1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Ahi EP, Panda B, Primmer CR. The hippo pathway: a molecular bridge between environmental cues and pace of life. BMC Ecol Evol 2025; 25:35. [PMID: 40275190 PMCID: PMC12020181 DOI: 10.1186/s12862-025-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| | - Bineet Panda
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Yang JL, Ma JJ, Qu TY, Dai Q, Leng J, Fang L, Wu J, Li YJ, Yu HF. Glycolysis-related lncRNA FTX upregulates YAP1 to facilitate colorectal cancer progression via sponging miR-215-3p. Sci Rep 2025; 15:9929. [PMID: 40121300 PMCID: PMC11929783 DOI: 10.1038/s41598-025-94638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Increased evidence reveals that glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNA FTX in energy metabolism and cancer progression remain unclear. In this study we aim to show that lncRNA FTX was significantly upregulated in cancer tissues and serum of CRC patients and CRC cell lines. Function study indicated that it could promote aerobic glycolysis, cell proliferation, migration and invasion in colorectal cancer cells. Further mechanistic studies showed, lncRNA FTX was found to function as a sponge for miR-215-3p, which reduced the ability of miR-215-3p to repress the YAP1 oncoprotein. Additionally, a negative correlation was observed between lncRNA FTX and miR-215-3p expression, and the knockdown of lncRNA FTX or miR-215-3p overexpression yielded opposite effects. In conclusion, this study demonstrates that FTX could directly combine with miR-215-3p as a competitive endogenous RNA, thus promoting the aerobic glycolysis and progression of CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Jin-Lan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing-Jing Ma
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Tian-Yin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing Leng
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Lin Fang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ya-Jun Li
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Huang-Fei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China.
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
4
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
5
|
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals (Basel) 2025; 15:344. [PMID: 39943114 PMCID: PMC11815730 DOI: 10.3390/ani15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Increasing global demand for animal proteins warrants improved productivity by genetic selection of superior cattle and faster dissemination of genetics. Availability of more progeny for genomic selection should maximize chances of identifying animals with desirable traits and increase selection pressure. OPU and IVP of embryos using these oocytes will substantially increase calves produced compared to conventional embryo transfer (ET). The OPU-IVP technology not only supports genetic improvement but also contributes to reducing environmental impacts of livestock production systems by improving efficiency and optimizing resources, aligning with the Sustainable Development Goals of the United Nations. However, there are several factors influencing the success of OPU-IVP. This review is focused on these factors and the impacts of in vitro culture conditions on the lipid content of embryos and potential role of L-carnitine, a lipolytic agent, on developmental competence of IVP embryos. The documented effects of L-carnitine and current knowledge regarding regulation of the Hippo signaling pathway suggest that supplementation of embryo culture media with L-carnitine will increase post-thaw survival of IVP embryos and their subsequent developmental competence by regulating lipid metabolism, production of reactive oxygen species, and Hippo signaling. Therefore, this review highlights current advancements in the field of OPU-IVP and potential areas for refining culture conditions to yield developmentally competent embryos that survive cryopreservation procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada (C.J.); (J.P.K.)
| |
Collapse
|
6
|
Tu CE, Liu YF, Liu HW, Jiao CM, Liu Q, Hung MC, Li P, Wan XB, Fan XJ, Wang YL. D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint. J Hematol Oncol 2025; 18:2. [PMID: 39755622 DOI: 10.1186/s13045-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism. METHODS The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting. Glucose limitation-induced metabolic changes were analyzed using targeted metabolomics (600MRM). The anti-cancer role of metabolite was examined using colony formation assay and APCmin/+ mice. Co-immunoprecipitation, LS-MS, qRT-PCR, and immunofluorescence were performed to explore the underlying mechanisms. RESULTS We found that D-Ribose-5-phosphate (D5P), a product of the pentose phosphate pathway connecting glucose metabolism and nucleotide metabolism, functions as a metabolic checkpoint to activate YAP under glucose limitation to promote cancer cell survival. Mechanistically, in glucose-deprived cancer cells, D5P is decreased, which facilitates the interaction between MYH9 and LATS1, resulting in MYH9-mediated LATS1 aggregation, degradation, and further YAP activation. Interestingly, activated YAP further promotes purine nucleoside phosphorylase (PNP)-mediated breakdown of purine nucleoside to restore D5P in a feedback manner. Importantly, D5P synergistically enhances the tumor-suppressive effect of GLUT inhibitors and inhibits cancer progression in mice. CONCLUSIONS Our study identifies D5P as a metabolic checkpoint linking glucose limitation stress and YAP activation, indicating that D5P may be a potential anti-cancer metabolite by enhancing glucose limitation sensitivity.
Collapse
Affiliation(s)
- Cheng-E Tu
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yong-Feng Liu
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hong-Wei Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Chun-Mei Jiao
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
- NSTC T-Star Center, Taipei, Taiwan.
| | - Peng Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiang-Bo Wan
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Xin-Juan Fan
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Yun-Long Wang
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
7
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
8
|
Li M, Dong Y, Shang Y, Liu J, Wang Y, Zhang D, Zhang L, Han C, Zhang Y, Shen K, Yang Y, Wang H, Guan H, Hu D. Metformin Syncs CeO 2 to Recover Intra- and Extra-Cellular ROS Homeostasis in Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407802. [PMID: 39439140 DOI: 10.1002/smll.202407802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Excessive generation of reactive oxygen species (ROS) poses a huge obstacle to the healing process of diabetic wounds, resulting in chronic, non-healing wounds. While numerous anti-ROS therapeutics have been developed, satisfied intra- and extra- cellular ROS homeostasis is hard to be established in diabetic wounds. To address this issue, a nanoparticle via loading metformin and CeO2 into mesoporous silica (MSN@Met-CeO2) is designed and synthesized, which is then encapsulated within ROS-responsive hydrogel and shaped as microneedles (MNs) for better application in diabetic wounds. Interestingly, a unique metformin-cerium chelate (Ce· 3Metformin) is formed during the synthesis of MSN@Met-CeO2 MN, which significantly strengthened the inhibitory effect of metformin on mitochondrial complex I. With the presence of Ce· 3Metformin, MSN@Met-CeO2 MN performed a remarkable effect on intracellular mtROS reduction as well as extracellular ROS elimination, the latter is primarily accomplished through the dissociative CeO2 in MSN@Met-CeO2 MN. In the mouse diabetic wound model, MSN@Met-CeO2 MN exhibited a superior pro-healing effect with accelerated inflammation resolution and enhanced angiogenesis, thus highlighting its significant potential for clinical application.
Collapse
Affiliation(s)
- Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuhang Dong
- Department of Health Service, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yage Shang
- Department of Plastic Surgery, Burns and Cosmetology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yaoxiang Yang
- Regiment One of Cadets, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
9
|
Wei S, Liu Y, Ran C, Li Y, Tang B, Lu M, Wang H. Calpain-1 Up-Regulation Promotes Bleomycin-Induced Pulmonary Fibrosis by Activating Ferroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2272-2289. [PMID: 39326733 DOI: 10.1016/j.ajpath.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal disease. Calpain-1 is an effective therapeutic target for vascular endothelial dysfunction and pulmonary hypertension. However, the role of calpain-1 in bleomycin (BLM)-induced IPF has not been defined. The aim of this study was to assess the targeting of calpain-1 by activating ferroptosis in BLM-treated knockout mice and murine lung epithelial-12 cells. The role of calpain-1 in the regulation of IPF was investigated using a BLM-induced IPF mouse model. The results of this study showed that increased expression of calpain-1 was accompanied by increased fibrosis, lipid peroxidation, iron ion accumulation, and Yes-associated protein (YAP) levels and decreased levels of phosphorylated adenosine 5'-monophosphate-activated protein kinase (p-AMPK) in BLM-induced IPF. MDL-28170 (calpain-1 inhibition) treatment and calpain-1 knockdown alleviated ferroptosis and IPF induced by BLM. Overexpression of calpain-1 in murine lung epithelial-12 cells further exacerbated iron accumulation and IPF. Mechanistically, lentivirus-mediated up-regulation of calpain-1 inhibited AMPK activity and promoted the nuclear translocation of YAP, leading to high levels of acyl-CoA synthetase long-chain family 4 and transferrin receptor protein 1 and triggering a ferroptosis response that ultimately exacerbated BLM-induced lung fibrosis. Calpain-1 inhibition reversed these results and ameliorated BLM-induced IPF. In conclusion, these findings suggest that the calpain-1-acyl-CoA synthetase long-chain family 4-transferrin receptor protein 1-ferroptosis-positive regulatory axis contributes to BLM-induced IPF, which indicates that calpain-1 has potential therapeutic value for the treatment of IPF.
Collapse
Affiliation(s)
- Silin Wei
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Chenyang Ran
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yunhan Li
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bailin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
10
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang H, Li J, Yu K, Lu Y, Ma M, Li Y. The cellular localization and oncogenic or tumor suppressive effects of angiomiotin-like protein 2 in tumor and normal cells. IUBMB Life 2024; 76:764-779. [PMID: 38717123 DOI: 10.1002/iub.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 10/19/2024]
Abstract
Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
13
|
Qiao Y, Xia Q, Cao X, Xu J, Qiao Z, Wu L, Chen Z, Yang L, Lu X. Urolithin A exerts anti-tumor effects on gastric cancer via activating autophagy-Hippo axis and modulating the gut microbiota. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6633-6645. [PMID: 38489081 DOI: 10.1007/s00210-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Gastric cancer (GC) treatment regimens are still unsatisfactory. Recently, Urolithin A (UroA) has gained tremendous momentum due to its anti-tumor properties. However, the therapeutic effect and underlying mechanisms of UroA in GC are unclear. We explored the effects and related mechanisms of UroA on GC both in vivo and in vitro. A Cell Counting Kit-8 was used to determine the influence of UroA on the proliferation of GC cell lines. The Autophagy inhibitor 3-methyladenine (3MA) was employed to clarify the role of autophagy in the anti-tumor effect of UroA. Simultaneously, we detected the core-component proteins involved in autophagy and its downstream pathways. Subsequently, the in vivo anti-tumor effect of UroA was determined using a xenograft mouse model. Western blotting was used to detect the core protein components of the anti-tumor pathways, and 16S rDNA sequencing was used to detect the effect of UroA on the gut microbiota. We found that UroA suppressed tumor progression. The use of 3MA undermined the majority of the inhibitory effect of UroA on tumor cell proliferation, further confirming the importance of autophagy in the anti-tumor effect of UroA. Invigorating of autophagy activated the downstream Hippo pathway, thereby inhibiting the Warburg effect and promoting cell apoptosis. In addition, UroA modulated the composition of the gut microbiota, as indicated by the increase of probiotics and the decrease of pathogenic bacteria. Our research revealed new anti-tumor mechanisms of UroA, which may be a promising candidate for GC treatment.
Collapse
Affiliation(s)
- Yixiao Qiao
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou, 215001, China
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital of Fudan University, Shanghai, 201399, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xukun Cao
- Department of General Intensive Care Unit, Henan Provincial Chest Hospital, Zhengzhou, 450003, China
| | - Jingyuan Xu
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou, 215001, China.
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital of Fudan University, Shanghai, 201399, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Zhirong Chen
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou, 215001, China.
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
14
|
Liu S, He Y, Gu Z. FATP5 modulates biological activity and lipid metabolism in prostate cancer through the TEAD4-mediated Hippo signaling. Front Oncol 2024; 14:1442911. [PMID: 39224804 PMCID: PMC11366587 DOI: 10.3389/fonc.2024.1442911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Prostate cancer (PCa), one of the most prevalent malignant tumors in the genitourinary system, is characterized by distant metastasis and the development of castration-resistant prostate cancer (CRPC), which are major determinants of poor prognosis. Current treatment approaches for PCa primarily involve surgery and endocrine therapy, but effective strategies for managing distant metastasis and CRPC remain limited. Methods We utilized qPCR, WB, and other methods to measure the expression levels of respective proteins, concurrently assessing lipid metabolism to validate the role of FATP5 in lipid metabolism. Additionally, we employed bioinformatics analysis and WB techniques to explore the corresponding mechanisms. Results In this study, we conducted an analysis of clinical samples and public databases to identify differential expression of FATP5 and further investigated its association with clinical outcomes. Through biochemical and functional experiments, we elucidated the potential underlying mechanisms by which FATP5 facilitates the progression of PCa. Our findings demonstrate that specific upregulation of FATP5 significantly enhances proliferation, migration, and invasion of PCa cell lines, while also modulating lipid metabolism in PCa. Mechanistically, the expression of FATP5 is closely associated with the Hippo signaling pathway, as it promotes the nuclear accumulation of YAP1 by inhibiting AMPK and facilitating the activation of β-catenin and RHOA. Furthermore, the transcription of FATP5 is mediated by TEAD4, and this transcriptional activation requires the involvement of YAP1. Discussion FATP5 is highly expressed in prostate cancer and can enhance the biological activity and lipid metabolism of prostate cancer. We have also elucidated that FATP5 is regulated by the Hippo signaling pathway. This provides a new potential target for the treatment of prostate cancer.
Collapse
Affiliation(s)
| | | | - Zhengqin Gu
- Department of urology, Xinhua Hospital, Shanghaijiaotong University, Shanghai, China
| |
Collapse
|
15
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
17
|
Wang H, Ye M, Jin X. Role of angiomotin family members in human diseases (Review). Exp Ther Med 2024; 27:258. [PMID: 38766307 PMCID: PMC11099588 DOI: 10.3892/etm.2024.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/23/2023] [Indexed: 05/22/2024] Open
Abstract
Angiomotin (Amot) family members, including Amot, Amot-like protein 1 (Amotl1) and Amot-like protein 2 (Amotl2), have been found to interact with angiostatins. In addition, Amot family members are involved in various physiological and pathological functions such as embryonic development, angiogenesis and tumorigenesis. Some studies have also demonstrated its regulation in signaling pathways such as the Hippo signaling pathway, AMPK signaling pathway and mTOR signaling pathways. Amot family members play an important role in neural stem cell differentiation, dendritic formation and synaptic maturation. In addition, an increasing number of studies have focused on their function in promoting and/or suppressing cancer, but the underlying mechanisms remain to be elucidated. The present review integrated relevant studies on upstream regulation and downstream signals of Amot family members, as well as the latest progress in physiological and pathological functions and clinical applications, hoping to offer important ideas for further research.
Collapse
Affiliation(s)
- Haoyun Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
19
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
20
|
Zhan Y, Wu G, Fan X, Fu Z, Ni Y, Sun B, Chen H, Chen T, Wang X. YAP upregulates AMPKα1 to induce cancer cell senescence. Int J Biochem Cell Biol 2024; 170:106559. [PMID: 38499237 DOI: 10.1016/j.biocel.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Yes-associated protein (YAP)-a major effector protein of the Hippo pathway- regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP's binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.
Collapse
Affiliation(s)
- Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ze Fu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yue Ni
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
21
|
Kashihara T, Sadoshima J. Regulation of myocardial glucose metabolism by YAP/TAZ signaling. J Cardiol 2024; 83:323-329. [PMID: 38266816 DOI: 10.1016/j.jjcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The heart utilizes glucose and its metabolites as both energy sources and building blocks for cardiac growth and survival under both physiological and pathophysiological conditions. YAP/TAZ, transcriptional co-activators of the Hippo pathway, are key regulators of cell proliferation, survival, and metabolism in many cell types. Increasing lines of evidence suggest that the Hippo-YAP/TAZ signaling pathway is involved in the regulation of both physiological and pathophysiological processes in the heart. In particular, YAP/TAZ play a critical role in mediating aerobic glycolysis, the Warburg effect, in cardiomyocytes. Here, we summarize what is currently known about YAP/TAZ signaling in the heart by focusing on the regulation of glucose metabolism and its functional significance.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
22
|
Chen X, Wang H, Wu C, Li X, Huang X, Ren Y, Pu Q, Cao Z, Tang X, Ding BS. Endothelial H 2S-AMPK dysfunction upregulates the angiocrine factor PAI-1 and contributes to lung fibrosis. Redox Biol 2024; 70:103038. [PMID: 38266576 PMCID: PMC10811458 DOI: 10.1016/j.redox.2024.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Dysfunction of the vascular angiocrine system is critically involved in regenerative defects and fibrosis of injured organs. Previous studies have identified various angiocrine factors and found that risk factors such as aging and metabolic disorders can disturb the vascular angiocrine system in fibrotic organs. One existing key gap is what sense the fibrotic risk to modulate the vascular angiocrine system in organ fibrosis. Here, using human and mouse data, we discovered that the metabolic pathway hydrogen sulfide (H2S)-AMP-activated protein kinase (AMPK) is a sensor of fibrotic stress and serves as a key mechanism upregulating the angiocrine factor plasminogen activator inhibitor-1 (PAI-1) in endothelial cells to participate in lung fibrosis. Activation of the metabolic sensor AMPK was inhibited in endothelial cells of fibrotic lungs, and AMPK inactivation was correlated with enriched fibrotic signature and reduced lung functions in humans. The inactivation of endothelial AMPK accelerated lung fibrosis in mice, while the activation of endothelial AMPK with metformin alleviated lung fibrosis. In fibrotic lungs, endothelial AMPK inactivation led to YAP activation and overexpression of the angiocrine factor PAI-1, which was positively correlated with the fibrotic signature in human fibrotic lungs and inhibition of PAI-1 with Tiplaxtinin mitigated lung fibrosis. Further study identified that the deficiency of the antioxidative gas metabolite H2S accounted for the inactivation of AMPK and activation of YAP-PAI-1 signaling in endothelial cells of fibrotic lungs. H2S deficiency was involved in human lung fibrosis and H2S supplement reversed mouse lung fibrosis in an endothelial AMPK-dependent manner. These findings provide new insight into the mechanism underlying the deregulation of the vascular angiocrine system in fibrotic organs.
Collapse
Affiliation(s)
- Xiangqi Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Shihan MH, Sharma S, Cable C, Prathigudupu V, Chen A, Mattis AN, Chen JY. AMPK stimulation inhibits YAP/TAZ signaling to ameliorate hepatic fibrosis. Sci Rep 2024; 14:5205. [PMID: 38433278 PMCID: PMC10909858 DOI: 10.1038/s41598-024-55764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Hepatic fibrosis is driven by the activation of hepatic stellate cells (HSCs). The Hippo pathway and its effectors, YAP and TAZ, are key regulators of HSC activation and fibrosis. However, there is a lack of mechanistic understanding of YAP/TAZ regulation in HSCs. Here we show that AMPK activation leads to YAP/TAZ inhibition and HSC inactivation in vitro, while the expression of a kinase-inactive mutant reversed these effects compared to wild type AMPKɑ1. Notably, the depletion of LATS1/2, an upstream kinase of YAP/TAZ signaling, rescues YAP/TAZ activation, suggesting that AMPK may be mediating YAP/TAZ inhibition via LATS1/2. In the carbon tetrachloride mouse model of fibrosis, pharmacologic activation of AMPK in HSCs inhibits YAP/TAZ signaling and reduces fibrosis. The findings implicate AMPK as a critical regulator of YAP/TAZ signaling and HSC inactivation and highlight AMPK activation as a therapeutic target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Carson Cable
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Vijaya Prathigudupu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Alina Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Aras N Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA.
- The Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
26
|
Kim CL, Lim SB, Choi SH, Kim DH, Sim YE, Jo EH, Kim K, Lee K, Park HS, Lim SB, Kang LJ, Jeong HS, Lee Y, Hansen CG, Mo JS. The LKB1-TSSK1B axis controls YAP phosphorylation to regulate the Hippo-YAP pathway. Cell Death Dis 2024; 15:76. [PMID: 38245531 PMCID: PMC10799855 DOI: 10.1038/s41419-024-06465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun-Hye Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Keeeun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Youngsoo Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Carsten G Hansen
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
27
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
29
|
Ríos-López DG, Tecalco-Cruz AC, Martínez-Pastor D, Sosa-Garrocho M, Tapia-Urzúa G, Aranda-López Y, Ortega-Domínguez B, Recillas-Targa F, Vázquez-Victorio G, Macías-Silva M. TGF-β/SMAD canonical pathway induces the expression of transcriptional cofactor TAZ in liver cancer cells. Heliyon 2023; 9:e21519. [PMID: 38027697 PMCID: PMC10660035 DOI: 10.1016/j.heliyon.2023.e21519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The TGF-β and Hippo pathways are critical for liver size control, regeneration, and cancer progression. The transcriptional cofactor TAZ, also named WWTR1, is a downstream effector of Hippo pathway and plays a key role in the maintenance of liver physiological functions. However, the up-regulation of TAZ expression has been associated with liver cancer progression. Recent evidence shows crosstalk of TGF-β and Hippo pathways, since TGF-β modulates TAZ expression through different mechanisms in a cellular context-dependent manner but supposedly independent of SMADs. Here, we evaluate the molecular interplay between TGF-β pathway and TAZ expression and observe that TGF-β induces TAZ expression through SMAD canonical pathway in liver cancer HepG2 cells. Therefore, TAZ cofactor is a primary target of TGF-β/SMAD-signaling, one of the pathways altered in liver cancer.
Collapse
Affiliation(s)
- Diana G. Ríos-López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Angeles C. Tecalco-Cruz
- Programa en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, Ciudad de México 03100, Mexico
| | - David Martínez-Pastor
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yuli Aranda-López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bibiana Ortega-Domínguez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
30
|
Sberna S, Lopez-Hernandez A, Biancotto C, Motta L, Andronache A, Verhoef LGGC, Caganova M, Campaner S. Identification of BRCC3 and BRCA1 as Regulators of TAZ Stability and Activity. Cells 2023; 12:2431. [PMID: 37887275 PMCID: PMC10605050 DOI: 10.3390/cells12202431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
TAZ (WWTR1) is a transcriptional co-activator regulated by Hippo signaling, mechano-transduction, and G-protein couple receptors. Once activated, TAZ and its paralogue, YAP1, regulate gene expression programs promoting cell proliferation, survival, and differentiation, thus controlling embryonic development, tissue regeneration, and aging. YAP and TAZ are also frequently activated in tumors, particularly in poorly differentiated and highly aggressive malignancies. Yet, mutations of YAP/TAZ or of their upstream regulators do not fully account for their activation in cancer, raising the possibility that other upstream regulatory pathways, still to be defined, are altered in tumors. In this work, we set out to identify novel regulators of TAZ by means of a siRNA-based screen. We identified 200 genes able to modulate the transcriptional activity of TAZ, with prominence for genes implicated in cell-cell contact, cytoskeletal tension, cell migration, WNT signaling, chromatin remodeling, and interleukins and NF-kappaB signaling. Among these genes we identified was BRCC3, a component of the BRCA1 complex that guards genome integrity and exerts tumor suppressive activity during cancer development. The loss of BRCC3 or BRCA1 leads to an increased level and activity of TAZ. Follow-up studies indicated that the cytoplasmic BRCA1 complex controls the ubiquitination and stability of TAZ. This may suggest that, in tumors, inactivating mutations of BRCA1 may unleash cell transformation by activating the TAZ oncogene.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; (S.S.)
| |
Collapse
|
31
|
Li X, Li M, Xue X, Wang X. Proteomic analysis reveals oxidative stress-induced activation of Hippo signaling in thiamethoxam-exposed Drosophila. CHEMOSPHERE 2023; 338:139448. [PMID: 37437626 DOI: 10.1016/j.chemosphere.2023.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Thiamethoxam (THIA) is a widely used neonicotinoid insecticide. However, the toxicity and defense mechanisms activated in THIA-exposed insects are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology to identify changes in protein expression in THIA-exposed Drosophila. We found that the antioxidant proteins Cyp6a23 and Dys were upregulated, whereas vir-1 was downregulated, which may have been detoxification in response to THIA exposure. Prx5 downregulation promoted the generation of reactive oxygen species. Furthermore, the accumulation of reactive oxygen species led to the induction of antioxidant defenses in THIA-exposed Drosophila, thereby enhancing the levels of oxidative stress markers (e.g., superoxide dismutase, glutathione S-transferase, and glutathione) and reducing catalase expression. Furthermore, the Hippo signaling transcription coactivator Yki was inactivated by THIA. Our results suggesting that Hippo signaling may be necessary to promote insect survival in response to neonicotinoid insecticide toxicity.
Collapse
Affiliation(s)
- Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Mingquan Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China
| | - Xianle Xue
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
32
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
33
|
Prokakis E, Jansari S, Boshnakovska A, Wiese M, Kusch K, Kramm C, Dullin C, Rehling P, Glatzel M, Pantel K, Wikman H, Johnsen SA, Gallwas J, Wegwitz F. RNF40 epigenetically modulates glycolysis to support the aggressiveness of basal-like breast cancer. Cell Death Dis 2023; 14:641. [PMID: 37770435 PMCID: PMC10539310 DOI: 10.1038/s41419-023-06157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shaishavi Jansari
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience, Functional Auditory Genomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- The Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
34
|
Romeo SG, Secco I, Schneider E, Reumiller CM, Santos CXC, Zoccarato A, Musale V, Pooni A, Yin X, Theofilatos K, Trevelin SC, Zeng L, Mann GE, Pathak V, Harkin K, Stitt AW, Medina RJ, Margariti A, Mayr M, Shah AM, Giacca M, Zampetaki A. Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity. Nat Commun 2023; 14:5552. [PMID: 37689702 PMCID: PMC10492781 DOI: 10.1038/s41467-023-41326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
The microvasculature plays a key role in tissue perfusion and exchange of gases and metabolites. In this study we use human blood vessel organoids (BVOs) as a model of the microvasculature. BVOs fully recapitulate key features of the human microvasculature, including the reliance of mature endothelial cells on glycolytic metabolism, as concluded from metabolic flux assays and mass spectrometry-based metabolomics using stable tracing of 13C-glucose. Pharmacological targeting of PFKFB3, an activator of glycolysis, using two chemical inhibitors results in rapid BVO restructuring, vessel regression with reduced pericyte coverage. PFKFB3 mutant BVOs also display similar structural remodelling. Proteomic analysis of the BVO secretome reveal remodelling of the extracellular matrix and differential expression of paracrine mediators such as CTGF. Treatment with recombinant CTGF recovers microvessel structure. In this work we demonstrate that BVOs rapidly undergo restructuring in response to metabolic changes and identify CTGF as a critical paracrine regulator of microvascular integrity.
Collapse
Affiliation(s)
- Sara G Romeo
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Ilaria Secco
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Edoardo Schneider
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Celio X C Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Vishal Musale
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Aman Pooni
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Xiaoke Yin
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Silvia Cellone Trevelin
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Lingfang Zeng
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Giovanni E Mann
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Varun Pathak
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Kevin Harkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Anna Zampetaki
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK.
| |
Collapse
|
35
|
Seo G, Yu C, Han H, Xing L, Kattan RE, An J, Kizhedathu A, Yang B, Luo A, Buckle AL, Tifrea D, Edwards R, Huang L, Ju HQ, Wang W. The Hippo pathway noncanonically drives autophagy and cell survival in response to energy stress. Mol Cell 2023; 83:3155-3170.e8. [PMID: 37595580 PMCID: PMC10568779 DOI: 10.1016/j.molcel.2023.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Li Xing
- Irvine Materials Research Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Rebecca Elizabeth Kattan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jeongmin An
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Amrutha Kizhedathu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Annabella Luo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Abigail L Buckle
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Delia Tifrea
- Department of Pathology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
Kim SY, Song MJ, Kim IB, Park TK, Lyu J. Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina. BMB Rep 2023; 56:502-507. [PMID: 37254570 PMCID: PMC10547971 DOI: 10.5483/bmbrep.2023-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 04/08/2024] Open
Abstract
Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases. [BMB Reports 2023; 56(9): 502-507].
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Myung-Jun Song
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae Kwan Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Soonchunhyang University, Bucheon 14584, Korea
| | - Jungmook Lyu
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
- Department of Optometry & Visual Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
37
|
Kim SY, Song MJ, Kim IB, Park TK, Lyu J. Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina. BMB Rep 2023; 56:502-507. [PMID: 37254570 PMCID: PMC10547971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023] Open
Abstract
Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases. [BMB Reports 2023; 56(9): 502-507].
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Myung-Jun Song
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae Kwan Park
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Soonchunhyang University, Bucheon 14584, Korea
| | - Jungmook Lyu
- Myung-Gok Eye Research Institute, Konyang University, Daejeon 35365, Korea
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
- Department of Optometry & Visual Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
38
|
Kang L, Yi J, Lau CW, He L, Chen Q, Xu S, Li J, Xia Y, Zhang Y, Huang Y, Wang L. AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1681. [PMID: 37759984 PMCID: PMC10525300 DOI: 10.3390/antiox12091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia is a crucial risk factor for cardiovascular diseases. Chronic inflammation is a central characteristic of obesity, leading to many of its complications. Recent studies have shown that high glucose activates Yes-associated protein 1 (YAP) by suppressing AMPK activity in breast cancer cells. Metformin is a commonly prescribed anti-diabetic drug best known for its AMPK-activating effect. However, the role of YAP in the vasoprotective effect of metformin in diabetic endothelial cell dysfunction is still unknown. The present study aimed to investigate whether YAP activation plays a role in obesity-associated endothelial dysfunction and inflammation and examine whether the vasoprotective effect of metformin is related to YAP inhibition. Reanalysis of the clinical sequencing data revealed YAP signaling, and the YAP target genes CTGF and CYR61 were upregulated in aortic endothelial cells and retinal fibrovascular membranes from diabetic patients. YAP overexpression impaired endothelium-dependent relaxations (EDRs) in isolated mouse aortas and increased the expression of YAP target genes and inflammatory markers in human umbilical vein endothelial cells (HUVECs). High glucose-activated YAP in HUVECs and aortas was accompanied by increased production of oxygen-reactive species. AMPK inhibition was found to induce YAP activation, resulting in increased JNK activity. Metformin activated AMPK and promoted YAP phosphorylation, ultimately improving EDRs and suppressing the JNK activity. Targeting the AMPK-YAP-JNK axis could become a therapeutic strategy for alleviating vascular dysfunction in obesity and diabetes.
Collapse
Affiliation(s)
- Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Juanjuan Yi
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China;
| | - Jun Li
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Yuanting Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| |
Collapse
|
39
|
Ruan Z, Yin H, Wan TF, Lin ZR, Zhao SS, Long HT, Long C, Li ZH, Liu YQ, Luo H, Cheng L, Chen C, Zeng M, Lin ZY, Zhao RB, Chen CY, Wang ZX, Liu ZZ, Cao J, Wang YY, Jin L, Liu YW, Zhu GQ, Zou JT, Gong JS, Luo Y, Hu Y, Zhu Y, Xie H. Metformin accelerates bone fracture healing by promoting type H vessel formation through inhibition of YAP1/TAZ expression. Bone Res 2023; 11:45. [PMID: 37587136 PMCID: PMC10432554 DOI: 10.1038/s41413-023-00279-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Due to increasing morbidity worldwide, fractures are becoming an emerging public health concern. This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures. Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis. Here, we show that metformin accelerated fracture healing in both osteoporotic and normal mice. Moreover, metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing. Mechanistically, metformin increased the expression of HIF-1α, an important positive regulator of type H vessel formation, by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells (HMECs). The results of HIF-1α or YAP1/TAZ interference in hypoxia-cultured HMECs using siRNA further suggested that the enhancement of HIF-1α and its target genes by metformin is primarily through YAP1/TAZ inhibition. Finally, overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair. In summary, our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition.
Collapse
Affiliation(s)
- Zhe Ruan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Teng-Fei Wan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Rou Lin
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu-Shan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hai-Tao Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhao-Hui Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Liang Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Min Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhang-Yuan Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui-Bo Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Ling Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yi Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China
| | - Yin Hu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China.
- Angmedicine Research Center of Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
40
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
41
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
42
|
Feng L, Chen Y, Li N, Yang X, Zhou L, Li H, Wang T, Xie M, Liu H. Dapagliflozin delays renal fibrosis in diabetic kidney disease by inhibiting YAP/TAZ activation. Life Sci 2023; 322:121671. [PMID: 37023953 DOI: 10.1016/j.lfs.2023.121671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
In diabetic kidney disease (DKD), the long-term hyperactivation of yes-associated protein (YAP)/transcriptional coactivator PDZ-binding motif (TAZ) in renal proximal tubule epithelial cells (RPTCs) plays an important role in progressive tubulointerstitial fibrosis. Sodium-glucose cotransporter 2 (SGLT2) is highly expressed in RPTCs, but its relationship with YAP/TAZ in tubulointerstitial fibrosis in DKD is still unknown. The purpose of this study was to clarify whether the SGLT2 inhibitor (SGLT2i) dapagliflozin could alleviate renal tubulointerstitial fibrosis in DKD by regulating YAP/TAZ. We examined 58 patients with DKD confirmed by renal biopsy and found that the expression and nuclear translocation of YAP/TAZ increased with the exacerbation of chronic kidney disease classification. In models of DKD, dapagliflozin showed similar effects to verteporfin, an inhibitor of YAP/TAZ, in reducing the activation of YAP/TAZ and downregulating the expression of their target genes, connective tissue growth factor (CTGF) and amphiregulin in vivo and in vitro. Silencing SGLT2 also confirmed this effect. Importantly, dapagliflozin showed a better effect than verteporfin in inhibiting inflammation, oxidative stress and fibrosis in the kidney in DKD rats. Taken together, this study proved for the first time that dapagliflozin delayed tubulointerstitial fibrosis at least partly by inhibiting YAP/TAZ activation, which further enriched the antifibrotic effect of SGLT2i.
Collapse
Affiliation(s)
- Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China; Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Ni Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaojuan Yang
- Department of Nephrology, Yan'an University Affiliated Hospital, Yan'an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Huirong Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Tingting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| |
Collapse
|
43
|
Fisher ML, Balinth S, Mills AA. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol 2023; 33:280-292. [PMID: 36115734 PMCID: PMC10011024 DOI: 10.1016/j.tcb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Our understanding of cancer and the key pathways that drive cancer survival has expanded rapidly over the past several decades. However, there are still important challenges that continue to impair patient survival, including our inability to target cancer stem cells (CSCs), metastasis, and drug resistance. The transcription factor p63 is a p53 family member with multiple isoforms that carry out a wide array of functions. Here, we discuss the critical importance of the ΔNp63α isoform in cancer and potential therapeutic strategies to target ΔNp63α expression to impair the CSC population, as well as to prevent metastasis and drug resistance to improve patient survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
44
|
Tan D, Miao D, Zhao C, Shi J, Lv Q, Xiong Z, Yang H, Zhang X. Comprehensive analyses of A 12-metabolism-associated gene signature and its connection with tumor metastases in clear cell renal cell carcinoma. BMC Cancer 2023; 23:264. [PMID: 36949462 PMCID: PMC10035225 DOI: 10.1186/s12885-023-10740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The outcomes of patients with clear cell renal cell carcinoma (ccRCC) were dreadful due to lethal local recurrence and distant metastases. Accumulating evidence suggested that ccRCC was considered a metabolic disease and metabolism-associated genes (MAGs) exerted essential functions in tumor metastases. Thus, this study intends to seek whether the dysregulated metabolism promotes ccRCC metastases and explores underlying mechanisms. METHOD Weighted gene co-expression network analysis (WGCNA) was employed based on 2131 MAGs to select genes mostly associated with ccRCC metastases for subsequent univariate Cox regression. On this basis, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression were employed to create a prognostic signature based on the cancer genome atlas kidney renal clear cell carcinoma (TCGA-KIRC) cohort. The prognostic signature was confirmed using E-MTAB-1980 and GSE22541 cohorts. Kaplan-Meier, receiver operating characteristic (ROC) curve, and univariate and multivariate Cox regression were applied to detect the predictability and independence of the signature in ccRCC patients. Functional enrichment analyses, immune cell infiltration examinations, and somatic variant investigations were employed to detect the biological roles of the signature. RESULT A 12-gene-metabolism-associated prognostic signature, termed the MAPS by our team, was constructed. According to the MAPS, patients were divided into low- and high-risk subgroups and high-risk patients displayed inferior outcomes. The MAPS was validated as an independent and reliable biomarker in ccRCC patients for forecasting the prognosis and progression of ccRCC patients. Functionally, the MAPS was closely associated with metabolism dysregulation, tumor metastases, and immune responses in which the high-risk tumors were in an immunosuppressive status. Besides, high-risk patients benefited more from immunotherapy and held a higher tumor mutation burden (TMB) than low-risk patients. CONCLUSION The 12-gene MAPS with prominent biological roles could independently and reliably forecast the outcomes of ccRCC patients, and provide clues to uncover the latent mechanism in which dysregulated metabolism controlled ccRCC metastases.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
46
|
Liu Y, Zhang B, Zhou Y, Xing Y, Wang Y, Jia Y, Liu D. Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment. Biomed Pharmacother 2023; 161:114549. [PMID: 36958190 DOI: 10.1016/j.biopha.2023.114549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023] Open
Abstract
The Hippo pathway plays an important role in cell proliferation, apoptosis, and differentiation; it is a crucial regulatory pathway in organ development and tumor growth. Infection with Helicobacter pylori (H. pylori) increases the risk of developing gastric cancer. In recent years, significant progress has been made in understanding the mechanisms by which H. pylori infection promotes the development and progression of gastric cancer via the Hippo pathway. Exploring the Hippo pathway molecules may yield new diagnostic and therapeutic targets for H. pylori-induced gastric cancer. The current article reviews the composition and regulatory mechanism of the Hippo pathway, as well as the research progress of the Hippo pathway in the occurrence and development of H. pylori-related gastric cancer, in order to provide a broader perspective for the study and prevention of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Bingkai Zhang
- Department of Anorectal Surgery, Qingzhou People's Hospital, Qingzhou, People's Republic of China
| | - Yimin Zhou
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China; Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, People's Republic of China.
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| |
Collapse
|
47
|
Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 2023; 50:4565-4578. [PMID: 36877351 DOI: 10.1007/s11033-023-08329-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.
Collapse
|
48
|
Molecular insights of Hippo signaling in the chick developing lung. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194904. [PMID: 36572276 DOI: 10.1016/j.bbagrm.2022.194904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hippo signaling pathway and its effector YAP have been recognized as an essential growth regulator during embryonic development. Hippo has been studied in different contexts; nevertheless, its role during chick lung branching morphogenesis remains unknown. Therefore, this work aims to determine Hippo role during early pulmonary organogenesis in the avian animal model. The current study describes the spatial distribution of Hippo signaling members in the embryonic chick lung by in situ hybridization. Overall, their expression is comparable to their mammalian counterparts. Moreover, the expression levels of phosphorylated-YAP (pYAP) and total YAP revealed that Hippo signaling is active in the embryonic chick lung. Furthermore, the presence of pYAP in the cytoplasm demonstrated that the Hippo machinery distribution is maintained in this tissue. In vitro studies were performed to assess the role of the Hippo signaling pathway in lung branching. Lung explants treated with a YAP/TEAD complex inhibitor (verteporfin) displayed a significant reduction in lung size and branching and decreased expression of ctgf (Hippo target gene) compared to the control. This approach also revealed that Hippo seems to modulate the expression of key molecular players involved in lung branching morphogenesis (sox2, sox9, axin2, and gli1). Conversely, when treated with dobutamine, an upstream regulator that promotes YAP phosphorylation, explant morphology was not severely affected. Overall, our data indicate that Hippo machinery is present and active in the early stages of avian pulmonary branching and that YAP is likely involved in the regulation of lung growth.
Collapse
|
49
|
Hong SH, Hwang HJ, Son DH, Kim ES, Park SY, Yoon YE. Inhibition of EZH2 exerts antitumorigenic effects in renal cell carcinoma via LATS1. FEBS Open Bio 2023; 13:724-735. [PMID: 36808829 PMCID: PMC10068324 DOI: 10.1002/2211-5463.13579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The most common type of kidney cancer in adults is renal cell carcinoma (RCC), which accounts for approximately 90% of cases. RCC is a variant disease with numerous subtypes; the most common subtype is clear cell RCC (ccRCC, 75%), followed by papillary RCC (pRCC, 10%) and chromophobe RCC (chRCC, 5%). To identify a genetic target for all subtypes, we analyzed The Cancer Genome Atlas (TCGA) databases of ccRCC, pRCC, and chromophobe RCC. Enhancer of zeste homolog 2 (EZH2), which encodes a methyltransferase, was observed to be significantly upregulated in tumors. The EZH2 inhibitor tazemetostat induced anticancer effects in RCC cells. TCGA analysis revealed that large tumor suppressor kinase 1 (LATS1), a key tumor suppressor of the Hippo pathway, was significantly downregulated in tumors; the expression of LATS1 was increased by tazemetostat. Through additional experiments, we confirmed that LATS1 plays a crucial role in EZH2 inhibition and has a negative association with EZH2. Therefore, we suggest that epigenetic control could be a novel therapeutic strategy for three subtypes of RCC.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Ji Hwang
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Da Hyeon Son
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Eun Song Kim
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
AICAR Ameliorates Non-Alcoholic Fatty Liver Disease via Modulation of the HGF/NF-κB/SNARK Signaling Pathway and Restores Mitochondrial and Endoplasmic Reticular Impairments in High-Fat Diet-Fed Rats. Int J Mol Sci 2023; 24:ijms24043367. [PMID: 36834782 PMCID: PMC9959470 DOI: 10.3390/ijms24043367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem characterized by altered lipid and redox homeostasis, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. The AMP-dependent kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) has been shown to improve the outcome of NAFLD in the context of AMPK activation, yet the underlying molecular mechanism remains obscure. This study investigated the potential mechanism(s) of AICAR to attenuate NAFLD by exploring AICAR's effects on the HGF/NF-κB/SNARK axis and downstream effectors as well as mitochondrial and ER derangements. High-fat diet (HFD)-fed male Wistar rats were given intraperitoneal AICAR at 0.7 mg/g body weight or left untreated for 8 weeks. In vitro steatosis was also examined. ELISA, Western blotting, immunohistochemistry and RT-PCR were used to explore AICAR's effects. NAFLD was confirmed by steatosis score, dyslipidemia, altered glycemic, and redox status. HGF/NF-κB/SNARK was downregulated in HFD-fed rats receiving AICAR with improved hepatic steatosis and reduced inflammatory cytokines and oxidative stress. Aside from AMPK dominance, AICAR improved hepatic fatty acid oxidation and alleviated the ER stress response. In addition, it restored mitochondrial homeostasis by modulating Sirtuin 2 and mitochondrial quality gene expression. Our results provide a new mechanistic insight into the prophylactic role of AICAR in the prevention of NAFLD and its complications.
Collapse
|