1
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Petri N, Vetrova A, Tsikolia N, Kremnyov S. Molecular anatomy of emerging Xenopus left-right organizer at successive developmental stages. Dev Dyn 2024. [PMID: 38934270 DOI: 10.1002/dvdy.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Vertebrate left-right symmetry breaking is preceded by formation of left-right organizer. In Amphibian, this structure is formed by gastrocoel roof plate, which emerges from superficial suprablastoporal cells. GRP is subdivided into medial area, which generates leftward flow by rotating monocilia and lateral Nodal1 expressing areas, which are involved in sensing of the flow. After successful symmetry breaking, medial cells are incorporated into a deep layer where they contribute to the axial mesoderm, while lateral domains join somitic mesoderm. RESULTS Here, we performed detailed analysis of spatial and temporal gene expression of important markers and the corresponding morphology of emerging GRP. Endodermal marker Sox17 and markers of superficial mesoderm display complementary patterns at all studied stages. At early stages, GRP forms Tekt2 positive epithelial domain clearly separated from underlying deep layers, while at later stages, this separation disappears. Marker of early somitic mesoderm MyoD1 was absent in emerging GRP and was induced together with Nodal1 during early neurulation. Decreasing morphological separation is accompanied by lateral to medial covering of GRP by endoderm. CONCLUSION Our data supports continuous link between superficial mesoderm at the start of gastrulation and mature GRP and suggests late induction of somitic fate in lateral GRP.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Alexandra Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Nikoloz Tsikolia
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Gottingen, Germany
| | - Stanislav Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
3
|
Zhang X, Yao S, Zhang L, Yang L, Yang M, Guo Q, Li Y, Wang Z, Lei B, Jin X. Mechanisms underlying morphological and functional changes of cilia in fibroblasts derived from patients bearing ARL3 T31A and ARL3 T31A/C118F mutations. FASEB J 2024; 38:e23519. [PMID: 38457249 DOI: 10.1096/fj.202301906r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
ARL3 is essential for cilia development, and mutations in ARL3 are closely associated with ciliopathies. In a previous study, we observed distinct phenotypes of retinal dystrophy in patients with heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, indicating that different mutation types may exert diverse effects on their functions. Here, we generated transformed immortal fibroblast cells from patients carrying heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, and systematically evaluated their cilia morphology and function, which were further validated in ARPE-19 cells. Results showed that both ARL3T31A and ARL3T31A/C118F mutations led to a decrease in cilium formation. The ARL3T31A/C118F mutations caused significantly elongated cilia and impaired retrograde transport, whereas the ARL3T31A mutation did not induce significant changes in fibroblasts. RNA-sequencing results indicated that compared to ARL3T31A , ARL3T31A/C118F fibroblasts exhibited a higher enrichment of biological processes related to neuron projection development, tissue morphogenesis, and extracellular matrix (ECM) organization, with noticeable alterations in pathways such as ECM-receptor interaction, focal adhesion, and TGF-β signaling. Similar changes were observed in the proteomic results in ARPE-19 cells. Core regulated genes including IQUB, UNC13D, RAB3IP, and GRIP1 were specifically downregulated in the ARL3T31A/C118F group, and expressions of IQUB, NPM2, and SLC38A4 were further validated. Additionally, IQUB showed a rescuing effect on the overlong cilia observed in ARL3T31A/C118F fibroblasts. Our results not only enhance our understanding of ARL3-related diseases but also provide new insights into the analysis of heterozygous and compound heterozygous mutations in genetics.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Shun Yao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lujia Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yan Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongfeng Wang
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
5
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Wang S, Wang X, Pan C, Liu Y, Lei M, Guo X, Chen Q, Yang X, Ouyang C, Ren Z. Functions of actin-binding proteins in cilia structure remodeling and signaling. Biol Cell 2023; 115:e202300026. [PMID: 37478133 DOI: 10.1111/boc.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Cilia are microtubule-based organelles found on the surfaces of many types of cells, including cardiac fibroblasts, vascular endothelial cells, human retinal pigmented epithelial-1 (RPE-1) cells, and alveolar epithelial cells. These organelles can be classified as immotile cilia, referred to as primary cilia in mammalian cells, and motile cilia. Primary cilia are cellular sensors that detect extracellular signals; this is a critical function associated with ciliopathies, which are characterized by the typical clinical features of developmental disorders. Cilia are extensively studied organelles of the microtubule cytoskeleton. However, the ciliary actin cytoskeleton has rarely been studied. Clear evidence has shown that highly regulated actin cytoskeleton dynamics contribute to normal ciliary function. Actin-binding proteins (ABPs) play vital roles in filamentous actin (F-actin) morphology. Here, we discuss recent progress in understanding the roles of ABPs in ciliary structural remodeling and further downstream ciliary signaling with a focus on the molecular mechanisms underlying actin cytoskeleton-related ciliopathies.
Collapse
Affiliation(s)
- Siqi Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| | - Congbin Pan
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ying Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Shandong Normal University, Jinan, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
7
|
Hirao T, Kim BG, Habuchi H, Kawaguchi K, Nakahari T, Marunaka Y, Asano S. Transforming Growth Factor-β1 and Bone Morphogenetic Protein-2 Inhibit Differentiation into Mature Ependymal Multiciliated Cells. Biol Pharm Bull 2023; 46:111-122. [PMID: 36351637 DOI: 10.1248/bpb.b22-00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ependymal cilia play pivotal roles in cerebrospinal fluid flow. In the primary culture system, undifferentiated glial cells differentiate well into ependymal multiciliated cells (MCCs) in the absence of fetal bovine serum (FBS). However, the substances included in FBS which inhibit this differentiation process have not been clarified yet. Here, we constructed the polarized primary culture system of ependymal cells using a permeable filter in which they retained ciliary movement. We found that transforming growth factor-β1 (TGF-β1) as well as Bone morphogenetic protein (BMP)-2 inhibited the differentiation with ciliary movement. The inhibition on the differentiation by FBS was recovered by the TGF-β1 and BMP-2 inhibitors in combination.
Collapse
Affiliation(s)
- Takuya Hirao
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Beak Gyu Kim
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Hinako Habuchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Takashi Nakahari
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University.,Medical Research Institute, Kyoto Industrial Health Association
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
8
|
Yang W, Chen L, Guo J, Shi F, Yang Q, Xie L, Lu D, Li Y, Luo J, Wang L, Qiu L, Chen T, Li Y, Zhang R, Chen L, Xu W, Liu H. Multiomics Analysis of a DNAH5-Mutated PCD Organoid Model Revealed the Key Role of the TGF-β/BMP and Notch Pathways in Epithelial Differentiation and the Immune Response in DNAH5-Mutated Patients. Cells 2022; 11:cells11244013. [PMID: 36552777 PMCID: PMC9776854 DOI: 10.3390/cells11244013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with the DNAH5 mutation. The motile cilia in the organoid were observed and could be stably maintained for an extended time. We further found abnormal ciliary function and a decreased immune response caused by the DNAH5 mutation through single-cell RNA sequencing (scRNA-Seq) and proteomic analyses. Additionally, the directed induction of the ciliated cells, regulated by TGF-β/BMP and the Notch pathway, also increased the expression of inflammatory cytokines. Taken together, these results demonstrated that the combination of multiomics analysis and organoid modelling could reveal the close connection between the immune response and the DNAH5 gene.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lina Chen
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Juncen Guo
- Department of Obstetrics/Gynaecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynaecologic, and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Fang Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Qingxin Yang
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Danli Lu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yingna Li
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jiaxin Luo
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Li Wang
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Li Qiu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Ting Chen
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yan Li
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Rui Zhang
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lu Chen
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wenming Xu
- Department of Obstetrics/Gynaecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynaecologic, and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (W.X.); (H.L.)
| | - Hanmin Liu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (W.X.); (H.L.)
| |
Collapse
|
9
|
Abnormal ciliogenesis in decidual stromal cellsin recurrent miscarriage. J Reprod Immunol 2022; 150:103486. [DOI: 10.1016/j.jri.2022.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/29/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
|
10
|
Wang B, Wu J, Huang Q, Yuan X, Yang Y, Jiang W, Wen Y, Tang L, Sun H. Comprehensive Analysis of Differentially Expressed lncRNA, circRNA and mRNA and Their ceRNA Networks in Mice With Severe Acute Pancreatitis. Front Genet 2021; 12:625846. [PMID: 33584827 PMCID: PMC7876390 DOI: 10.3389/fgene.2021.625846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an acute digestive system disease with high morbidity mortality and hospitalization rate worldwide, due to various causes and unknown pathogenesis. In recent years, a large number of studies have confirmed that non-coding RNAs (ncRNAs) play an important role in many cellular processes and disease occurrence. However, the underlying mechanisms based on the function of ncRNAs, including long noncoding RNA (lncRNA) and circular RNA (circRNA), in SAP remain unclear. In this study, we performed high-throughput sequencing on the pancreatic tissues of three normal mice and three SAP mice for the first time to describe and analyze the expression profiles of ncRNAs, including lncRNA and circRNA. Our results identified that 49 lncRNAs, 56 circRNAs and 1,194 mRNAs were differentially expressed in the SAP group, compared with the control group. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed lncRNAs and circRNAs, and found that the functions of the parental genes are enriched in the calcium-regulated signaling pathway, NF-κB signaling pathway, autophagy and protein digestion and absorption processes, which are closely related to the central events in pathogenesis of SAP. We also constructed lncRNA/circRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in SAP. We found that in the competitive endogenous RNA (ceRNA) networks, differentially expressed lncRNAs and circRNAs are mainly involved in the apoptosis pathway and calcium signal transduction pathway. In conclusion, we found that lncRNAs and circRNAs play an important role in the pathogenesis of SAP, which may provide new insights in further exploring the pathogenesis of SAP and seek new targets for SAP.
Collapse
Affiliation(s)
- Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jun Wu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Wen Jiang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
11
|
Barbry P, Cavard A, Chanson M, Jaffe AB, Plasschaert LW. Regeneration of airway epithelial cells to study rare cell states in cystic fibrosis. J Cyst Fibros 2020; 19 Suppl 1:S42-S46. [DOI: 10.1016/j.jcf.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
12
|
Itoh M, Dai H, Horike SI, Gonzalez J, Kitami Y, Meguro-Horike M, Kuki I, Shimakawa S, Yoshinaga H, Ota Y, Okazaki T, Maegaki Y, Nabatame S, Okazaki S, Kawawaki H, Ueno N, Goto YI, Kato Y. Biallelic KARS pathogenic variants cause an early-onset progressive leukodystrophy. Brain 2020; 142:560-573. [PMID: 30715177 DOI: 10.1093/brain/awz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
The leukodystrophies cause severe neurodevelopmental defects from birth and follow an incurable and progressive course that often leads to premature death. It has recently been reported that abnormalities in aminoacyl t-RNA synthetase (ARS) genes are linked to various unique leukodystrophies and leukoencephalopathies. Aminoacyl t-RNA synthetase proteins are fundamentally known as the first enzymes of translation, catalysing the conjugation of amino acids to cognate tRNAs for protein synthesis. It is known that certain aminoacyl t-RNA synthetase have multiple non-canonical roles in both transcription and translation, and their disruption results in varied and complicated phenotypes. We clinically and genetically studied seven patients (six male and one female; aged 2 to 12 years) from five unrelated families who all showed the same phenotypes of severe developmental delay or arrest (7/7), hypotonia (6/7), deafness (7/7) and inability to speak (6/7). The subjects further developed intractable epilepsy (7/7) and nystagmus (6/6) with increasing age. They demonstrated characteristic laboratory data, including increased lactate and/or pyruvate levels (7/7), and imaging findings (7/7), including calcification and abnormal signals in the white matter and pathological involvement (2/2) of the corticospinal tracts. Through whole-exome sequencing, we discovered genetic abnormalities in lysyl-tRNA synthetase (KARS). All patients harboured the variant [c.1786C>T, p.Leu596Phe] KARS isoform 1 ([c.1702C>T, p.Leu568Phe] of KARS isoform 2) either in the homozygous state or compound heterozygous state with the following KARS variants, [c.879+1G>A; c.1786C>T, p.Glu252_Glu293del; p.Leu596Phe] ([c.795+1G>A; c.1702C>T, p.Glu224_Glu255del; p.Leu568Phe]) and [c.650G>A; c.1786C>T, p.Gly217Asp; p.Leu596Phe] ([c.566G>A; c.1702C>T, p.Gly189Asp; p.Leu568Phe]). Moreover, similarly disrupted lysyl-tRNA synthetase (LysRS) proteins showed reduced enzymatic activities and abnormal CNSs in Xenopus embryos. Additionally, LysRS acts as a non-canonical inducer of the immune response and has transcriptional activity. We speculated that the complex functions of the abnormal LysRS proteins led to the severe phenotypes in our patients. These KARS pathological variants are novel, including the variant [c.1786C>T; p.Leu596Phe] (c.1702C>T; p.Leu568Phe) shared by all patients in the homozygous or compound-heterozygous state. This common position may play an important role in the development of severe progressive leukodystrophy. Further research is warranted to further elucidate this relationship and to investigate how specific mutated LysRS proteins function to understand the broad spectrum of KARS-related diseases.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hongmei Dai
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - John Gonzalez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yoshikazu Kitami
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Ichiro Kuki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | | | - Harumi Yoshinaga
- Department of Child Neurology, Okayama University, Okayama, Japan
| | - Yoko Ota
- Department of Pathology and Experimental Medicine, Okayama University, Okayama, Japan
| | - Tetsuya Okazaki
- Department of Child Neurology, University of Tottori, Yonago, Japan
| | | | - Shin Nabatame
- Department of Pediatrics, Osaka University, Osaka, Japan
| | - Shin Okazaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Hisashi Kawawaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Natural Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoichi Kato
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
13
|
Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ, Magnone V, Truchi M, Caballero I, Leroy S, Marquette CH, Marcet B, Barbry P, Zaragosi LE. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 2019; 146:dev.177428. [PMID: 31558434 PMCID: PMC6826037 DOI: 10.1242/dev.177428] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFβ pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.
Collapse
Affiliation(s)
| | - Marie Deprez
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Amélie Cavard
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Virginie Magnone
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | | - Sylvie Leroy
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France.,Université Côte d'Azur, CHU de Nice, Pulmonology Department, Nice 06000, France
| | | | - Brice Marcet
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis 06560, France
| | | |
Collapse
|
14
|
Park SA, Yoo H, Seol JH, Rhee K. HDAC3 and HDAC8 are required for cilia assembly and elongation. Biol Open 2019; 8:bio.043828. [PMID: 31362948 PMCID: PMC6737963 DOI: 10.1242/bio.043828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cilia are extended from mother centrioles in quiescent G0/G1 cells and retracted in dividing cells. Diverse post-translational modifications play roles in the assembly and disassembly of the cilium. Here, we examined class I histone deacetylases (HDACs) as positive regulators of cilia assembly in serum-deprived RPE1 and HK2 cells. We observed that the number of cells with cilia was significantly reduced in HDAC3- and HDAC8-depleted cells. The ciliary length also decreased in HDAC3- and HDAC8-depleted cells compared to that in control cells. A knockdown-rescue experiment showed that wild-type HDAC3 and HDAC8 rescued the cilia assembly and ciliary length in HDAC3- and HDAC8-depleted cells, respectively; however, deacetylase-dead HDAC3 and HDAC8 mutants did not. This suggests that deacetylase activity is critical for both HDAC3 and HDAC8 function in cilia assembly and ciliary length control. This is the first study to report that HDACs are required for the assembly and elongation of the primary cilia. Summary: We identified that HDAC3 and HDAC8 are required for the assembly and elongation of the primary cilia.
Collapse
Affiliation(s)
- Seon-Ah Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunjeong Yoo
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Hong Seol
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Chien YH, Srinivasan S, Keller R, Kintner C. Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer. Dev Cell 2018; 45:316-330.e4. [PMID: 29738711 DOI: 10.1016/j.devcel.2018.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/27/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
Abstract
The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shyam Srinivasan
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Kavil Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelia exist in the animal body since the onset of embryonic development; they generate tissue barriers and specify organs and glands. Through epithelial-mesenchymal transitions (EMTs), epithelia generate mesenchymal cells that form new tissues and promote healing or disease manifestation when epithelial homeostasis is challenged physiologically or pathologically. Transforming growth factor-βs (TGF-βs), activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs) have been implicated in the regulation of epithelial differentiation. These TGF-β family ligands are expressed and secreted at sites where the epithelium interacts with the mesenchyme and provide paracrine queues from the mesenchyme to the neighboring epithelium, helping the specification of differentiated epithelial cell types within an organ. TGF-β ligands signal via Smads and cooperating kinase pathways and control the expression or activities of key transcription factors that promote either epithelial differentiation or mesenchymal transitions. In this review, we discuss evidence that illustrates how TGF-β family ligands contribute to epithelial differentiation and induce mesenchymal transitions, by focusing on the embryonic ectoderm and tissues that form the external mammalian body lining.
Collapse
Affiliation(s)
- Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Mahsa Shahidi Dadras
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
17
|
Schweickert A, Ott T, Kurz S, Tingler M, Maerker M, Fuhl F, Blum M. Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us? J Cardiovasc Dev Dis 2017; 5:jcdd5010001. [PMID: 29367579 PMCID: PMC5872349 DOI: 10.3390/jcdd5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 11/16/2022] Open
Abstract
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.
Collapse
Affiliation(s)
- Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Tim Ott
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Sabrina Kurz
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Melanie Tingler
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Markus Maerker
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Franziska Fuhl
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
18
|
Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028167. [PMID: 27638178 DOI: 10.1101/cshperspect.a028167] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.
Collapse
Affiliation(s)
- Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Johanne B Mogensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
19
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
20
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|
21
|
Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y. La-related protein 6 controls ciliated cell differentiation. Cilia 2017; 6:4. [PMID: 28344782 PMCID: PMC5364628 DOI: 10.1186/s13630-017-0047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Background La-related protein 6 (LARP6) is an evolutionally conserved RNA-binding protein. Vertebrate LARP6 binds the 5′ stem-loop found in mRNAs encoding type I collagen to regulate their translation, but other target mRNAs and additional functions for LARP6 are unknown. The aim of this study was to elucidate an additional function of LARP6 and to evaluate the importance of its function during development. Methods To uncover the role of LARP6 in development, we utilized Morpholino Oligos to deplete LARP6 protein in Xenopus embryos. Then, embryonic phenotypes and ciliary structures of LAPR6 morphants were examined. To identify the molecular mechanism underlying ciliogenesis regulated by LARP6, we tested the expression level of cilia-related genes, which play important roles in ciliogenesis, by RT-PCR or whole mount in situ hybridization (WISH). Results We knocked down LARP6 in Xenopus embryos and found neural tube closure defects. LARP6 mutant, which compromises the collagen synthesis, could rescue these defects. Neural tube closure defects are coincident with lack of cilia, antenna-like cellular organelles with motility- or sensory-related functions, in the neural tube. The absence of cilia at the epidermis was also observed in LARP6 morphants, and this defect was due to the absence of basal bodies which are formed from centrioles and required for ciliary assembly. In the process of multi-ciliated cell (MCC) differentiation, mcidas, which activates the transcription of genes required for centriole formation during ciliogenesis, could partially restore MCCs in LARP6 morphants. In addition, LARP6 likely controls the expression of mcidas in a Notch-independent manner. Conclusions La-related protein 6 is involved in ciliated cell differentiation during development by controlling the expression of cilia-related genes including mcidas. This LARP6 function involves a mechanism that is distinct from its established role in binding to collagen mRNAs and regulating their translation. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0047-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA.,Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089-9601 USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Oscar A Cabrera
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| |
Collapse
|
22
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|