1
|
Craig R, McIntosh K, Ho Ho K, McCulloch A, Riley C, Lawson C, Mackay SP, Paul A, Coats P, Plevin R. IL-1β stimulates a novel axis within the NFκB pathway in endothelial cells regulated by IKKα and TAK-1. Biochem Pharmacol 2025; 232:116736. [PMID: 39710275 DOI: 10.1016/j.bcp.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In this study we examined the activation of the non-canonical NFκB signalling pathway in endothelial cells. In HUVECs, LIGHT stimulated a delayed induction of serine 866/870 p100 phosphorylation linked to p52 NFκB formation. Surprisingly, the canonical ligand, IL-1β, stimulated a rapid phosphorylation or p100 which was not associated with p52 formation. Inhibition of IKKα activity, using DN-IKKα adenovirus, IKKα siRNA or a novel first-in-class selective IKKα inhibitor, SU1261, revealed IL-1β induced p100 phosphorylation to be dependent on IKKα. In contrast, IKKβ inhibition was found to be without effect. The NIK inhibitor, CW15337, did not affect IL-1β induced p100 phosphorylation however, both p100 and pIKKα/β phosphorylation was substantially reduced by inhibition of the upstream kinase TAK-1, suggesting phosphorylation of p100 is mediated by IKKα from within the canonical NEMO/IKKβ /IKKα complex. IL-1β also stimulated a rapid increase in nuclear translocation of p52, which was not affected by NIK inhibition, suggesting a source of p52 independent of p100 processing. Inhibition of TAK-1 abolished p52 and p65 nuclear translocation in response to IL-1β. SiRNA deletion or inhibition with dominant-negative virus of IKKα activity partially reduced p52 translocation, however pharmacological inhibition of IKKα was without effect. Inhibition of IKKβ abolished both p52 and p65 translocation. Taken together these results show that IL-1β stimulates a novel IKKα -dependent axis within the non-canonical NFκB pathway in endothelial cells which is NIK-independent and regulated by TAK-1. However, this pathway is not primarily responsible for the early nuclear translocation of p52, which is dependent on IKKβ. Elucidation of both these new pathways may be significant for NFκB biology within the endothelium.
Collapse
Affiliation(s)
- Rachel Craig
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Ka Ho Ho
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Riley
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Simon P Mackay
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Paul Coats
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
2
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
4
|
Colombo F, Guzzeloni V, Kizilirmak C, Brambilla F, Garcia-Manteiga JM, Tascini AS, Moalli F, Mercalli F, Ponzoni M, Mezzapelle R, Ferrarini M, Ferrero E, Visone R, Rasponi M, Bianchi ME, Zambrano S, Agresti A. In vitro models of the crosstalk between multiple myeloma and stromal cells recapitulate the mild NF-κB activation observed in vivo. Cell Death Dis 2024; 15:731. [PMID: 39370432 PMCID: PMC11456592 DOI: 10.1038/s41419-024-07038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
Multiple myeloma (MM) is linked to chronic NF-κB activity in myeloma cells, but this activity is generally considered a cell-autonomous property of the cancer cells. The precise extent of NF-κB activation and the contributions of the physical microenvironment and of cell-to-cell communications remain largely unknown. By quantitative immunofluorescence, we found that NF-κB is mildly and heterogeneously activated in a fraction of MM cells in human BMs, while only a minority of MM cells shows a strong activation. To gain quantitative insights on NF-κB activation in living MM cells, we combined advanced live imaging of endogenous p65 Venus-knocked-in in MM.1S and HS-5 cell lines to model MM and mesenchymal stromal cells (MSCs), cell co-cultures, microfluidics and custom microbioreactors to mimic the 3D-interactions within the bone marrow (BM) microenvironment. We found that i) reciprocal MM-MSC paracrine crosstalk and cell-to-scaffold interactions shape the inflammatory response in the BM; ii) the pro-inflammatory cytokine IL-1β, abundant in MM patients' plasma, activates MSCs, whose paracrine signals are responsible for strong NF-κB activation in a minority of MM cells; iii) IL-1β, but not TNF-α, activates NF-κB in vivo in BM-engrafted MM cells, while its receptor inhibitor Anakinra reduces the global NF-κB activation. We propose that NF-κB activation in the BM of MM patients is mild, restricted to a minority of cells and modulated by the interplay of restraining physical microenvironmental cues and activating IL-1β-dependent stroma-to-MM crosstalk.
Collapse
Affiliation(s)
- Federica Colombo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Virginia Guzzeloni
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Cise Kizilirmak
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anna Sofia Tascini
- Universita' Vita-Salute San Raffaele, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Samuel Zambrano
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Universita' Vita-Salute San Raffaele, Milan, Italy.
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
5
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Konrath F, Willenbrock M, Busse D, Scheidereit C, Wolf J. A computational model of the DNA damage-induced IKK/ NF-κB pathway reveals a critical dependence on irradiation dose and PARP-1. iScience 2023; 26:107917. [PMID: 37817938 PMCID: PMC10561052 DOI: 10.1016/j.isci.2023.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
The activation of IKK/NF-κB by genotoxic stress is a crucial process in the DNA damage response. Due to the anti-apoptotic impact of NF-κB, it can affect cell-fate decisions upon DNA damage and therefore interfere with tumor therapy-induced cell death. Here, we developed a dynamical model describing IKK/NF-κB signaling that faithfully reproduces quantitative time course data and enables a detailed analysis of pathway regulation. The approach elucidates a pathway topology with two hubs, where the first integrates signals from two DNA damage sensors and the second forms a coherent feedforward loop. The analyses reveal a critical role of the sensor protein PARP-1 in the pathway regulation. Introducing a method for calculating the impact of changes in individual components on pathway activity in a time-resolved manner, we show how irradiation dose influences pathway activation. Our results give a mechanistic understanding relevant for the interpretation of experimental and clinical studies.
Collapse
Affiliation(s)
- Fabian Konrath
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Willenbrock
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dorothea Busse
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claus Scheidereit
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Germany
| |
Collapse
|
7
|
Lin L, Yu H, Li L, Yang W, Chen X, Gong Y, Lei Q, Li Z, Zhou Z, Dai L, Zhang H, Hu H. TRIM55 promotes noncanonical NF-κB signaling and B cell-mediated immune responses by coordinating p100 ubiquitination and processing. Sci Signal 2023; 16:eabn5410. [PMID: 37816088 DOI: 10.1126/scisignal.abn5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
The ubiquitination-dependent processing of NF-κB2 (also known as p100) is a critical step in the activation of the noncanonical NF-κB pathway. We investigated the molecular mechanisms regulating this process and showed that TRIM55 was the E3 ubiquitin ligase that mediated the ubiquitination of p100 and coordinated its processing. TRIM55 deficiency impaired noncanonical NF-κB activation and B cell function. Mice with a B cell-specific Trim55 deficiency exhibited reduced germinal center formation and antibody production. These mice showed less severe symptoms than those of control mice upon the induction of a systemic lupus-like disease, suggesting B cell-intrinsic functions of TRIM55 in humoral immune responses and autoimmunity. Mechanistically, the ubiquitination of p100 mediated by TRIM55 was crucial for p100 processing by VCP, an ATPase that mediates ubiquitin-dependent protein degradation by the proteasome. Furthermore, we found that TRIM55 facilitated the interaction between TRIM21 and VCP as well as TRIM21-mediated K63-ubiquitination of VCP, both of which were indispensable for the formation of the VCP-UFD1-NPL4 complex and p100 processing. Together, our results reveal a mechanism by which TRIM55 fine-tunes p100 processing and regulates B cell-dependent immune responses in vivo, highlighting TRIM55 as a potential therapeutic target for lupus-like disease.
Collapse
Affiliation(s)
- Liangbin Lin
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Yu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Li
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenyong Yang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueying Chen
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingqiang Lei
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonghan Li
- School of Life Science, Sichuan University, Chengdu 610041, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhua Road, Shanghai 200438, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Lunzhi Dai
- Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chongqing International Institute for Immunology, Chongqing 401338, China
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Pickering S, Sumner J, Kerridge C, Perera M, Neil S. Differential dysregulation of β-TrCP1 and -2 by HIV-1 Vpu leads to inhibition of canonical and non-canonical NF-κB pathways in infected cells. mBio 2023; 14:e0329322. [PMID: 37341489 PMCID: PMC10470808 DOI: 10.1128/mbio.03293-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/03/2023] [Indexed: 06/22/2023] Open
Abstract
The HIV-1 Vpu protein is expressed late in the virus lifecycle to promote infectious virus production and avoid innate and adaptive immunity. This includes the inhibition of the NF-κB pathway which, when activated, leads to the induction of inflammatory responses and the promotion of antiviral immunity. Here we demonstrate that Vpu can inhibit both canonical and non-canonical NF-κB pathways, through the direct inhibition of the F-box protein β-TrCP, the substrate recognition portion of the Skp1-Cul1-F-box (SCF)β-TrCP ubiquitin ligase complex. There are two paralogues of β-TrCP (β-TrCP1/BTRC and β-TrCP2/FBXW11), encoded on different chromosomes, which appear to be functionally redundant. Vpu, however, is one of the few β-TrCP substrates to differentiate between the two paralogues. We have found that patient-derived alleles of Vpu, unlike those from lab-adapted viruses, trigger the degradation of β-TrCP1 while co-opting its paralogue β-TrCP2 for the degradation of cellular targets of Vpu, such as CD4. The potency of this dual inhibition correlates with stabilization of the classical IκBα and the phosphorylated precursors of the mature DNA-binding subunits of canonical and non-canonical NF-κB pathways, p105/NFκB1 and p100/NFκB2, in HIV-1 infected CD4+ T cells. Both precursors act as alternative IκBs in their own right, thus reinforcing NF-κB inhibition at steady state and upon activation with either selective canonical or non-canonical NF-κB stimuli. These data reveal the complex regulation of NF-κB late in the viral replication cycle, with consequences for both the pathogenesis of HIV/AIDS and the use of NF-κB-modulating drugs in HIV cure strategies. IMPORTANCE The NF-κB pathway regulates host responses to infection and is a common target of viral antagonism. The HIV-1 Vpu protein inhibits NF-κB signaling late in the virus lifecycle, by binding and inhibiting β-TrCP, the substrate recognition portion of the ubiquitin ligase responsible for inducing IκB degradation. Here we demonstrate that Vpu simultaneously inhibits and exploits the two different paralogues of β-TrCP by triggering the degradation of β-TrCP1 and co-opting β-TrCP2 for the destruction of its cellular targets. In so doing, it has a potent inhibitory effect on both the canonical and non-canonical NF-κB pathways. This effect has been underestimated in previous mechanistic studies due to the use of Vpu proteins from lab-adapted viruses. Our findings reveal previously unappreciated differences in the β-TrCP paralogues, revealing functional insights into the regulation of these proteins. This study also raises important implications for the role of NF-κB inhibition in the immunopathogenesis of HIV/AIDS and the way that this may impact on HIV latency reversal strategies based on the activation of the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Jonathan Sumner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Claire Kerridge
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Marianne Perera
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Stuart Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
McIntosh K, Khalaf YH, Craig R, West C, McCulloch A, Waghmare A, Lawson C, Chan EYW, Mackay S, Paul A, Plevin R. IL-1β stimulates a novel, IKKα -dependent, NIK -independent activation of non-canonical NFκB signalling. Cell Signal 2023; 107:110684. [PMID: 37080443 DOI: 10.1016/j.cellsig.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1β2 (LTα1β2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1β (IL-1β) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1β and LTα1β2. In contrast, knockdown of IKKβ using siRNA or pharmacological inhibition of IKKβ activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1β induced phosphorylation of p100 however, the response to LTα1β2 was virtually abolished. Surprisingly IL-1β also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1β2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1β.
Collapse
Affiliation(s)
- Kathryn McIntosh
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| | - Yousif H Khalaf
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Rachel Craig
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher West
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Ajay Waghmare
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Edmond Y W Chan
- Department of Biomedical and Molecular sciences, Queens University, Botterell Hall, Room 563, 18 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Simon Mackay
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
10
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
11
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
12
|
Post-Transcriptional Control of mRNA Metabolism and Protein Secretion: The Third Level of Regulation within the NF-κB System. Biomedicines 2022; 10:biomedicines10092108. [PMID: 36140209 PMCID: PMC9495616 DOI: 10.3390/biomedicines10092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The NF-κB system is a key transcriptional pathway that regulates innate and adaptive immunity because it triggers the activation and differentiation processes of lymphocytes and myeloid cells during immune responses. In most instances, binding to cytoplasmic inhibitory IκB proteins sequesters NF-κB into an inactive state, while a plethora of external triggers activate three complex signaling cascades that mediate the release and nuclear translocation of the NF-κB DNA-binding subunits. In addition to these cytosolic steps (level 1 of NF-κB regulation), NF-κB activity is also controlled in the nucleus by signaling events, cofactors and the chromatin environment to precisely determine chromatin recruitment and the specificity and timing of target gene transcription (level 2 of NF-κB regulation). Here, we discuss an additional layer of the NF-κB system that manifests in various steps of post-transcriptional gene expression and protein secretion. This less-studied regulatory level allows reduction of (transcriptional) noise and signal integration and endows time-shifted control of the secretion of inflammatory mediators. Detailed knowledge of these steps is important, as dysregulated post-transcriptional NF-κB signaling circuits are likely to foster chronic inflammation and contribute to the formation and maintenance of a tumor-promoting microenvironment.
Collapse
|
13
|
Pan W, Deng L, Wang H, Wang VYF. Atypical IκB Bcl3 enhances the generation of the NF-κB p52 homodimer. Front Cell Dev Biol 2022; 10:930619. [PMID: 35990614 PMCID: PMC9389042 DOI: 10.3389/fcell.2022.930619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulate diverse biological functions. Their cellular expression profiles differ, which lead to different concentrations in different cell/tissue types. Although the activation mechanisms of different NF-κB dimers have been widely investigated, there is limited information on specific NF-κB dimers’ formation. The NF-κB p52:p52 homodimer regulates an important subset of target genes in cancer cells; however, the molecular mechanism of the generation of this specific homodimer remains unclear. Our study has revealed that the atypical IκB protein, Bcl3, plays an essential role in enhancing the p52:p52 homodimer population which is a unique mechanism to p52 within the NF-κB family. p52 was shown to heterodimerize with four other NF-κB subunits (RelA, RelB, cRel, and p50); all heterodimers, except p52:p50, are significantly more stable than the p52:p52 homodimer. Bcl3 is able to compete with all other NF-κB subunits in cells for efficient p52:p52 homodimer formation which consequently leads to the upregulation of target genes that are involved in cell proliferation, migration, and inflammation, which explain why aberrant activation of Bcl3 and p52 leads to cancer.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Limei Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Haitao Wang
- Thoracic Surgery Branch, Clinical Research, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Macau SAR, China
- *Correspondence: Vivien Ya-Fan Wang,
| |
Collapse
|
14
|
Wang F, Li S, Rosencrans WM, Cheng KW, Stott GM, Mroczkowski B, Chou TF. Sulforaphane is Synergistic with CB-5083 and Inhibits Colony Formation of CB-5083-Resistant HCT116 Cells. ChemMedChem 2022; 17:e202200030. [PMID: 35451199 DOI: 10.1002/cmdc.202200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Human p97 is a potential drug target in oncology. Mutation-driven drug resistance is an obstacle to the long-term efficacy of targeted therapy. We found that the ATPase activity for one of the CB-5083-resistant p97 mutants was reduced, which also attenuated the degradation of K48 ubiquitinated proteins in cells. To understand how p97 mutant cells with significantly reduced ATPase activity can still grow, we discovered reduced levels of CHOP and NF-κB activation in the p97 mutant cells and these cellular changes can potentially protect HCT116 cells from death due to lowered p97 activity. In addition, the NF-kB inhibitor Sulforaphane reduces proliferation of CB-5083 resistant cells and acts synergistically with CB-5083 to block proliferation of the parental HCT116 cells. The combination of Sulforaphane and CB-5083 may be a useful treatment strategy to combat CB-5083 resistance.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Rosencrans
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gordon M Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barbara Mroczkowski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Legut M, Gajic Z, Guarino M, Daniloski Z, Rahman JA, Xue X, Lu C, Lu L, Mimitou EP, Hao S, Davoli T, Diefenbach C, Smibert P, Sanjana NE. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 2022; 603:728-735. [PMID: 35296855 PMCID: PMC9908437 DOI: 10.1038/s41586-022-04494-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/01/2022] [Indexed: 01/16/2023]
Abstract
The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer1. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions2-4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4+ and CD8+ T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF-lymphotoxin-β receptor (LTBR)-is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies5. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes.
Collapse
Affiliation(s)
- Mateusz Legut
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Zoran Gajic
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Maria Guarino
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Zharko Daniloski
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Beam Tx, Cambridge, MA, USA
| | - Jahan A Rahman
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xinhe Xue
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Congyi Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Lu Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Stephanie Hao
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Teresa Davoli
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Catherine Diefenbach
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Mertins SD. Capturing Biomarkers and Molecular Targets in Cellular Landscapes From Dynamic Reaction Network Models and Machine Learning. Front Oncol 2022; 11:805592. [PMID: 35127516 PMCID: PMC8813744 DOI: 10.3389/fonc.2021.805592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Computational dynamic ODE models of cell function describing biochemical reactions have been created for decades, but on a small scale. Still, they have been highly effective in describing and predicting behaviors. For example, oscillatory phospho-ERK levels were predicted and confirmed in MAPK signaling encompassing both positive and negative feedback loops. These models typically were limited and not adapted to large datasets so commonly found today. But importantly, ODE models describe reaction networks in well-mixed systems representing the cell and can be simulated with ordinary differential equations that are solved deterministically. Stochastic solutions, which can account for noisy reaction networks, in some cases, also improve predictions. Today, dynamic ODE models rarely encompass an entire cell even though it might be expected that an upload of the large genomic, transcriptomic, and proteomic datasets may allow whole cell models. It is proposed here to combine output from simulated dynamic ODE models, completed with omics data, to discover both biomarkers in cancer a priori and molecular targets in the Machine Learning setting.
Collapse
Affiliation(s)
- Susan D. Mertins
- Department of Science, Mount St. Mary’s University, Emmitsburg, MD, United States
- Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Limited Liability Company (LLC), Frederick, MD, United States
- BioSystems Strategies, Limited Liability Company (LLC), Frederick, MD, United States
- *Correspondence: Susan D. Mertins,
| |
Collapse
|
17
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
18
|
Thobe K, Konrath F, Chapuy B, Wolf J. Patient-Specific Modeling of Diffuse Large B-Cell Lymphoma. Biomedicines 2021; 9:biomedicines9111655. [PMID: 34829885 PMCID: PMC8615565 DOI: 10.3390/biomedicines9111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Personalized medicine aims to tailor treatment to patients based on their individual genetic or molecular background. Especially in diseases with a large molecular heterogeneity, such as diffuse large B-cell lymphoma (DLBCL), personalized medicine has the potential to improve outcome and/or to reduce resistance towards treatment. However, integration of patient-specific information into a computational model is challenging and has not been achieved for DLBCL. Here, we developed a computational model describing signaling pathways and expression of critical germinal center markers. The model integrates the regulatory mechanism of the signaling and gene expression network and covers more than 50 components, many carrying genetic lesions common in DLBCL. Using clinical and genomic data of 164 primary DLBCL patients, we implemented mutations, structural variants and copy number alterations as perturbations in the model using the CoLoMoTo notebook. Leveraging patient-specific genotypes and simulation of the expression of marker genes in specific germinal center conditions allows us to predict the consequence of the modeled pathways for each patient. Finally, besides modeling how genetic perturbations alter physiological signaling, we also predicted for each patient model the effect of rational inhibitors, such as Ibrutinib, that are currently discussed as possible DLBCL treatments, showing patient-dependent variations in effectiveness and synergies.
Collapse
Affiliation(s)
- Kirsten Thobe
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Fabian Konrath
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University of Göttingen, 37075 Göttingen, Germany;
- Department of Hematology, Oncology and Cancer Immunology, Berlin Medical Center Charité, 12203 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
- Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Correspondence:
| |
Collapse
|
19
|
Meier-Soelch J, Mayr-Buro C, Juli J, Leib L, Linne U, Dreute J, Papantonis A, Schmitz ML, Kracht M. Monitoring the Levels of Cellular NF-κB Activation States. Cancers (Basel) 2021; 13:5351. [PMID: 34771516 PMCID: PMC8582385 DOI: 10.3390/cancers13215351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The NF-κB signaling system plays an important regulatory role in the control of many biological processes. The activities of NF-κB signaling networks and the expression of their target genes are frequently elevated in pathophysiological situations including inflammation, infection, and cancer. In these conditions, the outcome of NF-κB activity can vary according to (i) differential activation states, (ii) the pattern of genomic recruitment of the NF-κB subunits, and (iii) cellular heterogeneity. Additionally, the cytosolic NF-κB activation steps leading to the liberation of DNA-binding dimers need to be distinguished from the less understood nuclear pathways that are ultimately responsible for NF-κB target gene specificity. This raises the need to more precisely determine the NF-κB activation status not only for the purpose of basic research, but also in (future) clinical applications. Here we review a compendium of different methods that have been developed to assess the NF-κB activation status in vitro and in vivo. We also discuss recent advances that allow the assessment of several NF-κB features simultaneously at the single cell level.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Christin Mayr-Buro
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Jana Juli
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Lisa Leib
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, 35032 Marburg, Germany;
| | - Jan Dreute
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| |
Collapse
|
20
|
Trares K, Ackermann J, Koch I. The canonical and non-canonical NF-κB pathways and their crosstalk: A comparative study based on Petri nets. Biosystems 2021; 211:104564. [PMID: 34688841 DOI: 10.1016/j.biosystems.2021.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
NF-κB is a protein complex that occurs in almost all animal cell types. It regulates the cellular immune responses to stimuli in the nucleus. Dysregulation of NF-κB can cause severe diseases like chronic inflammation, autoimmune diseases or cancer. We modeled the two major pathways leading from the external cellular stimulation of the CD40 receptor to the nuclear translocation of NF-κB dimers, the canonical and non-canonical pathway. Based on literature data, we developed two Petri net models describing these pathways. In a third Petri net, we combined the two models, introducing crosstalk specific in CD40L-stimulated B cells. In terms of structural properties, we checked the Petri nets for their consistency and correctness. To explore differences and similarities, we compared structural properties and the simulation behavior of the models. The non-canonical NF-κB pathway exhibited a more diverse regulation than the canonical pathway. Applying in silico knockout analyses, we were able to quantify the relevance of individual biochemical processes. We predicted interrelationships, e.g., between the synthesis of the protein NF-κB-inducing kinase and the processing of the precursor protein p100. The activation of the transcription factors, p50-RelA and p52-RelB, was affected by most of the knockouts. The results of the in silico knockout were in accordance with experimental studies. The Petri net models provide a basis for further analyses and could be extended to include gene expression, additional pathways, molecular processes, and kinetic data.
Collapse
Affiliation(s)
- Kira Trares
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115, Heidelberg, Germany; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Jörg Ackermann
- Johann Wolfgang Goethe-University Frankfurt am Main, Faculty of Computer Science and Mathematics, Institute of Computer Science, Dept. of Molecular Bioinformatics, Robert-Mayer-Straße 11-15, 60325, Frankfurt am Main, Germany
| | - Ina Koch
- Johann Wolfgang Goethe-University Frankfurt am Main, Faculty of Computer Science and Mathematics, Institute of Computer Science, Dept. of Molecular Bioinformatics, Robert-Mayer-Straße 11-15, 60325, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
22
|
Wirasinha RC, Davies AR, Srivastava M, Sheridan JM, Sng XYX, Delmonte OM, Dobbs K, Loh KL, Miosge LA, Lee CE, Chand R, Chan A, Yap JY, Keller MD, Chen K, Rossjohn J, La Gruta NL, Vinuesa CG, Reid HH, Lionakis MS, Notarangelo LD, Gray DHD, Goodnow CC, Cook MC, Daley SR. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J Exp Med 2021; 218:211502. [PMID: 33107914 PMCID: PMC7595743 DOI: 10.1084/jem.20200476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
NF-κB2/p100 (p100) is an inhibitor of κB (IκB) protein that is partially degraded to produce the NF-κB2/p52 (p52) transcription factor. Heterozygous NFKB2 mutations cause a human syndrome of immunodeficiency and autoimmunity, but whether autoimmunity arises from insufficiency of p52 or IκB function of mutated p100 is unclear. Here, we studied mice bearing mutations in the p100 degron, a domain that harbors most of the clinically recognized mutations and is required for signal-dependent p100 degradation. Distinct mutations caused graded increases in p100-degradation resistance. Severe p100-degradation resistance, due to inheritance of one highly degradation-resistant allele or two subclinical alleles, caused thymic medullary hypoplasia and autoimmune disease, whereas the absence of p100 and p52 did not. We inferred a similar mechanism occurs in humans, as the T cell receptor repertoires of affected humans and mice contained a hydrophobic signature of increased self-reactivity. Autoimmunity in autosomal dominant NFKB2 syndrome arises largely from defects in nonhematopoietic cells caused by the IκB function of degradation-resistant p100.
Collapse
Affiliation(s)
- Rushika C Wirasinha
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ainsley R Davies
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Xavier Y X Sng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Khai L Loh
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Cindy Eunhee Lee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Rochna Chand
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia
| | - Anna Chan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jin Yan Yap
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Medical Center, Washington, DC
| | - Karin Chen
- Department of Pediatrics, University of Utah, Salt Lake City, UT.,Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicole L La Gruta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research & Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, Australia.,Centre for Personalised Immunology (NHMRC Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Stephen R Daley
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Chawla M, Mukherjee T, Deka A, Chatterjee B, Sarkar UA, Singh AK, Kedia S, Lum J, Dhillon MK, Banoth B, Biswas SK, Ahuja V, Basak S. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc Natl Acad Sci U S A 2021; 118:e2024828118. [PMID: 34155144 PMCID: PMC8237674 DOI: 10.1073/pnas.2024828118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant inflammation, such as that associated with inflammatory bowel disease (IBD), is fueled by the inordinate activity of RelA/NF-κB factors. As such, the canonical NF-κB module mediates controlled nuclear activation of RelA dimers from the latent cytoplasmic complexes. What provokes pathological RelA activity in the colitogenic gut remains unclear. The noncanonical NF-κB pathway typically promotes immune organogenesis involving Nfkb2 gene products. Because NF-κB pathways are intertwined, we asked whether noncanonical signaling aggravated inflammatory RelA activity. Our investigation revealed frequent engagement of the noncanonical pathway in human IBD. In a mouse model of experimental colitis, we established that Nfkb2-mediated regulations escalated the RelA-driven proinflammatory gene response in intestinal epithelial cells, exacerbating the infiltration of inflammatory cells and colon pathologies. Our mechanistic studies clarified that cell-autonomous Nfkb2 signaling supplemented latent NF-κB dimers, leading to a hyperactive canonical RelA response in the inflamed colon. In sum, the regulation of latent NF-κB dimers appears to link noncanonical Nfkb2 signaling to RelA-driven inflammatory pathologies and may provide for therapeutic targets.
Collapse
Affiliation(s)
- Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Amit K Singh
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Manprit Kaur Dhillon
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| |
Collapse
|
24
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells 2021; 10:cells10040753. [PMID: 33805563 PMCID: PMC8066257 DOI: 10.3390/cells10040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of the transcription factor NF-κB elicits an individually tailored transcriptional response in order to meet the particular requirements of specific cell types, tissues, or organs. Control of the induction kinetics, amplitude, and termination of gene expression involves multiple layers of NF-κB regulation in the nucleus. Here we discuss some recent advances in our understanding of the mutual relations between NF-κB and chromatin regulators also in the context of different levels of genome organization. Changes in the 3D folding of the genome, as they occur during senescence or in cancer cells, can causally contribute to sustained increases in NF-κB activity. We also highlight the participation of NF-κB in the formation of hierarchically organized super enhancers, which enable the coordinated expression of co-regulated sets of NF-κB target genes. The identification of mechanisms allowing the specific regulation of NF-κB target gene clusters could potentially enable targeted therapeutic interventions, allowing selective interference with subsets of the NF-κB response without a complete inactivation of this key signaling system.
Collapse
|
26
|
Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021; 22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription is an elaborate process that is required to establish and maintain the identity of the more than two hundred cell types of a metazoan organism. Strict regulation of gene expression is therefore vital for tissue formation and homeostasis. An accumulating body of work found that ubiquitylation of histones, transcription factors, or RNA polymerase II is crucial for ensuring that transcription occurs at the right time and place during development. Here, we will review principles of ubiquitin-dependent control of gene expression and discuss how breakdown of these regulatory circuits leads to a wide array of human diseases.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rape
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
27
|
He JY, Li PH, Huang X, Sun YH, He XP, Huang W, Yu ZH, Sun HY. Molecular cloning, expression and functional analysis of NF-kB1 p105 from sea cucumber Holothuria leucospilota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103801. [PMID: 32739504 DOI: 10.1016/j.dci.2020.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The nuclear factor-κB (NF-κB) family is evolutionary conserved and plays key roles in the regulation of numerous basic cellular processes. In this study, a sea cucumber Holothuria leucospilota NF-κB1 p105 named HLp105 was first obtained. The full-length cDNA of HLp105 is 6564 bp long, with a 219 bp 5' untranslated region (UTR), a 2979 bp 3' UTR, and a 3366 bp open reading frame (ORF) encoding for 1121 amino acids with a deduced molecular weight of 123.92 kDa and an estimated pI of 5.31. HLp105 protein contains the conserved domain RHD, IPT, ANK and DEATH. HLp105 mRNA can be detected in all tissues examined, with the highest level in the intestine, followed by the transverse vessel, rete mirabile, coelomocytes, respiratory tree, bolishiti, cuvierian tubules, body wall, oesophagus and muscle. Challenged by LPS or poly (I:C), the transcription level of HLp105 was apparently up-regulated in the tissues examined. Besides, Over-expression of HLp105 in HEK293T cells, the apoptosis was inhibited, and the cytokines IL-1β and TNF-α were activated. The results are important for better understanding the function of NF-κB1 p105 in sea cucumber and reveal its involvement in immunoreaction.
Collapse
Affiliation(s)
- Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xi Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yue-Hong Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Peng He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Wei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zong-He Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
28
|
Jamal A, Husein A, Bihari C, Kumar V. Ubiquitin ligase TRUSS augments the expression of interleukin-10 via proteasomal processing of NF-κB1/p105 to NF-κB/p50. Cell Signal 2020; 75:109766. [PMID: 32889079 DOI: 10.1016/j.cellsig.2020.109766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
The NF-κB/Rel family of transcription factors that play critical roles in a variety of cellular processes. Their production in the cell and physiological activation are tightly regulated. The proteasomal processing of inactive NF-κB1/p105 to active p50, with an anti-inflammatory role, is not well characterized. Here we show that ubiquitin ligase TRUSS is a mediator of transcriptional activation of anti-inflammatory cytokine IL-10 gene. Enforced expression of TRUSS led to enhanced IL-10 expression that could be inhibited in the presence of chemical inhibitors of NF-κB [BAY11-7082] and PI3K/Akt [LY249002] or after p65 overexpression. p50 was actively recruited on IL10 promoter in the presence of TRUSS but competed by p65 for binding. TRUSS facilitated the ubiquitination of NF-κB1/p105 and promoted its proteolytic processing to generate excess of p50. Our immune-histochemical studies confirmed enhanced expression of p105/p50 in the human HCC tumors. Further, the hepatic tumors of HCC patient as well as transgenic mice showed decreased levels of p50 as well as TRUSS and accumulation of p105. Thus, enhanced expression of IL-10 gene in the presence of TRUSS and regulation of NF-κB1/p105 processing could be an important regulatory mechanism for inflammatory response and tumorgenic transformation.
Collapse
Affiliation(s)
- Azfar Jamal
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Atahar Husein
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Molecular & Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India.
| |
Collapse
|
29
|
Mothes J, Ipenberg I, Arslan SÇ, Benary U, Scheidereit C, Wolf J. A Quantitative Modular Modeling Approach Reveals the Effects of Different A20 Feedback Implementations for the NF-kB Signaling Dynamics. Front Physiol 2020; 11:896. [PMID: 32848849 PMCID: PMC7402004 DOI: 10.3389/fphys.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Signaling pathways involve complex molecular interactions and are controled by non-linear regulatory mechanisms. If details of regulatory mechanisms are not fully elucidated, they can be implemented by different, equally reasonable mathematical representations in computational models. The study presented here focusses on NF-κB signaling, which is regulated by negative feedbacks via IκBα and A20. A20 inhibits NF-κB activation indirectly through interference with proteins that transduce the signal from the TNF receptor complex to activate the IκB kinase (IKK) complex. A number of pathway models has been developed implementing the A20 effect in different ways. We here focus on the question how different A20 feedback implementations impact the dynamics of NF-κB. To this end, we develop a modular modeling approach that allows combining previously published A20 modules with a common pathway core module. The resulting models are fitted to a published comprehensive experimental data set and therefore show quantitatively comparable NF-κB dynamics. Based on defined measures for the initial and long-term behavior we analyze the effects of a wide range of changes in the A20 feedback strength, the IκBα feedback strength and the TNFα stimulation strength on NF-κB dynamics. This shows similarities between the models but also model-specific differences. In particular, the A20 feedback strength and the TNFα stimulation strength affect initial and long-term NF-κB concentrations differently in the analyzed models. We validated our model predictions experimentally by varying TNFα concentrations applied to HeLa cells. These time course data indicate that only one of the A20 feedback models appropriately describes the impact of A20 on the NF-κB dynamics in this cell type.
Collapse
Affiliation(s)
- Janina Mothes
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Inbal Ipenberg
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Seda Çöl Arslan
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uwe Benary
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
30
|
Shi W, Ding R, Zhou PP, Fang Y, Wan R, Chen Y, Jin J. Coordinated Actions Between p97 and Cullin-RING Ubiquitin Ligases for Protein Degradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:61-78. [PMID: 31898222 DOI: 10.1007/978-981-15-1025-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cullin-RING ubiquitin ligases comprise the largest subfamily of ubiquitin ligases. They control ubiquitylation and degradation of a large number of protein substrates in eukaryotes. p97 is an ATPase domain-containing protein segregase. It plays essential roles in post-ubiquitylational events in the ubiquitin-proteasome pathway. Together with its cofactors, p97 collaborates with ubiquitin ligases to extract ubiquitylated substrates and deliver them to the proteasome for proteolysis. Here we review the structure, functions, and mechanisms of p97 in cellular protein degradation in coordination with its cofactors and the cullin-RING ubiquitin ligases.
Collapse
Affiliation(s)
- Wenbo Shi
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ran Ding
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Pei Pei Zhou
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yuan Fang
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Ruixi Wan
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Yilin Chen
- Life Science Institute, Zhejiang University, HangZhou, China
| | - Jianping Jin
- Life Science Institute, Zhejiang University, HangZhou, China.
| |
Collapse
|
31
|
Yang X, Cheng H, Chen J, Wang R, Saleh A, Si H, Lee S, Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R, Fang J, Van Waes C, Chen Z. Head and Neck Cancers Promote an Inflammatory Transcriptome through Coactivation of Classic and Alternative NF-κB Pathways. Cancer Immunol Res 2019; 7:1760-1774. [PMID: 31624067 PMCID: PMC6941750 DOI: 10.1158/2326-6066.cir-18-0832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) promote inflammation in the tumor microenvironment through aberrant NF-κB activation, but the genomic alterations and pathway networks that modulate NF-κB signaling have not been fully dissected. Here, we analyzed genome and transcriptome alterations of 279 HNSCC specimens from The Cancer Genome Atlas (TCGA) cohort and identified 61 genes involved in NF-κB and inflammatory pathways. The top 30 altered genes were distributed across 96% of HNSCC samples, and their expression was often correlated with genomic copy-number alterations (CNA). Ten of the amplified genes were associated with human papilloma virus (HPV) status. We sequenced 15 HPV- and 11 HPV+ human HNSCC cell lines, and three oral mucosa keratinocyte lines, and supervised clustering revealed that 28 of 61 genes exhibit altered expression patterns concordant with HNSCC tissues and distinct signatures related to their HPV status. RNAi screening using an NF-κB reporter line identified 16 genes that are induced by TNFα or Lymphotoxin-β (LTβ) and implicated in the classic and/or alternative NF-κB pathways. Knockdown of TNFR, LTBR, or selected downstream signaling components established cross-talk between the classic and alternative NF-κB pathways. TNFα and LTβ induced differential gene expression involving the NF-κB, IFNγ, and STAT pathways, inflammatory cytokines, and metastasis-related genes. Improved survival was observed in HNSCC patients with elevated gene expression in T-cell activation, immune checkpoints, and IFNγ and STAT pathways. These gene signatures of NF-κB activation, which modulate inflammation and responses to the immune therapy, could serve as potential biomarkers in future clinical trials.
Collapse
Affiliation(s)
- Xinping Yang
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jianhong Chen
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ru Wang
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anthony Saleh
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Han Si
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Steven Lee
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Emine Guven-Maiorov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, College of Engineering, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Carter Van Waes
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Zhong Chen
- Tumor Biology Section and Clinical Genomics Unit, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
32
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
33
|
Mitchell S, Hoffmann A. Substrate complex competition is a regulatory motif that allows NFκB RelA to license but not amplify NFκB RelB. Proc Natl Acad Sci U S A 2019; 116:10592-10597. [PMID: 31048505 PMCID: PMC6535030 DOI: 10.1073/pnas.1816000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling pathways often share molecular components, tying the activity of one pathway to the functioning of another. In the NFκB signaling system, distinct kinases mediate inflammatory and developmental signaling via RelA and RelB, respectively. Although the substrates of the developmental, so-called noncanonical, pathway are induced by inflammatory/canonical signaling, crosstalk is limited. Through dynamical systems modeling, we identified the underlying regulatory mechanism. We found that as the substrate of the noncanonical kinase NIK, the nfkb2 gene product p100, transitions from a monomer to a multimeric complex, it may compete with and inhibit p100 processing to the active p52. Although multimeric complexes of p100 (IκBδ) are known to inhibit preexisting RelA:p50 through sequestration, here we report that p100 complexes can inhibit the enzymatic formation of RelB:p52. We show that the dose-response systems properties of this complex substrate competition motif are poorly accounted for by standard Michaelis-Menten kinetics, but require more detailed mass action formulations. In sum, although tonic inflammatory signaling is required for adequate expression of the noncanonical pathway precursors, the substrate complex competition motif identified here can prevent amplification of the active RelB:p52 dimer in elevated inflammatory conditions to ensure reliable RelB-dependent developmental signaling independent of inflammatory context.
Collapse
Affiliation(s)
- Simon Mitchell
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
34
|
Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M, Schmitz ML. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J 2018; 33:4188-4202. [PMID: 30526044 PMCID: PMC6404571 DOI: 10.1096/fj.201801638r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing evidence shows that many transcription factors execute important biologic functions independent from their DNA-binding capacity. The NF-κB p65 (RELA) subunit is a central regulator of innate immunity. Here, we investigated the relative functional contribution of p65 DNA-binding and dimerization in p65-deficient human and murine cells reconstituted with single amino acid mutants preventing either DNA-binding (p65 E/I) or dimerization (p65 FL/DD). DNA-binding of p65 was required for RelB-dependent stabilization of the NF-κB p100 protein. The antiapoptotic function of p65 and expression of the majority of TNF-α–induced genes were dependent on p65’s ability to bind DNA and to dimerize. Chromatin immunoprecipitation with massively parallel DNA sequencing experiments revealed that impaired DNA-binding and dimerization strongly diminish the chromatin association of p65. However, there were also p65-independent TNF-α–inducible genes and a subgroup of p65 binding sites still allowed some residual chromatin association of the mutants. These sites were enriched in activator protein 1 (AP-1) binding motifs and showed increased chromatin accessibility and basal transcription. This suggests a mechanism of assisted p65 chromatin association that can be in part facilitated by chromatin priming and cooperativity with other transcription factors such as AP-1.—Riedlinger, T., Liefke, R., Meier-Soelch, J., Jurida, L., Nist, A., Stiewe, T., Kracht, M., Schmitz, M. L. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Robert Liefke
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Philipps University Marburg, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - Andrea Nist
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility-Institute of Molecular Oncology, Philipps University Marburg, Marburg, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany; and
| | - M Lienhard Schmitz
- Institute of Biochemistry, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
35
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
36
|
Riedlinger T, Haas J, Busch J, van de Sluis B, Kracht M, Schmitz ML. The Direct and Indirect Roles of NF-κB in Cancer: Lessons from Oncogenic Fusion Proteins and Knock-in Mice. Biomedicines 2018; 6:biomedicines6010036. [PMID: 29562713 PMCID: PMC5874693 DOI: 10.3390/biomedicines6010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/24/2022] Open
Abstract
NF-κB signaling pathways play an important role in the regulation of cellular immune and stress responses. Aberrant NF-κB activity has been implicated in almost all the steps of cancer development and many of the direct and indirect contributions of this transcription factor system for oncogenesis were revealed in the recent years. The indirect contributions affect almost all hallmarks and enabling characteristics of cancer, but NF-κB can either promote or antagonize these tumor-supportive functions, thus prohibiting global NF-κB inhibition. The direct effects are due to mutations of members of the NF-κB system itself. These mutations typically occur in upstream components that lead to the activation of NF-κB together with further oncogenesis-promoting signaling pathways. In contrast, mutations of the downstream components, such as the DNA-binding subunits, contribute to oncogenic transformation by affecting NF-κB-driven transcriptional output programs. Here, we discuss the features of recently identified oncogenic RelA fusion proteins and the characterization of pathways that are regulating the transcriptional activity of NF-κB by regulatory phosphorylations. As NF-κB’s central role in human physiology prohibits its global inhibition, these auxiliary or cell type-specific NF-κB regulating pathways are potential therapeutic targets.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Julia Busch
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany.
| |
Collapse
|
37
|
Krieger K, Millar SE, Mikuda N, Krahn I, Kloepper JE, Bertolini M, Scheidereit C, Paus R, Schmidt-Ullrich R. NF-κB Participates in Mouse Hair Cycle Control and Plays Distinct Roles in the Various Pelage Hair Follicle Types. J Invest Dermatol 2017; 138:256-264. [PMID: 28942365 DOI: 10.1016/j.jid.2017.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022]
Abstract
The transcription factor NF-κB controls key features of hair follicle (HF) development, but the role of NF-κB in adult HF cycle regulation remains obscure. Using NF-κB reporter mouse models, strong NF-κB activity was detected in the secondary hair germ of late telogen and early anagen HFs, suggesting a potential role for NF-κB in HF stem/progenitor cell activation during anagen induction. At mid-anagen, NF-κB activity was observed in the inner root sheath and unilaterally clustered in the HF matrix, which indicates that NF-κB activity is also involved in hair fiber morphogenesis during HF cycling. A mouse model with inducible NF-κB suppression in the epithelium revealed pelage hair-type-dependent functions of NF-κB in cycling HFs. NF-κB participates in telogen-anagen transition in awl and zigzag HFs, and is required for zigzag hair bending and guard HF cycling. Interestingly, zigzag hair shaft bending depends on noncanonical NF-κB signaling, which previously has only been associated with lymphoid cell biology. Furthermore, loss of guard HF cycling suggests that in this particular hair type, NF-κB is indispensable for stem cell activation, maintenance, and/or growth.
Collapse
Affiliation(s)
- Karsten Krieger
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sarah E Millar
- Departments of Dermatology and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nadine Mikuda
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralf Paus
- Department of Dermatology, University of Münster, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
38
|
Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol 2016; 78:2091-2134. [PMID: 27714570 PMCID: PMC5069344 DOI: 10.1007/s11538-016-0214-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
Collapse
|
39
|
Fusco AJ, Mazumder A, Wang VYF, Tao Z, Ware C, Ghosh G. The NF-κB subunit RelB controls p100 processing by competing with the kinases NIK and IKK1 for binding to p100. Sci Signal 2016; 9:ra96. [PMID: 27678221 DOI: 10.1126/scisignal.aad9413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The heterodimer formed by the nuclear factor κB (NF-κB) subunits p52 and RelB is the product of noncanonical signaling in which the key event is the proteolytic processing of p100 to generate p52. The kinases NF-κB-inducing kinase (NIK) and inhibitor of κB kinase 1 (IKK1; also known as IKKα) are activated during noncanonical signaling and play essential roles in p100 processing. In resting cells, RelB remains associated with unprocessed p100 as a transcriptionally inert p100:RelB complex, which is part of a larger assembly with other NF-κB factors known as the "kappaBsome." We investigated how these two different RelB-containing complexes with opposing effects on target gene transcription are formed. We found that RelB controls the extent of both p100 processing and kappaBsome formation during noncanonical signaling. Within an apparently "transitional" complex that contains RelB, NIK, IKK1, and p100, RelB and the NIK:IKK1 complex competed with each other for binding to a region of p100. A fraction of p100 in the transitional complex was refractory to processing, which resulted in the formation of the kappaBsome. However, another fraction of p100 protein underwent NIK:IKK1-mediated phosphorylation and processing while remaining bound to RelB, thus forming the p52:RelB heterodimer. Our results suggest that changes in the relative concentrations of RelB, NIK:IKK1, and p100 during noncanonical signaling modulate this transitional complex and are critical for maintaining the fine balance between the processing and protection of p100.
Collapse
Affiliation(s)
- Amanda J Fusco
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Anup Mazumder
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Zhihua Tao
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Carl Ware
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
40
|
Wang Y, Xu J, Gao G, Li J, Huang H, Jin H, Zhu J, Che X, Huang C. Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Oncogene 2016; 35:4080-90. [PMID: 26686085 PMCID: PMC4916044 DOI: 10.1038/onc.2015.470] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chuanshu Huang
- Corresponding author: Dr. Chuanshu Huang, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, Tel: 845-731-3519, Fax: 845-351-2320,
| |
Collapse
|
41
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
42
|
de Oliveira KAP, Kaergel E, Heinig M, Fontaine JF, Patone G, Muro EM, Mathas S, Hummel M, Andrade-Navarro MA, Hübner N, Scheidereit C. A roadmap of constitutive NF-κB activity in Hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses. Genome Med 2016; 8:28. [PMID: 26988706 PMCID: PMC4794921 DOI: 10.1186/s13073-016-0280-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/17/2016] [Indexed: 12/02/2022] Open
Abstract
Background NF-κB is widely involved in lymphoid malignancies; however, the functional roles and specific transcriptomes of NF-κB dimers with distinct subunit compositions have been unclear. Methods Using combined ChIP-sequencing and microarray analyses, we determined the cistromes and target gene signatures of canonical and non-canonical NF-κB species in Hodgkin lymphoma (HL) cells. Results We found that the various NF-κB subunits are recruited to regions with redundant κB motifs in a large number of genes. Yet canonical and non-canonical NF-κB dimers up- and downregulate gene sets that are both distinct and overlapping, and are associated with diverse biological functions. p50 and p52 are formed through NIK-dependent p105 and p100 precursor processing in HL cells and are the predominant DNA binding subunits. Logistic regression analyses of combinations of the p50, p52, RelA, and RelB subunits in binding regions that have been assigned to genes they regulate reveal a cross-contribution of p52 and p50 to canonical and non-canonical transcriptomes. These analyses also indicate that the subunit occupancy pattern of NF-κB binding regions and their distance from the genes they regulate are determinants of gene activation versus repression. The pathway-specific signatures of activated and repressed genes distinguish HL from other NF-κB-associated lymphoid malignancies and inversely correlate with gene expression patterns in normal germinal center B cells, which are presumed to be the precursors of HL cells. Conclusions We provide insights that are relevant for lymphomas with constitutive NF-κB activation and generally for the decoding of the mechanisms of differential gene regulation through canonical and non-canonical NF-κB signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0280-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kivia A P de Oliveira
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eva Kaergel
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Matthias Heinig
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Jean-Fred Fontaine
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enrique M Muro
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.,Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Present address: Johannes Gutenberg University, 55128, Mainz, Germany
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
43
|
Wallach D. The cybernetics of TNF: Old views and newer ones. Semin Cell Dev Biol 2016; 50:105-14. [DOI: 10.1016/j.semcdb.2015.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
|
44
|
Schweitzer K, Pralow A, Naumann M. p97/VCP promotes Cullin-RING-ubiquitin-ligase/proteasome-dependent degradation of IκBα and the preceding liberation of RelA from ubiquitinated IκBα. J Cell Mol Med 2015; 20:58-70. [PMID: 26463447 PMCID: PMC4717852 DOI: 10.1111/jcmm.12702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.
Collapse
Affiliation(s)
- Katrin Schweitzer
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Alexander Pralow
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
45
|
Ben-Neriah Y. One more wheel for a processing machine. Cell Death Differ 2015; 22:1235-6. [PMID: 26143747 DOI: 10.1038/cdd.2015.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Y Ben-Neriah
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
46
|
Zhang Z, Wang Y, Li C, Shi Z, Hao Q, Wang W, Song X, Zhao Y, Jiao S, Zhou Z. The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-κB Signaling via Partial Degradation of the NF-κB Subunit p100. J Biol Chem 2015; 290:19558-68. [PMID: 26112410 DOI: 10.1074/jbc.m114.630061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/12/2022] Open
Abstract
Partial degradation of the p100 subunit to generate p52 subunit is a hallmark of the alternative NF-κB pathway, which has been implicated in cancer. Here, we uncovered a role of the p97-Npl4-Ufd1 complex in mediating p100-to-p52 processing and therefore positively regulating the alternative NF-κB pathway. We observed an elevation of p97 mRNA levels in lymphoma patients, which positively correlates with NFKB2 expression, a downstream target gene of the alternative NF-κB pathway. Moreover, NFKB2 mRNA levels were aberrantly down-regulated in patients with inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD), a disease caused by mutation of p97. Inactivation of p97 or depletion of the p97-Npl4-Ufd1 complex inhibits the processing of p100 into p52, decreasing transcription of the downstream target genes. Further analyses reveal that the p97-Npl4-Ufd1 complex interacts with F-box and WD repeats protein SCF(βTrCP) complex to regulate the partial degradation of p100, a process involving K48- and K11-linked ubiquitination. In line with this, in LPS-induced lung damage mice model, generation of p52 is significantly decreased in p97-KD mice compared with mock mice. Finally, abrogation of p97 ATPase activity by its specific inhibitor DBeQ, efficiently decreased proliferation of lymphoma cells. Collectively, our study revealed a regulatory role of the p97-Npl4-Ufd1 complex in regulating p100 partial degradation, highlighting the potential of p97 as a drug target for cancers with aberrant activation of the alternative NF-κB pathway.
Collapse
Affiliation(s)
- Zhao Zhang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanyan Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanchuan Li
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhubing Shi
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China, and
| | - Qian Hao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjia Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaomin Song
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi Jiao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| | - Zhaocai Zhou
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
47
|
Mothes J, Busse D, Kofahl B, Wolf J. Sources of dynamic variability in NF-κB signal transduction: a mechanistic model. Bioessays 2015; 37:452-62. [PMID: 25640005 PMCID: PMC4409097 DOI: 10.1002/bies.201400113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcription factor NF-κB (p65/p50) plays a central role in the coordination of cellular responses by activating the transcription of numerous target genes. The precise role of the dynamics of NF-κB signalling in regulating gene expression is still an open question. Here, we show that besides external stimulation intracellular parameters can influence the dynamics of NF-κB. By applying mathematical modelling and bifurcation analyses, we show that NF-κB is capable of exhibiting different types of dynamics in response to the same stimulus. We identified the total NF-κB concentration and the IκBα transcription rate constant as two critical parameters that modulate the dynamics and the fold change of NF-κB. Both parameters might vary as a result of cell-to-cell variability. The regulation of the IκBα transcription rate constant, e.g. by co-factors, provides the possibility of regulating the NF-κB dynamics by crosstalk.
Collapse
Affiliation(s)
- Janina Mothes
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|