1
|
Green BL, Myojin Y, Ma C, Ruf B, Ma L, Zhang Q, Rosato U, Qi J, Revsine M, Wabitsch S, Bauer K, Benmebarek MR, McCallen J, Nur A, Wang X, Sehra V, Gupta R, Claassen M, Wang XW, Korangy F, Greten TF. Immunosuppressive CD29 + Treg accumulation in the liver in mice on checkpoint inhibitor therapy. Gut 2024; 73:509-520. [PMID: 37770128 PMCID: PMC10922517 DOI: 10.1136/gutjnl-2023-330024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Liver metastases are often resistant to immune checkpoint inhibitor therapy (ICI) and portend a worse prognosis compared with metastases to other locations. Regulatory T cells (Tregs) are one of several immunosuppressive cells implicated in ICI resistance of liver tumours, but the role played by Tregs residing within the liver surrounding a tumour is unknown. DESIGN Flow cytometry and single-cell RNA sequencing were used to characterise hepatic Tregs before and after ICI therapy. RESULTS We found that the murine liver houses a Treg population that, unlike those found in other organs, is both highly proliferative and apoptotic at baseline. On administration of αPD-1, αPD-L1 or αCTLA4, the liver Treg population doubled regardless of the presence of an intrahepatic tumour. Remarkably, this change was not due to the preferential expansion of the subpopulation of Tregs that express PD-1. Instead, a subpopulation of CD29+ (Itgb1, integrin β1) Tregs, that were highly proliferative at baseline, doubled its size in response to αPD-1. Partial and full depletion of Tregs identified CD29+ Tregs as the prominent niche-filling subpopulation in the liver, and CD29+ Tregs demonstrated enhanced suppression in vitro when derived from the liver but not the spleen. We identified IL2 as a critical modulator of both CD29+ and CD29- hepatic Tregs, but expansion of the liver Treg population with αPD-1 driven by CD29+ Tregs was in part IL2-independent. CONCLUSION We propose that CD29+ Tregs constitute a unique subpopulation of hepatic Tregs that are primed to respond to ICI agents and mediate resistance.
Collapse
Affiliation(s)
- Benjamin L Green
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Qianfei Zhang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Umberto Rosato
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Qi
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kylynda Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin McCallen
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Sehra
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Revant Gupta
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Cubero FJ, Sarobe P, Tiegs G. Advancing with cancer immunotherapeutics: CD29 + regulatory T cell antagonism. Gut 2024; 73:391-392. [PMID: 37898547 DOI: 10.1136/gutjnl-2023-331048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Francisco Javier Cubero
- Immunology, Ophthalmology and ENT, Complutense University of Madrid Faculty of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Sarobe
- Centre for Biomedical Research, Network on Liver and Digestive Diseases(CIBEREHD), Madrid, Spain
- Programa de Inmunología e Inmunoterapia, Centro de Investigación MédicaAplicada (CIMA, CCUN), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gisa Tiegs
- Insitute of Experimental Immunology and Hepatology, University Medical Center, Hamburg, Germany
| |
Collapse
|
3
|
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, Mishra J, Timilsina S, Ridgway WM, Gershwin ME, Ansari AA, Shuai Z, Leung PSC. The gut ecosystem and immune tolerance. J Autoimmun 2023; 141:103114. [PMID: 37748979 DOI: 10.1016/j.jaut.2023.103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Desiree L Rafizadeh
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Narendra Kumar
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Jayshree Mishra
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
López-Fandiño R, Molina E, Lozano-Ojalvo D. Intestinal factors promoting the development of RORγt + cells and oral tolerance. Front Immunol 2023; 14:1294292. [PMID: 37936708 PMCID: PMC10626553 DOI: 10.3389/fimmu.2023.1294292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The gastrointestinal tract has to harmonize the two seemingly opposite functions of fulfilling nutritional needs and avoiding the entry of pathogens, toxins and agents that can cause physical damage. This balance requires a constant adjustment of absorptive and defending functions by sensing environmental changes or noxious substances and initiating adaptive or protective mechanisms against them through a complex network of receptors integrated with the central nervous system that communicate with cells of the innate and adaptive immune system. Effective homeostatic processes at barrier sites take the responsibility for oral tolerance, which protects from adverse reactions to food that cause allergic diseases. During a very specific time interval in early life, the establishment of a stable microbiota in the large intestine is sufficient to prevent pathological events in adulthood towards a much larger bacterial community and provide tolerance towards diverse food antigens encountered later in life. The beneficial effects of the microbiome are mainly exerted by innate and adaptive cells that express the transcription factor RORγt, in whose generation, mediated by different bacterial metabolites, retinoic acid signalling plays a predominant role. In addition, recent investigations indicate that food antigens also contribute, analogously to microbial-derived signals, to educating innate immune cells and instructing the development and function of RORγt+ cells in the small intestine, complementing and expanding the tolerogenic effect of the microbiome in the colon. This review addresses the mechanisms through which microbiota-produced metabolites and dietary antigens maintain intestinal homeostasis, highlighting the complementarity and redundancy between their functions.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
5
|
Nakamura YK, Metea C, Llorenç V, Karstens L, Balter A, Lin P. A diet rich in fermentable fiber promotes robust changes in the intestinal microbiota, mitigates intestinal permeability, and attenuates autoimmune uveitis. Sci Rep 2023; 13:10806. [PMID: 37402809 DOI: 10.1038/s41598-023-37062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Therapeutic approaches for noninfectious uveitis have expanded greatly over the past 10 years, but are limited by potential side effects and limited efficacy. Thus, therapeutic approaches that include less toxic, potentially preventative strategies to manage noninfectious uveitis are essential areas of study. Diets rich in fermentable fiber are potentially preventative in various conditions such as metabolic syndrome and type 1 diabetes. We studied the effects of various fermentable dietary fibers in an inducible model of experimental autoimmune uveitis (EAU) and found that they differentially modulated uveitis severity. A high pectin diet was the most protective, reducing clinical disease severity through the induction of regulatory T lymphocytes and the suppression of Th1 and Th17 lymphocytes at peak ocular inflammation in either intestinal or extra-intestinal lymphoid tissues. The high pectin diet also promoted intestinal homeostasis as shown by changes in intestinal morphology and gene expression, as well as intestinal permeability. Pectin-induced modulation of intestinal bacteria appeared to be associated with protective changes in immunophenotype in the intestinal tract, and correlated with reduced uveitis severity. In summary, our current findings support the potential for dietary intervention as a strategy to mitigate noninfectious uveitis severity.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Christina Metea
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Victor Llorenç
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, Barcelona, Spain
| | - Lisa Karstens
- Departments of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Ariel Balter
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Phoebe Lin
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
6
|
Cruz-Morales E, Hart AP, Fossett GM, Laufer TM. Helios + and RORγt + Treg populations are differentially regulated by MHCII, CD28, and ICOS to shape the intestinal Treg pool. Mucosal Immunol 2023; 16:264-274. [PMID: 36935092 DOI: 10.1016/j.mucimm.2023.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are essential for intestinal homeostasis. Tregs in the small intestine include Helios+ thymus-derived Tregs (tTregs) and RORγt+ Tregs that differentiate in the periphery after antigenic stimulation (pTregs). TCR and costimulatory signals sustain Tregs with effector phenotypes, including those in the intestine, but it is unknown if tTregs and pTregs have similar requirements for these pathways. We previously used mice lacking peripheral expression of MHCII to demonstrate that the small intestine sustains tTregs independently of peripheral antigen. Here, we show that the effector phenotype and tissue-resident signature of tTregs are also MHCII-independent. Using this model, we define the distinct costimulatory requirements of intestinal tTregs and pTregs. Helios+ effector tTregs proliferate through CD28 and require neither ICOS nor MHCII for maintenance. In contrast, RORγt+ pTregs use CD28 and ICOS. Notably, the differential costimulatory utilization allows tTregs and pTregs to dynamically respond to perturbations to support a fixed number of intestinal Tregs. This suggests that the environmental regulation of costimulatory ligands might shape the subpopulations of intestinal Tregs and promote effective homeostasis and defense. Our data reveal new complexity in effector Treg biology and costimulatory signaling of tTregs and pTregs and highlight the importance of analyzing both subpopulations.
Collapse
Affiliation(s)
- Elisa Cruz-Morales
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Georgia M Fossett
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
7
|
Laukova M, Glatman Zaretsky A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur J Immunol 2023; 53:e2250007. [PMID: 36562391 PMCID: PMC10107179 DOI: 10.1002/eji.202250007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Foxp3+ T regulatory (Treg) cells suppress inflammation and are essential for maintaining tissue homeostasis. A growing appreciation of tissue-specific Treg functions has built interest in leveraging the endogenous suppressive mechanisms of these cells into cellular therapeutics in organ-specific diseases. Notably, Treg cells play a critical role in maintaining the intestinal environment. As a barrier site, the gut requires Treg cells to mediate interactions with the microbiota, support barrier integrity, and regulate the immune system. Without fully functional Treg cells, intestinal inflammation and microbial dysbiosis ensue. Thus, there is a particular interest in developing Treg cellular therapies for intestinal inflammatory disease, such as inflammatory bowel disease (IBD). This article reviews some of the critical pathways that are dysregulated in IBD, Treg cell mechanisms of suppression, and the efforts and approaches in the field to develop these cells as a cellular therapy for IBD.
Collapse
|
8
|
Estrada Brull A, Panetti C, Joller N. Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Front Immunol 2022; 13:864628. [PMID: 35572535 PMCID: PMC9099010 DOI: 10.3389/fimmu.2022.864628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) restrain excessive immune responses and dampen inflammation. In addition to this classical immune suppressive role, Tregs in non-lymphoid tissues also promote tissue homeostasis, regeneration and repair. In this review, we outline our current understanding of how Tregs migrate to peripheral tissues and the factors required for their maintenance at these sites. We discuss the tissue-specific adaptations of Tregs at barrier and immuno-privileged sites and the mechanisms that regulate their function within these organs. Furthermore, we outline what is known about the interactions of Tregs with non-immune cells in the different peripheral tissues at steady state and upon challenge or tissue damage. A thorough understanding of the tissue-specific adaptations and functions of Tregs will potentially pave the way for therapeutic approaches targeting their regenerative role.
Collapse
|
9
|
Shimizu J, Suzuki N. Mechanical model of steady-state and inflammatory conditions in patients with relapsing polychondritis: A review. Medicine (Baltimore) 2022; 101:e28852. [PMID: 35212285 PMCID: PMC8878696 DOI: 10.1097/md.0000000000028852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Relapsing polychondritis (RP) is a multisystem inflammatory disorder, considered to associate with immune aberration.Increased T helper type-1 cell-related cytokines were reported in RP patients. mRNA expressions of a regulatory T cell cytokine interleukin (IL)-10 increased, whereas pro-inflammatory cytokines IL1β and IL6 mRNA expressions decreased in freshly isolated peripheral blood mononuclear cells of RP patients compared with those in healthy individuals. Upon in vitro stimulation with mitogen, IL10 mRNA expressions decreased, and IL1β and IL6 mRNA expressions increased in RP patients.This short-time dynamic change of gene expressions from anti-inflammatory to pro-inflammatory features of immune cells may be associated with the "relapsing" disease course of patients with RP. IL1β mRNA expressions of peripheral blood mononuclear cells exhibited positive correlations with serum matrix metalloproteinase (MMP)-3 concentrations in patients with respiratory involvement. Such positive correlation was not found in those without respiratory involvement.In a metagenomic analysis, an altered composition of gut microbes was found, suggesting that microbe metabolites such as short-chain fatty acids may affect T cell responses of the patients.In this review, the relationships among RP-related inflammatory molecules were summarized. The data support a hypothesis that the immune conditions are different between steady-state and inflammation in RP patients.
Collapse
|
10
|
Pourvali K, Monji H. Obesity and intestinal stem cell susceptibility to carcinogenesis. Nutr Metab (Lond) 2021; 18:37. [PMID: 33827616 PMCID: PMC8028194 DOI: 10.1186/s12986-021-00567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background Obesity is a top public health problem associated with an increase in colorectal cancer incidence. Stem cells are the chief cells in tissue homeostasis that self-renew and differentiate into other cells to regenerate the organ. It is speculated that an increase in stem cell pool makes cells susceptible to carcinogenesis. In this review, we looked at the recent investigations linking obesity/high-fat diet-induced obesity to intestinal carcinogenesis with regard to intestinal stem cells and their niche. Findings High-fat diet-induced obesity may rise intestinal carcinogenesis by increased Intestinal stem cells (ISC)/progenitor’s population, stemness, and niche independence through activation of PPAR-δ with fatty acids, hormonal alterations related to obesity, and low-grade inflammation. However, these effects may possibly relate to the interaction between fats and carbohydrates, and not a fatty acid per se. Nonetheless, literature studies are inconsistency in their results, probably due to the differences in the diet components and limitations of genetic models used. Conclusion High-fat diet-induced obesity affects carcinogenesis by changing ISC proliferation and function. However, a well-matched diet and the reliable colorectal cancer models that mimic human carcinogenesis is necessary to clearly elucidate the influence of high-fat diet-induced obesity on ISC behavior.
Collapse
Affiliation(s)
- Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hadi Monji
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
11
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
12
|
Piconese S, Campello S, Natalini A. Recirculation and Residency of T Cells and Tregs: Lessons Learnt in Anacapri. Front Immunol 2020; 11:682. [PMID: 32431695 PMCID: PMC7214633 DOI: 10.3389/fimmu.2020.00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
"Location, location, and location": according to this mantra, the place where living beings settle has a key impact on the success of their activities; in turn, the living beings can, in many ways, modify their environment. This idea has now become more and more true for T cells. The ability of T cells to recirculate throughout blood or lymph, or to stably reside in certain tissues, turned out to determine immunity to pathogens, and tumors. If location matters also for human beings, the inspiring environment of Capri Island has contributed to the success of the EFIS-EJI Ruggero Ceppellini Advanced School of Immunology focused on "T cell memory," held in Anacapri from October 12, 2018 to October 15, 2018. In this minireview, we would like to highlight some novel concepts about T cell migration and residency and discuss their implications in relation to recent advances in the field, including the mechanisms regulating compartmentalization and cell cycle entry of T cells during activation, the role of mitochondrial metabolism in T cell movement, and the residency of regulatory T cells.
Collapse
Affiliation(s)
- Silvia Piconese
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Dipartimento di Medicina Molecolare (DMM), Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
14
|
Tissue-Resident Lymphocytes in Solid Organ Transplantation: Innocent Passengers or the Key to Organ Transplant Survival? Transplantation 2018; 102:378-386. [PMID: 29135830 DOI: 10.1097/tp.0000000000002001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Short-term outcomes of solid organ transplantation have improved dramatically over the past several decades; however, long-term survival has remained static over the same period, and chronic rejection remains a major cause of graft failure. The importance of donor, or "passenger," lymphocytes to the induction of tolerance to allografts was recognized in the 1990s, but their precise contribution to graft acceptance or rejection has not been elucidated. Recently, specialized populations of tissue-resident lymphocytes in nonlymphoid organs have been described. These lymphocytes include tissue-resident memory T cells, regulatory T cells, γδ T cells, invariant natural killer T cells, and innate lymphoid cells. These cells reside in commonly transplanted solid organs, including the liver, kidneys, heart, and lung; however, their contribution to graft acceptance or rejection has not been examined in detail. Similarly, it is unclear whether tissue-resident cells derived from the pool of recipient-derived lymphocytes play a specific role in transplantation biology. This review summarizes the evidence for the roles of tissue-resident lymphocytes in transplant immunology, focussing on their features, functions, and relevance for solid organ transplantation, with specific reference to liver, kidney, heart, and lung transplantation.
Collapse
|
15
|
Fan X, Moltedo B, Mendoza A, Davydov AN, Faire MB, Mazutis L, Sharma R, Pe'er D, Chudakov DM, Rudensky AY. CD49b defines functionally mature Treg cells that survey skin and vascular tissues. J Exp Med 2018; 215:2796-2814. [PMID: 30355617 PMCID: PMC6219731 DOI: 10.1084/jem.20181442] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Regulatory T (Treg) cells prevent autoimmunity by limiting immune responses and inflammation in the secondary lymphoid organs and nonlymphoid tissues. While unique subsets of Treg cells have been described in some nonlymphoid tissues, their relationship to Treg cells in secondary lymphoid organs and circulation remains unclear. Furthermore, it is possible that Treg cells from similar tissue types share largely similar properties. We have identified a short-lived effector Treg cell subset that expresses the α2 integrin, CD49b, and exhibits a unique tissue distribution, being abundant in peripheral blood, vasculature, skin, and skin-draining lymph nodes, but uncommon in the intestines and in viscera-draining lymph nodes. CD49b+ Treg cells, which display superior functionality revealed by in vitro and in vivo assays, appear to develop after multiple rounds of cell division and TCR-dependent activation. Accordingly, single-cell RNA-seq analysis placed these cells at the apex of the Treg developmental trajectory. These results shed light on the identity and development of a functionally potent subset of mature effector Treg cells that recirculate through and survey peripheral tissues.
Collapse
Affiliation(s)
- Xiying Fan
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bruno Moltedo
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alejandra Mendoza
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mehlika B Faire
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Linas Mazutis
- Single Cell Research Initiative, Memorial Sloan Kettering Cancer Center, New York, NY
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roshan Sharma
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
| | - Dana Pe'er
- Single Cell Research Initiative, Memorial Sloan Kettering Cancer Center, New York, NY
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Rausch S, Midha A, Kuhring M, Affinass N, Radonic A, Kühl AA, Bleich A, Renard BY, Hartmann S. Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Front Immunol 2018; 9:2282. [PMID: 30349532 PMCID: PMC6186814 DOI: 10.3389/fimmu.2018.02282] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
Intestinal parasitic nematodes live in intimate contact with the host microbiota. Changes in the microbiome composition during nematode infection affect immune control of the parasites and shifts in the abundance of bacterial groups have been linked to the immunoregulatory potential of nematodes. Here we asked if the small intestinal parasite Heligmosomoides polygyrus produces factors with antimicrobial activity, senses its microbial environment and if the anti-nematode immune and regulatory responses are altered in mice devoid of gut microbes. We found that H. polygyrus excretory/secretory products exhibited antimicrobial activity against gram+/− bacteria. Parasites from germ-free mice displayed alterations in gene expression, comprising factors with putative antimicrobial functions such as chitinase and lysozyme. Infected germ-free mice developed increased small intestinal Th2 responses coinciding with a reduction in local Foxp3+RORγt+ regulatory T cells and decreased parasite fecundity. Our data suggest that nematodes sense their microbial surrounding and have evolved factors that limit the outgrowth of certain microbes. Moreover, the parasites benefit from microbiota-driven immune regulatory circuits, as an increased ratio of intestinal Th2 effector to regulatory T cells coincides with reduced parasite fitness in germ-free mice.
Collapse
Affiliation(s)
- Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Matthias Kuhring
- Bioinformatics Unit (MF 1), Robert Koch Institute, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole Affinass
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Aleksandar Radonic
- Centre for Biological Threats and Special Pathogens (ZBS 1), Robert Koch Institute, Berlin, Germany.,Genome Sequencing Unit (MF 2), Robert Koch Institute, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Core Unit for Immunopathology for Experimental Models, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Sharma A, Rudra D. Emerging Functions of Regulatory T Cells in Tissue Homeostasis. Front Immunol 2018; 9:883. [PMID: 29887862 PMCID: PMC5989423 DOI: 10.3389/fimmu.2018.00883] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
18
|
Functional heterogeneity of gut-resident regulatory T cells. Clin Transl Immunology 2017; 6:e156. [PMID: 28983404 PMCID: PMC5628268 DOI: 10.1038/cti.2017.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Treg cells) have a central role in the maintenance of intestinal homeostasis by restraining inappropriate immune responses in the healthy gut. Although distinct intestinal immune cell populations have been described to exhibit regulatory activity, several genetic and functional studies provided a strong evidence for a pivotal role of forkhead box P3 (Foxp3)+CD4+ Treg cells in prevention of dysregulated mucosal immune reactions and development of chronic immunological disorders such as celiac disease, food allergies and inflammatory bowel disease. Treg cells provide an important layer of intestinal defense by suppressing immune responses against innocuous food and commensal-derived antigens. Recent functional studies suggest that Treg cells are also involved in several other processes such as controlling microbial diversity in the gut, immunoglobulin A selection and supporting tissue repair in response to intestinal tissue damage. A better understanding of the functional heterogeneity as well as of the molecular signals, which regulate distinct intestinal Treg cell subsets, will encourage strategies aimed at transplanting the optimal Treg cell subset for cellular therapy in humans.
Collapse
|
19
|
Kalergis AM, Anegon I, González PA. FOCIS goes south: advances in translational and clinical immunology. Immunotherapy 2017; 9:789-792. [PMID: 28877630 DOI: 10.2217/imt-2017-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
FOCIS goes South: Advances in Translational and Clinical Immunology was the first Federation of Clinical Immunology Societies (FOCIS) ( www.focisnet.org ) meeting held in Latin America (May 15-17, 2017, Santiago de Chile, Chile). The meeting was organized as a 3-day workshop and was fostered by the Millennium Institute on Immunology and Immunotherapy, a recently nominated FOCIS Center of Excellence. The workshop brought together FOCIS associates, such as members of the FOCIS Board of Directors, Directors of different Centers of Excellence, regional speakers and 350 attendees. The Meeting covered aspects of immune regulation and modulation, as well as immunotherapy in areas of autoimmunity, transplantation, cancer and infectious diseases, among others. The activity also had a full-day immunology course and a day-long flow cytometry course.
Collapse
Affiliation(s)
- Alexis M Kalergis
- Departamento de GenéticaMolecular y Microbiología, Facultad de Ciencias Biológicas, PontificiaUniversidad Católica de Chilee.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago-Chile. Av. Portugal 49, Santiago E-8330025, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago-Chile.,Centre de Recherche en Transplantation et ImmunologieUMR1064, INSERM, Université de Nantes, Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et ImmunologieUMR1064, INSERM, Université de Nantes, Nantes, France.,Institut deTransplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pablo A González
- Departamento de GenéticaMolecular y Microbiología, Facultad de Ciencias Biológicas, PontificiaUniversidad Católica de Chilee.,Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago-Chile. Av. Portugal 49, Santiago E-8330025, Chile
| |
Collapse
|
20
|
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017; 46:532-548. [PMID: 28423335 DOI: 10.1016/j.immuni.2017.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life.
Collapse
Affiliation(s)
- William W Agace
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark; Immunology Section, Department of Experimental Medical Science, Lund University, BMC D14, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
21
|
Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, Blutke A, Straub T, Zimber-Strobl U, Lutgens E, Marconi P, Ohnmacht C, Garzetti D, Stecher B, Brocker T. CD40-signalling abrogates induction of RORγt + Treg cells by intestinal CD103 + DCs and causes fatal colitis. Nat Commun 2017; 8:14715. [PMID: 28276457 PMCID: PMC5347138 DOI: 10.1038/ncomms14715] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
Immune homeostasis in intestinal tissues depends on the generation of regulatory T (Treg) cells. CD103+ dendritic cells (DCs) acquire microbiota-derived material from the gut lumen for transport to draining lymph nodes and generation of receptor-related orphan γt+ (RORγt+) Helios−-induced Treg (iTreg) cells. Here we show CD40-signalling as a microbe-independent signal that can induce migration of CD103+ DCs from the lamina propria (LP) to the mesenteric lymph nodes. Transgenic mice with constitutive CD11c-specific CD40-signalling have reduced numbers of CD103+ DCs in LP and a low frequency of RORγt+Helios− iTreg cells, exacerbated inflammatory Th1/Th17 responses, high titres of microbiota-specific immunoglobulins, dysbiosis and fatal colitis, but no pathology is detected in other tissues. Our data demonstrate a CD40-dependent mechanism capable of abrogating iTreg cell induction by DCs, and suggest that the CD40L/CD40-signalling axis might be able to intervene in the generation of new iTreg cells in order to counter-regulate immune suppression to enhance immunity. CD103+ dendritic cells induce iTreg cells to maintain immune balance in the gut, but how CD40-signalling regulates this process is unclear. Here the authors show that mice with constitutive CD11c-specific CD40-signalling have altered CD103+ dendritic cell migration, reduced iTreg cell induction, and fatal colitis.
Collapse
Affiliation(s)
- Christian Barthels
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Ana Ogrinc
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Verena Steyer
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Stefanie Meier
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Ferdinand Simon
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Maria Wimmer
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg 85764, Germany
| | - Andreas Blutke
- Section of Animal Pathology, Department of Veterinary Clinical Sciences, LMU Munich, Munich 80539, Germany
| | - Tobias Straub
- Bioinformatics core unit, BMC, LMU Munich, Großhaderner Strasse 9, Planegg-Munich 82152, Germany
| | | | - Esther Lutgens
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, LMU Munich, Munich 80336, Germany.,Department of Medical Biochemistry, AMC, Amsterdam 1105AZ, The Netherlands
| | - Peggy Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Caspar Ohnmacht
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg 85764, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Munich, LMU Munich, Munich 80336, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Munich, LMU Munich, Munich 80336, Germany
| | - Thomas Brocker
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| |
Collapse
|
22
|
Sailaja BS, He XC, Li L. The regulatory niche of intestinal stem cells. J Physiol 2016; 594:4827-36. [PMID: 27060879 DOI: 10.1113/jp271931] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.
Collapse
Affiliation(s)
- Badi Sri Sailaja
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66101, USA
| |
Collapse
|
23
|
Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 2016; 16:295-309. [PMID: 27087661 DOI: 10.1038/nri.2016.36] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.
Collapse
Affiliation(s)
- Takeshi Tanoue
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
24
|
Affiliation(s)
- Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Honda
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|