1
|
Shi S, Lu Y, Long Q, Wu Y, Guo Y, Chen N, Wan H, Jin B. Danhong Injection Inhibits Apoptosis in Ischemia/Reperfusion Injury Based on Network Pharmacology Analysis, Molecular Docking, and Experimental Verification. ACS OMEGA 2025; 10:9604-9612. [PMID: 40092804 PMCID: PMC11904842 DOI: 10.1021/acsomega.4c10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Danhong injection (DHI), a Chinese patent compound injection, is widely used in the treatment of cardiovascular diseases (CVD) in China. However, the underlying mechanisms have not been fully elucidated. This study investigated the therapeutic effect and the underlying mechanisms of DHI against ischemia-reperfusion (I/R) injury and endothelial dysfunction (ED). Network pharmacology analysis revealed that DHI had six core active compounds (Danshensu, salvianolic acid A, salvianolic acid B, rosmarinic acid, protocatechualdehyde, and caffeic acid) and 19 potential targets in treating I/R injury. Notably, the regulation of apoptosis was significantly enriched, as indicated by the results of the gene ontology (GO) enrichment analysis. Molecular docking studies confirmed that these targets had high affinity with the active compounds of DHI. Finally, experimental validation in vivo and in vitro demonstrated that DHI could mitigate I/R injury and ED, potentially by reducing oxidative damage through the inhibition of apoptosis via the PTEN/AKT pathway. These findings significantly advance our understanding of the molecular mechanisms in DHI treatment and contribute further to promoting the clinical application of CVD.
Collapse
Affiliation(s)
- Shennan Shi
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yalan Lu
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Qiwen Long
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yanqing Wu
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Nipi Chen
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| | - Haitong Wan
- School
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Bo Jin
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou 310053, China
| |
Collapse
|
2
|
Langlois A, Cherfan J, Meugnier E, Rida A, Arous C, Peronet C, Hamdard H, Zarrouki B, Wehrle‐Haller B, Pinget M, Craige SM, Bouzakri K. DECORIN, a triceps-derived myokine, protects sorted β-cells and human islets against chronic inflammation associated with type 2 diabetes. Acta Physiol (Oxf) 2025; 241:e14267. [PMID: 39844653 PMCID: PMC11754997 DOI: 10.1111/apha.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
AIM Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored. METHODS The effect of DECORIN was assessed in sorted human and rat β-cell and human islets from healthy and type 2 diabetes (T2D) donors. We assessed glucose-stimulated insulin secretion (GSIS) and cytokine-mediated cell death. We then challenged sorted β-cells and human islets with inflammatory cytokines commonly associated with diabetes, such as tumor necrosis factor-α (TNF-α) alone or in combination with interleukin1-β (IL1-β) and interferon-γ (cytomix). RESULTS DECORIN enhanced cell spreading and the localization of phosphorylated FAK at adhesions, promoting GSIS under basal conditions. It also increased insulin granule docking adhesion length and countered the inhibitory effects of TNF-α on adhesion and actin remodeling at the β-cell surface, resulting in preserved GSIS. DECORIN protected from cell death in sorted β-cells and islets challenged with TNF-α alone or TNF-α + cytomix. Interestingly, DECORIN increased both insulin content and secretion in human islets from T2D individuals. Additionally, DECORIN treatment reversed the impaired gene expression caused by T2D and enhanced the expression of genes essential for islet function and metabolism. CONCLUSION Collectively, we have shown that DECORIN had a beneficial effect on human islets, protecting them from inflammation-induced cell death. In T2D islets, DECORIN restores islet function and reverses the expression of T2D-associated genes. Based on our data, we propose that DECORIN is a promising therapeutic target for diabetes-associated inflammation and diabetes itself.
Collapse
Affiliation(s)
- Allan Langlois
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Julien Cherfan
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ‐LyonUniversité Claude Bernard Lyon‐1LyonFrance
| | - Ahmad Rida
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Claude Peronet
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Harzo Hamdard
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolic (CVRM), BioPharmaceuticals R&DGothenburgSweden
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Michel Pinget
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVirginiaUSA
| | - Karim Bouzakri
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| |
Collapse
|
3
|
Capasso G, Mouawad N, Castronuovo M, Ruggeri E, Visentin A, Trentin L, Frezzato F. Focal adhesion kinase as a new player in the biology of onco-hematological diseases: the starting evidence. Front Oncol 2024; 14:1446723. [PMID: 39281374 PMCID: PMC11392731 DOI: 10.3389/fonc.2024.1446723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase mainly found in the focal adhesion regions of the plasma membrane and it has a crucial role in migration and the remodeling of cellular morphology. FAK is also linked to several aspects of cancer biology, from cytokine production to angiogenesis, drug resistance, invasion, and metastasis, as well as epithelial-to-mesenchymal transition. The gene locus of FAK is frequently amplified in several human tumors, thus causing FAK overexpression in several cancers. Furthermore, FAK can influence extracellular matrix production and exosome secretion through cancer-associated fibroblasts, thus it has an important role in tumor microenvironment regulation. Although the role of FAK in solid tumors is well known, its importance in onco-hematological diseases remains poorly explored. This review collects studies related to FAK significance in onco-hematological diseases and their microenvironments. Overall, the importance of FAK in blood tumors is increasingly evident, but further research is required to confirm it as a new therapeutic target in hematological contexts.
Collapse
Affiliation(s)
- Guido Capasso
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nayla Mouawad
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Castronuovo
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Solomatina ES, Kovaleva AV, Tvorogova AV, Vorobjev IA, Saidova AA. Effect of Focal Adhesion Kinase and Vinculin Expression on Migration Parameters of Normal and Tumor Epitheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:474-486. [PMID: 38648767 DOI: 10.1134/s0006297924030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.
Collapse
Affiliation(s)
- Evgenia S Solomatina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia V Kovaleva
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Tvorogova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Ivan A Vorobjev
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
| | - Aleena A Saidova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
6
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
8
|
Cuellar-Vite L, Weber-Bonk KL, Abdul-Karim FW, Booth CN, Keri RA. Focal Adhesion Kinase Provides a Collateral Vulnerability That Can Be Leveraged to Improve mTORC1 Inhibitor Efficacy. Cancers (Basel) 2022; 14:3374. [PMID: 35884439 PMCID: PMC9323520 DOI: 10.3390/cancers14143374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The PI3K/AKT/mTORC1 pathway is a major therapeutic target for many cancers, particularly breast cancer. Everolimus is an mTORC1 inhibitor used in metastatic estrogen receptor-positive (ER+) and epidermal growth factor receptor 2-negative (HER2-) breast cancer. However, mTORC1 inhibitors have limited efficacy in other breast cancer subtypes. We sought to discover collateral sensitivities to mTORC1 inhibition that could be exploited to improve therapeutic response. Using a mouse model of breast cancer that is intrinsically resistant to mTORC1 inhibition, we found that rapamycin alters the expression of numerous extracellular matrix genes, suggesting a potential role for integrins/FAK in controlling mTORC1-inhibitor efficacy. FAK activation was also inversely correlated with rapamycin response in breast cancer cell lines. Supporting its potential utility in patients, FAK activation was observed in >50% of human breast cancers. While blocking FAK in mouse models of breast cancer that are highly responsive to rapamycin had no impact on tumor growth, FAK inhibition sensitized rapamycin-resistant tumors to mTORC1 inhibition. These data reveal an innate dependency on FAK when mTORC1 signaling is lost in tumors that are resistant to mTORC1 inhibitors. They also suggest a precision medicine approach to improving mTORC1 inhibitor efficacy in resistant cancers by suppressing FAK signaling.
Collapse
Affiliation(s)
- Leslie Cuellar-Vite
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Fadi W. Abdul-Karim
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Christine N. Booth
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (F.W.A.-K.); (C.N.B.)
| | - Ruth A. Keri
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of General Medical Sciences-Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Nakazato T, Kawamura T, Uemura T, Liu L, Li J, Sasai M, Harada A, Ito E, Iseoka H, Toda K, Sawa Y, Miyagawa S. Engineered three-dimensional cardiac tissues maturing in a rotating wall vessel bioreactor remodel diseased hearts in rats with myocardial infarction. Stem Cell Reports 2022; 17:1170-1182. [PMID: 35427484 PMCID: PMC9133656 DOI: 10.1016/j.stemcr.2022.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 10/30/2022] Open
Abstract
A rotating wall vessel (RWV) bioreactor was constructed for growing massive functional cardiac constructs to recover the function of a distressed rat heart. Three-dimensional cardiac tissues were engineered by seeding human-induced pluripotent stem cell-derived cardiomyocytes on poly(lactic-co-glycolic acid) fiber sheets (3D-hiPSC-CTs) and cultured in the RWV bioreactor (RWV group) or under static conditions (control group). The tissues were transplanted into a myocardial infarction nude rat model, and cardiac performance was evaluated. In the RWV group, cell viability and contractile and electrical properties significantly improved, mature cardiomyocytes were observed, and mechanical stress-related mediators of mammalian target of rapamycin signaling were upregulated compared with those of the control. Four weeks post-transplantation, tissue survival and left ventricular ejection fraction significantly improved in the RWV group. Hence, dynamic culture in an RWV bioreactor could provide a superior culture environment for improved performance of 3D-hiPSC-CTs, providing a means for functional cardiomyogenesis in myocyte-loss heart failure.
Collapse
Affiliation(s)
- Taro Nakazato
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshimasa Uemura
- Department of Precise and Science Technology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan; Cell Culture Marketing & Research Center, JTEC Corporation, Ibaraki, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
10
|
Chen TC, Chang SW. Repeated cell sorting ensures the homogeneity of ocular cell populations expressing a transgenic protein. PLoS One 2022; 17:e0265183. [PMID: 35333876 PMCID: PMC8956163 DOI: 10.1371/journal.pone.0265183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Transgenic proteins can be routinely expressed in various mammalian cell types via different transgenic systems, but the efficiency of transgene expression is constrained by the complex interplay among factors such as the temporal consistency of expression and compatibility with specific cell types, including ocular cells. Here, we report a more efficient way to express an enhanced green fluorescent protein (EGFP) in human corneal fibroblasts, corneal epithelial cells, and conjunctival epithelial cells through a lentiviral expression system. The relative transducing unit criterion for EGFP-expressing pseudovirions was first determined in HEK-293T cells. Homogeneous populations of EGFP-positive and EGFP-negative cells could be isolated by cell sorting. The half-maximal inhibitory concentration (IC50) value for puromycin was calculated according to viability curves for each cell type. The results revealed that cell types differed with respect to EGFP expression efficiency after transduction with the same amount of EGFP-encoding pseudovirions. Using a cell sorter, the homogeneity of EGFP-positive cells reached >95%. In the initial sorting stage, however, the efficiency of EGFP expression in the sorted cells was noticeably reduced after two rounds of sequential culture, but repeated sorting for up to four rounds yielded homogeneous EGFP-positive human corneal fibroblasts that could be maintained in continuous culture in vitro. The sorted EGFP-positive cells retained their proper morphology and cell type-specific protein expression patterns. Puromycin resistance was found to depend on cell type, indicating that the IC50 for puromycin must be determined for each cell type to ensure the isolation of homogeneous EGFP-positive cells. Taken together, repeated cell sorting is an efficient means of obtaining homogeneous populations of ocular cells expressing a transgenic protein during continuous culture without the potential confounding effects of antibiotics.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Dall GV, Hamilton A, Ratnayake G, Scott C, Barker H. Interrogating the Genomic Landscape of Uterine Leiomyosarcoma: A Potential for Patient Benefit. Cancers (Basel) 2022; 14:cancers14061561. [PMID: 35326717 PMCID: PMC8946513 DOI: 10.3390/cancers14061561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy. Surgical removal and chemotherapy are commonly used to treat uLMS, but recurrence rates are high. Over the last few decades, clarification of the genomic landscape of uLMS has revealed a number of recurring mutations, including TP53, RB1, ATRX, PTEN, and MED12. Such genomic aberrations are difficult to target therapeutically or are actively targeted in other malignancies, and their potential as targets for the treatment of uLMS remains largely unexplored. Recent identification of deficiencies in homologous recombination in a minority of these tumours, however, has provided a rationale for investigation of PARP inhibitors in this sub-set. Here, we review these mutations and the evidence for therapeutic avenues that may be applied in uLMS. We also provide a comprehensive background on diagnosis and current therapeutic strategies as well as reviewing preclinical models of uLMS, which may be employed not only in testing emerging therapies but also in understanding this challenging and deadly disease.
Collapse
Affiliation(s)
- Genevieve V. Dall
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Anne Hamilton
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | | | - Clare Scott
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Holly Barker
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
12
|
Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040554. [PMID: 33920031 PMCID: PMC8071053 DOI: 10.3390/pharmaceutics13040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls several cancer aggressive potentials of cell movement and dissemination. As epithelial–mesenchymal transition (EMT) and the migratory-associated integrins, known influencers of metastasis, have been found to be linked with FAK activity, this study unraveled the potential pharmacological effect of artocarpin in targeting FAK resulting in the suppression of EMT and migratory behaviors of lung cancer cells. Treatment with artocarpin was applied at concentrations of 0–10 μM, and the results showed non-cytotoxicity in lung cancer cell lines (A549 and H460), normal lung (BEAS-2B) cells and primary metastatic lung cancer cells (ELC12, ELC16, and ELC20). We also found that artocarpin (0–10 µM) had no effect on cell viability, proliferation, and migration in BEAS-2B cells. For metastasis-related approaches, artocarpin significantly inhibited cell migration, invasion, and filopodia formation. Artocarpin also dramatically suppressed anchorage-independent growth, cancer stem cell (CSC) spheroid formation, and viability of CSC-rich spheroids. For molecular targets of artocarpin action, computational molecular docking revealed that artocarpin had the best binding affinity of −8.0 kcal/mol with FAK protein. Consistently, FAK-downstream proteins, namely active Akt (phosphorylated Akt), active mTOR (phosphorylated mTOR), and Cdc42, and EMT marker and transcription factor (N-cadherin, Vimentin, and Slug), were found to be significantly depleted in response to artocarpin treatment. Furthermore, we found the decrease of Caveolin-1 (Cav-1) accompanied by the reduction of integrin-αν and integrin-β3. Taken together, these findings support the anti-metastasis potentials of the compound to be further developed for cancer therapy.
Collapse
|
13
|
Wu Y, Zhu H, Wu H. PTEN in Regulating Hematopoiesis and Leukemogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036244. [PMID: 31712222 DOI: 10.1101/cshperspect.a036244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. By counteracting the PI3K/AKT/mTOR pathway, PTEN plays an essential role in regulating hematopoietic stem cells (HSCs) self-renewal, migration, lineage commitment, and differentiation. PTEN also plays important roles in suppressing leukemogenesis, especially T-cell acute lymphoblastic leukemia (T-ALL). Herein, we will review the function of PTEN in regulating hematopoiesis and leukemogenesis and discuss potential therapeutic approaches against leukemia with PTEN mutations.
Collapse
Affiliation(s)
- Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
PTEN activation contributes to neuronal and synaptic engulfment by microglia in tauopathy. Acta Neuropathol 2020; 140:7-24. [PMID: 32236736 PMCID: PMC7300099 DOI: 10.1007/s00401-020-02151-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog (PTEN) regulates synaptic density in development; however, whether PTEN also regulates synapse loss in a neurodegenerative disorder such as frontotemporal lobar degeneration with Tau deposition (FTLD-Tau) has not been explored. Here, we found that pathological Tau promotes early activation of PTEN, which precedes apoptotic caspase-3 cleavage in the rTg4510 mouse model of FTLD-Tau. We further demonstrate increased synaptic and neuronal exposure of the apoptotic signal phosphatidylserine that tags neuronal structures for microglial uptake, thereby linking PTEN activation to synaptic and neuronal structure elimination. By applying pharmacological inhibition of PTEN's protein phosphatase activity, we observed that microglial uptake can be decreased in Tau transgenic mice. Finally, we reveal a dichotomous relationship between PTEN activation and age in FTLD-Tau patients and healthy controls. Together, our findings suggest that in tauopathy, PTEN has a role in the synaptotoxicity of pathological Tau and promotes microglial removal of affected neuronal structures.
Collapse
|
15
|
Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun 2020; 11:1290. [PMID: 32157087 PMCID: PMC7064590 DOI: 10.1038/s41467-020-15104-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.
Collapse
Affiliation(s)
- Fevzi Demircioglu
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Juliana Candido
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Beatriz de Luxan Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Emma Newport
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Frances R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
16
|
Zhang Y, Xu B, Shi J, Li J, Lu X, Xu L, Yang H, Hamad N, Wang C, Napier D, He S, Liu C, Liu Z, Qian H, Chen L, Wei X, Zheng X, Huang JA, Thibault O, Craven R, Wei D, Pan Y, Zhou BP, Wu Y, Yang XH. BRD4 modulates vulnerability of triple-negative breast cancer to targeting of integrin-dependent signaling pathways. Cell Oncol (Dordr) 2020; 43:1049-1066. [PMID: 33006750 PMCID: PMC7716866 DOI: 10.1007/s13402-020-00537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Junfeng Shi
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jieming Li
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinlan Lu
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Li Xu
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Helen Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nevean Hamad
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Shuixiang He
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Chunming Liu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xucai Zheng
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Rolf Craven
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dongping Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China.
| | - Binhua P Zhou
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
17
|
Chatterjee N, Pazarentzos E, Mayekar MK, Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren E, Johnson JR, Hofree M, Yan JJ, Newton BW, Dollen JV, Earnshaw CH, Flanagan J, Chan E, Asthana S, Ideker T, Wu W, Suzuki J, Barad BA, Kirichok Y, Fraser JS, Weiss WA, Krogan NJ, Tulpule A, Sabnis AJ, Bivona TG. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Rep 2019; 28:2317-2330.e8. [PMID: 31461649 PMCID: PMC6728083 DOI: 10.1016/j.celrep.2019.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to induce aerobic glycolysis and PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, a biomarker of decreased patient survival. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Evangelos Pazarentzos
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David V Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gorjan Hrustanovic
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luping Lin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erik Verschueren
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Matan Hofree
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Jenny J Yan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Billy W Newton
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - John V Dollen
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Charles H Earnshaw
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Flanagan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elton Chan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Saurabh Asthana
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junji Suzuki
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Asmin Tulpule
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amit J Sabnis
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
19
|
Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019; 35:347-367. [PMID: 30889378 PMCID: PMC6684107 DOI: 10.1016/j.ccell.2019.01.007] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.
Collapse
Affiliation(s)
- Jonathan Cooper
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Filippo G Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of Genitourinary Cancers, UT MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
20
|
Su G, Yu H, Hong J, Wang X, Feng T, Wu J, Yin H, Shen Y, Liu X. Integrin-Induced Signal Event Contributes to Self-Assembled Monolayers on Au-Nanoparticle-Regulated Cancer Cell Migration and Invasion. ACS Biomater Sci Eng 2019; 5:1804-1821. [DOI: 10.1021/acsbiomaterials.8b01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Hongchi Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schwill M, Tamaskovic R, Gajadhar AS, Kast F, White FM, Plückthun A. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci Signal 2019; 12:12/565/eaau2875. [PMID: 30670633 DOI: 10.1126/scisignal.aau2875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug-induced compensatory signaling and subsequent rewiring of the signaling pathways that support cell proliferation and survival promote the development of acquired drug resistance in tumors. Here, we sought to analyze the adaptive kinase response in cancer cells after distinct treatment with agents targeting human epidermal growth factor receptor 2 (HER2), specifically those that induce either only temporary cell cycle arrest or, alternatively, apoptosis in HER2-overexpressing cancers. We compared trastuzumab, ARRY380, the combination thereof, and a biparatopic, HER2-targeted designed ankyrin repeat protein (DARPin; specifically, 6L1G) and quantified the phosphoproteome by isobaric tagging using tandem mass tag liquid chromatography/tandem mass spectrometry (TMT LC-MS/MS). We found a specific signature of persistently phosphorylated tyrosine peptides after the nonapoptotic treatments, which we used to distinguish between different treatment-induced cancer cell fates. Next, we analyzed the activation of serine/threonine and tyrosine kinases after treatment using a bait peptide chip array and predicted the corresponding active kinases. Through a combined system-wide analysis, we identified a common adaptive kinase response program that involved the activation of focal adhesion kinase 1 (FAK1), protein kinase C-δ (PRKCD), and Ephrin (EPH) family receptors. These findings reveal potential targets to prevent adaptive resistance to HER2-targeted therapies.
Collapse
Affiliation(s)
- Martin Schwill
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Rastislav Tamaskovic
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Aaron S Gajadhar
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
22
|
Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, Do KA, Ueno NT, Andreeff M, Battula VL. ST8SIA1 Regulates Tumor Growth and Metastasis in TNBC by Activating the FAK-AKT-mTOR Signaling Pathway. Mol Cancer Ther 2018; 17:2689-2701. [PMID: 30237308 DOI: 10.1158/1535-7163.mct-18-0399] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023]
Abstract
Breast cancer stem-like cells (BCSC) are implicated in cancer recurrence and metastasis of triple-negative breast cancer (TNBC). We have recently discovered that ganglioside GD2 expression defines BCSCs and that ST8SIA1 regulates GD2 expression and BCSC function. In this report, we show that ST8SIA1 is highly expressed in primary TNBC; its expression is positively correlated with the expression of several BCSC-associated genes such as BCL11A, FOXC1, CXCR4, PDGFRβ, SOX2, and mutations in p53. CRISPR knockout of ST8SIA1 completely inhibited BCSC functions, including in vitro tumorigenesis and mammosphere formation. Mechanistic studies discovered activation of the FAK-AKT-mTOR signaling pathway in GD2+ BCSCs, and its tight regulation by ST8SIA1. Finally, knockout of ST8SIA1 completely blocked in vivo tumor growth and metastasis by TNBC cells. In summary, these data demonstrate the mechanism by which ST8SIA1 regulates tumor growth and metastasis in TNBC and identifies it as a novel therapeutic target.
Collapse
Affiliation(s)
- Khoa Nguyen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhishek Dasgupta
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Cordas Dos Santos DM, Eilers J, Sosa Vizcaino A, Orlova E, Zimmermann M, Stanulla M, Schrappe M, Börner K, Grimm D, Muckenthaler MU, Kulozik AE, Kunz JB. MAP3K7 is recurrently deleted in pediatric T-lymphoblastic leukemia and affects cell proliferation independently of NF-κB. BMC Cancer 2018; 18:663. [PMID: 29914415 PMCID: PMC6006985 DOI: 10.1186/s12885-018-4525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Deletions of 6q15-16.1 are recurrently found in pediatric T-cell acute lymphoblastic leukemia (T-ALL). This chromosomal region includes the mitogen-activated protein kinase kinase kinase 7 (MAP3K7) gene which has a crucial role in innate immune signaling and was observed to be functionally and prognostically relevant in different cancer entities. Therefore, we correlated the presence of MAP3K7 deletions with clinical parameters in a cohort of 327 pediatric T-ALL patients and investigated the function of MAP3K7 in the T-ALL cell lines CCRF-CEM, Jurkat and MOLT-4. METHODS MAP3K7 deletions were detected by multiplex ligation-dependent probe amplification (MLPA). T-ALL cell lines were transduced with adeno-associated virus (AAV) vectors expressing anti-MAP3K7 shRNA or a non-silencing shRNA together with a GFP reporter. Transduction efficiency was measured by flow cytometry and depletion efficiency by RT-PCR and Western blots. Induction of apoptosis was measured by flow cytometry after staining with PE-conjugated Annexin V. In order to assess the contribution of NF-κB signaling to the effects of MAP3K7 depletion, cells were treated with TNF-α and cell lysates analyzed for components of the NF-κB pathway by Western blotting and for expression of the NF-κB target genes BCL2, CMYC, FAS, PTEN and TNF-α by RT-PCR. RESULTS MAP3K7 is deleted in approximately 10% and point-mutated in approximately 1% of children with T-ALL. In 32 of 33 leukemias the deletion of MAP3K7 also included the adjacent CASP8AP2 gene. MAP3K7 deletions were associated with the occurrence of SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and outcome. Depletion of MAP3K7 expression in T-ALL cell lines by shRNAs slowed down proliferation and induced apoptosis, but neither changed protein levels of components of NF-κB signaling nor NF-κB target gene expression after stimulation with TNF-α. CONCLUSIONS This study revealed that the recurrent deletion of MAP3K7/CASP8AP2 is associated with SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and risk of relapse. Homozygous deletions of MAP3K7 were not observed, and efficient depletion of MAP3K7 interfered with viability of T-ALL cells, indicating that a residual expression of MAP3K7 is indispensable for T-lymphoblasts.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Juliane Eilers
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Alfonso Sosa Vizcaino
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Elena Orlova
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
24
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Cui Y, Yang S. Overexpression of Annexin A1 protects against benzo[a]pyrene‑induced bronchial epithelium injury. Mol Med Rep 2018; 18:349-357. [PMID: 29749523 PMCID: PMC6059690 DOI: 10.3892/mmr.2018.8998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
The incidence of asthma is increasing worldwide. Bronchial epithelium injury is common in asthma. The regulatory role of Annexin A1 (ANXA1) in bronchial epithelium injury is currently not well understood. The aim of the present study was to evaluate the role of ANXA1 on bronchial epithelium injury. The cell viability and levels of apoptosis were respectively tested by Cell Counting Kit-8 and flow cytometry. Reactive oxygen species (ROS) content and the activity of oxidative indicators were assessed by commercial kits. Enzyme linked immunosorbent assay was performed to detect the activity of active caspase-3. Reverse transcription-quantitative polymerase chain reaction and western blot assays were used to determine the expression levels of the target factors. The results demonstrated that ANXA1 improved the viability of benzo[a]pyrene (Bap)-treated bronchial epithelial cells. The Bap-induced oxidative stress was mitigated by the reduction in ROS generation, and the regulation of the activity of superoxide dismutase, glutathione peroxidases, malondialdehyde and lactic dehydrogenase. In addition, apoptosis was decreased by ANXA1 via the reduction of the expression of B-cell lymphoma 2 (Bcl-2), and the increase in the expression of Bcl-2-associated X protein and cyclin D1. Furthermore, the expression of phosphatase and tensin homolog (PTEN) and focal adhesion kinase (FAK) was rescued and the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) was depressed by ANXA1, when compared with the Bap group. SF1670 treatment reversed the anti-apoptotic effect of ANXA1. In conclusion, the results highlighted the protective effects of ANXA1 on bronchial epithelium injury, which most likely occurred via the PTEN/FAK/PI3K/Akt signaling pathway. Thus, the present study contributes to a potential therapeutic strategy for asthma patients.
Collapse
Affiliation(s)
- Yanfei Cui
- Department of Tuberculosis, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Shengya Yang
- Department of Tuberculosis, Hangzhou Red Cross Hospital/Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
26
|
Choe SR, Kim YN, Park CG, Cho KH, Cho DY, Lee HY. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp Mol Med 2018; 50:1-10. [PMID: 29700289 PMCID: PMC5938006 DOI: 10.1038/s12276-018-0078-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/18/2023] Open
Abstract
Rab coupling protein (RCP) aggravates cancer cell metastasis and has been implicated in various cancer patient outcomes. Recently, we showed that RCP induces Slug expression and cancer cell invasion by stabilizing the β1 integrin protein. In the present study, we demonstrated that FAK is implicated in RCP-induced EGFR phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Ectopic expression of RCP induced FAK phosphorylation, which links β1 integrin with EGFR and participates in a positive regulation loop with EGFR. Interestingly, we observed for the first time that curcumin attenuates RCP-induced ovarian cancer cell invasion by blocking stabilization of β1 integrin and consequently inhibiting FAK and EGFR activation, providing potential biomarkers for ovarian cancer and therapeutic approaches for this deadly disease. Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. Hoi Young Lee and colleagues at Konyang University in Daejeon, South Korea, have previously shown that RCP promotes ovarian cancer cell invasiveness by stabilizing cell adhesion receptors. In their latest study they find that RCP also increases the levels of two of its protein-binding partners and activates an important mediator of growth factor signaling, Focal Adhesion Kinase (FAK). Interestingly, treating ovarian cancer cells with curcumin, a natural compound extracted from the spice turmeric, not only blocked the effects of RCP on cell adhesion and FAK activation, it also potentiated the inhibitory effects of the chemotherapeutic agent doxorubicin on cell invasiveness. Further research will determine whether curcumin could be used to halt ovarian cancer progression.
Collapse
Affiliation(s)
- So Ra Choe
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Yu Na Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Do Yeun Cho
- Department of Hematology and Oncology, College of Medicine, Konyang University, Daejeon, Korea.
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea.
| |
Collapse
|
27
|
Li L, Song Y, Liu Q, Liu X, Wang R, Kang C, Zhang Q. Low expression of PTEN is essential for maintenance of a malignant state in human gastric adenocarcinoma via upregulation of p‑AURKA mediated by activation of AURKA. Int J Mol Med 2018; 41:3629-3641. [PMID: 29512701 DOI: 10.3892/ijmm.2018.3544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Gastric adenocarcinoma remains a life‑threatening disease, emphasizing the importance of gaining an improved understanding of signaling pathways involved in this disease, which can lead to the development of novel therapeutic methods targeting common molecular pathways shared across different types of gastric adenocarcinoma. The present study revealed phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and aurora kinase A (AURKA) gene alterations, which were involved in changes in the phenotypes of gastric cancer cells, including increased proliferation by cell counting kit‑8 assay and invasion capacity by Transwell invasion assay, and predicted survival rates by KM Plotter database in gastric cancer. The present study investigated the association between PTEN and AURKA. Western blotting revealed that phosphorylated (p)-AURKA correlated with two target genes, PTEN and AURKA. The downregulation of PTEN by small interfering (si)RNA not only increased the expression of AURKA at the mRNA and protein levels by western blotting and by reverse transcription‑quantitative PCR, but also increased the expression of p‑AURKA by western blotting and immunofluorescence analysis. In addition, western blotting and reverse transcription‑quantitative PCR revealed that the downregulation of AURKA affected the expression level of PTEN. Furthermore, PTEN suppressed the malignant phenotypic changes of gastric adenocarcinoma cells by regulating the expression of AURKA inhibited by p‑AURKA, suggesting that p‑AURKA may be the key mediator of the PTEN‑associated activation of AURKA and may be key in maintaining the PTEN‑induced malignant state of gastric adenocarcinoma cells. This hypothesis was confirmed by western blotting, and changes were observed in the protein expression of p‑AURKA and AURKA under conditions in which cells were treated with either MLN8237 or si‑PTEN transfection only, or with si‑PTEN transfection and MLN8237. Knockdown of the expression of PTEN altered the expression of p‑AKT, p‑glycogen synthase kinase 3β and β‑catenin, which are genes that have been reported to be involved in the development of gastric adenocarcinoma. The present study confirmed that p‑AURKA is important in the development of gastric adenocarcinoma and revealed a novel functional link between PTEN, AURKA and p‑AURKA activation. The results also suggest a novel drug design strategy in targeting PTEN and AURKA for more specific gastric cancer cell death that spares normal cells.
Collapse
Affiliation(s)
- Liwei Li
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Song
- Department of Gastroenterology, Tianjin Medical University Cancer Institute Hospital, Tianjin 300052, P.R. China
| | - Qing Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300052, P.R. China
| | - Rui Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
28
|
Richard NP, Pippa R, Cleary MM, Puri A, Tibbitts D, Mahmood S, Christensen DJ, Jeng S, McWeeney S, Look AT, Chang BH, Tyner JW, Vitek MP, Odero MD, Sears R, Agarwal A. Combined targeting of SET and tyrosine kinases provides an effective therapeutic approach in human T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:84214-84227. [PMID: 27705940 PMCID: PMC5356656 DOI: 10.18632/oncotarget.12394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that inhibition of protein phosphatase 2A (PP2A) tumor suppressor activity via the SET oncoprotein contributes to the pathogenesis of various cancers. Here we demonstrate that both SET and c-MYC expression are frequently elevated in T-ALL cell lines and primary samples compared to healthy T cells. Treatment of T-ALL cells with the SET antagonist OP449 restored the activity of PP2A and reduced SET interaction with the PP2A catalytic subunit, resulting in a decrease in cell viability and c-MYC expression in a dose-dependent manner. Since a tight balance between phosphatases and kinases is required for the growth of both normal and malignant cells, we sought to identify a kinase inhibitor that would synergize with SET antagonism. We tested various T-ALL cell lines against a small-molecule inhibitor screen of 66 compounds targeting two-thirds of the tyrosine kinome and found that combined treatment of T-ALL cells with dovitinib, an orally active multi-targeted small-molecule receptor tyrosine kinase inhibitor, and OP449 synergistically reduced the viability of all tested T-ALL cell lines. Mechanistically, combined treatment with OP449 and dovitinib decreased total and phospho c-MYC levels and reduced ERK1/2, AKT, and p70S6 kinase activity in both NOTCH-dependent and independent T-ALL cell lines. Overall, these results suggest that combined targeting of tyrosine kinases and activation of serine/threonine phosphatases may offer novel therapeutic strategies for the treatment of T-ALL.
Collapse
Affiliation(s)
- Nameeta P Richard
- Randall Children's Hospital at Legacy Emanuel, Children's Cancer and Blood Disorders Program, Portland, OR 97227, USA.,Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Raffaella Pippa
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Megan M Cleary
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alka Puri
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Deanne Tibbitts
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shawn Mahmood
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dale J Christensen
- Research and Development, Oncotide Pharmaceuticals, Research Triangle Park, NC 27710, USA .,Spyryx Biosciences, Durham, NC 27713, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - A Thomas Look
- Dana-Farber Cancer Institute, Harvard Cancer Center, Boston, MA 02215, USA
| | - Bill H Chang
- Division of Pediatric Hematology Oncology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey W Tyner
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael P Vitek
- Research and Development, Oncotide Pharmaceuticals, Research Triangle Park, NC 27710, USA
| | - María D Odero
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Rosalie Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR USA-97239.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA-97239
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA-97239.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR USA-97239.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA-97239
| |
Collapse
|
29
|
PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nat Commun 2017; 8:1508. [PMID: 29142193 PMCID: PMC5688148 DOI: 10.1038/s41467-017-01574-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
PTEN activity is often lost in prostate cancer. We show that the tyrosine kinase PTK6 (BRK) is a PTEN substrate. Phosphorylation of PTK6 tyrosine 342 (PY342) promotes activation, while phosphorylation of tyrosine 447 (PY447) regulates auto-inhibition. Introduction of PTEN into a PTEN null prostate cancer cell line leads to dephosphorylation of PY342 but not PY447 and PTK6 inhibition. Conversely, PTEN knockdown promotes PTK6 activation in PTEN positive cells. Using a variety of PTEN mutant constructs, we show that protein phosphatase activity of PTEN targets PTK6, with efficiency similar to PTP1B, a phosphatase that directly dephosphorylates PTK6 Y342. Conditional disruption of Pten in the mouse prostate leads to tumorigenesis and increased phosphorylation of PTK6 Y342, and disruption of Ptk6 impairs tumorigenesis. In human prostate tumor tissue microarrays, loss of PTEN correlates with increased PTK6 PY342 and poor outcome. These data suggest PTK6 activation promotes invasive prostate cancer induced by PTEN loss. PTEN is often lost in prostate cancer. In this study, the authors show that PTEN can act as a protein phosphatase that targets active PTK6, thereby regulating its oncogenic signaling in prostate cancer progression.
Collapse
|
30
|
Rudelius M, Rosenfeldt MT, Leich E, Rauert-Wunderlich H, Solimando AG, Beilhack A, Ott G, Rosenwald A. Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment. Haematologica 2017; 103:116-125. [PMID: 29079592 PMCID: PMC5777199 DOI: 10.3324/haematol.2017.177162] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-κB), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-κB pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Martina Rudelius
- Institute of Pathology, University of Würzburg and CCC-Mainfranken, Würzburg, Germany.,Institute of Pathology, University of Duesseldorf, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg and CCC-Mainfranken, Würzburg, Germany
| | | | | | - Andreas Beilhack
- Medizinische Klinik II, University Hospital of Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and CCC-Mainfranken, Würzburg, Germany
| |
Collapse
|
31
|
Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, Chintala S, Orillion A, Miles KM, Shen L, Elbanna M, Ciamporcero E, Arisa S, Pettazzoni P, Draetta GF, Seshadri M, Hancock B, Radovich M, Kota J, Buck M, Keilhack H, McCarthy BP, Persohn SA, Territo PR, Zang Y, Irudayaraj J, Tao WA, Hollenhorst P, Pili R. EZH2 Modifies Sunitinib Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res 2017; 77:6651-6666. [PMID: 28978636 DOI: 10.1158/0008-5472.can-17-0899] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.
Collapse
Affiliation(s)
- Remi Adelaiye-Ogala
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Justin Budka
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Nur P Damayanti
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Justine Arrington
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Mary Ferris
- Medical Sciences, Indiana University, Bloomington, Indiana
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Ashley Orillion
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Cellular and Molecular Biology, University at Buffalo, Buffalo, New York
| | - Kiersten Marie Miles
- Center for Personalized Medicine, Roswell Park Cancer Institute, New York, New York
| | - Li Shen
- Department of Medicine, Roswell Park Cancer Institute, New York, New York
| | - May Elbanna
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
| | - Eric Ciamporcero
- Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | - Sreevani Arisa
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Piergiorgio Pettazzoni
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, New York, New York
| | - Bradley Hancock
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Milan Radovich
- Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Michael Buck
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York
| | | | - Brian P McCarthy
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Scott A Persohn
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
| | - Yong Zang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | | | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | | | - Roberto Pili
- Department of Cancer Pathology and Prevention, University at Buffalo, Buffalo, New York.
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Department of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
32
|
Cabrera M, Echeverria E, Lenicov FR, Cardama G, Gonzalez N, Davio C, Fernández N, Menna PL. Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget 2017; 8:98509-98523. [PMID: 29228706 PMCID: PMC5716746 DOI: 10.18632/oncotarget.21533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rac1 GTPase has long been recognized as a critical regulatory protein in different cellular and molecular processes involved in cancer progression, including acute myeloid leukemia. Here we show the antitumoral activity of ZINC69391 and 1A-116, two chemically-related Rac1 pharmacological inhibitors, on a panel of four leukemic cell lines representing different levels of maturation. Importantly, we show that the main mechanism involved in the antitumoral effect triggered by the Rac1 inhibitors comprises the induction of the mitochondrial or intrinsic apoptotic pathway. Interestingly, Rac1 inhibition selectively induced apoptosis on patient-derived leukemia cells but not on normal mononuclear cells. These results show the potential therapeutic benefits of targeting Rac1 pathway in hematopoietic malignancies.
Collapse
Affiliation(s)
- Maia Cabrera
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Emiliana Echeverria
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina, (INBIRS-UBA-CONICET), Buenos Aires, Argentina
| | - Georgina Cardama
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica (ININFA-UBA CONICET), Buenos Aires, Argentina
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
33
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
- Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
34
|
Cavazzoni A, La Monica S, Alfieri R, Ravelli A, Van Der Steen N, Sciarrillo R, Madeddu D, Lagrasta CAM, Quaini F, Bonelli M, Fumarola C, Cretella D, Digiacomo G, Tiseo M, Peters GJ, Ardizzoni A, Petronini PG, Giovannetti E. Enhanced efficacy of AKT and FAK kinase combined inhibition in squamous cell lung carcinomas with stable reduction in PTEN. Oncotarget 2017; 8:53068-53083. [PMID: 28881794 PMCID: PMC5581093 DOI: 10.18632/oncotarget.18087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/β, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression.
Collapse
Affiliation(s)
- Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Ravelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nele Van Der Steen
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Rocco Sciarrillo
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC/Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Malaney P, Uversky VN, Davé V. PTEN proteoforms in biology and disease. Cell Mol Life Sci 2017; 74:2783-2794. [PMID: 28289760 PMCID: PMC11107534 DOI: 10.1007/s00018-017-2500-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33612, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., Saint Petersburg, Russia, 194064
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
36
|
Bai D, Cong S, Zhu LP. Attenuation of Focal Adhesion Kinase Reduces Lipopolysaccharide-Induced Inflammation Injury through Inactivation of the Wnt and NF-κB Pathways in A549 Cells. BIOCHEMISTRY (MOSCOW) 2017; 82:446-453. [PMID: 28371601 DOI: 10.1134/s0006297917040058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overall analysis and understanding of mechanisms are of great importance for treatment of infantile pneumonia due to its high morbidity and mortality worldwide. In this study, we preliminarily explored the function and mechanism of focal adhesion kinase (FAK) in regulation of inflammatory response induced by lipopolysaccharides in A549 cells. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis were used to explore the correlation of FAK expression with cell apoptosis, viability, and the inflammatory cytokine activity in A549 cells. The results showed that knockdown of FAK enhanced cell viability, suppressed apoptosis, and decreased inflammatory cytokine activity. In addition, downregulation of FAK could activate the Wnt and nuclear factor κB signaling pathways. These findings suggest that FAK might be involved in progression of infantile pneumonia and could be a new therapeutic target for this disease.
Collapse
Affiliation(s)
- D Bai
- Jining No. 1 People's Hospital, Department of Pediatrics, Jining, 272011, China.
| | | | | |
Collapse
|
37
|
Abstract
OBJECTIVE To study whether miR-200a and miR-200b target PTEN gene expression to regulate the endometrial cancer cell growth in vitro. METHODS Endometrial cancer cells ECC-1 were cultured and transfected with the miR-200a and miR-200b mimics and inhibitors as well as the negative control mimics and inhibitors, and then the cell proliferation activity as well as the expression of PTEN and downstream genes in cells was determined; after transfection of miR-200a and miR-200b mimics as well as PTEN-3'UTR luciferase report gene plasmids, the fluorescence activity of luciferase reporter gene was determined. RESULTS 12 h, 24 h and 48 h after transfection, the cell proliferation activity of miR-200a mimics group and miR-200b mimics group were significantly higher than those of NC mimics group while the cell proliferation activity of miR-200a inhibitor group and miR-200b inhibitor group were significantly lower than those of NC inhibitor group; 48 h after transfection, PTEN expression in cells and PTEN-3'UTR luciferase reporter gene fluorescence activity of miR-200a mimics group and miR-200b mimics group were significantly lower than those of NC mimics group while p-PI3K and p-Akt expression were significantly higher than those of NC mimics group; PTEN expression in cells and PTEN-3'UTR luciferase reporter gene fluorescence activity of miR-200a inhibitor group and miR-200b inhibitor group were significantly higher than those of NC inhibitor group while p-PI3K and p-Akt expression were significantly lower than those of NC inhibitor group. CONCLUSION miR-200a and miR-200b can promote the endometrial cancer cell growth in vitro by targeted inhibition of PTEN gene expression.
Collapse
|
38
|
Brooks J, Watson A, Korcsmaros T. Omics Approaches to Identify Potential Biomarkers of Inflammatory Diseases in the Focal Adhesion Complex. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:101-109. [PMID: 28373027 PMCID: PMC5414711 DOI: 10.1016/j.gpb.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Inflammatory diseases such as inflammatory bowel disease (IBD) require recurrent invasive tests, including blood tests, radiology, and endoscopic evaluation both to diagnose and assess disease activity, and to determine optimal therapeutic strategies. Simple ‘bedside’ biomarkers could be used in all phases of patient management to avoid unnecessary investigation and guide further management. The focal adhesion complex (FAC) has been implicated in the pathogenesis of multiple inflammatory diseases, including IBD, rheumatoid arthritis, and multiple sclerosis. Utilizing omics technologies has proven to be an efficient approach to identify biomarkers from within the FAC in the field of cancer medicine. Predictive biomarkers are paving the way for the success of precision medicine for cancer patients, but inflammatory diseases have lagged behind in this respect. This review explores the current status of biomarker prediction for inflammatory diseases from within the FAC using omics technologies and highlights the benefits of future potential biomarker identification approaches.
Collapse
Affiliation(s)
- Johanne Brooks
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom; Gastroenterology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, United Kingdom
| | - Alastair Watson
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom; Gastroenterology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, United Kingdom
| | - Tamas Korcsmaros
- Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom; Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, United Kingdom.
| |
Collapse
|
39
|
Passaro D, Quang CT, Ghysdael J. Microenvironmental cues for T-cell acute lymphoblastic leukemia development. Immunol Rev 2016; 271:156-72. [PMID: 27088913 DOI: 10.1111/imr.12402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia.
Collapse
Affiliation(s)
- Diana Passaro
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Christine Tran Quang
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| |
Collapse
|
40
|
Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia 2016; 31:1154-1165. [PMID: 27748372 DOI: 10.1038/leu.2016.287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-α (TNF-α)-induced RIP1/RIP3 (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3)-mediated necroptosis has been proposed as an alternative strategy for treating apoptosis-resistant leukemia. However, we found that most acute myeloid leukemia (AML) cells, especially M4 and M5 subtypes, produce TNF and show basal level activation of RIP1/RIP3/MLKL signaling, yet do not undergo necroptosis. TNF, through RIP1/RIP3 signaling, prevents degradation of SOCS1, a key negative regulator of interferon-γ (IFN-γ) signaling. Using both pharmacologic and genetic assays, we show here that inactivation of RIP1/RIP3 resulted in reduction of SOCS1 protein levels and partial differentiation of AML cells. AML cells with inactivated RIP1/RIP3 signaling show increased sensitivity to IFN-γ-induced differentiation. RIP1/RIP3 inactivation combined with IFN-γ treatment significantly attenuated the clonogenic capacity of both primary AML cells and AML cell lines. This combination treatment also compromised the leukemogenic ability of murine AML cells in vivo. Our studies suggest that inhibition of RIP1/RIP3-mediated necroptotic signaling might be a novel strategy for the treatment of AML when combined with other differentiation inducers.
Collapse
|
41
|
Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 2016; 128:473-8. [PMID: 27268088 DOI: 10.1182/blood-2016-03-679209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/27/2016] [Indexed: 01/06/2023] Open
Abstract
Increased understanding of pediatric acute lymphoblastic leukemia (ALL) pathobiology has led to dramatic improvements in patient survival. However, there is still a need to develop targeted therapies to enable reduced chemotherapy intensity and to treat relapsed patients. The interleukin-7 receptor α (IL-7Rα) signaling pathways are prime therapeutic targets because these pathways harbor genetic aberrations in both T-cell ALL and B-cell precursor ALL. Therapeutic targeting of the IL-7Rα signaling pathways may lead to improved outcomes in a subset of patients.
Collapse
|
42
|
Li J, Zhang J, Tang M, Xin J, Xu Y, Volk A, Hao C, Hu C, Sun J, Wei W, Cao Q, Breslin P, Zhang J. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 2016; 34:2130-44. [PMID: 27096933 DOI: 10.1002/stem.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/19/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Minghui Tang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Quichan Cao
- Department of Public Health Sciences, Loyola University Chicago, Chicago, Illinois, USA
| | - Peter Breslin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Molecular and Cellular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
43
|
Stumpf M, Blokzijl-Franke S, den Hertog J. Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis. PLoS One 2016; 11:e0154771. [PMID: 27138341 PMCID: PMC4854392 DOI: 10.1371/journal.pone.0154771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of nuclear PTEN have been discovered as well. PTEN subcellular localization is tightly controlled by its protein conformation. In the closed conformation, PTEN localizes predominantly to the cytoplasm. Opening up of the conformation of PTEN exposes N-terminal and C-terminal regions of the protein that are required for both interaction with the cell membrane and translocation to the nucleus. Lack of Pten leads to hyperbranching of the intersegmental vessels during zebrafish embryogenesis, which is rescued by expression of exogenous Pten. Here, we observed that expression of mutant PTEN with an open conformation rescued the hyperbranching phenotype in pten double homozygous embryos and suppressed the increased p-Akt levels that are characteristic for embryos lacking Pten. In addition, in pten mutant and wild type embryos alike, open conformation PTEN induced stalled intersegmental vessels, which fail to connect with the dorsal longitudinal anastomotic vessel. Functional hyperactivity of open conformation PTEN in comparison to wild type PTEN seems to result predominantly from its enhanced recruitment to the cell membrane. Enhanced recruitment of phosphatase inactive mutants to the membrane did not induce the stalled vessel phenotype nor did it rescue the hyperbranching phenotype in pten double homozygous embryos, indicating that PTEN phosphatase activity is indispensable for its regulatory function during angiogenesis. Taken together, our data suggest that PTEN phosphatase activity needs to be carefully fine-tuned for normal embryogenesis and that the control of its subcellular localization is a key mechanism in this process.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sasja Blokzijl-Franke
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Dinner S, Platanias LC. Targeting the mTOR Pathway in Leukemia. J Cell Biochem 2016; 117:1745-52. [PMID: 27018341 DOI: 10.1002/jcb.25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
Optimal function of multiple intracellular signaling pathways is essential for normal regulation of cellular transcription, translation, growth, proliferation, and survival. Dysregulation or aberrant activation of such cascades can lead to inappropriate cell survival and abnormal cell proliferation in leukemia. Successful treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors targeting the BCR-ABL fusion gene is a prime example of effectively inhibiting intracellular signaling cascades. However, even in these patients resistance can develop via emergence of mutations or feedback activation of other pathways that cause refractory disease. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway has been observed in different types of leukemia, including CML, acute myeloid leukemia, and acute lymphoblastic leukemia. Abnormal mTOR activity may contribute to chemotherapy resistance, while it may also be effectively targeted via molecular means and/or development of specific pharmacological inhibitors. This review discusses the role of PI3K/Akt/mTOR dysre-gulation in leukemia and summarizes the emergence of preliminary data for the development of novel therapeutic approaches. J. Cell. Biochem. 117: 1745-1752, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shira Dinner
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Leonidas C Platanias
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612
| |
Collapse
|
45
|
Gambogic Acid and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:375-395. [DOI: 10.1007/978-3-319-41334-1_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Oncogenic PTEN functions and models in T-cell malignancies. Oncogene 2015; 35:3887-96. [PMID: 26616857 DOI: 10.1038/onc.2015.462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.
Collapse
|