instruments with COVID-19 outcomes, we used data from the Host Genetics Initiative and GenOMICC studies. RESULTS Our analyses revealed inverse associations of genetically instrumented levels of IL-6 and its soluble receptor with the risk of developing severe disease (OR = 0.60 and 0.94, respectively). They also demonstrated a positive association of severe disease with the soluble signal transducer level (OR = 1.13). Only IL-6 associations with severe COVID-19 outcomes reached the significance threshold corrected for multiple testing (p < 0.003; with COVID-19 hospitalization and critical illness). CONCLUSIONS These potential causal relationships for pre-COVID-19 IL-6 levels with the risk of developing severe symptoms provide opportunities for further evaluation of these factors as prognostic/preventive markers of severe COVID-19. Further studies will need to clarify whether the higher risk for a severe disease course with lower baseline IL-6 levels may also extend to other infectious diseases.
Collapse
Affiliation(s)
- Zoha Kamali
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran;
- Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
| | - Chris H. L. Thio
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| |
Collapse
|
5
|
Jeong M, Cortopassi F, See JX, De La Torre C, Cerwenka A, Stojanovic A. Vitamin A-treated natural killer cells reduce interferon-gamma production and support regulatory T-cell differentiation. Eur J Immunol 2024; 54:e2250342. [PMID: 38593338 DOI: 10.1002/eji.202250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Collapse
Affiliation(s)
- Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Cortopassi
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Tu TH, Grunbaum A, Santinon F, Kazanova A, Rozza N, Kremer R, Mihalcioiu C, Rudd CE. Decreased progenitor TCF1 + T-cells correlate with COVID-19 disease severity. Commun Biol 2024; 7:526. [PMID: 38702425 PMCID: PMC11068881 DOI: 10.1038/s42003-024-05922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/16/2024] [Indexed: 05/06/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.
Collapse
Affiliation(s)
- Thai Hien Tu
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Ami Grunbaum
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
- Division of Medical Biochemistry, McGill University Health Centre, Montréal, QC, Canada
| | - François Santinon
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Alexandra Kazanova
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Nicholas Rozza
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
| | - Richard Kremer
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, H3A 0G4, Canada
- Division of Medical Biochemistry, McGill University Health Centre, Montréal, QC, Canada
| | - Catalin Mihalcioiu
- Department of Medical Oncology, McGill University Health Center, Montreal, Quebec, Canada
| | - Christopher E Rudd
- Départment of Medicine, Universite de Montreal, Montreal, QC, H3T 1J4, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Division of Immunology-Oncology, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada.
| |
Collapse
|
7
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
9
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Shama, Mahmood A, Mehmood S, Zhang W. Pathological Effects of SARS-CoV-2 Associated with Hematological Abnormalities. Curr Issues Mol Biol 2023; 45:7161-7182. [PMID: 37754237 PMCID: PMC10528388 DOI: 10.3390/cimb45090453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The SARS coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease (COVID-19) pandemic that has claimed the lives of 6.9 million people and infected over 765 million. It has become a major worldwide health problem and is also known to cause abnormalities in various systems, including the hematologic system. COVID-19 infection primarily affects the lower respiratory tract and can lead to a cascade of events, including a cytokine storm, intravascular thrombosis, and subsequent complications such as arterial and venous thromboses. COVID-19 can cause thrombocytopenia, lymphopenia, and neutrophilia, which are associated with worse outcomes. Prophylactic anticoagulation is essential to prevent complications and death rates associated with the virus's effect on the coagulation system. It is crucial to recognize these complications early and promptly start therapeutic anticoagulation to improve patient outcomes. While rare, COVID-19-induced disseminated intravascular coagulation (DIC) exhibits some similarities to DIC induced by sepsis. Lactate dehydrogenase (LDH), D-dimer, ferritin, and C-reactive protein (CRP) biomarkers often increase in serious COVID-19 cases and poor prognosis. Understanding the pathophysiology of the disease and identifying risk factors for adverse outcomes is critical for effective management of COVID-19.
Collapse
Affiliation(s)
- Shama
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
| | - Asif Mahmood
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shahid Mehmood
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang 212013, China (A.M.)
| |
Collapse
|
12
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Sun Q, Zhao X, Li R, Liu D, Pan B, Xie B, Chi X, Cai D, Wei P, Xu W, Wei K, Zhao Z, Fu Y, Ni L, Dong C. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. J Exp Med 2023; 220:e20220686. [PMID: 36688918 PMCID: PMC9884582 DOI: 10.1084/jem.20220686] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
In cancer, persistent antigens drive CD8+ T cell differentiation into exhausted progenitor (Texprog) and terminally exhausted (Texterm) cells. However, how the extrinsic and intrinsic regulatory mechanisms cooperate during this process still remains not well understood. Here, we found that STAT3 signaling plays essential roles in promoting intratumor Texterm cell development by enhancing their effector functions and survival, which results in better tumor control. In tumor microenvironments, STAT3 is predominantly activated by IL-10 and IL-21, but not IL-6. Besides, STAT3 also plays critical roles in the development and function of terminally differentiated effector CD8+ T cells in acute infection. Mechanistically, STAT3 transcriptionally promotes the expression of effector function-related genes, while it suppresses those expressed by the progenitor Tex subset. Moreover, STAT3 functions in collaboration with BATF and IRF4 to mediate chromatin activation at the effector gene loci. Thus, we have elucidated the roles of STAT3 signaling in terminally differentiated CD8+ T cell development, especially in cancer, which benefits the development of more effective immunotherapies against tumors.
Collapse
Affiliation(s)
- Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Dingfeng Liu
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Birui Pan
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Bowen Xie
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xinxin Chi
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Dongli Cai
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Peng Wei
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Yujie Fu
- Institute for Immunology, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
14
|
Tavukcuoglu E, Yanik H, Parveen M, Uluturk S, Durusu-Tanriover M, Inkaya AC, Akova M, Unal S, Esendagli G. Human memory T cell dynamics after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccination. Sci Rep 2023; 13:4610. [PMID: 36944716 PMCID: PMC10028771 DOI: 10.1038/s41598-023-31347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
This study evaluates the functional capacity of CD4+ and CD8+ terminally-differentiated effector (TEMRA), central memory (TCM), and effector memory (TEM) cells obtained from the volunteers vaccinated with an aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac). The volunteers were followed for T cell immune responses following the termination of a randomized phase III clinical trial. Seven days and four months after the second dose of the vaccine, the memory T cell subsets were collected and stimulated by autologous monocyte-derived dendritic cells (mDCs) loaded with SARS-CoV-2 spike glycoprotein S1. Compared to the placebo group, memory T cells from the vaccinated individuals significantly proliferated in response to S1-loaded mDCs. CD4+ and CD8+ memory T cell proliferation was detected in 86% and 78% of the vaccinated individuals, respectively. More than 73% (after a short-term) and 62% (after an intermediate-term) of the vaccinated individuals harbored TCM and/or TEM cells that responded to S1-loaded mDCs by secreting IFN-γ. The expression of CD25, CD38, 4-1BB, PD-1, and CD107a indicated a modulation in the memory T cell subsets. Especially on day 120, PD-1 was upregulated on CD4+ TEMRA and TCM, and on CD8+ TEM and TCM cells; accordingly, proliferation and IFN-γ secretion capacities tended to decline after 4 months. In conclusion, the combination of inactivated whole-virion particles with aluminum adjuvants possesses capacities to induce functional T cell responses.
Collapse
Affiliation(s)
- Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mubaida Parveen
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Sila Uluturk
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mine Durusu-Tanriover
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Serhat Unal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
15
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
16
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
17
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
18
|
Local immune cell contributions to fracture healing in aged individuals - A novel role for interleukin 22. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1262-1276. [PMID: 36028760 PMCID: PMC9440089 DOI: 10.1038/s12276-022-00834-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
With increasing age, the risk of bone fractures increases while regenerative capacity decreases. This variation in healing potential appears to be linked to adaptive immunity, but the underlying mechanism is still unknown. This study sheds light on immunoaging/inflammaging, which impacts regenerative processes in aging individuals. In an aged preclinical model system, different levels of immunoaging were analyzed to identify key factors that connect immunoaged/inflammaged conditions with bone formation after long bone fracture. Immunological facets, progenitor cells, the microbiome, and confounders were monitored locally at the injury site and systemically in relation to healing outcomes in 12-month-old mice with distinct individual levels of immunoaging. Bone tissue formation during healing was delayed in the immunoaged group and could be associated with significant changes in cytokine levels. A prolonged and amplified pro-inflammatory reaction was caused by upregulated immune cell activation markers, increased chemokine receptor availability and a lack of inhibitory signaling. In immunoaged mice, interleukin-22 was identified as a core cell signaling protein that played a central role in delayed healing. Therapeutic neutralization of IL-22 reversed this specific immunoaging-related disturbed healing. Immunoaging was found to be an influencing factor of decreased regenerative capacity in aged individuals. Furthermore, a novel therapeutic strategy of neutralizing IL-22 may successfully rejuvenate healing in individuals with advanced immune experiences.
Collapse
|
19
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
20
|
Tvedt THA, Rose-John S, Tsykunova G, Ahmed AB, Gedde-Dahl T, Ersvær E, Bruserud Ø. IL-6 Responsiveness of CD4+ and CD8+ T Cells after Allogeneic Stem Cell Transplantation Differs between Patients and Is Associated with Previous Acute Graft versus Host Disease and Pretransplant Antithymocyte Globulin Therapy. J Clin Med 2022; 11:jcm11092530. [PMID: 35566660 PMCID: PMC9104003 DOI: 10.3390/jcm11092530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Graft-versus-host disease (GVHD), one of the most common and serious complications after allogeneic stem cell transplantation, is mediated by allocative T cells. IL-6 mediates both pro- and anti-inflammatory effects and modulates T cell response through classical signaling and trans-signaling. We investigated the effects on the mTOR and JAK/STAT pathways after various types of IL-6 signaling for circulating T cells were derived from 31 allotransplant recipients 90 days post-transplant. Cells were stimulated with IL-6 alone, hyper-IL-6 (trans-signaling), IL-6+IL-6 receptor (IL-6R; classical + trans-signaling) and IL-6+IL-6R+soluble gp130-Fc (classical signaling), and flow cytometry was used to investigate the effects on phosphorylation of AKT (Thr308), mTOR (Ser2442), STAT3 (Ser727) and STAT3 (Tyr705). CD3+CD4+ and CD3+C8+ T cells responded to classical and trans IL-6 stimulation with increased STAT3 (Tyr705) phosphorylation; these responses were generally stronger for CD3+CD4+ cells. STAT3 (Tyr705) responses were stronger for patients with previous acute GVHD; CD3+CD4+ cells from GVHD patients showed an additional STAT3 (Ser727) response, whereas patients without acute GVHD showed additional mTOR (Ser2448) responses. Furthermore, treatment with antithymocyte globulin as a part of GVHD prophylaxis was associated with generally weaker STAT3 (Tyr705) responses and altered STAT3 (Ser727) responsiveness of CD3+CD4+ cells together with increased mTOR (Ser2448) responses for the CD3+CD8+ cells. Thus, early post-transplant CD3+CD4+ and CD3+ CD8+ T cell subsets differ in their IL-6 responsiveness; this responsiveness is modulated by antithymocyte globulin and differs between patients with and without previous acute GVHD. These observations suggest that allotransplant recipients will be heterogeneous with regard to the effects of post-transplant IL-6 targeting.
Collapse
Affiliation(s)
- Tor Henrik Anderson Tvedt
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
- Correspondence: Correspondence:
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24118 Kiel, Germany;
| | - Galina Tsykunova
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| | - Tobias Gedde-Dahl
- Department of Hematology, University of Oslo, 0424 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, 5063 Bergen, Norway;
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.T.); (A.B.A.)
| |
Collapse
|
21
|
Manore SG, Doheny DL, Wong GL, Lo HW. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Front Oncol 2022; 12:866014. [PMID: 35371975 PMCID: PMC8964978 DOI: 10.3389/fonc.2022.866014] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple physiological processes including cell proliferation, immune surveillance, acute inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-6Rα) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and activated; activated JAKs, in turn, phosphorylate signal transducer and activator of transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway is frequently activated, which can promote breast cancer metastasis while simultaneously suppressing the anti-tumor immune response. Given these important roles in human cancers, multiple components of the IL-6 pathway are promising targets for cancer therapeutics and are currently being evaluated preclinically and clinically for breast cancer. This review covers the current biological understanding of the IL-6 signaling pathway and its impact on breast cancer metastasis, as well as, therapeutic interventions that target components of the IL-6 pathway including: IL-6, IL-6Rα, gp130 receptor, JAKs, and STAT3.
Collapse
Affiliation(s)
- Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
22
|
Dudek M, Lohr K, Donakonda S, Baumann T, Lüdemann M, Hegenbarth S, Dübbel L, Eberhagen C, Michailidou S, Yassin A, Prinz M, Popper B, Rose-John S, Zischka H, Knolle PA. IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells. Cell Rep 2022; 38:110389. [PMID: 35172161 DOI: 10.1016/j.celrep.2022.110389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells. LSEC-primed CD8 T cells show a transient burst of oxidative phosphorylation and glycolysis. Mechanistically, co-stimulatory IL-6 signaling ensures high FOXO1 expression in LSEC-primed CD8 T cells, curtails metabolic activity associated with T cell activation, and is indispensable for T cell functionality after re-activation. Thus, distinct immunometabolic features characterize non-immunogenic LSECs compared with immunogenic dendritic cells and LSEC-primed CD8 T cells with memory features compared with effector CD8 T cells. This reveals local features of metabolism and function of T cells in the liver.
Collapse
Affiliation(s)
- Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Kerstin Lohr
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Tobias Baumann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Max Lüdemann
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Lena Dübbel
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Carola Eberhagen
- Institute of Toxicology, Helmholtz Center München, München, Germany
| | - Savvoula Michailidou
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Abdallah Yassin
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bastian Popper
- Biomedical Center, Ludwig-Maximilians-University Munich, München, Germany
| | | | - Hans Zischka
- Institute of Toxicology, Helmholtz Center München, München, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital München rechts der Isar, Technical University of Munich, Ismaningerstr. 22, 81675 München Germany; German Center for Infection Research, Munich site, München, Germany.
| |
Collapse
|
23
|
Xie X, Luo J, Zhu D, Zhou W, Yang X, Feng X, Lu M, Zheng X, Dittmer U, Yang D, Liu J. HBeAg Is Indispensable for Inducing Liver Sinusoidal Endothelial Cell Activation by Hepatitis B Virus. Front Cell Infect Microbiol 2022; 12:797915. [PMID: 35174107 PMCID: PMC8842949 DOI: 10.3389/fcimb.2022.797915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and AimsLiver sinusoidal endothelial cells (LSECs) serve as sentinel cells to detect microbial infection and actively contribute to regulating immune responses for surveillance against intrahepatic pathogens. We recently reported that hepatitis B e antigen (HBeAg) stimulation could induce LSEC maturation and abrogate LSEC-mediated T cell suppression in a TNF-α and IL27 dependent manner. However, it remains unclear how HBeAg deficiency during HBV infection influences LSEC immunoregulation function and intrahepatic HBV-specific CD8 T cell responses.MethodsThe function of LSECs in regulating effector T cell response, intrahepatic HBV-specific CD8 T cell responses and HBV viremia were characterized in both HBeAg-deficient and -competent HBV hydrodynamic injection (HDI) mouse models.ResultsLSECs isolated from HBeAg-deficient HBV HDI mice showed a reduced capacity to promote T cell immunity in vitro compared with those isolated from wild-type HBV HDI mice. HBeAg expression replenishment in HBeAg-deficient HBV HDI mice restored the HBV-induced LSEC maturation, and resulted in potent intrahepatic anti-HBV CD8 T cell responses and efficient control of HBV replication. Moreover, in vivo TNF-α, but not IL27 blockade in HBV HDI mice impaired HBV-specific CD8 T cell immunity and delayed HBV clearance.ConclusionOur study underlines that HBeAg is indispensable for HBV-induced LSEC maturation to trigger intrahepatic HBV-specific T cell activation, and provides a new mechanism to elucidate the intrahepatic immune microenvironment regulation upon HBV exposure.
Collapse
Affiliation(s)
- Xiaohong Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Liu,
| |
Collapse
|
24
|
Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat Commun 2022; 13:166. [PMID: 35013338 PMCID: PMC8748624 DOI: 10.1038/s41467-021-27875-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.
Collapse
|
25
|
Emadi-Baygi M, Ehsanifard M, Afrashtehpour N, Norouzi M, Joz-Abbasalian Z. Corona Virus Disease 2019 (COVID-19) as a System-Level Infectious Disease With Distinct Sex Disparities. Front Immunol 2021; 12:778913. [PMID: 34912345 PMCID: PMC8667725 DOI: 10.3389/fimmu.2021.778913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
The current global pandemic of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) causing COVID-19, has infected millions of people and continues to pose a threat to many more. Angiotensin-Converting Enzyme 2 (ACE2) is an important player of the Renin-Angiotensin System (RAS) expressed on the surface of the lung, heart, kidney, neurons, and endothelial cells, which mediates SARS-CoV-2 entry into the host cells. The cytokine storms of COVID-19 arise from the large recruitment of immune cells because of the dis-synchronized hyperactive immune system, lead to many abnormalities including hyper-inflammation, endotheliopathy, and hypercoagulability that produce multi-organ dysfunction and increased the risk of arterial and venous thrombosis resulting in more severe illness and mortality. We discuss the aberrated interconnectedness and forthcoming crosstalks between immunity, the endothelium, and coagulation, as well as how sex disparities affect the severity and outcome of COVID-19 and harm men especially. Further, our conceptual framework may help to explain why persistent symptoms, such as reduced physical fitness and fatigue during long COVID, may be rooted in the clotting system.
Collapse
Affiliation(s)
- Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahsa Ehsanifard
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Najmeh Afrashtehpour
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahnaz Norouzi
- Department of Research and Development, Erythrogen Medical Genetics Lab, Isfahan, Iran
| | - Zahra Joz-Abbasalian
- Clinical Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Frank B, Guo H, Lebrec H, Wang X. Application of a newly-developed cynomolgus macaque BiTE-mediated cytotoxic T-lymphocyte activity assay to various immunomodulatory agents in vitro. J Immunotoxicol 2021; 18:154-162. [PMID: 34714999 DOI: 10.1080/1547691x.2021.1992687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The immunotoxic potential of drug candidates is assessed through the examination of results from a variety of in vitro and in vivo immunophenotyping and functional study endpoints in pre-clinical studies. CD8+ cytotoxic T-lymphocyte (CTL) activity impairment by immunosuppressive agents is recognized to be a potentiating factor for decreased antiviral defense and increased cancer risk. A bi-specific T-cell engager (BiTE®)-mediated CTL activity assay that applies to ex vivo experimentation in non-human primates in the context of toxicology studies was successfully developed and applied in cynomolgus monkey regulatory studies. While an ex vivo analysis conducted in the context of repeat-dose toxicology studies focuses on the long-term impact on CTL function, an in vitro assay with the same experimental design captures acute effects in the presence of the test article. Here, the in vitro assay was applied to a list of drugs with known clinical immunomodulatory impact to understand the applicability of the assay. The results showed this assay was sensitive to a wide range of immunosuppressants directly targeting cell-intrinsic signaling pathways in activated CTL. However, agents executing immuno-modulation through inhibiting cytokines/cytokine receptors, co-stimulatory molecules, and cell adhesion and migration pathways did not impair the CTL activity in this short-term in vitro culture. In addition, anti-PD-1/PD-L1 immune checkpoint blockers enhanced the CTL activity. Taken together, the results here demonstrate that in concordance with their mechanism of action, the in vitro BiTE®-mediated CTL assay is applicable and sensitive to immunomodulatory agents acting via a variety of mechanisms.
Collapse
Affiliation(s)
- Brendon Frank
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Hao Guo
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Hervé Lebrec
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
27
|
Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2021; 149:155742. [PMID: 34688020 DOI: 10.1016/j.cyto.2021.155742] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 is produced locally in response to an inflammatory stimulus, and is able to induce systemic manifestations at distance from the site of inflammation. Its unique signaling mechanism, including classical and trans-signaling pathways, leads to a major expansion in the number of cell types responding to IL-6. This pleiotropic cytokine is a key factor in the pathogenesis of rheumatoid arthritis (RA) and is involved in many extra-articular manifestations that accompany the disease. Thus, IL-6 blockade is associated with various biological effects beyond the joints. In this review, the systemic effects of IL-6 in RA comorbidities and the consequences of its blockade will be discussed, including anemia of chronic disease, cardiovascular risks, bone and muscle functions, and neuro-psychological manifestations.
Collapse
Affiliation(s)
- Matthias Jarlborg
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; VIB-UGent Center for Inflammation Research and Ghent University, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
28
|
Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm. Indian J Clin Biochem 2021; 36:440-450. [PMID: 34177139 PMCID: PMC8216093 DOI: 10.1007/s12291-021-00989-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 has emerged as a global pandemic. It is mainly manifested as pneumonia which may deteriorate into severe respiratory failure. The major hallmark of the disease is the systemic inflammatory immune response characterized by Cytokine Storm (CS). CS is marked by elevated levels of inflammatory cytokines, mainly interleukin-6 (IL-6), IL-8, IL-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Of these, IL-6 is found to be significantly associated with higher mortality. IL-6 is also a robust marker for predicting disease prognosis and deterioration of clinical profile. In this review, the pivotal role played by IL-6 in the immuno-pathology of COVID-19 has been illustrated. The role of IL-6 as a pleiotropic cytokine executing both pro and anti-inflammatory activities has been reviewed. ADAM 10, a metalloproteinase switches the anti-inflammatory pathway of IL-6 to pro inflammatory hence blocking the action of ADAM 10 could be a new therapeutic strategy to mitigate the proinflammatory action of IL-6. Furthermore, we explore the role of anti-IL6 agents, IL-6 receptor antibodies which were being used for autoimmune diseases but now are being repurposed for the therapy of COVID-19.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mahendra Garg
- Department of Endocrinology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|
29
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
30
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
31
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
32
|
Morris G, Bortolasci CC, Puri BK, Marx W, O'Neil A, Athan E, Walder K, Berk M, Olive L, Carvalho AF, Maes M. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144:155593. [PMID: 34074585 PMCID: PMC8149193 DOI: 10.1016/j.cyto.2021.155593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
An analysis of published data appertaining to the cytokine storms of COVID-19, H1N1 influenza, cytokine release syndrome (CRS), and macrophage activation syndrome (MAS) reveals many common immunological and biochemical abnormalities. These include evidence of a hyperactive coagulation system with elevated D-dimer and ferritin levels, disseminated intravascular coagulopathy (DIC) and microthrombi coupled with an activated and highly permeable vascular endothelium. Common immune abnormalities include progressive hypercytokinemia with elevated levels of TNF-α, interleukin (IL)-6, and IL-1β, proinflammatory chemokines, activated macrophages and increased levels of nuclear factor kappa beta (NFκB). Inflammasome activation and release of damage associated molecular patterns (DAMPs) is common to COVID-19, H1N1, and MAS but does not appear to be a feature of CRS. Elevated levels of IL-18 are detected in patients with COVID-19 and MAS but have not been reported in patients with H1N1 influenza and CRS. Elevated interferon-γ is common to H1N1, MAS, and CRS but levels of this molecule appear to be depressed in patients with COVID-19. CD4+ T, CD8+ and NK lymphocytes are involved in the pathophysiology of CRS, MAS, and possibly H1N1 but are reduced in number and dysfunctional in COVID-19. Additional elements underpinning the pathophysiology of cytokine storms include Inflammasome activity and DAMPs. Treatment with anakinra may theoretically offer an avenue to positively manipulate the range of biochemical and immune abnormalities reported in COVID-19 and thought to underpin the pathophysiology of cytokine storms beyond those manipulated via the use of, canakinumab, Jak inhibitors or tocilizumab. Thus, despite the relative success of tocilizumab in reducing mortality in COVID-19 patients already on dexamethasone and promising results with Baricitinib, the combination of anakinra in combination with dexamethasone offers the theoretical prospect of further improvements in patient survival. However, there is currently an absence of trial of evidence in favour or contravening this proposition. Accordingly, a large well powered blinded prospective randomised controlled trial (RCT) to test this hypothesis is recommended.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australi
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, School of Psychology, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
33
|
Cosenza M, Sacchi S, Pozzi S. Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. Int J Mol Sci 2021; 22:ijms22147652. [PMID: 34299273 PMCID: PMC8305850 DOI: 10.3390/ijms22147652] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokines are a broad group of small regulatory proteins with many biological functions involved in regulating the hematopoietic and immune systems. However, in pathological conditions, hyperactivation of the cytokine network constitutes the fundamental event in cytokine release syndrome (CRS). During the last few decades, the development of therapeutic monoclonal antibodies and T-cell therapies has rapidly evolved, and CRS can be a serious adverse event related to these treatments. CRS is a set of toxic adverse events that can be observed during infection or following the administration of antibodies for therapeutic purposes and, more recently, during T-cell-engaging therapies. CRS is triggered by on-target effects induced by binding of chimeric antigen receptor (CAR) T cells or bispecific antibody to its antigen and by subsequent activation of bystander immune and non-immune cells. CRS is associated with high circulating concentrations of several pro-inflammatory cytokines, including interleukins, interferons, tumor necrosis factors, colony-stimulating factors, and transforming growth factors. Recently, considerable developments have been achieved with regard to preventing and controlling CRS, but it remains an unmet clinical need. This review comprehensively summarizes the pathophysiology, clinical presentation, and treatment of CRS caused by T-cell-engaging therapies utilized in the treatment of hematological malignancies.
Collapse
|
34
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
35
|
Wang X, Gui J. Cell-mediated immunity to SARS-CoV-2. Pediatr Investig 2020; 4:281-291. [PMID: 33376956 PMCID: PMC7768298 DOI: 10.1002/ped4.12228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses spread unscrupulously virtually every corner on the planet in a very quick speed leading to an unprecedented world pandemic of COVID-19 claiming a great many of people's life. Paramount importance has been given to the studies on the virus itself including genomic variation and viron structure, as well as cell entry pathway and tissue residence. Other than that, to learn the main characteristic of host immunity responding to SARS-CoV-2 infection is an eminent task for restraining virus and controlling disease progress. Beside antibody production in response to SARS-CoV-2 infection, host cellular immunity plays an indispensable role in impeding virus replication and expansion at various stages of COVID-19 disease. In this review, we summarized the recent knowledge regarding the aberrant regulation and dysfunction of multiple immune cells during SARS-CoV-2 infection. This includes the dysregulation of immune cell number, Th polarity, cytokine storm they implicated with, as well as cell function exhaustion after chronic virus stimulation. Notwithstanding that many obstacles remain to be overcome, studies on immunotherapy for COVID-19 treatment based on the known features of host immunity in response to SARS-CoV-2 infection offer us tangible benefits and hope for making this SARS-CoV-2 pandemic under control.
Collapse
Affiliation(s)
- Xiaolin Wang
- Laboratory of Tumor ImmunologyBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| | - Jingang Gui
- Laboratory of Tumor ImmunologyBeijing Pediatric Research InstituteBeijing Children’s HospitalCapital Medical UniversityNational Center for Children’s HealthBeijingChina
| |
Collapse
|
36
|
Jiang Z, Liao R, Lv J, Li S, Zheng D, Qin L, Wu D, Chen S, Long Y, Wu Q, Wang S, Lin S, Huang X, Tang Z, Shi P, Zhou H, Liu Q, Zhao R, Li Y, Jie Y, Wei W, Lai P, Du X, Cui S, Weinkove R, Liu P, Pei D, Yao Y, Li P. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells. Leukemia 2020; 35:1380-1391. [PMID: 33168950 DOI: 10.1038/s41375-020-01085-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapies lead to high clinical response rates in B cell malignancies, and are under investigation for treatment of solid tumors. While high systemic interleukin- (IL-) 6 levels are associated with clinical cytokine release syndrome (CRS), the role of IL-6 trans-signaling within CAR T-cells has not been reported. We generated CAR T cells that constitutively express hyper IL-6 (HIL-6), a designer cytokine that activates the trans-signaling pathway. HIL-6-expressing CAR T-cells exhibited enhanced proliferation and antitumor efficacy in vitro and in xenograft models. However, HIL-6 CAR T cells caused severe graft-versus-host disease (GVHD). Transcriptomic profiling revealed that HIL-6 stimulation of CAR T cells upregulated genes associated with T cell migration, early memory differentiation, and IL-6/GP130/STAT3 signaling. Since IL-6 trans-signaling acts via surface GP130, we generated CAR T cells expressing a constitutively-active form of GP130 and found these retained improved antitumor activity without signs of GVHD in preclinical models of B-cell leukemia and solid tumors. Taken together, these results show that IL-6 trans-signaling can enhance expansion and antitumor activity of CAR T cells via the GP130/STAT3 pathway, and suggest that expression of GP130 within CAR T cells could lead to improved antitumor efficacy without systemic IL-6 trans-signaling.
Collapse
Affiliation(s)
- Zhiwu Jiang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Rui Liao
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Lv
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanglin Li
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Diwei Zheng
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Le Qin
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Di Wu
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suimin Chen
- Huangpu Hospital of Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Youguo Long
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Invivo Biomedicine Ltd., Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruocong Zhao
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Yang Jie
- Guangdong Women and Children Hospital, 521-523 Xing Nan Road, Guangzhou, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, Guangdong, China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangzhou, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Centre, University of Hong Kong, Hong Kong, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Peng Li
- Key Laboratory of Regenerative Biology South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
37
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
38
|
Tanaka R, Ichimura Y, Kubota N, Saito A, Nakamura Y, Ishitsuka Y, Watanabe R, Fujisawa Y, Kanzaki M, Mizuno S, Takahashi S, Fujimoto M, Okiyama N. Activation of CD8 T cells accelerates anti-PD-1 antibody-induced psoriasis-like dermatitis through IL-6. Commun Biol 2020; 3:571. [PMID: 33060784 PMCID: PMC7567105 DOI: 10.1038/s42003-020-01308-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Use of immune checkpoint inhibitors that target programmed cell death-1 (PD-1) can lead to various autoimmune-related adverse events (irAEs) including psoriasis-like dermatitis. Our observations on human samples indicated enhanced epidermal infiltration of CD8 T cells, and the pathogenesis of which appears to be dependent on IL-6 in the PD-1 signal blockade-induced psoriasis-like dermatitis. By using a murine model of imiquimod-induced psoriasis-like dermatitis, we further demonstrated that PD-1 deficiency accelerates skin inflammation with activated cytotoxic CD8 T cells into the epidermis, which engage in pathogenic cross-talk with keratinocytes resulting in production of IL-6. Moreover, genetically modified mice lacking PD-1 expression only on CD8 T cells developed accelerated dermatitis, moreover, blockade of IL-6 signaling by anti-IL-6 receptor antibody could ameliorate the dermatitis. Collectively, PD-1 signal blockade-induced psoriasis-like dermatitis is mediated by PD-1 signaling on CD8 T cells, and furthermore, IL-6 is likely to be a therapeutic target for the dermatitis. Tanaka et al investigate the mechanism by which psoriasis-like dermatitis may occur following PD-1 antibody treatment for melanoma. They find that PD-1 loss in CD8 T-cells accelerates dermatitis in a manner depending on IL-6 signaling, suggesting IL-6 as a potential therapeutic target.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Ichimura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akimasa Saito
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine Faculty of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mirei Kanzaki
- Department of Dermatology, Mito Saiseikai General Hospital, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine Faculty of Medicine, Osaka University, Osaka, Japan
| | - Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
39
|
Qun S, Wang Y, Chen J, Huang X, Guo H, Lu Z, Wang J, Zheng C, Ma Y, Zhu Y, Xia D, Wang Y, He H, Wang Y, Fei M, Yin Y, Zheng M, Xu Y, Ge W, Hu F, Zhou J. Neutrophil-to-Lymphocyte Ratios Are Closely Associated With the Severity and Course of Non-mild COVID-19. Front Immunol 2020; 11:2160. [PMID: 32983180 PMCID: PMC7493648 DOI: 10.3389/fimmu.2020.02160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide. Measuring the prevention and control of the disease has become a matter requiring urgent focus. Objective Based on coronavirus disease 2019 (COVID-19) clinical data from Wuhan, we conducted an in-depth analysis to clarify some of the pathological mechanisms of the disease and identify simple measures to predict its severity early on. Methods A total of 230 patients with non-mild COVID-19 were recruited, and information on their clinical characteristics, inflammatory cytokines, and T lymphocyte subsets was collected. Risk factors for severity were analyzed by binary logistic regression, and the associations of neutrophil-to-lymphocyte ratios (N/LRs) with illness severity, disease course, CT grading, inflammatory cytokines, and T lymphocyte subsets were evaluated. Results Our results showed that the N/LRs were closely related to interleukin (IL)-6 and IL-10 (P < 0.001, P = 0.024) and to CD3+ and CD8+ T lymphocytes (P < 0.001, P = 0.046). In particular, the N/LRs were positively correlated with the severity and course of the disease (P = 0.021, P < 0.001). Compared to the values at the first test after admission, IL-6 and IL-10 were significantly decreased and increased, respectively, as of the last test before discharge (P = 0.006, P < 0.001). More importantly, through binary logistic regression, we found that male sex, underlying diseases (such as cardiovascular disease), pulse, and N/LRs were all closely related to the severity of the disease (P = 0.004, P = 0.012, P = 0.013, P = 0.028). Conclusions As a quick and convenient marker of inflammation, N/LRs may predict the disease course and severity level of non-mild COVID-19; male sex, cardiovascular disease, and pulse are also risk factors for the severity of non-mild COVID-19.
Collapse
Affiliation(s)
- Sen Qun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yulan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Guo
- Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Lu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinquan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changcheng Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuyou Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqing Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yinzhong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Fei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mao Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yehong Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fuyong Hu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jian Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
40
|
Abstract
The role of T cells in the resolution or exacerbation of COVID-19, as well as their potential to provide long-term protection from reinfection with SARS-CoV-2, remains debated. Nevertheless, recent studies have highlighted various aspects of T cell responses to SARS-CoV-2 infection that are starting to enable some general concepts to emerge.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
43
|
Czerwinska P, Rucinski M, Wlodarczyk N, Jaworska A, Grzadzielewska I, Gryska K, Galus L, Mackiewicz J, Mackiewicz A. Therapeutic melanoma vaccine with cancer stem cell phenotype represses exhaustion and maintains antigen-specific T cell stemness by up-regulating BCL6. Oncoimmunology 2020; 9:1710063. [PMID: 32002306 PMCID: PMC6959432 DOI: 10.1080/2162402x.2019.1710063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023] Open
Abstract
We developed a therapeutic, gene-modified, allogeneic melanoma vaccine (AGI-101H), which, upon genetic modification, acquired melanoma stem cell-like phenotype. Since its initial clinical trial in 1997, the vaccine has resulted in the long-term survival of a substantial fraction of immunized patients (up to 20 years). Here, we investigated the potential molecular mechanisms underlying the long-lasting effect of AGI-101H using transcriptome profiling of patients' peripheral T lymphocytes. Magnetically-separated T lymphocytes from AGI-101H-immunized long-term survivors, untreated melanoma patients, and healthy controls were subjected to transcriptome profiling using the microarray analyses. Data were analyzed with a multitude of bioinformatics tools (WebGestalt, DAVID, GSEA) and the results were validated with RT-qPCR. We found substantial differences in the transcriptomes of healthy controls and melanoma patients (both untreated and AGI-101H-vaccinated). AGI-101H immunization induced similar profiles of peripheral T cells as tumor residing in untreated patients. This suggests that whole stem cells immunization mobilizes analogous peripheral T cells to the natural adaptive anti-melanoma response. Moreover, AGI-101H treatment activated the TNF-α and TGF-β signaling pathways and dampened IL2-STAT5 signaling in T cells, which finally resulted in the significant up-regulation of a BCL6 transcriptional repressor, a known amplifier of the proliferative capacity of central memory T cells and mediator of a progenitor fate in antigen-specific T cells. In the present study, high levels of BCL6 transcripts negatively correlated with the expression of several exhaustion markers (CTLA4, KLRG1, PTGER2, IKZF2, TIGIT). Therefore, Bcl6 seems to promote a progenitor fate for cancer-experienced T cells from AGI-101H-vaccinated patients by repressing the exhaustion markers.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nikola Wlodarczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Iga Grzadzielewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Gryska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
44
|
Dynamics and genomic landscape of CD8 + T cells undergoing hepatic priming. Nature 2019; 574:200-205. [PMID: 31582858 PMCID: PMC6858885 DOI: 10.1038/s41586-019-1620-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.
Collapse
|
45
|
Yun JW, Lee S, Kim HM, Chun S, Engleman EG, Kim HC, Kang ES. A Novel Type of Blood Biomarker: Distinct Changes of Cytokine-Induced STAT Phosphorylation in Blood T Cells Between Colorectal Cancer Patients and Healthy Individuals. Cancers (Basel) 2019; 11:cancers11081157. [PMID: 31409016 PMCID: PMC6721561 DOI: 10.3390/cancers11081157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Although early diagnosis and treatment is the most successful strategy for improving patient survival, feasible and sensitive blood biomarkers for CRC screening remain elusive. Methods: Sixty-five CRC patients and thirty-three healthy individuals were enrolled. Peripheral blood (PB) and tumor tissues from CRC patients, and PB from healthy individuals were subjected to immunophenotyping and phospho-flow analysis of cytokine-induced phosphorylated STAT (CIPS). Logistic regression was used as a classifier that separates CRC patients from healthy individuals. Results: The proportion of regulatory T cells was increased in PB from CRC patients compared to PB from healthy individuals (p < 0.05). Interestingly, peripheral T cells share several cytokine-induced phosphorylated STAT (CIPS) signatures with T cells from CRC tumor-sites. Additionally, a classifier was made using two signatures distinct between T cells from CRC patients and T cells from healthy individuals. The AUCs (area under curves) of the classifier were 0.88 in initial cohort and 0.94 in the additional validation cohort. Overall AUC was 0.94 with sensitivity of 91% and specificity of 88%. Conclusion: This study highlights that immune cell signatures in peripheral blood could offer a new type of biomarker for CRC screening.
Collapse
Affiliation(s)
- Jae Won Yun
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Sejoon Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Korea
| | - Hye Mi Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Sejong Chun
- Department of Laboratory Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Korea
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304-1204, USA
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Eun-Suk Kang
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea.
| |
Collapse
|
46
|
Lee PH, Yamamoto TN, Gurusamy D, Sukumar M, Yu Z, Hu-Li J, Kawabe T, Gangaplara A, Kishton RJ, Henning AN, Vodnala SK, Germain RN, Paul WE, Restifo NP. Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. J Exp Med 2019; 216:2619-2634. [PMID: 31405895 PMCID: PMC6829590 DOI: 10.1084/jem.20181218] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/28/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Host conditioning has emerged as an important component of effective adoptive cell transfer-based immunotherapy for cancer. High levels of IL-1β are induced by host conditioning, but its impact on the antitumor function of T cells remains unclear. We found that the administration of IL-1β increased the population size and functionality of adoptively transferred T cells within the tumor. Most importantly, IL-1β enhanced the ability of tumor-specific T cells to trigger the regression of large, established B16 melanoma tumors in mice. Mechanistically, we showed that the increase in T cell numbers was associated with superior tissue homing and survival abilities and was largely mediated by IL-1β-stimulated host cells. In addition, IL-1β enhanced T cell functionality indirectly via its actions on radio-resistant host cells in an IL-2- and IL-15-dependent manner. Our findings not only underscore the potential of provoking inflammation to enhance antitumor immunity but also uncover novel host regulations of T cell responses.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD .,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Cytokine Biology Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tori N Yamamoto
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Devikala Gurusamy
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Madhusudhanan Sukumar
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane Hu-Li
- Cytokine Biology Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Takeshi Kawabe
- Cytokine Biology Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Arunakumar Gangaplara
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rigel J Kishton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amanda N Henning
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Suman K Vodnala
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ronald N Germain
- Cytokine Biology Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - William E Paul
- Cytokine Biology Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD .,Center for Cell-Based Therapy, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Xu Y, Wang Y, Yang Q, Liu Z, Xiao Z, Le Z, Yang Z, Yang C. A versatile supramolecular nanoadjuvant that activates NF-κB for cancer immunotherapy. Theranostics 2019; 9:3388-3397. [PMID: 31244959 PMCID: PMC6567969 DOI: 10.7150/thno.34031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/07/2019] [Indexed: 01/11/2023] Open
Abstract
Although powerful adjuvants hold promise of vaccines for cancer immunotherapy, cumbersome preparation processes, elusive mechanisms and failure to induce T cell responses have largely limited their clinical translation. Due to their ease of synthesis, good biocompatibility and designable bioactivity, peptide derivatives-based supramolecular nanomaterials have attracted increasing interest in improving the immunogenicity of cancer vaccines. Methods: Herein, we synthesized an NF-κB-activating supramolecular nanoadjuvant (3DSNA) that is prepared by pH-triggering self-assembly of a positively charged D-configurational peptide derivative. The immunostimulatory activity of 3DNSA was explored in vitro and in vivo. Results: 3DSNA can strongly absorb the model antigen (ovalbumin, OVA) through electrostatic interaction. Then, 3DSNA promotes ingestion and cross-presentation of OVA, upregulation of costimulatory factors (CD80 and CD86) and secretion of proinflammatory cytokines (IL-6 and IL-12) by dendritic cells (DCs), accompanied by activation of the innate immune response (NF-κB signaling), resulting in long-term antigen-specific memory and effector CD8+ T cells response. When compared with conventional aluminum hydroxide adjuvant and the corresponding L-configurational supramolecular nanoadjuvant (3LSNA), 3DSNA-adjuvanted OVA (3DSNA+OVA) significantly prevents oncogenesis in naïve mice with a complete response rate of 60 %, restrains the tumor growth and prolongs the survival of melanoma-bearing mice. Conclusion: These findings demonstrate that 3DSNA is a promising neo-adjuvant that enables various vaccines to be therapeutic for many important diseases including cancer.
Collapse
Affiliation(s)
- Yan Xu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Quanli Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiqiang Xiao
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhicheng Le
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Chengbiao Yang
- School of Materials Science and Engineering, Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
48
|
Russo MA, Fiore NT, van Vreden C, Bailey D, Santarelli DM, McGuire HM, Fazekas de St Groth B, Austin PJ. Expansion and activation of distinct central memory T lymphocyte subsets in complex regional pain syndrome. J Neuroinflammation 2019; 16:63. [PMID: 30885223 PMCID: PMC6423749 DOI: 10.1186/s12974-019-1449-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a debilitating condition where trauma to a limb results in devastating persistent pain that is disproportionate to the initial injury. The pathophysiology of CRPS remains unknown; however, accumulating evidence suggests it is an immunoneurological disorder, especially in light of evidence of auto-antibodies in ~ 30% of patients. Despite this, a systematic assessment of all circulating leukocyte populations in CRPS has never been performed. METHODS We characterised 14 participants as meeting the Budapest clinical criteria for CRPS and assessed their pain ratings and psychological state using a series of questionnaires. Next, we performed immunophenotyping on blood samples from the 14 CRPS participants as well as 14 healthy pain-free controls using mass cytometry. Using a panel of 38 phenotypic and activation markers, we characterised the numbers and intracellular activation status of all major leukocyte populations using manual gating strategies and unsupervised cluster analysis. RESULTS We have shown expansion and activation of several distinct populations of central memory T lymphocytes in CRPS. The number of central memory CD8+ T cells was increased 2.15-fold; furthermore, this cell group had increased phosphorylation of NFkB and STAT1 compared to controls. Regarding central memory CD4+ T lymphocytes, the number of Th1 and Treg cells was increased 4.98-fold and 2.18-fold respectively, with increased phosphorylation of NFkB in both populations. We also found decreased numbers of CD1c+ myeloid dendritic cells, although with increased p38 phosphorylation. These changes could indicate dendritic cell tissue trafficking, as well as their involvement in lymphocyte activation. CONCLUSIONS These findings represent the first mass cytometry immunophenotyping study in any chronic pain state and provide preliminary evidence of an antigen-mediated T lymphocyte response in CRPS. In particular, the presence of increased numbers of long-lived central memory CD4+ and CD8+ T lymphocytes with increased activation of pro-inflammatory signalling pathways may indicate ongoing inflammation and cellular damage in CRPS.
Collapse
Affiliation(s)
- Marc A. Russo
- Hunter Pain Clinic, 91 Chatham Street, Broadmeadow, NSW 2292 Australia
- Genesis Research Services, 220 Denison St, Broadmeadow, NSW 2292 Australia
| | - Nathan T. Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room E513, Anderson Stuart Building, Sydney, NSW 2006 Australia
| | - Caryn van Vreden
- Ramaciotti Centre for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Sydney Cytometry, Centenary Institute and the Charles Perkins Centre, John Hopkins Drive, Camperdown, NSW 2050 Australia
| | - Dominic Bailey
- Genesis Research Services, 220 Denison St, Broadmeadow, NSW 2292 Australia
| | | | - Helen M. McGuire
- Ramaciotti Centre for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006 Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Centre for Human Systems Biology, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006 Australia
| | - Paul J. Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Room E513, Anderson Stuart Building, Sydney, NSW 2006 Australia
| |
Collapse
|
49
|
Miliani M, Nouar M, Paris O, Lefranc G, Mennechet F, Aribi M. Thymoquinone Potently Enhances the Activities of Classically Activated Macrophages Pulsed with Necrotic Jurkat Cell Lysates and the Production of Antitumor Th1-/M1-Related Cytokines. J Interferon Cytokine Res 2018; 38:539-551. [PMID: 30422744 DOI: 10.1089/jir.2018.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antitumor activity of classically activated macrophage (Mϕ) may be impaired within the tumors, spleen, and bone marrow. Thus, it is possible to boost its antitumor activity after its pulsing with necrotic tumor cell lysates combined with an adjuvant. We set out to determine the potential adjuvant effects of thymoquinone (TQ; 2-isopropyl-5-methyl-1,4-benzoquinone, C10H12O2) on both functional activities of classically activated Mϕs, pulsed or not with necrotic Jurkat T cell line lysates (NecrJCL), and the balance of antitumor cytokines (ATCs) versus immunosuppressive cytokines (ISCs) during crosstalk with autologous human CD4+ T cells. We found that TQ treatment resulted in a significant upregulation of phagocytic activity, respiratory burst, the production of interleukin-2 (IL-2), IL-6, and IL-17 in NecrJCL-pulsed Mϕ co-culture system, and, conversely, in downregulation of the production of IL-6, IL-17, nitric oxide (NO), and arginase activity in nonpulsed TQ-treated Mϕs co-culture system. In addition, TQ has also shown low upregulation effect on the production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-1β, pathogen killing capacity and H2O2 in NecrJCL-pulsed Mϕs co-cultures. Moreover, TQ significantly downregulated arginase activity, and significantly upregulated inducible NO synthase (iNOS) activity-to-arginase activity ratio in NecrJCL-pulsed Mϕ co-cultures. Furthermore, TQ downregulated IL-10-to-IL-17 ratio and total cellular cholesterol content (ttcCHOL), but upregulated the ratios of IL-1β-to-IL-4, IL-1β-to-IL-10, IFN-γ-to-IL-4, IFN-γ-to-IL-10, TNF-α-to-IL-4, TNF-α-to-IL-10, and combined proinflammatory cytokines (PICs)-to-anti-inflammatory cytokines (AICs) in NecrJCL-pulsed Mϕs co-culture system, whereas significant differences were highlighted only for IL-10-to-IL-17, IFN-γ-to-IL-10, and PICs-to-AICs ratios. Our outcomes demonstrated that TQ can act as potent adjuvant for enhancing both the functional activities of NecrJCL-pulsed Mϕ and the production of ATCs during their interplay with CD4+ T cells.
Collapse
Affiliation(s)
- Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Mouna Nouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Océane Paris
- Institut de Génétique Moléculaire de Montpellier (IGMM)-UMR5535, CNRS et Université de Montpellier, Montpellier, France
| | - Gérard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Franck Mennechet
- Institut de Génétique Moléculaire de Montpellier (IGMM)-UMR5535, CNRS et Université de Montpellier, Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
50
|
The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int J Mol Sci 2018; 19:ijms19113528. [PMID: 30423923 PMCID: PMC6274717 DOI: 10.3390/ijms19113528] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukein-6 (IL-6), is produced locally from infectious or injured lesions and is delivered to the whole body via the blood stream, promptly activating the host defense system to perform diverse functions. However, excessive or sustained production of IL-6 is involved in various diseases. In diseases, the IL-6 inhibitory strategy begins with the development of the anti-IL-6 receptor antibody, tocilizumab (TCZ). This antibody has shown remarkable effects on Castleman disease, rheumatoid arthritis and juvenile idiopathic arthritis. In 2017, TCZ was proven to work effectively against giant cell arteritis, Takayasu arteritis and cytokine releasing syndrome, initiating a new era for the treatment of these diseases. In this study, the defensive functions of IL-6 and various pathological conditions are compared. Further, the diseases of which TCZ has been approved for treatment are summarized, the updated results of increasing off-label use of TCZ for various diseases are reviewed and the conditions for which IL-6 inhibition might have a beneficial role are discussed. Given the involvement of IL-6 in many pathologies, the diseases that can be improved by IL-6 inhibition will expand. However, the important role of IL-6 in host defense should always be kept in mind in clinical practice.
Collapse
|