1
|
Watson SM, Harvey EP, Pishesha N, Ploegh HL, Springer TA. Nanobodies targeting EGFR provide insight into conformations stabilized by glioblastoma mutations. J Biol Chem 2025:110374. [PMID: 40516870 DOI: 10.1016/j.jbc.2025.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 06/05/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025] Open
Abstract
Oncogenic mutations in the epidermal growth factor receptor (EGFR) promote tumorigenesis by stabilizing active or pre-active receptor conformations. Most EGFR-driven cancers are characterized by kinase domain mutations that directly activate the receptor. However, brain cancers such as glioblastoma multiforme (GBM) uniquely harbor mutations in the EGFR ectodomain that allosterically activate the kinase domain. Despite significant advances in understanding the physiologic and pathogenic roles of EGFR, the conformational characteristics that define ligand-independent EGFR activation in GBM remain poorly understood. In this study, we use naïve and post-immune yeast-displayed nanobody libraries to discover four nanobody groups that with benchmark nanobodies define a total of five groups with unique binding signatures and specificities for GBM mutation-stabilized conformational states. Nanobodies in groups 1 and 2 block ligand, selectively bind the inactive, tethered conformation, and favor wild-type EGFR over GBM-stabilized conformations. In contrast, nanobodies in groups 4 and 5 do not block ligand, target active or pre-active conformations, and selectively bind GBM-stabilized conformations. Additionally, nanobodies in group 3 block ligand and appear to be conformation agnostic. We observed domain-specific bias in the nanobodies' selectivity for GBM mutations, suggesting that mutations across different ectodomain regions stabilize distinct conformations. This work advances our understanding of EGFR conformational equilibria in the context of GBM. The observed cooperativity and mutation-dependent binding of nanobodies emphasize their utility in dissecting EGFR activation mechanisms and in developing targeted therapies for EGFR-driven cancers, including GBM.
Collapse
Affiliation(s)
- Sean M Watson
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Edward P Harvey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Novalia Pishesha
- Division of Immunology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Pienkowski T, Golonko A, Bolkun L, Wawrzak-Pienkowska K, Szczerbinski L, Kretowski A, Ciborowski M, Lewandowski W, Priebe W, Swislocka R. Investigation into biased signaling, glycosylation, and drug vulnerability of acute myeloid leukemia. Pharmacol Ther 2025; 270:108848. [PMID: 40194743 DOI: 10.1016/j.pharmthera.2025.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Understanding and harnessing biased signaling offers significant potential for developing novel therapeutic strategies or enhancing existing treatments. By managing biased signaling, it is possible to minimize adverse effects, including toxicity, and to optimize therapeutic outcomes by selectively targeting beneficial pathways. In the context of acute myeloid leukemia (AML), a highly aggressive blood cancer characterized by the rapid proliferation of abnormal myeloid cells in the bone marrow and blood, the dysregulation of these signaling pathways, particularly those involving G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), significantly contributes to disease progression and therapeutic resistance. Traditional therapies for AML often struggle with resistance and toxicity, leading to poor patient outcomes. However, by exploiting the concept of biased signaling, researchers may be able to design drugs that selectively activate pathways that inhibit cancer cell growth while avoiding those that contribute to resistance or toxicity. Glycosylation, a key post-translational modification (PTM), plays a crucial role in biased signaling by altering receptor conformation and ligand-binding affinity, thereby affecting the outcome of biased signaling. Chemokine receptors like CXCR4, which are often overexpressed and heavily glycosylated in AML, serve as targets for therapeutic intervention. By externally inducing or inhibiting specific PTMs, it may be possible to further refine therapeutic strategies, unlocking new possibilities for developing more effective and less toxic treatments. This review highlights the importance of understanding the dynamic relationship between glycosylation and biased signaling in AML, which is essential for the development of more effective treatments and overcoming drug resistance, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Aleksandra Golonko
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland; Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Wawrzak-Pienkowska
- Department of Gastroenterology, Hepatology and Internal Diseases, Voivodeship Hospital in Bialystok, 15-278 Bialystok, Poland; Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Wlodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| |
Collapse
|
3
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
4
|
Ghisai SA, Barin N, van Hijfte L, Verhagen K, de Wit M, van den Bent MJ, Hoogstrate Y, French PJ. Transcriptomic analysis of EGFR co-expression and activation in glioblastoma reveals associations with its ligands. Neurooncol Adv 2025; 7:vdae229. [PMID: 39959305 PMCID: PMC11829203 DOI: 10.1093/noajnl/vdae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Background Approximately half of the isocitrate dehydrogenase (IDH)-wildtype glioblastomas (GBMs) exhibit EGFR amplification. Additionally, genomic changes that occur in the extracellular domain of EGFR can lead to ligand-hypersensitivity (R108K/A289V/G598V) or ligand-independence (EGFRvIII). Unlike in lung adenocarcinoma (LUAD), clinical trials with epidermal growth factor receptor (EGFR) inhibitors showed no survival benefit for GBM and it remains unclear why. We aimed to elucidate differences in molecular mechanisms of EGFR activation and regulation between GBM and LUAD. Methods We used RNA-sequencing (RNA-seq) data to find EGFR co-regulated genes and pathways in GBM and compare EGFR signaling patterns between GBM and LUAD. Cellular origins of expression signals were determined by analyzing single-cell RNA-seq data. Results We identified 2 ligands (BTC/EREG) among the significant EGFR predictor genes (TCGA-GBM: n = 169, Intellance-2: n = 166). Their expression was inversely correlated with EGFR amplification and incidence of ligand-sensitive mutations. Ligands were expressed by nonmalignant cells and differed in their primary source of expression (BTC: neurons, EREG: myeloid). High expression of MDM2 and CDK4 was less common in EGFR-amplified GBMs with ligand-sensitive mutations compared with those without these mutations. Our analyses revealed distinct transcriptional profiles between GBM and LUAD when comparing tumors carrying activating mutations. Conclusions BTC and EREG are negatively associated with EGFR expression in GBM. These findings emphasize the role of ligands in regulating EGFR, where EGFR activation seems to be modulated by the highly varying levels of EGFR amplification, the sensitivity of the receptor toward ligands, and ligand expression levels. Ligand expression levels and EGFR mutations could refine patient stratification for EGFR-targeted therapies in GBM.
Collapse
Affiliation(s)
- Santoesha A Ghisai
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Nastaran Barin
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Levi van Hijfte
- Department of Tumor Immunology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Kim Verhagen
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Maurice de Wit
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Martin J van den Bent
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Pim J French
- Department of Neurology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Hill SJ, Kilpatrick LE. Kinetic analysis of fluorescent ligand binding to cell surface receptors: Insights into conformational changes and allosterism in living cells. Br J Pharmacol 2024; 181:4091-4102. [PMID: 37386806 DOI: 10.1111/bph.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.
Collapse
Affiliation(s)
- Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Grätz L, Sajkowska-Kozielewicz JJ, Wesslowski J, Kinsolving J, Bridge LJ, Petzold K, Davidson G, Schulte G, Kozielewicz P. NanoBiT- and NanoBiT/BRET-based assays allow the analysis of binding kinetics of Wnt-3a to endogenous Frizzled 7 in a colorectal cancer model. Br J Pharmacol 2024; 181:3819-3835. [PMID: 37055379 DOI: 10.1111/bph.16090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Wnt binding to Frizzleds (FZD) is a crucial step that leads to the initiation of signalling cascades governing multiple processes during embryonic development, stem cell regulation and adult tissue homeostasis. Recent efforts have enabled us to shed light on Wnt-FZD pharmacology using overexpressed HEK293 cells. However, assessing ligand binding at endogenous receptor expression levels is important due to differential binding behaviour in a native environment. Here, we study FZD paralogue, FZD7, and analyse its interactions with Wnt-3a in live CRISPR-Cas9-edited SW480 cells typifying colorectal cancer. EXPERIMENTAL APPROACH SW480 cells were CRISPR-Cas9-edited to insert a HiBiT tag on the N-terminus of FZD7, preserving the native signal peptide. These cells were used to study eGFP-Wnt-3a association with endogenous and overexpressed HiBiT-FZD7 using NanoBiT/bioluminescence resonance energy transfer (BRET) and NanoBiT to measure ligand binding and receptor internalization. KEY RESULTS With this new assay the binding of eGFP-Wnt-3a to endogenous HiBiT-FZD7 was compared with overexpressed receptors. Receptor overexpression results in increased membrane dynamics, leading to an apparent decrease in binding on-rate and consequently in higher, up to 10 times, calculated Kd. Thus, measurements of binding affinities to FZD7 obtained in overexpressed cells are suboptimal compared with the measurements from endogenously expressing cells. CONCLUSIONS AND IMPLICATIONS Binding affinity measurements in the overexpressing cells fail to replicate ligand binding affinities assessed in a (patho)physiologically relevant context where receptor expression is lower. Therefore, future studies on Wnt-FZD7 binding should be performed using receptors expressed under endogenous promotion.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Joanna J Sajkowska-Kozielewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Kinsolving
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lloyd J Bridge
- Department of Computer Science and Creative Technologies, University of the West England, Bristol, UK
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Bagchi A, Stayrook SE, Xenaki KT, Starbird CA, Doulkeridou S, El Khoulati R, Roovers RC, Schmitz KR, van Bergen En Henegouwen PMP, Ferguson KM. Structural insights into the role and targeting of EGFRvIII. Structure 2024; 32:1367-1380.e6. [PMID: 38908376 PMCID: PMC11380598 DOI: 10.1016/j.str.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a well-known oncogenic driver in lung and other cancers. In glioblastoma multiforme (GBM), the EGFR deletion variant III (EGFRvIII) is frequently found alongside EGFR amplification. Agents targeting the EGFR axis have shown limited clinical benefits in GBM and the role of EGFRvIII in GBM is poorly understood. To shed light on the role of EGFRvIII and its potential as a therapeutic target, we determined X-ray crystal structures of a monomeric EGFRvIII extracellular region (ECR). The EGFRvIII ECR resembles the unliganded conformation of EGFR, including the orientation of the C-terminal region of domain II. Domain II is mostly disordered, but the ECR structure is compact. We selected a nanobody with preferential binding to EGFRvIII relative to EGFR and structurally defined an epitope on domain IV that is occluded in the unliganded intact EGFR. These findings suggest new avenues for EGFRvIII targeting in GBM.
Collapse
Affiliation(s)
- Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Katerina T Xenaki
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Chrystal A Starbird
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Sofia Doulkeridou
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rachid El Khoulati
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Rob C Roovers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Karl R Schmitz
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584CH, the Netherlands
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
8
|
Li L, Li H, Su T, Ming D. Quantitative Characterization of the Impact of Protein-Protein Interactions on Ligand-Protein Binding: A Multi-Chain Dynamics Perturbation Analysis Method. Int J Mol Sci 2024; 25:9172. [PMID: 39273122 PMCID: PMC11394879 DOI: 10.3390/ijms25179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Many protein-protein interactions (PPIs) affect the ways in which small molecules bind to their constituent proteins, which can impact drug efficacy and regulatory mechanisms. While recent advances have improved our ability to independently predict both PPIs and ligand-protein interactions (LPIs), a comprehensive understanding of how PPIs affect LPIs is still lacking. Here, we examined 63 pairs of ligand-protein complexes in a benchmark dataset for protein-protein docking studies and quantified six typical effects of PPIs on LPIs. A multi-chain dynamics perturbation analysis method, called mcDPA, was developed to model these effects and used to predict small-molecule binding regions in protein-protein complexes. Our results illustrated that the mcDPA can capture the impact of PPI on LPI to varying degrees, with six similar changes in its predicted ligand-binding region. The calculations showed that 52% of the examined complexes had prediction accuracy at or above 50%, and 55% of the predictions had a recall of not less than 50%. When applied to 33 FDA-approved protein-protein-complex-targeting drugs, these numbers improved to 60% and 57% for the same accuracy and recall rates, respectively. The method developed in this study may help to design drug-target interactions in complex environments, such as in the case of protein-protein interactions.
Collapse
Affiliation(s)
- Lu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Hao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Ting Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| |
Collapse
|
9
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun 2024; 15:6947. [PMID: 39138174 PMCID: PMC11322707 DOI: 10.1038/s41467-024-50524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ryan C Owyang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olivia N P Zbihley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olga Karginova
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Iyer RS, Needham SR, Galdadas I, Davis BM, Roberts SK, Man RCH, Zanetti-Domingues LC, Clarke DT, Fruhwirth GO, Parker PJ, Rolfe DJ, Gervasio FL, Martin-Fernandez ML. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15:2130. [PMID: 38503739 PMCID: PMC10951324 DOI: 10.1038/s41467-024-46284-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.
Collapse
Affiliation(s)
- R Sumanth Iyer
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
- Immunocore Limited, 92 Park Drive, Milton Park, Abingdon, UK
| | - Sarah R Needham
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- ISPSO, University of Geneva, Geneva, Switzerland
| | - Benjamin M Davis
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Selene K Roberts
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Rico C H Man
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | | | - David T Clarke
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Daniel J Rolfe
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.
| | - Francesco L Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- ISPSO, University of Geneva, Geneva, Switzerland.
- Chemistry Department, University College London, London, UK.
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
11
|
Singh PK, Stan RC. Enhanced binding at fever temperatures of HER2 in complex with trastuzumab and pertuzumab. Immunotherapy 2023; 15:1021-1027. [PMID: 37337732 DOI: 10.2217/imt-2023-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aim: Fever follows the administration of trastuzumab and pertuzumab used in HER2-relevant immunotherapy, but is often eliminated in clinical practice. This work explores the role of temperature (37-39°C) in the formation of immune complexes between HER2 with either trastuzumab or pertuzumab or with both antibodies. Materials & methods: Using molecular dynamics simulations and free energy calculations, the binding between HER2 and these immunotherapeutic monoclonal antibodies was investigated at different temperatures. Results: Trastuzumab and pertuzumab present the highest binding free energy to HER2 at febrile temperatures (39°C), or when HER2 is in complex with both antibodies. Conclusion: Performing molecular dynamics simulations under fever temperatures may be important for delineating their role in enhancing the binding affinity of mature antibodies used in immunotherapy.
Collapse
Affiliation(s)
- Puneet K Singh
- Chonnam National University Medical School, Hwasun 264, Seoyang-ro, 58128, Republic of Korea
| | - Razvan C Stan
- Chonnam National University Medical School, Hwasun 264, Seoyang-ro, 58128, Republic of Korea
| |
Collapse
|
12
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing rapidly relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555401. [PMID: 37693440 PMCID: PMC10491225 DOI: 10.1101/2023.08.29.555401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fluxes in human intra- and extracellular copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate (cAMP). We herein applied an unbiased temporal evaluation of the whole-genome transcriptional activities modulated by fluctuations in copper levels to identify the copper sensor proteins responsible for driving these activities. We found that fluctuations in physiologically-relevant copper levels rapidly modulate EGFR/MAPK/ERK signal transduction and activation of the transcription factor cAMP response element-binding protein (CREB). Both intracellular and extracellular assays support Cu 1+ inhibition of the EGFR-phosphatase PTPN2 (and potentially the homologous PTPN1)-via direct ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism of copper-stimulated EGFR signal transduction activation. Depletion of copper represses this signaling pathway. We additionally show i ) copper supplementation drives transcriptional repression of the copper importer CTR1 and ii ) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper-stimulated MAPK/ERK/CREB-signaling and CTR1 expression, thereby uncovering a previously unrecognized link between copper levels and cellular signal transduction.
Collapse
|
13
|
Farahani PE, Yang X, Mesev EV, Fomby KA, Brumbaugh-Reed EH, Bashor CJ, Nelson CM, Toettcher JE. pYtags enable spatiotemporal measurements of receptor tyrosine kinase signaling in living cells. eLife 2023; 12:82863. [PMID: 37212240 DOI: 10.7554/elife.82863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
| | - Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, United States
- Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Emily V Mesev
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Kaylan A Fomby
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, United States
- IRCC International Research Collaboration Center, National Institutes of Natural Sciences, Tokyo, Japan
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, United States
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
14
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
15
|
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity. J Cheminform 2023; 15:31. [PMID: 36864534 PMCID: PMC9983232 DOI: 10.1186/s13321-023-00701-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug response and may alter binding affinity and thus impact the drug's efficacy and side effects. Unfortunately, large-scale experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the mutation effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large dataset of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of them were manually selected based on domain knowledge. A machine learning approach composed of two regression models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5 [Formula: see text] 0.6 kcal/mol-1 on an independent test set with an R2 value of 0.87 [Formula: see text] 0.90. We report an improvement in the prediction performance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain a better overview of the ligand binding affinity changes across protein variants carried by people in the population and narrow down the search space where more time-demanding methods can be used to identify potential leads that achieve a better affinity for all protein variants.
Collapse
|
16
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
17
|
Pandey V, Zhang X, Poh HM, Wang B, Dukanya D, Ma L, Yin Z, Bender A, Periyasamy G, Zhu T, Rangappa KS, Basappa B, Lobie PE. Monomerization of Homodimeric Trefoil Factor 3 (TFF3) by an Aminonitrile Compound Inhibits TFF3-Dependent Cancer Cell Survival. ACS Pharmacol Transl Sci 2022; 5:761-773. [PMID: 36110371 PMCID: PMC9469493 DOI: 10.1021/acsptsci.2c00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3) is a secreted protein with an established oncogenic function and a highly significant association with clinical progression of various human malignancies. Herein, a novel small molecule that specifically targets TFF3 homodimeric functions was identified. Utilizing the concept of reversible covalent interaction, 2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) was identified as a molecule that interacted with TFF3. AMPC monomerized the cellular and secreted TFF3 homodimer at the cysteine (Cys)57-Cys57 residue with subsequent more rapid degradation of the generated TFF3 monomers. Hence, AMPC treatment also resulted in cellular depletion of TFF3 with consequent decreased cell viability in various human carcinoma-derived TFF3 expressing cell lines, including estrogen receptor positive (ER+) mammary carcinoma (MC). AMPC treatment of TFF3 expressing ER+ MC cells significantly suppressed total cell number in a dose-dependent manner. Consistently, exposure of TFF3 expressing ER+ MC cells to AMPC decreased soft agar colony formation, foci formation, and growth in suspension culture and inhibited growth of preformed colonies in 3D Matrigel. AMPC increased apoptosis in TFF3 expressing ER+ MC cells associated with decreased activity of EGFR, p38, STAT3, AKT, and ERK, decreased protein levels of CCND1, CCNE1, BCL2, and BCL-XL, and increased protein levels of TP53, CDKN1A, CASP7, and CASP9. siRNA-mediated depletion of TFF3 expression in ER+ MC cells efficiently abrogated AMPC-stimulated loss of cell viability and CASPASE 3/7 activities. Furthermore, in mice bearing ER+ MC cell-generated xenografts, AMPC treatment significantly impeded xenograft growth. Hence, AMPC exemplifies a novel mechanism by which small molecule drugs may inhibit a dimeric oncogenic protein and provides a strategy to impede TFF3-dependent cancer progression.
Collapse
Affiliation(s)
- Vijay Pandey
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Han-Ming Poh
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| | - Baocheng Wang
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
| | - Dukanya Dukanya
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Lan Ma
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
| | - Zhinan Yin
- Biomedical
Translational Research Institute, Jinan
University, 601 Huangpu Avenue West, Guangzhou 510632, PR China
- Zhuhai Institute
of Translational Medicine Zhuhai People’s Hospital Affiliated
with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Andreas Bender
- Centre for
Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ganga Periyasamy
- DOS in Chemistry, Bangalore University, JB Campus, Bangalore 560001, India
| | - Tao Zhu
- Department
of Oncology of the First Affiliated Hospital, Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei, Anhui 230027, China
- Hefei National
Laboratory for Physical Sciences, the CAS Key Laboratory of Innate
Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kanchugarakoppal S. Rangappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006 Karnataka, India
| | - Peter E. Lobie
- Tsinghua
Berkeley Shenzhen Institute and Institute of Biopharmaceutical and
Health Engineering, Tsinghua Shenzhen International
Graduate School, Shenzhen 518055, PR China
- Shenzhen
Bay Laboratory, Shenzhen 518055, PR China
- Cancer Science
Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| |
Collapse
|
18
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
19
|
Cabral-Dias R, Lucarelli S, Zak K, Rahmani S, Judge G, Abousawan J, DiGiovanni LF, Vural D, Anderson KE, Sugiyama MG, Genc G, Hong W, Botelho RJ, Fairn GD, Kim PK, Antonescu CN. Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. J Cell Biol 2022; 221:213045. [PMID: 35238864 PMCID: PMC8899389 DOI: 10.1083/jcb.201808181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Karolina Zak
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Gurjeet Judge
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Laura F DiGiovanni
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Michael G Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
20
|
EGFR Mutations in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073818. [PMID: 35409179 PMCID: PMC8999014 DOI: 10.3390/ijms23073818] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
EGFR is a prototypical receptor tyrosine kinase that is overexpressed in multiple cancers including head and neck squamous cell carcinoma (HNSCC). The standard of care for HNSCC remains largely unchanged despite decades of research. While EGFR blockade is an attractive target in HNSCC patients and anti-EGFR strategies including monoclonal antibodies and kinase inhibitors have shown some clinical benefit, efficacy is often due to the eventual development of resistance. In this review, we discuss how the acquisition of mutations in various domains of the EGFR gene not only alter drug binding dynamics giving rise to resistance, but also how mutations can impact radiation response and overall survival in HNSCC patients. A better understanding of the EGFR mutational landscape and its dynamic effects on treatment resistance hold the potential to better stratify patients for targeted therapies in order to maximize therapeutic benefits.
Collapse
|
21
|
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:894-915. [PMID: 35141049 PMCID: PMC8803965 DOI: 10.1016/j.omtn.2022.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects. Aptamers are single-chained oligonucleotides that bind their targets with high specificity and affinity owing to their three-dimensional (3D) structures, and they are one potential way to address this need. In particular, bispecific aptamers (bsApts) have been shown to induce artificial immune synapses that promote T cell activation and subsequent tumor cell lysis in various in vitro and in vivo pre-clinical models. We discuss these advances here, along with gaps in bsApt biology at both the cellular and resident tissue levels that should be addressed to accelerate their translation into the clinic. The broad application, minimal production cost, and relative lack of immunogenicity of bsApts give them some ideal qualities for manipulating the immune system. Building upon lessons from other novel therapies, bsApts could soon provide clinicians with an immunomodulating toolbox that is not only potent and efficacious but exercises a wide therapeutic index.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
22
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
23
|
Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022; 602:518-522. [PMID: 35140400 DOI: 10.1038/s41586-021-04393-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is frequently mutated in human cancer1,2, and is an important therapeutic target. EGFR inhibitors have been successful in lung cancer, where mutations in the intracellular tyrosine kinase domain activate the receptor1, but not in glioblastoma multiforme (GBM)3, where mutations occur exclusively in the extracellular region. Here we show that common extracellular GBM mutations prevent EGFR from discriminating between its activating ligands4. Different growth factor ligands stabilize distinct EGFR dimer structures5 that signal with different kinetics to specify or bias outcome5,6. EGF itself induces strong symmetric dimers that signal transiently to promote proliferation. Epiregulin (EREG) induces much weaker asymmetric dimers that drive sustained signalling and differentiation5. GBM mutations reduce the ability of EGFR to distinguish EREG from EGF in cellular assays, and allow EGFR to form strong (EGF-like) dimers in response to EREG and other low-affinity ligands. Using X-ray crystallography, we further show that the R84K GBM mutation symmetrizes EREG-driven extracellular dimers so that they resemble dimers normally seen with EGF. By contrast, a second GBM mutation, A265V, remodels key dimerization contacts to strengthen asymmetric EREG-driven dimers. Our results argue for an important role of altered ligand discrimination by EGFR in GBM, with potential implications for therapeutic targeting.
Collapse
|
24
|
Purba ER, Saita EI, Akhouri RR, Öfverstedt LG, Wilken G, Skoglund U, Maruyama IN. Allosteric activation of preformed EGF receptor dimers by a single ligand binding event. Front Endocrinol (Lausanne) 2022; 13:1042787. [PMID: 36531494 PMCID: PMC9748436 DOI: 10.3389/fendo.2022.1042787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR) by mutations has been implicated in a variety of human cancers. Elucidation of the structure of the full-length receptor is essential to understand the molecular mechanisms underlying its activation. Unlike previously anticipated, here, we report that purified full-length EGFR adopts a homodimeric form in vitro before and after ligand binding. Cryo-electron tomography analysis of the purified receptor also showed that the extracellular domains of the receptor dimer, which are conformationally flexible before activation, are stabilized by ligand binding. This conformational flexibility stabilization most likely accompanies rotation of the entire extracellular domain and the transmembrane domain, resulting in dissociation of the intracellular kinase dimer and, thus, rearranging it into an active form. Consistently, mutations of amino acid residues at the interface of the symmetric inactive kinase dimer spontaneously activate the receptor in vivo. Optical observation also indicated that binding of only one ligand activates the receptor dimer on the cell surface. Our results suggest how oncogenic mutations spontaneously activate the receptor and shed light on the development of novel cancer therapies.
Collapse
Affiliation(s)
- Endang R. Purba
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ei-ichiro Saita
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Reetesh R. Akhouri
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lars-Goran Öfverstedt
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Gunnar Wilken
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Cellular Structural Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
25
|
Comez D, Glenn J, Anbuhl SM, Heukers R, Smit MJ, Hill SJ, Kilpatrick LE. Fluorescently tagged nanobodies and NanoBRET to study ligand-binding and agonist-induced conformational changes of full-length EGFR expressed in living cells. Front Immunol 2022; 13:1006718. [PMID: 36505413 PMCID: PMC9726709 DOI: 10.3389/fimmu.2022.1006718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction The Epidermal Growth Factor Receptor is a member of the Erb receptor tyrosine kinase family. It binds several ligands including EGF, betacellulin (BTC) and TGF-α, controls cellular proliferation and invasion and is overexpressed in various cancer types. Nanobodies (VHHs) are the antigen binding fragments of heavy chain only camelid antibodies. In this paper we used NanoBRET to compare the binding characteristics of fluorescent EGF or two distinct fluorescently labelled EGFR directed nanobodies (Q44c and Q86c) to full length EGFR. Methods Living HEK293T cells were stably transfected with N terminal NLuc tagged EGFR. NanoBRET saturation, displacement or kinetics experiments were then performed using fluorescently labelled EGF ligands (EGF-AF488 or EGF-AF647) or fluorescently labelled EGFR targeting nanobodies (Q44c-HL488 and Q86c-HL488). Results These data revealed that the EGFR nanobody Q44c was able to inhibit EGF binding to full length EGFR, while Q86c was able to recognise agonist bound EGFR and act as a conformational sensor. The specific binding of fluorescent Q44c-HL488 and EGF-AF488 was inhibited by a range of EGFR ligands (EGF> BTC>TGF-α). Discussion EGFR targeting nanobodies are powerful tools for studying the role of the EGFR in health and disease and allow real time quantification of ligand binding and distinct ligand induced conformational changes.
Collapse
Affiliation(s)
- Dehan Comez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Jacqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Stephanie M Anbuhl
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands.,QVQ Holding BV, Utrecht, Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands Nottingham, Nottingham, United Kingdom.,Division of Bimolecular Science and Medicinal Chemistry, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Norman RL, Singh R, Muskett FW, Parrott EL, Rufini A, Langridge JI, Runau F, Dennison A, Shaw JA, Piletska E, Canfarotta F, Ng LL, Piletsky S, Jones DJL. Mass spectrometric detection of KRAS protein mutations using molecular imprinting. NANOSCALE 2021; 13:20401-20411. [PMID: 34854867 PMCID: PMC8675027 DOI: 10.1039/d1nr03180e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/27/2021] [Indexed: 05/07/2023]
Abstract
Cancer is a disease of cellular evolution where single base changes in the genetic code can have significant impact on the translation of proteins and their activity. Thus, in cancer research there is significant interest in methods that can determine mutations and identify the significant binding sites (epitopes) of antibodies to proteins in order to develop novel therapies. Nano molecularly imprinted polymers (nanoMIPs) provide an alternative to antibodies as reagents capable of specifically capturing target molecules depending on their structure. In this study, we used nanoMIPs to capture KRAS, a critical oncogene, to identify mutations which when present are indicative of oncological progress. Herein, coupling nanoMIPs (capture) and liquid chromatography-mass spectrometry (detection), LC-MS has allowed us to investigate mutational assignment and epitope discovery. Specifically, we have shown epitope discovery by generating nanoMIPs to a recombinant KRAS protein and identifying three regions of the protein which have been previously assigned as epitopes using much more time-consuming protocols. The mutation status of the released tryptic peptide was identified by LC-MS following capture of the conserved region of KRAS using nanoMIPS, which were tryptically digested, thus releasing the sequence of a non-conserved (mutated) region. This approach was tested in cell lines where we showed the effective genotyping of a KRAS cell line and in the plasma of cancer patients, thus demonstrating its ability to diagnose precisely the mutational status of a patient. This work provides a clear line-of-sight for the use of nanoMIPs to its translation from research into diagnostic and clinical utility.
Collapse
Affiliation(s)
- Rachel L Norman
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Rajinder Singh
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Frederick W Muskett
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Emma L Parrott
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Alessandro Rufini
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | | | - Franscois Runau
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Ashley Dennison
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Jacqui A Shaw
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Elena Piletska
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| | - Sergey Piletsky
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| |
Collapse
|
27
|
Programming cell entry of molecules via reversible synthetic DNA circuits on cell membrane. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
29
|
Kholodenko BN, Rauch N, Kolch W, Rukhlenko OS. A systematic analysis of signaling reactivation and drug resistance. Cell Rep 2021; 35:109157. [PMID: 34038718 PMCID: PMC8202068 DOI: 10.1016/j.celrep.2021.109157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that the reactivation of initially inhibited signaling pathways causes drug resistance. Here, we analyze how network topologies affect signaling responses to drug treatment. Network-dependent drug resistance is commonly attributed to negative and positive feedback loops. However, feedback loops by themselves cannot completely reactivate steady-state signaling. Newly synthesized negative feedback regulators can induce a transient overshoot but cannot fully restore output signaling. Complete signaling reactivation can only occur when at least two routes, an activating and inhibitory, connect an inhibited upstream protein to a downstream output. Irrespective of the network topology, drug-induced overexpression or increase in target dimerization can restore or even paradoxically increase downstream pathway activity. Kinase dimerization cooperates with inhibitor-mediated alleviation of negative feedback. Our findings inform drug development by considering network context and optimizing the design drug combinations. As an example, we predict and experimentally confirm specific combinations of RAF inhibitors that block mutant NRAS signaling. Kholodenko et al. uncover signaling network circuitries and molecular mechanisms necessary and sufficient for complete reactivation or overshoot of steady-state signaling after kinase inhibitor treatment. The two means to revive signaling output fully are through network topology or reactivation of the kinase activity of the primary drug target. Blocking RAF dimer activity by a combination of type I½ and type II RAF inhibitors efficiently blocks mutant NRAS-driven ERK signaling.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Kelel M, Yang RB, Tsai TF, Liang PH, Wu FY, Huang YT, Yang MF, Hsiao YP, Wang LF, Tu CF, Liu FT, Lee YL. FUT8 Remodeling of EGFR Regulates Epidermal Keratinocyte Proliferation during Psoriasis Development. J Invest Dermatol 2021; 141:512-522. [PMID: 32888953 DOI: 10.1016/j.jid.2020.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
α-(1,6)-fucosyltransferase 8 (FUT8) is implicated in the pathogenesis of several malignancies, but its role in psoriasis is poorly understood. In this study, we show that FUT8 remodeling of EGFR plays a critical role in the development of psoriasis phenotypes. Notably, elevated FUT8 expression was associated with disease severity in the lesional epidermis of a patient with psoriasis. FUT8 gain of function promoted HaCaT cell proliferation, whereas short hairpin FUT8 reduced cell proliferation and induced a longer S phase with downregulation of cyclin A1 expression. Furthermore, cell proliferation, which is controlled by the activation of EGFR, was shown to be regulated by FUT8 core fucosylation of EGFR. Short hairpin FUT8 significantly reduced EGFR/protein kinase B signaling and slowed EGF‒EGFR complex trafficking to the perinuclear region. Moreover, short hairpin FUT8 reduced ligand-induced EGFR dimerization. Overactivated EGFR was observed in the lesional epidermis of both human patient and psoriasis-like mouse model, whereas conditional knockout of FUT8 in an IL-23 psoriasis-like mouse model ameliorated disease phenotypes and reduced EGFR activation in the epidermis. These findings implied that elevated FUT8 expression in the lesional epidermis is implicated in the development of psoriasis phenotypes, being required for EGFR overactivation and leading to keratinocyte hyperproliferation.
Collapse
Affiliation(s)
- Musin Kelel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Yu Wu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Huang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Fong Yang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital and Chung Shan Medical University, Taichung, Taiwan
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
31
|
EGFR-Binding Peptides: From Computational Design towards Tumor-Targeting of Adeno-Associated Virus Capsids. Int J Mol Sci 2020; 21:ijms21249535. [PMID: 33333826 PMCID: PMC7765298 DOI: 10.3390/ijms21249535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a central role in the progression of many solid tumors. We used this validated target to analyze the de novo design of EGFR-binding peptides and their application for the delivery of complex payloads via rational design of a viral vector. Peptides were computationally designed to interact with the EGFR dimerization interface. Two new peptides and a reference (EDA peptide) were chemically synthesized, and their binding ability characterized. Presentation of these peptides in each of the 60 capsid proteins of recombinant adeno-associated viruses (rAAV) via a genetic based loop insertion enabled targeting of EGFR overexpressing tumor cell lines. Furthermore, tissue distribution and tumor xenograft specificity were analyzed with systemic injection in chicken egg chorioallantoic membrane (CAM) assays. Complex correlations between the targeting of the synthetic peptides and the viral vectors to cells and in ovo were observed. Overall, these data demonstrate the potential of computational design in combination with rational capsid modification for viral vector targeting opening new avenues for viral vector delivery and specifically suicide gene therapy.
Collapse
|
32
|
Hajdu T, Váradi T, Rebenku I, Kovács T, Szöllösi J, Nagy P. Comprehensive Model for Epidermal Growth Factor Receptor Ligand Binding Involving Conformational States of the Extracellular and the Kinase Domains. Front Cell Dev Biol 2020; 8:776. [PMID: 32850868 PMCID: PMC7431817 DOI: 10.3389/fcell.2020.00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/23/2020] [Indexed: 12/03/2022] Open
Abstract
The epidermal growth factor (EGF) receptor (EGFR) undergoes ligand-dependent dimerization to initiate transmembrane signaling. Although crystallographic structures of the extracellular and kinase domains are available, ligand binding has not been quantitatively analyzed taking the influence of both domains into account. Here, we developed a model explicitly accounting for conformational changes of the kinase and extracellular domains, their dimerizations and ligand binding to monomeric and dimeric receptor species. The model was fitted to ligand binding data of suspended cells expressing receptors with active or inactive kinase conformations. Receptor dimers with inactive, symmetric configuration of the kinase domains exhibit positive cooperativity and very weak binding affinity for the first ligand, whereas dimers with active, asymmetric kinase dimers are characterized by negative cooperativity and subnanomolar binding affinity for the first ligand. The homodimerization propensity of EGFR monomers with active kinase domains is ∼100-times higher than that of dimers with inactive kinase domains. Despite this fact, constitutive, ligand-independent dimers are mainly generated from monomers with inactive kinase domains due to the excess of such monomers in the membrane. The experimental finding of increased positive cooperativity at high expression levels of EGFR was recapitulated by the model. Quantitative prediction of ligand binding to different receptor species revealed that EGF binds to receptor monomers and dimers in an expression-level dependent manner without significant recruitment of monomers to dimers upon EGF stimulation below the phase transition temperature of the membrane. Results of the fitting offer unique insight into the workings of the EGFR.
Collapse
Affiliation(s)
- Tímea Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Váradi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Rebenku
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kovács
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllösi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
34
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2020; 67:109497. [PMID: 31830556 PMCID: PMC6957738 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
35
|
Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer. PLoS One 2020; 15:e0229077. [PMID: 32069320 PMCID: PMC7028269 DOI: 10.1371/journal.pone.0229077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a pro-tumorigenic receptor tyrosine kinase that facilitates growth for cancer cells that overexpress the receptor. Monoclonal anti-EGFR antibody Cetuximab (CTX) provides significant clinical benefit in patients with head and neck squamous cell carcinoma (HNSCC). Missense mutations in the ectodomain (ECD) of EGFR can be acquired under CTX treatment and mimic the effect of large deletions on spontaneous untethering and activation of the receptor. Little is known about the contribution of EGFR ECD mutations to EGFR activation and CTX resistance in HNSCC. We identified two concurrent non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD in patient-derived HNSCC cells that were selected for CTX resistance through repeated exposure to the agent in an effort to mimic what may occur clinically. Structural modeling predicted that the G33S and N56K mutants would restrict adoption of a fully closed (tethered) and inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation, leading to persistent downstream AKT signaling. Our results demonstrate that HNSCC cells can select for EGFR ECD mutations under CTX exposure that converge to trap the receptor in an open, ligand-independent, constitutively activated state. These mutants impede the receptor’s competence to bind CTX possibly explaining certain cases of CTX treatment-induced or de novo resistance to CTX.
Collapse
|
36
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
37
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
38
|
MUC4-ErbB2 Oncogenic Complex: Binding studies using Microscale Thermophoresis. Sci Rep 2019; 9:16678. [PMID: 31723153 PMCID: PMC6853952 DOI: 10.1038/s41598-019-53099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
The MUC4 membrane-bound mucin is a large O-glycoprotein involved in epithelial homeostasis. At the cancer cell surface MUC4 interacts with ErbB2 receptor via EGF domains to promote cell proliferation and migration. MUC4 is highly regarded as a therapeutic target in pancreatic cancer as it is not expressed in healthy pancreas, while it is neoexpressed in early preneoplastic stages (PanINs). However, the association/dissociation constant of MUC4-ErbB2 complex is unknown. Protein-protein interactions (PPIs) have become a major area of research in the past years and the characterization of their interactions, especially by biophysical methods, is intensively used in drug discovery. To characterize the MUC4-ErbB2 interaction, we used MicroScale Thermophoresis (MST), a powerful method for quantitative protein interaction analysis under challenging conditions. We worked with CHO cell lysates containing either the transmembrane β subunit of MUC4 (MUC4β) or a truncated mutant encompassing only the EGF domains (MUC4EGF3+1+2). MST studies have led to the characterization of equilibrium dissociation constants (Kd) for MUC4β-ErbB2 (7–25 nM) and MUC4EGF3+1+2/ErbB2 (65–79 nM) complexes. This work provides new information regarding the MUC4-ErbB2 interaction at the biophysical level and also confirms that the presence of the three EGF domains of MUC4 is sufficient to provide efficient interaction. This technological approach will be very useful in the future to validate small molecule binding affinities targeting MUC4-ErbB2 complex for drug discovery development in cancer. It will also be of high interest for the other known membrane mucins forming oncogenic complexes with ErbBs at the cancer cell surface.
Collapse
|
39
|
R. Magalhães P, Machuqueiro M, G. Almeida J, Melo A, D. S. Cordeiro MN, Cabo Verde S, H. Gümüş Z, S. Moreira I, D. G. Correia J, Melo R. Dynamical Rearrangement of Human Epidermal Growth Factor Receptor 2 upon Antibody Binding: Effects on the Dimerization. Biomolecules 2019; 9:biom9110706. [PMID: 31694351 PMCID: PMC6920943 DOI: 10.3390/biom9110706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 11/16/2022] Open
Abstract
Human epidermal growth factor 2 (HER2) is a ligand-free tyrosine kinase receptor of the HER family that is overexpressed in some of the most aggressive tumours. Although it is known that HER2 dimerization involves a specific region of its extracellular domain, the so-called “dimerization arm”, the mechanism of dimerization inhibition remains uncertain. However, uncovering how antibody interactions lead to inhibition of HER2 dimerization is of key importance in understanding its role in tumour progression and therapy. Herein, we employed several computational modelling techniques for a molecular-level understanding of the interactions between HER and specific anti-HER2 antibodies, namely an antigen-binding (Fab) fragment (F0178) and a single-chain variable fragment from Trastuzumab (scFv). Specifically, we investigated the effects of antibody-HER2 interactions on the key residues of “dimerization arm” from molecular dynamics (MD) simulations of unbound HER (in a total of 1 µs), as well as ScFv:HER2 and F0178:HER2 complexes (for a total of 2.5 µs). A deep surface analysis of HER receptor revealed that the binding of specific anti-HER2 antibodies induced conformational changes both in the interfacial residues, which was expected, and in the ECDII (extracellular domain), in particular at the “dimerization arm”, which is critical in establishing protein–protein interface (PPI) interactions. Our results support and advance the knowledge on the already described trastuzumab effect on blocking HER2 dimerization through synergistic inhibition and/or steric hindrance. Furthermore, our approach offers a new strategy for fine-tuning target activity through allosteric ligands.
Collapse
Affiliation(s)
- Pedro R. Magalhães
- Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal (M.M.)
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal (M.M.)
| | | | - André Melo
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal; (A.M.); (M.N.D.S.C.)
| | - M. Natália D. S. Cordeiro
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre, 4169-007 Porto, Portugal; (A.M.); (M.N.D.S.C.)
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal;
| | - Zeynep H. Gümüş
- Department of Genetics and Genomics and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Irina S. Moreira
- DDMD–Data Driven Molecular Design Group, CNC - Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, Nucleus 4, Lot 3, Biocant Park, 3060-197 Cantanhede, Portugal;
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal;
- Correspondence: (J.D.G.C.); (R.M.); Tel.: +0035-121-994-6258 (R.M.)
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal;
- DDMD–Data Driven Molecular Design Group, CNC - Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, Nucleus 4, Lot 3, Biocant Park, 3060-197 Cantanhede, Portugal;
- Correspondence: (J.D.G.C.); (R.M.); Tel.: +0035-121-994-6258 (R.M.)
| |
Collapse
|
40
|
Angio-associated migratory cell protein interacts with epidermal growth factor receptor and enhances proliferation and drug resistance in human non-small cell lung cancer cells. Cell Signal 2019; 61:10-19. [DOI: 10.1016/j.cellsig.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023]
|
41
|
Orellana L. Convergence of EGFR glioblastoma mutations: evolution and allostery rationalizing targeted therapy. Mol Cell Oncol 2019; 6:e1630798. [PMID: 31528699 PMCID: PMC6736128 DOI: 10.1080/23723556.2019.1630798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022]
Abstract
EGFR mutations display striking organ-site asymmetry and heterogeneity. We have shown that structurally diverse extracellular mutations, typical of glioblastomas, converge to a similar intermediate conformation, which can be synergistically targeted extra- and intracelullarly by antibody mAb806 and type-II kinase inhibitors. Our findings reveal convergence behind heterogeneity, paving the way for allostery-based co-targeting.
Collapse
Affiliation(s)
- Laura Orellana
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
42
|
Stoneman MR, Biener G, Ward RJ, Pediani JD, Badu D, Eis A, Popa I, Milligan G, Raicu V. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods 2019; 16:493-496. [PMID: 31110281 PMCID: PMC7617210 DOI: 10.1038/s41592-019-0408-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.
Collapse
Affiliation(s)
- Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dammar Badu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Annie Eis
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
43
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
44
|
Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci U S A 2019; 116:10009-10018. [PMID: 31028138 DOI: 10.1073/pnas.1821442116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.
Collapse
|
45
|
Kilpatrick LE, Alcobia DC, White CW, Peach CJ, Glenn JR, Zimmerman K, Kondrashov A, Pfleger KDG, Ohana RF, Robers MB, Wood KV, Sloan EK, Woolard J, Hill SJ. Complex Formation between VEGFR2 and the β 2-Adrenoceptor. Cell Chem Biol 2019; 26:830-841.e9. [PMID: 30956148 PMCID: PMC6593180 DOI: 10.1016/j.chembiol.2019.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/30/2018] [Accepted: 02/24/2019] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid proliferation of vascular endothelial cells. The current first-line treatment for infantile hemangioma is the β-adrenoceptor antagonist, propranolol, although its mechanism of action is not understood. Here we have used bioluminescence resonance energy transfer and VEGFR2 genetically tagged with NanoLuc luciferase to demonstrate that oligomeric complexes involving VEGFR2 and the β2-adrenoceptor can be generated in both cell membranes and intracellular endosomes. These complexes are induced by agonist treatment and retain their ability to couple to intracellular signaling proteins. Furthermore, coupling of β2-adrenoceptor to β-arrestin2 is prolonged by VEGFR2 activation. These data suggest that protein-protein interactions between VEGFR2, the β2-adrenoceptor, and β-arrestin2 may provide insight into their roles in health and disease.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Diana C Alcobia
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia
| | - Carl W White
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Chloe J Peach
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Jackie R Glenn
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | | | - Alexander Kondrashov
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia; Dimerix Limited, Nedlands, Perth, WA 6009, Australia
| | | | | | | | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, University of California, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
46
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
47
|
Zanetti-Domingues LC, Korovesis D, Needham SR, Tynan CJ, Sagawa S, Roberts SK, Kuzmanic A, Ortiz-Zapater E, Jain P, Roovers RC, Lajevardipour A, van Bergen En Henegouwen PMP, Santis G, Clayton AHA, Clarke DT, Gervasio FL, Shan Y, Shaw DE, Rolfe DJ, Parker PJ, Martin-Fernandez ML. The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nat Commun 2018; 9:4325. [PMID: 30337523 PMCID: PMC6193980 DOI: 10.1038/s41467-018-06632-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Our current understanding of epidermal growth factor receptor (EGFR) autoinhibition is based on X-ray structural data of monomer and dimer receptor fragments and does not explain how mutations achieve ligand-independent phosphorylation. Using a repertoire of imaging technologies and simulations we reveal an extracellular head-to-head interaction through which ligand-free receptor polymer chains of various lengths assemble. The architecture of the head-to-head interaction prevents kinase-mediated dimerisation. The latter, afforded by mutation or intracellular treatments, splits the autoinhibited head-to-head polymers to form stalk-to-stalk flexible non-extended dimers structurally coupled across the plasma membrane to active asymmetric tyrosine kinase dimers, and extended dimers coupled to inactive symmetric kinase dimers. Contrary to the previously proposed main autoinhibitory function of the inactive symmetric kinase dimer, our data suggest that only dysregulated species bear populations of symmetric and asymmetric kinase dimers that coexist in equilibrium at the plasma membrane under the modulation of the C-terminal domain.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | | | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Antonija Kuzmanic
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Elena Ortiz-Zapater
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Purvi Jain
- Division of Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Rob C Roovers
- Merus, LSI, Yalelaan 62, 3584 CM, Utrecht, The Netherlands
| | - Alireza Lajevardipour
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - George Santis
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Francesco L Gervasio
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Yibing Shan
- D. E. Shaw Research, New York, NY, 10036, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY, 10036, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW 1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK.
| |
Collapse
|
48
|
Macdonald-Obermann JL, Pike LJ. Allosteric regulation of epidermal growth factor (EGF) receptor ligand binding by tyrosine kinase inhibitors. J Biol Chem 2018; 293:13401-13414. [PMID: 29997256 DOI: 10.1074/jbc.ra118.004139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
The epidermal growth factor (EGF) receptor is a classical receptor tyrosine kinase with an extracellular ligand-binding domain and an intracellular kinase domain. Mutations in the EGF receptor have been shown to drive uncontrolled cell growth and are associated with a number of different tumors. Two different types of ATP-competitive EGF receptor tyrosine kinase inhibitors have been identified that bind to either the active (type I) or inactive (type II) conformation of the kinase domain. Despite the fact that both types of inhibitors block tyrosine kinase activity, they exhibit differential efficacies in different tumor types. Here, we show that in addition to inhibiting kinase activity, these inhibitors allosterically modulate ligand binding. Our data suggest that the conformations of the EGF receptor extracellular domain and intracellular kinase domain are coupled and that these conformations exist in equilibrium. Allosteric regulators, such as the small-molecule tyrosine kinase inhibitors, as well as mutations in the EGF receptor itself, shift the conformational equilibrium among the active and inactive species, leading to changes in EGF receptor-binding affinity. Our studies also reveal unexpected positive cooperativity between EGF receptor subunits in dimers formed in the presence of type II inhibitors. These findings indicate that there is strong functional coupling between the intracellular and extracellular domains of this receptor. Such coupling may impact the therapeutic synergy between small-molecule tyrosine kinase inhibitors and monoclonal antibodies in vivo.
Collapse
Affiliation(s)
- Jennifer L Macdonald-Obermann
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Linda J Pike
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
49
|
Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst 2018; 7:161-179.e14. [PMID: 30007540 DOI: 10.1016/j.cels.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Collapse
|
50
|
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, Dahiya S, Bi WL, Reardon DA, Idbaih A, Felsberg J, Hentschel B, Weller M, Bagley SJ, Morrissette JJD, Nasrallah MP, Ma J, Zanca C, Scott AM, Orellana L, Davatzikos C, Furnari FB, O'Rourke DM. Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell 2018; 34:163-177.e7. [PMID: 29990498 PMCID: PMC6424337 DOI: 10.1016/j.ccell.2018.06.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
Collapse
Affiliation(s)
- Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E Paul Wileyto
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cole J Ferguson
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Woman's Hospital, Harvard Medical Center, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris 75013, France
| | - Joerg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Moorenstrasse 5, Duesseldorf 40225, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Härtelstrasse 16, Leipzig 04107, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich 8091, Switzerland
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianhui Ma
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, Australia
| | - Laura Orellana
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|