1
|
Dittrich A, Andersson SA, Busk M, Hansen K, Foldager CB, Palmfeldt J, Andersen A, Pedersen M, Vendelbo M, Nielsen KL, Lauridsen H. Metabolic changes during cardiac regeneration in the axolotl. Dev Dyn 2025. [PMID: 40119743 DOI: 10.1002/dvdy.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl. RESULTS We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions. CONCLUSIONS Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.
Collapse
Affiliation(s)
- Anita Dittrich
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Amalie Andersson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Department of Clinical Medicine, Experimental Clinical Oncology, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Orthopaedic Research Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Vendelbo
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Tian RZ, Zhuang DL, Vong CT, He X, Ouyang Q, Liang JH, Guo YP, Wang YH, Zhao S, Yuan H, Ide Nasser M, Li G, Zhu P. Role of Autophagy in Myocardial Remodeling After Myocardial Infarction. J Cardiovasc Pharmacol 2025; 85:1-11. [PMID: 39454200 DOI: 10.1097/fjc.0000000000001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024]
Abstract
ABSTRACT Autophagy is the process of reusing the body's senescent and damaged cell components, which can be regarded as the cellular circulatory system. There are 3 distinct forms of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. In the heart, autophagy is regulated mainly through mitophagy because of the metabolic changes of cardiomyocytes caused by ischemia and hypoxia. Myocardial remodeling is characterized by gradual heart enlargement, cardiac dysfunction, and extraordinary molecular changes. Cardiac remodeling after myocardial infarction is almost inevitable, which is the leading cause of heart failure. Autophagy has a protective effect on myocardial remodeling improvement. Autophagy can minimize cardiac remodeling by preventing misfolded protein accumulation and oxidative stress. This review summarizes the nestest molecular mechanisms of autophagy and myocardial remodeling, the protective effects, and the new target of autophagy medicine in cardiac remodeling. The future development and challenges of autophagy in heart disease are also summarized.
Collapse
Affiliation(s)
- Run-Ze Tian
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong-Lin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Xuyu He
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing-Hua Liang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ping Guo
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu-Hong Wang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China; and
| | - Haiyun Yuan
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Moussa Ide Nasser
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cai WF, Jiang L, Liang J, Dutta S, Huang W, He X, Wu Z, Paul C, Gao X, Xu M, Kanisicak O, Zheng J, Wang Y. HAX1-Overexpression Augments Cardioprotective Efficacy of Stem Cell-Based Therapy Through Mediating Hippo-Yap Signaling. Stem Cell Rev Rep 2024; 20:1569-1586. [PMID: 38713406 PMCID: PMC11319392 DOI: 10.1007/s12015-024-10729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Although stem/progenitor cell therapy shows potential for myocardial infarction repair, enhancing the therapeutic efficacy could be achieved through additional genetic modifications. HCLS1-associated protein X-1 (HAX1) has been identified as a versatile modulator responsible for cardio-protective signaling, while its role in regulating stem cell survival and functionality remains unknown. In this study, we investigated whether HAX1 can augment the protective potential of Sca1+ cardiac stromal cells (CSCs) for myocardial injury. The overexpression of HAX1 significantly increased cell proliferation and conferred enhanced resistance to hypoxia-induced cell death in CSCs. Mechanistically, HAX1 can interact with Mst1 (a prominent conductor of Hippo signal transduction) and inhibit its kinase activity for protein phosphorylation. This inhibition led to enhanced nuclear translocation of Yes-associated protein (YAP) and activation of downstream therapeutic-related genes. Notably, HAX1 overexpression significantly increased the pro-angiogenic potential of CSCs, as demonstrated by elevated expression of vascular endothelial growth factors. Importantly, implantation of HAX1-overexpressing CSCs promoted neovascularization, protected against functional deterioration, and ameliorated cardiac fibrosis in ischemic mouse hearts. In conclusion, HAX1 emerges as a valuable and efficient inducer for enhancing the effectiveness of cardiac stem or progenitor cell therapeutics.
Collapse
Affiliation(s)
- Wen-Feng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA
| | - Wei Huang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0529, USA
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0529, USA.
| |
Collapse
|
4
|
Etzion S, Hijaze R, Segal L, Pilcha S, Masil D, Levi O, Elyagon S, Levitas A, Etzion Y, Parvari R. Plekhm2 acts as an autophagy modulator in murine heart and cardiofibroblasts. Sci Rep 2024; 14:14949. [PMID: 38942823 PMCID: PMC11213891 DOI: 10.1038/s41598-024-65670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024] Open
Abstract
Plekhm2 is a protein regulating endosomal trafficking and lysosomal distribution. We recently linked a recessive inherited mutation in PLEKHM2 to a familial form of dilated cardiomyopathy and left ventricular non-compaction. These patients' primary fibroblasts exhibited abnormal lysosomal distribution and autophagy impairment. We therefore hypothesized that loss of PLEKHM2 impairs cardiac function via autophagy derangement. Here, we characterized the roles of Plekhm2 in the heart using global Plekhm2 knockout (PLK2-KO) mice and cultured cardiac cells. Compared to littermate controls (WT), young PLK2-KO mice exhibited no difference in heart function or autophagy markers but demonstrated higher basal AKT phosphorylation. Older PLK2-KO mice had body and heart growth retardation and increased LC3II protein levels. PLK2-KO mice were more vulnerable to fasting and, interestingly, impaired autophagy was noted in vitro, in Plekhm2-deficient cardiofibroblasts but not in cardiomyocytes. PLK2-KO hearts appeared to be less sensitive to pathological hypertrophy induced by angiotensin-II compared to WT. Our findings suggest a role of Plekhm2 in murine cardiac autophagy. Plekhm2 deficiency impaired autophagy in cardiofibroblasts, but the autophagy in cardiomyocytes is not critically dependent on Plekhm2. The absence of Plekhm2 in mice appears to promote compensatory mechanism(s) enabling the heart to manage angiotensin-II-induced stress without detrimental consequences.
Collapse
Affiliation(s)
- Sharon Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel.
| | - Raneen Hijaze
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Liad Segal
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Sofia Pilcha
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
| | - Dana Masil
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Or Levi
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Sigal Elyagon
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Yoram Etzion
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Be'er-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| | - Ruti Parvari
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
- National Institute for Biotechnology, Ben-Gurion University of the Negev, 84101, Be'er-Sheva, Israel
| |
Collapse
|
5
|
Bugga P, Manning JR, Mushala BAS, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. Cell Signal 2024; 116:111065. [PMID: 38281616 PMCID: PMC10922666 DOI: 10.1016/j.cellsig.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
6
|
Al-Saud B, Alajlan H, Alruwaili H, Almoaibed L, Al-Mazrou A, Ghebeh H, Al-Alwan M, Alazami AM. A unique STK4 mutation truncating only the C-terminal SARAH domain results in a mild clinical phenotype despite severe T cell lymphopenia: Case report. Front Immunol 2024; 15:1329610. [PMID: 38361950 PMCID: PMC10867200 DOI: 10.3389/fimmu.2024.1329610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in STK4 (MST1) are implicated in a form of autosomal recessive combined immunodeficiency, resulting in recurrent infections (especially Epstein-Barr virus viremia), autoimmunity, and cardiac malformations. Here we report a patient with an atypically mild presentation of this disease, initially presenting with severe T cell lymphopenia (< 500 per mm3) and intermittent neutropenia, but now surviving well on immunoglobulins and prophylactic antibacterial treatment. She harbors a unique STK4 mutation that lies further downstream than all others reported to date. Unlike other published cases, her mRNA transcript is not vulnerable to nonsense mediated decay (NMD) and yields a truncated protein that is expected to lose only the C-terminal SARAH domain. This domain is critical for autodimerization and autophosphorylation. While exhibiting significant differences from controls, this patient's T cell proliferation defects and susceptibility to apoptosis are not as severe as reported elsewhere. Expression of PD-1 is in line with healthy controls. Similarly, the dysregulation seen in immunophenotyping is not as pronounced as in other published cases. The nature of this mutation, enabling its evasion from NMD, provides a rare glimpse into the clinical and cellular features associated with the absence of a "null" phenotype of this protein.
Collapse
Affiliation(s)
- Bandar Al-Saud
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Huda Alajlan
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hibah Alruwaili
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Latifa Almoaibed
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amer Al-Mazrou
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
8
|
Bugga P, Manning JR, Mushala BA, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564170. [PMID: 37961692 PMCID: PMC10634848 DOI: 10.1101/2023.10.26.564170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
9
|
Huang H, Wang T, Wang L, Huang Y, Li W, Wang J, Hu Y, Zhou Z. Saponins of Panax japonicus ameliorates cardiac aging phenotype in aging rats by enhancing basal autophagy through AMPK/mTOR/ULK1 pathway. Exp Gerontol 2023; 182:112305. [PMID: 37797916 DOI: 10.1016/j.exger.2023.112305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Heart disease is a significant health concern for elderly individuals, with heart aging being the primary cause. Recent studies have shown that autophagy can play a protective role in preventing cardiac aging. Our previous research confirmed that Chikusetsu saponin IVa, a fundamental component of Saponins of Panax japonics (SPJ), can enhance basic autophagy levels in cardiomyocyte of isoproterenol induced cardiac fibrosis mice. However, it remains unclear whether SPJ possesses a protective effect on cardiac dysfunction during the natural aging process. Rats were randomly divided into four groups: adult control group (6 months old), aging group (24 months old), aging group treated with 10 mg/kg SPJ, and aging group treated with 30 mg/kg SPJ. The heart function, blood pressure, and heart mass index (HMI) were measured. Hematoxylin and eosin staining (H&E) and Wheat Germ Agglutinin (WGA) staining were used to observe the changes in morphology, while Masson staining was used to examine collagen deposition in the rat hearts and CD45 immunohistochemistry was conducted to examine the macrophage infiltration in heart tissues. TUNEL kit was used to detect apoptosis level of cardiomyocyte, and western blot was used to evaluate autophagy-related proteins as well as AMPK/mTOR/ULK1 pathway-related markers. SPJ treatment improved the cardiac function, reduced HMI, attenuated myocardial fiber disorder, inhibited inflammatory cell infiltration, and decreased collagen deposition and cardiomyocyte apoptosis in aging rats. Additionally, SPJ treatment decreased the expression of aging-related proteins and restored the expression of autophagy-related markers. SPJ activated autophagy through the activation of AMPK, which in turn increased the phosphorylation of ULK1(Ser555), while inhibited the phosphorylation of mTOR and ULK1(Ser757). Our study demonstrates that SPJ improves the cardiac function of aging rats by enhancing basal autophagy through the AMPK/mTOR/ULK1 pathway. These results offer a theoretical foundation and empirical evidence to support the clinical advancement of SPJ in enhancing age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Hefei Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Tianlun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Luopei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yan Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Weili Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jin'e Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yuanlang Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| | - Zhiyong Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
10
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Gao Y, Tian T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int J Mol Sci 2023; 24:11811. [PMID: 37511569 PMCID: PMC10380532 DOI: 10.3390/ijms241411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) integrates multiple intracellular and extracellular upstream signals involved in the regulation of anabolic and catabolic processes in cells and plays a key regulatory role in cell growth and metabolism. The activation of the mTOR signaling pathway has been reported to be associated with a wide range of human diseases. A growing number of in vivo and in vitro studies have demonstrated that gut microbes and their complex metabolites can regulate host metabolic and immune responses through the mTOR pathway and result in disorders of host physiological functions. In this review, we summarize the regulatory mechanisms of gut microbes and mTOR in different diseases and discuss the crosstalk between gut microbes and their metabolites and mTOR in disorders in the gastrointestinal tract, liver, heart, and other organs. We also discuss the promising application of multiple potential drugs that can adjust the gut microbiota and mTOR signaling pathways. Despite the limited findings between gut microbes and mTOR, elucidating their relationship may provide new clues for the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
13
|
Neil E, Kouskoff V. Current Model Systems for Investigating Epithelioid Haemangioendothelioma. Cancers (Basel) 2023; 15:3005. [PMID: 37296967 PMCID: PMC10251951 DOI: 10.3390/cancers15113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients.
Collapse
Affiliation(s)
- Emily Neil
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Valerie Kouskoff
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
17
|
Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 2023; 50:4565-4578. [PMID: 36877351 DOI: 10.1007/s11033-023-08329-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.
Collapse
|
18
|
Peng Y, Jingming R, Shaowen C, Feng H, Pengli Z. The protective effect of Apelin-13 against cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:183-189. [PMID: 36742144 PMCID: PMC9869881 DOI: 10.22038/ijbms.2022.65160.14356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/26/2022] [Indexed: 02/07/2023]
Abstract
Objectives To determine the protective effect of Apelin-13 on cardiac hypertrophy through activating the PI3K-AKT-mTOR signaling pathway. Materials and Methods The phenylephrine-induced cardiomyocyte hypertrophy model was established in H9C2 cells in vitro. Electroporation transfection technology was utilized to prepare and screen the H9C2 cells inducing low expression of the angiotensin type one receptor-related protein (Si-APJ). H9C2 and Si-APJ cells were divided independently into five groups: the control group, the PE group, the PE+Apelin group, the PE+Rapa group, and the PE+Apelin+Rapa group. RT-PCR was performed to analyze the mRNA expression levels of myosin heavy chain 7 (MYH7). Expression of the PI3K/AKT/mTOR pathway proteins and MYH7 was investigated by western blot. Results The expression of PI3K/AKT/mTOR phosphorylated proteins was significantly higher in the PE group compared with the PE+Apelin group in H9C2 cells (P<0.05). Conversely, in Si-APJ H9C2 cells, the expression of PI3K/AKT/mTOR phosphorylated proteins was decreased (P<0.05). In H9C2 cells, the expression of MYH7 protein was increased in the PE group compared with the control group (P<0.05). In the same cell line, the expression of MYH7 in the PE+Apelin group was decreased significantly compared with the PE group (P<0.05). In Si-APJ H9C2 cells, compared with the control group, the expression of MYH7 in the PE group still increased significantly (P<0.05). In contrast, in the same cell line, there was no statistically significant difference in MYH7 expression between the PE+Apelin, PE+Rapa, and PE+Apelin+Rapa groups compared to the PE group (P>0.05). Conclusion Apelin-13 reduces PE-induced cardiac hypertrophy by activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Peng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Cardiovascular Medicine, Fujian Provincial Hospital South Branch (Fujian Provincial Jinshan Hospital), Fuzhou 350028, Fujian, China,These authors contributed eqully to this work
| | - Ruan Jingming
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Cardiovascular Medicine, Fujian Provincial Hospital South Branch (Fujian Provincial Jinshan Hospital), Fuzhou 350028, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,These authors contributed eqully to this work
| | - Chen Shaowen
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Huang Feng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China,Corresponding authors: Huang Feng. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China. . Zhu Pengli. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China.
| | - Zhu Pengli
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China,Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China,Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China,Corresponding authors: Huang Feng. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China. . Zhu Pengli. Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China; Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
19
|
Qiao C, Jiang P, Yuan X, Su N, Sun P, Lin F. Mammalian STE20-like kinase-1/2 are activated in human platelets stimulated by collagen or thrombin and play a vital role in collagen-activated platelets. Thromb Res 2023; 221:83-91. [PMID: 36495715 DOI: 10.1016/j.thromres.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mammalian ste20-like kinases-1/2 (MST1/2), the core kinases of the Hippo pathway, play critical roles in the biology of hematopoietic cells via noncanonical mechanisms and contributes to megakaryocyte differentiation, polyploidization, and maturation to produce platelets. However, the role of MST1/2 in platelet functions remains unclear. MATERIALS AND METHODS In this study, we investigated this topic by determining platelet aggregation and through flow cytometry, ATP release assay, clot retraction assay, and immunoblotting analysis. RESULTS We found that MST1/2 were rapidly phosphorylated and activated upon platelet stimulation by thrombin and collagen. XMU-MP-1, a specific inhibitor of MST1/2, blocks the activation of MST1/2 in platelets. Inhibitor-pretreated platelets showed impaired platelet aggregation and dense-granule secretion mediated by collagen, thrombin, and U46619, whereas ristocetin or ADP mediated platelet aggregation was unaffected by XMU-MP-1. Although platelet-mediated clot retraction was not affected by MST1/2 inhibitors, integrin αIIbβ3 activation was significantly attenuated in XMU-MP-1-treated platelets. Moreover, MST1/2 inhibition significantly attenuated the mobilization of platelet calcium ions and the secretion of α-granules induced by convulxin. CONCLUSIONS This study is the first to demonstrate that MST1/2 play vital roles in human platelets and contributes to collagen-induced platelet activation and aggregation.
Collapse
Affiliation(s)
- Congchao Qiao
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
20
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
21
|
Li H, Zhou WY, Liu YX, Xia YY, Xia CL, Pan DR, Li Z, Shi Y, Chen SL, Zhang JX. Rictor maintains endothelial integrity under shear stress. Front Cell Dev Biol 2022; 10:963866. [PMID: 36438564 PMCID: PMC9685313 DOI: 10.3389/fcell.2022.963866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Endothelial injury induced by low shear stress (LSS) is an initiating factor in the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, and thrombotic diseases. Low shear stress activates the mammalian target of rapamycin complex 2 (mTORC2) signaling pathway. Rictor, the main constituent protein of mTORC2, is involved in vascular development. However, the impact of conditional Rictor ablation on endothelial homeostasis, especially on endothelial-specific markers, such as vascular endothelial-cadherin (VE-cadherin) and von Willebrand factor (VWF), under blood flow stimulation is unclear. Objective: We aimed to investigate whether endothelial Rictor is involved in maintaining vascular endothelial integrity and the potential role of Rictor in atheroprone blood flow-mediated endothelial injury. Methods and results: Immunofluorescence staining showed that endothelial Rictor was successfully knocked out in a mouse model. Scanning electron microscopy (EM) detection revealed disruption of the endothelial monolayer in the thoracic aorta of Rictor-deficient mice. Furthermore, scanning electron microscopy and transmission electron microscopy showed that Rictor deletion disrupted endothelial integrity and expanded cell junctions in the left common carotid artery region. In vitro, low shear stress disrupted actin filament polarity and the promoted the translocation of vascular endothelial-cadherin, the key component of adherens junctions (AJs) in human umbilical vein endothelial cells. After Rictor downregulation by small interfering RNA, the translocation of vascular endothelial-cadherin and stress fibers increased. Rictor knockdown inhibited low shear stress-induced von Willebrand factor upregulation, and downregulation of vascular endothelial-cadherin decreased low shear stress-induced von Willebrand factor expression. These results suggest that vascular endothelial-cadherin/von Willebrand factor is a possible mechanism mediated by Rictor in the pathological process of low shear stress-induced endothelial injury. Conclusion: Rictor is a key protein that regulates endothelial integrity under vascular physiological homeostasis, and Rictor mediates low shear stress-induced endothelial injury by regulating adherens junctions and von Willebrand factor.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Xian Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Lei Xia
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Dao-Rong Pan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Shi
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jun-Xia Zhang, ; Shao-Liang Chen,
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jun-Xia Zhang, ; Shao-Liang Chen,
| |
Collapse
|
22
|
Liu P, Chang K, Requejo G, Bai H. mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila. Front Cell Dev Biol 2022; 10:866210. [PMID: 35912118 PMCID: PMC9334792 DOI: 10.3389/fcell.2022.866210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
High-fat diet (HFD)-induced obesity has become the major risk factor for the development of cardiovascular diseases, but the underlying mechanisms remain poorly understood. Here, we use Drosophila as a model to study the role of mTORC2 in HFD-induced mitochondrial fission and cardiac dysfunction. We find that knockdown of mTORC2 subunit rictor blocks HFD-induced mitochondrial fragmentation and Drp1 recruitment. Knockdown of rictor further impairs cardiac contractile function under HFD treatment. Surprisingly, knockdown of Akt, the major effector of mTORC2, did not affect HFD-induced mitochondrial fission. Similar to mTORC2 inhibition, knockdown of Drp1 blocks HFD-induced mitochondrial fragmentation and induces contractile defects. Furthermore, overexpression of Drp1 restored HFD-induced mitochondrial fragmentation in rictor knockdown flies. Thus, we uncover a novel function of mTORC2 in protecting the heart from HFD treatment through Drp1-dependent mitochondrial fission.
Collapse
Affiliation(s)
- Peiduo Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kai Chang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Guillermo Requejo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Shang H, VanDusseldorp TA, Ma R, Zhao Y, Cholewa J, Zanchi NE, Xia Z. Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J Physiol Biochem 2022; 78:709-719. [PMID: 35727484 DOI: 10.1007/s13105-022-00904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
As a key mechanism to maintain cellular homeostasis under stress conditions, autophagy/mitophagy is related to the occurrence of metabolic disorders, neurodegenerative diseases, cancer, and other aging-related diseases, but the relevant signal pathways regulating autophagy have not been clarified. Mammalian sterile 20-like kinase 1 (MST1) is a central regulatory protein of many metabolic pathways involved in the pathophysiological processes of aging and aging-related diseases and has become a critical integrator affecting autophagic signaling. Recent studies show that MST1 not only suppresses autophagy through directly phosphorylating Beclin-1 and/or inhibiting the protein expression of silent information regulator 1 (SIRT1) in the cytoplasm, but also inhibits BCL2/adenovirus E1B protein-interacting protein 3 (BNIP3)-, FUN14 domain containing 1 (FUNDC1)-, and Parkin (Parkinson protein 2)-mediated mitophagy by interacting with factors such as Ras association domain family 1A (RASSF1A). Indeed, a common pharmacological strategy for anti-aging is to induce autophagy/mitophagy through MST1 inhibition. This article reviews the role and mechanism of MST1 in regulating autophagy during aging, to provide evidence for the development of drugs targeting MST1.
Collapse
Affiliation(s)
- Huayu Shang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Ranggui Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China
| | - Jason Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), Sao Luis, MA, Brazil
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Sao Luis, MA, Brazil
| | - Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education and Health, Wenzhou University, Wenzhou, China.
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an, China.
| |
Collapse
|
24
|
mTOR substrate phosphorylation in growth control. Cell 2022; 185:1814-1836. [PMID: 35580586 DOI: 10.1016/j.cell.2022.04.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
The target of rapamycin (TOR), discovered 30 years ago, is a highly conserved serine/threonine protein kinase that plays a central role in regulating cell growth and metabolism. It is activated by nutrients, growth factors, and cellular energy. TOR forms two structurally and functionally distinct complexes, TORC1 and TORC2. TOR signaling activates cell growth, defined as an increase in biomass, by stimulating anabolic metabolism while inhibiting catabolic processes. With emphasis on mammalian TOR (mTOR), we comprehensively reviewed the literature and identified all reported direct substrates. In the context of recent structural information, we discuss how mTORC1 and mTORC2, despite having a common catalytic subunit, phosphorylate distinct substrates. We conclude that the two complexes recruit different substrates to phosphorylate a common, minimal motif.
Collapse
|
25
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
26
|
Caturano A, Vetrano E, Galiero R, Salvatore T, Docimo G, Epifani R, Alfano M, Sardu C, Marfella R, Rinaldi L, Sasso FC. Cardiac Hypertrophy: From Pathophysiological Mechanisms to Heart Failure Development. Rev Cardiovasc Med 2022; 23:165. [PMID: 39077592 PMCID: PMC11273913 DOI: 10.31083/j.rcm2305165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca 2 + -handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| |
Collapse
|
27
|
Lambert N, Moïse M, Nguyen L. E3 Ubiquitin ligases and cerebral cortex development in health and disease. Dev Neurobiol 2022; 82:392-407. [PMID: 35476229 DOI: 10.1002/dneu.22877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a post-translational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by ubiquitin ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 ubiquitin ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising targeted treatment strategies for these diseases based on recent advances in the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas Lambert
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Martin Moïse
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium
| |
Collapse
|
28
|
Lee U, Cho EY, Jho EH. Regulation of Hippo signaling by metabolic pathways in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119201. [PMID: 35026349 DOI: 10.1016/j.bbamcr.2021.119201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Hippo signaling is known to maintain balance between cell proliferation and apoptosis via tight regulation of factors, such as metabolic cues, cell-cell contact, and mechanical cues. Cells directly recognize glucose, lipids, and other metabolic cues and integrate multiple signaling pathways, including Hippo signaling, to adjust their proliferation and apoptosis depending on nutrient conditions. Therefore, the dysregulation of the Hippo signaling pathway can promote tumor initiation and progression. Alteration in metabolic cues is considered a major factor affecting the risk of cancer formation and progression. It has recently been shown that the dysregulation of the Hippo signaling pathway, through diverse routes activated by metabolic cues, can lead to cancer with a poor prognosis. In addition, unique crosstalk between metabolic pathways and Hippo signaling pathways can inhibit the effect of anticancer drugs and promote drug resistance. In this review, we describe an integrated perspective of the relationship between the Hippo signaling pathway and metabolic signals in the context of cancer. We also characterize the mechanisms involved in changes in metabolism that are linked to the Hippo signaling pathway in the cancer microenvironment and propose several novel targets for anticancer drug treatment.
Collapse
Affiliation(s)
- Ukjin Lee
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea
| | - Eun-Young Cho
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea.
| |
Collapse
|
29
|
Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proc Natl Acad Sci U S A 2022; 119:e2107357119. [PMID: 35238644 PMCID: PMC8917383 DOI: 10.1073/pnas.2107357119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance The mechanistic target of rapamycin (mTOR) plays a central role in growth, metabolism, and aging. It is assembled into two multiprotein complexes, namely, mTORC1 and mTORC2. We previously demonstrated the efficacy of sirolimus in ARHL in mice by decreasing mTORC1. However, the aspect of mTORC2 regulation in the cochlea is poorly characterized. Herein, based on pharmacological and genetic interventions, we found that a high dose of sirolimus resulted in severe hearing loss by reducing the mTORC2/AKT signaling pathway in the cochlea. Furthermore, selective activation of mTORC2 could protect against hearing loss induced by acoustic trauma and cisplatin-induced ototoxicity. Hence, the therapeutic activation of mTORC2 in conjunction with decreasing mTORC1 might represent a promising and effective strategy in preventing hearing loss.
Collapse
|
30
|
Morroni J, Schirone L, Valenti V, Zwergel C, Riera CS, Valente S, Vecchio D, Schiavon S, Ragno R, Mai A, Sciarretta S, Lozanoska-Ochser B, Bouchè M. Inhibition of PKCθ Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23042256. [PMID: 35216371 PMCID: PMC8880527 DOI: 10.3390/ijms23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100 Latina, Italy;
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Daniele Vecchio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Sonia Schiavon
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Rino Ragno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Marina Bouchè
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
- Correspondence:
| |
Collapse
|
31
|
Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2021; 118:2402-2414. [PMID: 34528077 DOI: 10.1093/cvr/cvab291] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo pathway is an evolutionarily and functionally conserved signaling pathway that controls organ size by regulating cell proliferation, apoptosis, and differentiation. Emerging evidence has shown that the Hippo pathway plays critical roles in cardiac development, homeostasis, disease, and regeneration. Targeting the Hippo pathway has tremendous potential as a therapeutic strategy for treating intractable cardiovascular diseases such as heart failure. In this review, we summarize the function of the Hippo pathway in the heart. Particularly, we highlight the posttranslational modification of Hippo pathway components, including the core kinases LATS1/2 and their downstream effectors YAP/TAZ, in different contexts, which has provided new insights and avenues in cardiac research.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Bing Xie
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Texas Heart Institute, Houston, Texas, 77030
| |
Collapse
|
32
|
Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L, Yi D. MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell 2021; 34:1388-1397. [PMID: 34138410 DOI: 10.1007/s13577-021-00566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023]
Abstract
Autophagy has been proved to play a vital role in cardiac hypertrophy. The present study was designed to investigate the relationship between miR-100-5p and autophagy in the development of cardiac hypertrophy. Here, miR-100-5p expression was detected in abdominal aortic coarctation (AAC)-induced cardiac hypertrophy rats and Angiotensin II (Ang II)-stimulated cardiomyocytes. In vitro and in vivo experiments were performed to explore the function of miR-100-5p on autophagy and cardiac hypertrophy. We also investigated the mechanism of miR-100-5p on autophagy with dual-luciferase reporter assays, RNA immunoprecipitation (RIP), quantitative real-time PCR (qRT-PCR), western blot, immunofluorescence, and transmission electron microscopy (TEM). The results showed that miR-100-5p was highly expressed in hypertrophic hearts and Ang II-induced cardiomyocytes. Overexpression of miR-100-5p promoted the expression of cardiac hypertrophy markers ANP, BNP and β-MHC and cell surface area, while those were suppressed by miR-100-5p inhibitor. Knockdown of miR-100-5p by antagomiR significantly improves cardiac function and attenuate cardiac hypertrophy in vivo. Mechanistic investigation has found that miR-100-5p promote autophagy by targeting mTOR. Inhibition of autophagy by 3-methyladenine (3-MA) or mTOR overexpression could reverse the function of miR-100-5p in cardiac hypertrophy. These results elucidate that miR-100-5p promoted the pathogenesis of cardiac hypertrophy through autophagy activation by targeting mTOR.
Collapse
Affiliation(s)
- Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianqing Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Wan Zhang
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jungang Nie
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Lu Ding
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
33
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
34
|
Nieto-Torres JL, Shanahan SL, Chassefeyre R, Chaiamarit T, Zaretski S, Landeras-Bueno S, Verhelle A, Encalada SE, Hansen M. LC3B phosphorylation regulates FYCO1 binding and directional transport of autophagosomes. Curr Biol 2021; 31:3440-3449.e7. [PMID: 34146484 PMCID: PMC8439105 DOI: 10.1016/j.cub.2021.05.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is a conserved process that promotes cellular homeostasis through the degradation of cytosolic components, also known as cargo. During autophagy, cargo is sequestered into double-membrane vesicles called autophagosomes, which are predominantly transported in the retrograde direction to the perinuclear region to fuse with lysosomes, thus ensuring cargo degradation.1 The mechanisms regulating directional autophagosomal transport remain unclear. The ATG8 family of proteins associates with autophagosome membranes2 and plays key roles in autophagy, including the movement of autophagosomes. This is achieved via the association of ATG8 with adaptor proteins like FYCO1, involved in the anterograde transport of autophagosomes toward the cell periphery.1,3-5 We previously reported that phosphorylation of LC3B/ATG8 on threonine 50 (LC3B-T50) by the Hippo kinase STK4/MST1 is required for autophagy through unknown mechanisms.6 Here, we show that STK4-mediated phosphorylation of LC3B-T50 reduces the binding of FYCO1 to LC3B. In turn, impairment of LC3B-T50 phosphorylation decreases starvation-induced perinuclear positioning of autophagosomes as well as their colocalization with lysosomes. Moreover, a significantly higher number of LC3B-T50A-positive autophagosomes undergo aberrant anterograde movement to axonal tips in mammalian neurons and toward the periphery of mammalian cells. Our data support a role of a nutrient-sensitive STK4-LC3B-FYCO1 axis in the regulation of the directional transport of autophagosomes, a key step of the autophagy process, via the post-translational modification of LC3B.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean-Luc Shanahan
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Romain Chassefeyre
- Department of Molecular Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tai Chaiamarit
- Department of Molecular Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sviatlana Zaretski
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriaan Verhelle
- Department of Molecular Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandra E Encalada
- Department of Molecular Medicine, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Malene Hansen
- Program of Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
An P, Xu W, Luo J, Luo Y. Expanding TOR Complex 2 Signaling: Emerging Regulators and New Connections. Front Cell Dev Biol 2021; 9:713806. [PMID: 34395443 PMCID: PMC8363310 DOI: 10.3389/fcell.2021.713806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Almost three decades after its seminal discovery, our understanding of the remarkable TOR pathway continues to expand. As a TOR complex, TORC2 lies at the nexus of many signaling pathways and directs a diverse array of fundamental processes such as cell survival, proliferation, and metabolism by integrating environmental and intracellular cues. The dysregulation of TORC2 activity disrupts cellular homeostasis and leads to many pathophysiological conditions. With continued efforts at mapping the signaling landscape, the pace of discovery in TORC2 regulation has been accelerated in recent years. Consequently, emerging evidence has expanded the repertoire of upstream regulators and has revealed unexpected diversity in the modes of TORC2 regulation. Multiple environmental cues and plasma membrane proteins that fine-tune TORC2 activity are unfolding. Furthermore, TORC2 signaling is intricately intertwined with other major signaling pathways. Therefore, feedback and crosstalk regulation also extensively modulate TORC2. In this context, we provide a comprehensive overview of revolutionary concepts regarding emerging regulators of TORC2 and discuss evidence of feedback and crosstalk regulation that shed new light on TORC2 biology.
Collapse
Affiliation(s)
| | | | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
37
|
Accelerating the Mdx Heart Histo-Pathology through Physical Exercise. Life (Basel) 2021; 11:life11070706. [PMID: 34357078 PMCID: PMC8306456 DOI: 10.3390/life11070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic cardiac muscle inflammation and fibrosis are key features of Duchenne Muscular Dystrophy (DMD). Around 90% of 18-year-old patients already show signs of DMD-related cardiomyopathy, and cardiac failure is rising as the main cause of death among DMD patients. The evaluation of novel therapies for the treatment of dystrophic heart problems depends on the availability of animal models that closely mirror the human pathology. The widely used DMD animal model, the mdx mouse, presents a milder cardiac pathology compared to humans, with a late onset, which precludes large-scale and reliable studies. In this study, we used an exercise protocol to accelerate and worsen the cardiac pathology in mdx mice. The mice were subjected to a 1 h-long running session on a treadmill, at moderate speed, twice a week for 8 weeks. We demonstrate that subjecting young mdx mice (4-week-old) to "endurance" exercise accelerates heart pathology progression, as shown by early fibrosis deposition, increases necrosis and inflammation, and reduces heart function compared to controls. We believe that our exercised mdx model represents an easily reproducible and useful tool to study the molecular and cellular networks involved in dystrophic heart alterations, as well as to evaluate novel therapeutic strategies aimed at ameliorating dystrophic heart pathology.
Collapse
|
38
|
Xie J, Wang Y, Ai D, Yao L, Jiang H. The role of the Hippo pathway in heart disease. FEBS J 2021; 289:5819-5833. [PMID: 34174031 DOI: 10.1111/febs.16092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Heart disease, including coronary artery disease, myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathies, is the leading causes of death worldwide. The Hippo pathway is a central controller for organ size and tissue growth, which plays a pivotal role in determining cardiomyocytes and nonmyocytes proliferation, regeneration, differentiation, and apoptosis. In this review, we summarize the effects of the Hippo pathway on heart disease and propose potential intervention targets. Especially, we discuss the molecular mechanisms of the Hippo pathway involved in maintaining cardiac homeostasis by regulating cardiomyocytes and nonmyocytes function in the heart. Based on this, we conclude that the Hippo pathway is a promising therapeutic target for cardiovascular therapy, which will bring new perspectives for their treatments.
Collapse
Affiliation(s)
- Jiahong Xie
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, China
| | - Liu Yao
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Chen G, Phan V, Luo X, Cao DJ. The mechanistic target of rapamycin complex 1 critically regulates the function of mononuclear phagocytes and promotes cardiac remodeling in acute ischemia. J Mol Cell Cardiol 2021; 159:62-79. [PMID: 34139235 DOI: 10.1016/j.yjmcc.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Monocytes and macrophages are cellular forces that drive and resolve inflammation triggered by acute myocardial ischemia. One of the most important but least understood regulatory mechanisms is how these cells sense cues from the micro-milieu and integrate environmental signals with their response that eventually determines the outcome of myocardial repair. In the current study, we investigated if the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) plays this role. We present evidence that support a robustly activated mTORC1 pathway in monocytes and macrophages in the infarcting myocardium.. Specific mTORC1 inhibition transformed the landscape of cardiac monocytes and macrophages into reparative cells that promoted myocardial healing. As the result, mTORC1 inhibition diminished remodeling and reduced mortality from acute ischemia by 80%. In conclusion, our data suggest a critical role of mTORC1 in regulating the functions of cardiac monocytes and macrophages, and specific mTORC1 inhibition protects the heart from inflammatory injury in acute ischemia. As mTOR/mTORC1 is a master regulator that integrates external signals with cellular responses, the study sheds light on how the cardiac monocytes and macrophages sense and respond to the ischemic environment..
Collapse
Affiliation(s)
- GuiHao Chen
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing 100037, China
| | - Vincent Phan
- Departments of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiang Luo
- Departments of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Departments of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Lemay SE, Awada C, Shimauchi T, Wu WH, Bonnet S, Provencher S, Boucherat O. Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH? Cells 2021; 10:1473. [PMID: 34208388 PMCID: PMC8231250 DOI: 10.3390/cells10061473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a debilitating chronic disorder marked by the progressive obliteration of the pre-capillary arterioles. This imposes a pressure overload on the right ventricle (RV) pushing the latter to undergo structural and mechanical adaptations that inexorably culminate in RV failure and death. Thanks to the advances in molecular biology, it has been proposed that some aspects of the RV and pulmonary vascular remodeling processes are orchestrated by a subversion of developmental regulatory mechanisms with an upregulation of a suite of genes responsible for the embryo's early growth and normally repressed in adults. In this review, we present relevant background regarding the close relationship between overactivation of fetal genes and cardiopulmonary remodeling, exploring whether the reawakening of developmental factors plays a causative role or constitutes a protective mechanism in the setting of PAH.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| |
Collapse
|
41
|
Nie X, Ricupero CL, Jiao K, Yang P, Mao JJ. mTOR deletion in neural crest cells disrupts cardiac outflow tract remodeling and causes a spectrum of cardiac defects through the mTORC1 pathway. Dev Biol 2021; 477:241-250. [PMID: 34052210 DOI: 10.1016/j.ydbio.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/17/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
A critical cell type participating in cardiac outflow tract development is a subpopulation of the neural crest cells, the cardiac neural crest cells (NCCs), whose defect causes a spectrum of cardiovascular abnormalities. Accumulating evidence indicates that mTOR, which belongs to the PI3K-related kinase family and impacts multiple signaling pathways in a variety of contexts, plays a pivotal role for NCC development. Here, we investigated functional roles of mTOR for cardiac neural crest development using several lines of mouse genetic models. We found that disruption of mTOR caused NCC defects and failure of cardiac outflow tract separation, which resulted in a spectrum of cardiac defects including persistent truncus arteriosus, ventricular septal defect and ventricular wall defect. Specifically, mutant neural crest cells showed reduced migration into the cardiac OFT and prematurely exited the cell cycle. A number of critical factors and fundamental signaling pathways, which are important for neural crest and cardiomyocyte development, were impaired. Moreover, actin dynamics was disrupted by mTOR deletion. Finally, by phenotyping the neural crest Rptor and Rictor knockout mice respectively, we demonstrate that mTOR acts principally through the mTORC1 pathway for cardiac neural crest cells. Altogether, these data established essential roles of mTOR for cardiac NCC development and imply that dysregulation of mTOR in NCCs may underline a spectrum of cardiac defects.
Collapse
Affiliation(s)
- Xuguang Nie
- Center for Birth Defects Research,Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA.
| | - Christopher L Ricupero
- College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA
| | - Kai Jiao
- University of Alabama at Birmingham, Department of Genetics and Genomic Sciences, Birmingham, AL, USA
| | - Peixin Yang
- Center for Birth Defects Research,Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy J Mao
- College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA.
| |
Collapse
|
42
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
43
|
Regulation of MST complexes and activity via SARAH domain modifications. Biochem Soc Trans 2021; 49:675-683. [PMID: 33860801 DOI: 10.1042/bst20200559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Three elements of the Hippo tumor suppressor pathway - MST1/2, SAV1, and RASSF1-6 - share in common a C-terminal interaction motif termed the SARAH domain. Proteins containing this domain are capable of self-association as homodimers and also of trans-association with other SARAH domain containing proteins as well as selected additional proteins that lack this domain. Recently, the association of MST1/2 with itself or with other proteins has been shown to be regulated by phosphorylation at sites near or within the SARAH domain. In this review, we focus on recent findings regarding the regulation of such MST1/2 interactions, with an emphasis on the effects of these events on Hippo pathway activity.
Collapse
|
44
|
Pronobis MI, Zheng S, Singh SP, Goldman JA, Poss KD. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration. eLife 2021; 10:e66079. [PMID: 33764296 PMCID: PMC8034980 DOI: 10.7554/elife.66079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Strategies have not been available until recently to uncover interacting protein networks specific to key cell types, their subcellular compartments, and their major regulators during complex in vivo events. Here, we apply BioID2 proximity labeling to capture protein networks acting within cardiomyocytes during a key model of innate heart regeneration in zebrafish. Transgenic zebrafish expressing a promiscuous BirA2 localized to the entire myocardial cell or membrane compartment were generated, each identifying distinct proteomes in adult cardiomyocytes that became altered during regeneration. BioID2 profiling for interactors with ErbB2, a co-receptor for the cardiomyocyte mitogen Nrg1, implicated Rho A as a target of ErbB2 signaling in cardiomyocytes. Blockade of Rho A during heart regeneration, or during cardiogenic stimulation by the mitogenic influences Nrg1, Vegfaa, or vitamin D, disrupted muscle creation. Our findings reveal proximity labeling as a useful resource to interrogate cell proteomes and signaling networks during tissue regeneration in zebrafish.
Collapse
Affiliation(s)
- Mira I Pronobis
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| | - Susan Zheng
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
| | | | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical CenterColumbusUnited States
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Regeneration Next, Duke UniversityDurhamUnited States
| |
Collapse
|
45
|
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming. Metabolites 2021; 11:metabo11030154. [PMID: 33800464 PMCID: PMC7999074 DOI: 10.3390/metabo11030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cell reprogramming can either refer to a direct conversion of a specialized cell into another or to a reversal of a somatic cell into an induced pluripotent stem cell (iPSC). It implies a peculiar modification of the epigenetic asset and gene regulatory networks needed for a new cell, to better fit the new phenotype of the incoming cell type. Cellular reprogramming also implies a metabolic rearrangement, similar to that observed upon tumorigenesis, with a transition from oxidative phosphorylation to aerobic glycolysis. The induction of a reprogramming process requires a nexus of signaling pathways, mixing a range of local and systemic information, and accumulating evidence points to the crucial role exerted by the Hippo pathway components Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ). In this review, we will first provide a synopsis of the Hippo pathway and its function during reprogramming and tissue regeneration, then we introduce the latest knowledge on the interplay between YAP/TAZ and metabolism and, finally, we discuss the possible role of YAP/TAZ in the orchestration of the metabolic switch upon cellular reprogramming.
Collapse
|
46
|
Sciarretta S, Forte M, Frati G, Sadoshima J. The complex network of mTOR signaling in the heart. Cardiovasc Res 2021; 118:424-439. [PMID: 33512477 DOI: 10.1093/cvr/cvab033] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) integrates several intracellular and extracellular signals involved in the regulation of anabolic and catabolic processes. mTOR assembles into two macromolecular complexes, named mTORC1 and mTORC2, which have different regulators, substrates and functions. Studies of gain- and loss-of-function animal models of mTOR signaling revealed that mTORC1/2 elicit both adaptive and maladaptive functions in the cardiovascular system. Both mTORC1 and mTORC2 are indispensable for driving cardiac development and cardiac adaption to stress, such as pressure overload. However, persistent and deregulated mTORC1 activation in the heart is detrimental during stress and contributes to the development and progression of cardiac remodeling and genetic and metabolic cardiomyopathies. In this review, we discuss the latest findings regarding the role of mTOR in the cardiovascular system, both under basal conditions and during stress, such as pressure overload, ischemia and metabolic stress. Current data suggest that mTOR modulation may represent a potential therapeutic strategy for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
47
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Chen X, Jiang X, Cheng C, Chen J, Huang S, Xu M, Liu S. Berberine Attenuates Cardiac Hypertrophy Through Inhibition of mTOR Signaling Pathway. Cardiovasc Drugs Ther 2020; 34:463-473. [PMID: 32394178 DOI: 10.1007/s10557-020-06977-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Berberine was reported to exert beneficial effects on cardiac hypertrophy. However, its cellular and molecular mechanisms still remained unclear. METHODS Cardiac hypertrophy was induced in male Sprague-Dawley (SD) rats by transverse aorta constriction (TAC), with or without 6-week treatment of berberine. Echocardiography was performed to evaluate cardiac function. Rats were then sacrificed for histological assay, with detection for proteins and mRNA. H9c2 cells were pretreated with berberine of different concentrations (0, 1 μM, and 10 μM), followed by treatment with 2 μM norepinephrine (NE). Cells of different groups were measured for cell surface area, with mRNA detected by qRT-PCR and proteins by western blot. RESULTS Compared with the sham group, rats of the TAC group showed significantly increased cardiac hypertrophy and fibrosis, which could be ameliorated by treatment with berberine. Western blot showed that mammalian target of rapamycin (mTOR) signaling-related protein expressions, including phospho-mTOR, phospho-4EBP1, and phospho-p70 S6K (Thr389), but not phospho-p70 S6K (Ser371), were significantly increased in the TAC group, which were inhibited by berberine treatment. H9c2 cells were treated with NE to induce hypertrophy with increased cell surface area and mRNA expressions of anp and bnp. Berberine of 10 μM, but not 1 μM, significantly ameliorated NE-induced hypertrophy and inhibited protein expressions of mTOR signaling pathway similar to those in the rat model. CONCLUSIONS Berberine can exert cardioprotective effects on both pressure-overloaded cardiac hypertrophy and failure in vivo and NE-induced hypertrophy in vitro. Our results suggest berberine could be a potential treatment for patients with cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Xing Chen
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xingzuan Jiang
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chuanfang Cheng
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuyan Huang
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Miqing Xu
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
49
|
Herrera JJ, Louzon S, Pifer K, Leander D, Merrihew GE, Park JH, Szczesniak K, Whitson J, Wilkinson JE, Fiehn O, MacCoss MJ, Day SM, Miller RA, Garratt M. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight 2020; 5:137474. [PMID: 32990683 PMCID: PMC7710286 DOI: 10.1172/jci.insight.137474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat type 2 diabetes mellitus (T2DM), can extend mouse life span with greater effect in males than in females. Using a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological, and biochemical changes that occur during aging, and we determined which of the effects of age and drug were sex dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength test. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth-promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids - changes that have previously been associated with aging, cardiac dysfunction, and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging antiaging effects in multiple tissues, and it may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA
| | | | | | - Kate Szczesniak
- Department of Molecular & Integrative Physiology, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Jeremy Whitson
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - John E Wilkinson
- Unit for Laboratory Animal Medicine and Department of Pathology, UM, Ann Arbor, Michigan, USA
| | | | | | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,UM Geriatrics Center, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Pathology, UM Medical School, Ann Arbor, Michigan, USA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Together we stand, apart we fall: how cell-to-cell contact/interplay provides resistance to ferroptosis. Cell Death Dis 2020; 11:789. [PMID: 32968052 PMCID: PMC7511929 DOI: 10.1038/s41419-020-02994-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Contextualisation of the new type of cell death called “ferroptosis” opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which “ferroptosis inducers” can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.
Collapse
|