1
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2025; 62:6785-6810. [PMID: 39254911 PMCID: PMC12078384 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Weidling I, Preiss CN, Chancellor SE, Srivastava G, Gibilisco L, Lin G, Brennan MS, Lee J, Roth LM, Morozova O, Nam KN, Patel NR, Liu Q, Thomas JK, Reinhardt P, Wilkens R, Ehrnhoefer DE, Striebinger A, Barghorn S, Xanthopoulos C, Weil MT, Biesinger S, Cik M, Romanul N, Yanamandra K, Welker AM, Wu J, Gasparini L, Stöhr J, Langlois X, Manos JD. hiPSC-neurons recapitulate the subtype-specific cell intrinsic nature of susceptibility to neurodegenerative disease-relevant aggregation. Acta Neuropathol Commun 2025; 13:108. [PMID: 40390134 PMCID: PMC12087151 DOI: 10.1186/s40478-025-02000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/05/2025] [Indexed: 05/21/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation and spread of Tau intraneuronal inclusions throughout most of the telencephalon, leaving hindbrain regions like the cerebellum and spinal cord largely spared. These neuropathological observations, along with the identification of specific vulnerable sub-populations from AD brain-derived single nuclei transcriptomics, suggest that a subset of brain regions and neuronal subtypes possess a selective vulnerability to Tau pathology. Given the inability to culture neurons from patient brains, a disease-relevant in vitro model which recapitulates these features would serve as a critical tool to validate modulators of vulnerability and resilience. Using our recently established platform for inducing endogenous Tau aggregation in human induced pluripotent stem cell (hiPSC)-derived cortical excitatory neurons via application of AD brain-derived exogenous Tau aggregates, we explored whether Tau aggregates preferentially induce aggregation in specific neuronal subtypes. We compared Tau seeding in hiPSC-derived neuron subtypes representing regional identities across the forebrain, midbrain, and hindbrain. Higher susceptibility (i.e. more Tau aggregation) was consistently observed among cortical neuron subtypes, with CTIP2-positive, somatostatin (SST)-positive cortical inhibitory neurons showing the greatest aggregation levels across hiPSC lines from multiple donors. hiPSC-neurons also delineated between the disease-specific vulnerabilities of different protein aggregates, as α-synuclein preformed fibrils showed an increased propensity to induce aggregates in midbrain dopaminergic (mDA)-like neurons, mimicking Parkinson's disease (PD)-specific susceptibility. Aggregate uptake and degradation rates were insufficient to explain differential susceptibility. The absence of a consistent transcriptional response following aggregate seeding further indicated that intrinsic neuronal subtype-specific properties could drive susceptibility. The present data provides evidence that hiPSC-neurons exhibit features of selective neuronal vulnerability which manifest in a cell autonomous manner, suggesting that mining intrinsic (or basal) transcriptomic signatures of more vulnerable compared to more resilient hiPSC-neurons could uncover the molecular underpinnings of differential susceptibility to protein aggregation found in a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ian Weidling
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Christina N Preiss
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Sarah E Chancellor
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Gyan Srivastava
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Lauren Gibilisco
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Gen Lin
- AbbVie Pte Ltd, 9 North Buona Vista Drive #19-01, Singapore, 138588, Singapore
| | | | - Janice Lee
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Lindsay M Roth
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Olga Morozova
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Kyong Nyon Nam
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Nehal R Patel
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Qing Liu
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | - Ruven Wilkens
- AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | | | | | - Stefan Barghorn
- AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | | | | | | | - Miroslav Cik
- AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | - Nandini Romanul
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Kiran Yanamandra
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Alessandra M Welker
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Jessica Wu
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Laura Gasparini
- AbbVie Deutschland GmbH & Co. KG, 67061, Ludwigshafen, Germany
| | - Jan Stöhr
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Xavier Langlois
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Justine D Manos
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Luan Y, Zheng L, Denecke J, Dehsarvi A, Roemer‐Cassiano SN, Dewenter A, Steward A, Shcherbinin S, Svaldi DO, Kotari V, Higgins IA, Pontecorvo MJ, Valentim C, Schnabel JA, Casale FP, Dyrba M, Teipel S, Franzmeier N, Ewers M, for the Alzheimer's Disease Neuroimaging Initiative (ADNI). Multimodal spatial gradients to explain regional susceptibility to fibrillar tau in Alzheimer's disease. Alzheimers Dement 2025; 21:e70170. [PMID: 40342276 PMCID: PMC12060132 DOI: 10.1002/alz.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION In Alzheimer's disease (AD), fibrillar tau gradually progresses from initial seed to larger brain area. However, those brain properties underlying the region-dependent susceptibility to tau accumulation remain unclear. METHODS We constructed multimodal spatial gradients to characterize molecular properties and connectomic architecture. A predictive model for regional tau deposition was developed by integrating embeddings in the principal gradients of global connectome gradients with gene expression, neurotransmitters, myelin, and amyloid-beta. The model was trained on amyloid-beta-positive participants from Alzheimer's Disease Neuroimaging Initiative (ADNI) and externally validated in independent datasets. RESULTS The combination of gradients explained up to 77.7% of cross-sectional and 77.3% of longitudinal inter-regional variance of tau deposition. Gene set enrichment analysis of a major gene expression gradient points to synaptic transmission to confer increased susceptibility to tau. DISCUSSION Our findings reveal a spatially heterogeneous molecular landscape shaping regional susceptibility to tau deposition, presenting a powerful system-level explanatory model of tau pathology in AD. HIGHLIGHTS Spatial gradients of fundamental molecular brain properties associated with tau pathology. The explanatory power showed high consistency across studies. Genetic analyses suggested that synapse expression plays a vital role in tau accumulation.
Collapse
Affiliation(s)
- Ying Luan
- Department of RadiologyZhongda Hospital, School of Medicine, Southeast UniversityNanjingChina
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Jannis Denecke
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Sebastian N. Roemer‐Cassiano
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | | | | | | | | | | | - Carolina Valentim
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Julia A. Schnabel
- Institute of Machine Learning in Biomedical Imaging, Helmholtz MunichNeuherbergGermany
- TUM School of ComputationInformation and Technology & TUM Institute for Advanced StudyTechnical University of MunichMunichGermany
- School of Biomedical Engineering and Imaging SciencesKing's College LondonStrandLondonUK
| | | | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic MedicineRostock University Medical CenterRostockGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Department of Psychiatry and NeurochemistryThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | | |
Collapse
|
4
|
Bathla S, Datta D, Bolat D, Woo E, Duque A, Arellano JI, Arnsten AFT, Nairn AC. Dysregulated calcium signaling in the aged macaque entorhinal cortex associated with tau hyperphosphorylation. Front Aging Neurosci 2025; 17:1549770. [PMID: 40365352 PMCID: PMC12069431 DOI: 10.3389/fnagi.2025.1549770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Tau pathology in sporadic Alzheimer's disease (AD) follows a distinct pattern, beginning in the entorhinal cortex (ERC) and spreading to interconnected brain regions. Early-stage tau pathology, characterized by soluble phosphorylated tau, is difficult to study in human brains post-mortem due to rapid dephosphorylation. Methods Rhesus macaques, which naturally develop age-related tau pathology resembling human AD, provide an ideal model for investigating early tau etiology. This study examines the molecular processes underlying tau pathology in the macaque ERC, focusing on calcium and inflammatory signaling pathways using biochemical and immunohistochemistry. Results Our findings reveal an age-related decrease in PDE4 phosphodiesterase that hydrolyzes cAMP and increases in calpain-2 and glutamate carboxypeptidase II that occur in parallel with early-stage tau hyperphosphorylation at multiple epitopes (pS214-tau, pT181-tau, pT217-tau). Discussion These findings suggest that dysregulated calcium signaling in ERC, beginning in middle-age, may prime tau for hyperphosphorylation, potentially driving the early stages of AD, advancing our understanding of how ERC vulnerabilities contribute to neurodegeneration in AD.
Collapse
Affiliation(s)
- Shveta Bathla
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dinara Bolat
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Elizabeth Woo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Kim H, Girardi G, Pickle A, Kim TS, Seker E. Microfluidic tools to model, monitor, and modulate the gut-brain axis. BIOMICROFLUIDICS 2025; 19:021301. [PMID: 40060273 PMCID: PMC11890156 DOI: 10.1063/5.0253041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/24/2025]
Abstract
The gut-brain axis (GBA) connects the gastrointestinal tract and the central nervous system (CNS) via the peripheral nervous system and humoral (e.g., circulatory and lymphatic system) routes. The GBA comprises a sophisticated interaction between various mammalian cells, gut microbiota, and systemic factors. This interaction shapes homeostatic and pathophysiological processes and plays an important role in the etiology of many disorders including neuropsychiatric conditions. However, studying the underlying processes of GBA in vivo, where numerous confounding factors exist, is challenging. Furthermore, conventional in vitro models fall short of capturing the GBA anatomy and physiology. Microfluidic platforms with integrated sensors and actuators are uniquely positioned to enhance in vitro models by representing the anatomical layout of cells and allowing to monitor and modulate the biological processes with high spatiotemporal resolution. Here, we first briefly describe microfluidic technologies and their utility in modeling the CNS, vagus nerve, gut epithelial barrier, blood-brain barrier, and their interactions. We then discuss the challenges and opportunities for each model, including the use of induced pluripotent stem cells and incorporation of sensors and actuator modalities to enhance the capabilities of these models. We conclude by envisioning research directions that can help in making the microfluidics-based GBA models better-suited to provide mechanistic insight into pathophysiological processes and screening therapeutics.
Collapse
Affiliation(s)
- Hyehyun Kim
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | | | - Allison Pickle
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | - Testaverde S. Kim
- Department of Biomedical Engineering, University of California—Davis, Davis, California 95616, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California—Davis, Davis, California 95616, USA
| |
Collapse
|
6
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
7
|
Wang Y, Wang J, Chen X, Lin Z, You Z, He K, Guo T, Zhao J, Huang Q, Ni R, Guan Y, Li B, Xie F. Tau pathology is associated with postsynaptic metabotropic glutamate receptor 5 (mGluR5) in early Alzheimer's disease in a sex-specific manner. Alzheimers Dement 2025; 21:e70004. [PMID: 39998900 PMCID: PMC11853735 DOI: 10.1002/alz.70004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION To investigate the associations of metabotropic glutamate receptor 5 (mGluR5) with tau deposition and cognitive ability in patients with early Alzheimer's disease (AD). METHODS Twenty-six cognitively impaired (CI) and 14 cognitively unimpaired (CU) individuals underwent mGluR5 positron emission tomography (PET) ([18F]PSS232), amyloid PET ([18F]florbetapir), and tau PET ([18F]MK6240), and neuropsychological assessment. The relationships among mGluR5 availability, tau deposition, and neuropsychological assessment were analyzed using Spearman's correlation and mediation analyses. RESULTS CI patients had lower mGluR5 in the hippocampus than CU (standardized uptake value ratio [SUVr]: 2.03 ± 0.25 vs 1.79 ± 0.17, p = 0.003). Hippocampal mGluR5 was negatively associated with hippocampal tau deposition (r = -.46, p = 0.003) and positively associated with cognitive performance, but only in women. Hippocampal tau deposition mediated the effect of mGluR5 on cognitive performance. DISCUSSION Reduced hippocampal mGluR5 is negatively related with tau deposition in most cortical regions and positively associated with cognitive performance, making it a promising biomarker for AD diagnosis and therapy. HIGHLIGHTS Cognitively impaired (CI) patients exhibited lower metabotropic glutamate receptor 5 (mGluR5) availability in the hippocampus than cognitively unimpaired (CU) subjects. Hippocampal mGluR5 availability was negatively associated with tau deposition in widespread cortex. Hippocampal mGluR5 availability was positively associated with cognitive performance. The close association of mGluR5 with tau and cognition performance exists only in females. Tau pathology mediated the relationship between mGluR5 availability and cognition.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zengping Lin
- Central Research InstituteUnited Imaging Health Care Group Co., Ltd.ShanghaiChina
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical Engineering, Institute for Regenerative MedicineUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025; 21:e14477. [PMID: 39776253 PMCID: PMC11848412 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of PsychiatryYale Medical SchoolNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| |
Collapse
|
9
|
de Bruin H, Groot C, Kamps S, Vijverberg EGB, Steward A, Dehsarvi A, Pijnenburg YAL, Ossenkoppele R, Franzmeier N. Amyloid-β and tau deposition in traumatic brain injury: a study of Vietnam War veterans. Brain Commun 2025; 7:fcaf009. [PMID: 39845735 PMCID: PMC11752645 DOI: 10.1093/braincomms/fcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e. amyloid-β plaques and neurofibrillary tangles comprised of hyperphosphorylated tau. Depending on the type and location of trauma, traumatic brain injury can induce spatially heterogeneous brain lesions that may pre-dispose for the development of Alzheimer's disease pathology in aging. Therefore, we hypothesized that a history of traumatic brain injury may be related to spatially heterogeneous amyloid-β and tau pathology patterns that deviate from the stereotypical temporo-parietal patterns in Alzheimer's disease. To test this, we included 103 Vietnam War veterans of whom 65 had experienced traumatic brain injury (n = 40, 38.8% mild; n = 25, 24.3% moderate/severe). Most individuals had a history of 1 (n = 35, 53.8%) or 2 (n = 15, 23.1%) traumatic brain injury events. We included the group without a history of traumatic brain injury (n = 38, 36.9%) as controls. The majority was cognitively normal (n = 80, 77.7%), while a subset had mild cognitive impairment (n = 23, 22.3%). All participants underwent [18F]florbetapir/Amyvid amyloid-β PET and [18F]flortaucipir/Tauvid tau-PET 39.63 ± 18.39 years after their last traumatic brain injury event. We found no differences in global amyloid-β and tau-PET levels between groups, suggesting that a history of traumatic brain injury does not pre-dispose to accumulate amyloid-β or tau pathology in general. However, we found that traumatic brain injury was associated with altered spatial patterns of amyloid-β and tau, with relatively greater deposition in fronto-parietal brain regions. These regions are prone to damage in traumatic brain injury, while they are typically only affected in later stages of Alzheimer's disease. Moreover, in our traumatic brain injury groups, the association between amyloid-β and tau was reduced in Alzheimer-typical temporal regions but increased in frontal regions that are commonly associated with traumatic brain injury. Altogether, while acknowledging the relatively small sample size and generally low levels of Alzheimer's disease pathology in this sample, our findings suggest that traumatic brain injury induces spatial patterns of amyloid-β and tau that differ from patterns observed in typical Alzheimer's disease. Furthermore, traumatic brain injury may be associated with a de-coupling of amyloid-β and tau in regions vulnerable in Alzheimer's disease. These findings indicate that focal brain damage in early/mid-life may change neurodegenerative trajectories in late-life.
Collapse
Affiliation(s)
- Hannah de Bruin
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Colin Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Suzie Kamps
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund 221 00, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 413 45, Sweden
- Munich Cluster for Systems Neurology (SyNergy), University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| |
Collapse
|
10
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
11
|
Walkiewicz G, Ronisz A, Ospitalieri S, Tsaka G, Tomé SO, Vandenberghe R, von Arnim CAF, Rousseau F, Schymkowitz J, De Groef L, Thal DR. pTau pathology in the retina of TAU58 mice: association with ganglion cell degeneration and implications on seeding and propagation of pTau from human brain lysates. Acta Neuropathol Commun 2024; 12:194. [PMID: 39707519 DOI: 10.1186/s40478-024-01907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons. To address these questions, we (1) characterized pTau pathology in the retina of TAU58 mice, (2) determined the impact of pTau pathology on retinal ganglion cell density, and (3) used this mouse model to test whether brain lysates from AD and/or non-AD control cases induce seeding in the retina and/or propagation into the brain. TAU58 mice developed retinal pTau pathology at 6 months of age, increasing in severity and extent with age. TAU58 mice showed reduced retinal ganglion cell density compared to wild-type mice, which declined with age and pTau pathology progression. Brain lysates from non-AD Braak neurofibrillary tangle (NFT) stage I controls increased retinal pTau pathology after subretinal injection compared to phosphate-buffered saline (PBS) but did not accelerate pTau pathology in the brain. In contrast, subretinally injected AD brain lysates accelerated pTau pathology in the retina and the contralateral superior colliculus. Subretinal injection of AD brain lysates, but not of non-AD brain, induced in this context a neuroinflammatory response in the retina and in the contralateral primary visual cortex. These results lead to the following conclusions: (1) Brain lysates from AD and non-AD sources can accelerate tauopathy within the retina. (2) The anterograde propagation of pTau pathology from the retina to the brain can be triggered by subretinal injections of AD brain lysates. (3) Such subretinal injections also provoke a neuroinflammatory response in both the retina and the visual cortex. (4) The accumulation of retinal pTau is associated with the degeneration of the involved ganglion cells, indicating that retinal tauopathy might contribute to vision impairment in the elderly and underscore the retina's potential role in spreading tau pathology to the brain.
Collapse
Affiliation(s)
- Grzegorz Walkiewicz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Alicja Ronisz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Grigoria Tsaka
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Bathla S, Datta D, Bolat D, Woo E, Duque A, Arellano J, Arnsten A, Nairn AC. Dysregulated calcium signaling in the aged macaque entorhinal cortex associated with tau hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626721. [PMID: 39713378 PMCID: PMC11661118 DOI: 10.1101/2024.12.05.626721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tau pathology in sporadic Alzheimer's disease (AD) follows a distinct pattern, beginning in the entorhinal cortex (ERC) and spreading to interconnected brain regions. Early-stage tau pathology, characterized by soluble phosphorylated tau, is difficult to study in human brains post-mortem due to rapid dephosphorylation. Rhesus macaques, which naturally develop age-related tau pathology resembling human AD, provide an ideal model for investigating early tau etiology. This study examines the molecular processes underlying tau pathology in the macaque ERC, focusing on calcium and inflammatory signaling pathways. Our findings reveal age-related decreases in PDE4 phosphodiesterases that hydrolyze cAMP and increases in calpain-2 and GCPII that occur in parallel with early-stage tau hyperphosphorylation at multiple epitopes (pS214-tau, pT181-tau, pT217-tau). These findings suggest that dysregulated calcium signaling in ERC, beginning in middle-age, primes tau for hyperphosphorylation, potentially driving the early stages of AD, advancing our understanding of how ERC vulnerabilities contribute to neurodegeneration in AD.
Collapse
|
13
|
Gawor K, Tomé SO, Vandenberghe R, Van Damme P, Vandenbulcke M, Otto M, von Arnim CAF, Ghebremedhin E, Ronisz A, Ospitalieri S, Blaschko M, Thal DR. Amygdala-predominant α-synuclein pathology is associated with exacerbated hippocampal neuron loss in Alzheimer's disease. Brain Commun 2024; 6:fcae442. [PMID: 39659977 PMCID: PMC11631359 DOI: 10.1093/braincomms/fcae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Misfolded α-synuclein protein accumulates in 43-63% of individuals with symptomatic Alzheimer's disease. Two main patterns of comorbid α-synuclein pathology have been identified: caudo-rostral and amygdala-predominant. α-Synuclein aggregates have been shown to interact with the transactive response DNA-binding protein 43 (TDP-43) and abnormally phosphorylated tau protein. All these proteins accumulate in the amygdala, which is anatomically connected with the hippocampus. However, the specific role of amygdala-predominant α-synuclein pathology in the progression of Alzheimer's disease and hippocampal degeneration remains unclear. In this cross-sectional study, we analysed 291 autopsy brains from both demented and non-demented elderly individuals neuropathologically. Neuronal density in the CA1 region of the hippocampus was assessed for all cases. We semiquantitatively evaluated α-synuclein pathology severity across seven brain regions and calculated a ratio of limbic to brainstem α-synuclein pathology severity, which was used to stratify the cases into two distinct spreading patterns. In the 99 symptomatic Alzheimer's disease cases, we assessed severity of limbic-predominant age-related TDP-43 neuropathological changes and CA1 phosphorylated tau density. We performed triple fluorescence staining of medial temporal lobe samples with antibodies against phosphorylated TDP-43, α-synuclein and phosphorylated tau. Finally, we employed path analysis to determine the association network of various parameters of limbic pathology in Alzheimer's disease cases and CA1 neuronal density. We identified an association between the amygdala-predominant αSyn pathology pattern and decreased neuronal density in the CA1 region. We found that Alzheimer's disease cases with an amygdala-predominant α-synuclein pattern exhibited the highest TDP-43 severity and prevalence of TDP-43 inclusions in the dentate gyrus among all groups, while those with the caudo-rostral pattern had the lowest severity of Alzheimer's disease neuropathological changes. We observed colocalization of TDP-43, aggregated α-synuclein and hyperphosphorylated tau in cytoplasmic inclusions within hippocampal and amygdala neurons of Alzheimer's disease cases. Path analysis modelling suggests that the relationship between amygdala-predominant α-synuclein pathology and CA1 neuron loss is partially mediated by hippocampal tau and TDP-43 aggregates. Our findings suggest that Alzheimer's disease cases with amygdala-predominant α-synuclein pathology may constitute a distinct group with more severe hippocampal damage, a higher TDP-43 burden and potential interactions among α-synuclein, TDP-43 and hyperphosphorylated tau.
Collapse
Affiliation(s)
- Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
- Laboratory for Neurobiology, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt am Main 60596, Germany
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Matthew Blaschko
- Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven 3000, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
14
|
Sakuragi S, Uchida T, Kato N, Zhao B, Takahashi T, Hattori A, Sakata Y, Soeda Y, Takashima A, Yoshimura H, Matsumoto G, Bannai H. Inducing aggresome and stable tau aggregation in Neuro2a cells with an optogenetic tool. Biophys Physicobiol 2024; 21:e210023. [PMID: 39963597 PMCID: PMC11832247 DOI: 10.2142/biophysico.bppb-v21.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/26/2024] [Indexed: 02/20/2025] Open
Abstract
Tauopathy is a spectrum of diseases characterized by fibrillary tau aggregate formation in neurons and glial cells in the brain. Tau aggregation originates in the brainstem and entorhinal cortex and then spreads throughout the brain in Alzheimer's disease (AD), which is the most prevalent type of tauopathy. Understanding the mechanism by which locally developed tau pathology propagates throughout the brain is crucial for comprehending AD pathogenesis. Therefore, a novel model of tau pathology that artificially induces tau aggregation in targeted cells at specific times is essential. This study describes a novel optogenetic module, OptoTau, which is a human tau with the P301L mutation fused with a photosensitive protein CRY2olig, inducing various forms of tau according to the temporal pattern of blue light illumination pattern. Continuous blue light illumination for 12 h to Neuro2a cells that stably express OptoTau (OptoTauKI cells) formed clusters along microtubules, many of which eventually accumulated in aggresomes. Conversely, methanol-resistant tau aggregation was formed when alternating light exposure and darkness in 30-min cycles for 8 sets per day were repeated over 8 days. Methanol-resistant tau was induced more rapidly by repeating 5-min illumination followed by 25-min darkness over 24 h. These results indicate that OptoTau induced various tau aggregation stages based on the temporal pattern of blue light exposure. Thus, this technique exhibits potential as a novel approach to developing specific tau aggregation in targeted cells at desired time points.
Collapse
Affiliation(s)
- Shigeo Sakuragi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Tomoya Uchida
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Naoki Kato
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Boxiao Zhao
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Toshiki Takahashi
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Akito Hattori
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
- Present address: Department of Medical Laboratory Science, Kitasato University School of Health Sciences, Minami-Uonuma, Niigata 949-7241, Japan
| | - Yoshihiro Sakata
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer’s Disease, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, Shinjuku-Ku, Tokyo 162-0056, Japan
| |
Collapse
|
15
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
16
|
Nishida I, Yamada K, Sakamoto A, Wakabayashi T, Iwatsubo T. Chronic Neuronal Hyperexcitation Exacerbates Tau Propagation in a Mouse Model of Tauopathy. Int J Mol Sci 2024; 25:9004. [PMID: 39201689 PMCID: PMC11354494 DOI: 10.3390/ijms25169004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The intracerebral spread of tau is a critical mechanism associated with functional decline in Alzheimer's disease (AD) and other tauopathies. Recently, a hypothesis has emerged suggesting that tau propagation is linked to functional neuronal connections, specifically driven by neuronal hyperactivity. However, experimental validation of this hypothesis remains limited. In this study, we investigated how tau propagation from the entorhinal cortex to the hippocampus, the neuronal circuit most susceptible to tau pathology in AD, is affected by the selective stimulation of neuronal activity along this circuit. Using a mouse model of seed-induced propagation combined with optogenetics, we found that the chronic stimulation of this neuronal connection over a 4-week period resulted in a significant increase in insoluble tau accumulation in both the entorhinal cortex and hippocampus. Importantly, the ratio of tau accumulation in the hippocampus relative to that in the entorhinal cortex, serving as an indicator of transcellular spreading, was significantly higher in mice subjected to chronic stimulation. These results support the notion that abnormal neuronal activity promotes tau propagation, thereby implicating it in the progression of tauopathy.
Collapse
Affiliation(s)
- Itaru Nishida
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Asami Sakamoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
- Department of Pathophysiology, Meiji Pharmaceutical University, Tokyo 2040004, Japan
| | - Takeshi Iwatsubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan;
| |
Collapse
|
17
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
18
|
Bhatt IS, Garay JAR, Bhagavan SG, Ingalls V, Dias R, Torkamani A. A genome-wide association study reveals a polygenic architecture of speech-in-noise deficits in individuals with self-reported normal hearing. Sci Rep 2024; 14:13089. [PMID: 38849415 PMCID: PMC11161523 DOI: 10.1038/s41598-024-63972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Speech-in-noise (SIN) perception is a primary complaint of individuals with audiometric hearing loss. SIN performance varies drastically, even among individuals with normal hearing. The present genome-wide association study (GWAS) investigated the genetic basis of SIN deficits in individuals with self-reported normal hearing in quiet situations. GWAS was performed on 279,911 individuals from the UB Biobank cohort, with 58,847 reporting SIN deficits despite reporting normal hearing in quiet. GWAS identified 996 single nucleotide polymorphisms (SNPs), achieving significance (p < 5*10-8) across four genomic loci. 720 SNPs across 21 loci achieved suggestive significance (p < 10-6). GWAS signals were enriched in brain tissues, such as the anterior cingulate cortex, dorsolateral prefrontal cortex, entorhinal cortex, frontal cortex, hippocampus, and inferior temporal cortex. Cochlear cell types revealed no significant association with SIN deficits. SIN deficits were associated with various health traits, including neuropsychiatric, sensory, cognitive, metabolic, cardiovascular, and inflammatory conditions. A replication analysis was conducted on 242 healthy young adults. Self-reported speech perception, hearing thresholds (0.25-16 kHz), and distortion product otoacoustic emissions (1-16 kHz) were utilized for the replication analysis. 73 SNPs were replicated with a self-reported speech perception measure. 211 SNPs were replicated with at least one and 66 with at least two audiological measures. 12 SNPs near or within MAPT, GRM3, and HLA-DQA1 were replicated for all audiological measures. The present study highlighted a polygenic architecture underlying SIN deficits in individuals with self-reported normal hearing.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
19
|
Ferschmann C, Messerschmidt K, Gnörich J, Barthel H, Marek K, Palleis C, Katzdobler S, Stockbauer A, Fietzek U, Finze A, Biechele G, Rumpf JJ, Saur D, Schroeter ML, Rullmann M, Beyer L, Eckenweber F, Wall S, Schildan A, Patt M, Stephens A, Classen J, Bartenstein P, Seibyl J, Franzmeier N, Levin J, Höglinger GU, Sabri O, Brendel M, Scheifele M. Tau accumulation is associated with dopamine deficiency in vivo in four-repeat tauopathies. Eur J Nucl Med Mol Imaging 2024; 51:1909-1922. [PMID: 38366196 PMCID: PMC11139736 DOI: 10.1007/s00259-024-06637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (β = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (β = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (β = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.
Collapse
Affiliation(s)
- Christian Ferschmann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ken Marek
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - John Seibyl
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
20
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
21
|
Liu Y, Tan Y, Cheng G, Ni Y, Xie A, Zhu X, Yin C, Zhang Y, Chen T. Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307081. [PMID: 38395039 DOI: 10.1002/adma.202307081] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.
Collapse
Affiliation(s)
- Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
22
|
Lopes DM, Wells JA, Ma D, Wallis L, Park D, Llewellyn SK, Ahmed Z, Lythgoe MF, Harrison IF. Glymphatic inhibition exacerbates tau propagation in an Alzheimer's disease model. Alzheimers Res Ther 2024; 16:71. [PMID: 38576025 PMCID: PMC10996277 DOI: 10.1186/s13195-024-01439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.
Collapse
Affiliation(s)
- Douglas M Lopes
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Da Ma
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lauren Wallis
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Daniel Park
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Sophie K Llewellyn
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Zeshan Ahmed
- Neuroscience Next Generation Therapeutics (NGTx), Eli Lilly and Company, Cambridge, MA, USA
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
23
|
Datta D, Perone I, Wijegunawardana D, Liang F, Morozov YM, Arellano J, Duque A, Xie Z, van Dyck CH, Joyce MKP, Arnsten AFT. Nanoscale imaging of pT217-tau in aged rhesus macaque entorhinal and dorsolateral prefrontal cortex: Evidence of interneuronal trafficking and early-stage neurodegeneration. Alzheimers Dement 2024; 20:2843-2860. [PMID: 38445818 PMCID: PMC11032534 DOI: 10.1002/alz.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
- Department of PsychiatryYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Isabella Perone
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | | | - Feng Liang
- Department of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yury M. Morozov
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Jon Arellano
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Alvaro Duque
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Zhongcong Xie
- Department of AnesthesiaCritical Care and Pain MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Mary Kate P. Joyce
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale UniversitySchool of MedicineNew HavenConnecticutUSA
| |
Collapse
|
24
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
25
|
Zheng L, Rubinski A, Denecke J, Luan Y, Smith R, Strandberg O, Stomrud E, Ossenkoppele R, Svaldi DO, Higgins IA, Shcherbinin S, Pontecorvo MJ, Hansson O, Franzmeier N, Ewers M. Combined Connectomics, MAPT Gene Expression, and Amyloid Deposition to Explain Regional Tau Deposition in Alzheimer Disease. Ann Neurol 2024; 95:274-287. [PMID: 37837382 DOI: 10.1002/ana.26818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. METHODS We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18 F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. RESULTS Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118-0.148, 0.156-0.196, and 0.251-0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). INTERPRETATION Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 2024;95:274-287.
Collapse
Affiliation(s)
- Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
| | - Jannis Denecke
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | | | | | | | - Michael J Pontecorvo
- Eli Lilly and Company, Indianapolis, IN, USA
- Avid Radiopharmaceuticals, Philadelphia, PA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
26
|
Zhang L, Qu J, Ma H, Chen T, Liu T, Zhu D. Exploring Alzheimer's disease: a comprehensive brain connectome-based survey. PSYCHORADIOLOGY 2024; 4:kkad033. [PMID: 38333558 PMCID: PMC10848159 DOI: 10.1093/psyrad/kkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Dementia is an escalating global health challenge, with Alzheimer's disease (AD) at its forefront. Substantial evidence highlights the accumulation of AD-related pathological proteins in specific brain regions and their subsequent dissemination throughout the broader area along the brain network, leading to disruptions in both individual brain regions and their interconnections. Although a comprehensive understanding of the neurodegeneration-brain network link is lacking, it is undeniable that brain networks play a pivotal role in the development and progression of AD. To thoroughly elucidate the intricate network of elements and connections constituting the human brain, the concept of the brain connectome was introduced. Research based on the connectome holds immense potential for revealing the mechanisms underlying disease development, and it has become a prominent topic that has attracted the attention of numerous researchers. In this review, we aim to systematically summarize studies on brain networks within the context of AD, critically analyze the strengths and weaknesses of existing methodologies, and offer novel perspectives and insights, intending to serve as inspiration for future research.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Junqi Qu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Haotian Ma
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tong Chen
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tianming Liu
- Department of Computer Science, The University of Georgia, Athens, GA 30602, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
27
|
Dinamarca MC, Colombo L, Brykczynska U, Grimm A, Fruh I, Hossain I, Gabriel D, Eckert A, Müller M, Pecho-Vrieseling E. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front Mol Neurosci 2024; 16:1287510. [PMID: 38235149 PMCID: PMC10791992 DOI: 10.3389/fnmol.2023.1287510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Neuron-to-neuron transmission of aggregation-prone, misfolded proteins may potentially explain the spatiotemporal accumulation of pathological lesions in the brains of patients with neurodegenerative protein-misfolding diseases (PMDs). However, little is known about protein transmission from the central nervous system to the periphery, or how this propagation contributes to PMD pathology. To deepen our understanding of these processes, we established two functional neuromuscular systems derived from human iPSCs. One was suitable for long-term high-throughput live-cell imaging and the other was adapted to a microfluidic system assuring that connectivity between motor neurons and muscle cells was restricted to the neuromuscular junction. We show that the Huntington's disease (HD)-associated mutant HTT exon 1 protein (mHTTEx1) is transmitted from neurons to muscle cells across the human neuromuscular junction. We found that transmission is an active and dynamic process that starts before aggregate formation and is regulated by synaptic activity. We further found that transmitted mHTTEx1 causes HD-relevant pathology at both molecular and functional levels in human muscle cells, even in the presence of the ubiquitous expression of mHTTEx1. In conclusion, we have uncovered a causal link between mHTTEx1 synaptic transmission and HD pathology, highlighting the therapeutic potential of blocking toxic protein transmission in PMDs.
Collapse
Affiliation(s)
- Margarita C. Dinamarca
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Colombo
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Urszula Brykczynska
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Imtiaz Hossain
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Daniela Gabriel
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Eline Pecho-Vrieseling
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Saglam-Metiner P, Duran E, Sabour-Takanlou L, Biray-Avci C, Yesil-Celiktas O. Differentiation of Neurons, Astrocytes, Oligodendrocytes and Microglia From Human Induced Pluripotent Stem Cells to Form Neural Tissue-On-Chip: A Neuroinflammation Model to Evaluate the Therapeutic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:413-436. [PMID: 37938408 DOI: 10.1007/s12015-023-10645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Advances in stem cell (SC) technology allow the generation of cellular models that recapitulate the histological, molecular and physiological properties of humanized in vitro three dimensional (3D) models, as well as production of cell-derived therapeutics such as extracellular vesicles (EVs). Improvements in organ-on-chip platforms and human induced pluripotent stem cells (hiPSCs) derived neural/glial cells provide unprecedented systems for studying 3D personalized neural tissue modeling with easy setup and fast output. Here, we highlight the key points in differentiation procedures for neurons, astrocytes, oligodendrocytes and microglia from single origin hiPSCs. Additionally, we present a well-defined humanized neural tissue-on-chip model composed of differentiated cells with the same genetic backgrounds, as well as the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles to propose a novel treatment for neuroinflammation derived diseases. Around 100 nm CD9 + EVs promote a more anti-inflammatory and pro-remodeling of cell-cell interaction cytokine responses on tumor necrosis factor-α (TNF-α) induced neuroinflammation in neural tissue-on-chip model which is ideal for modeling authentic neural-glial patho-physiology.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elif Duran
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
30
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
31
|
Datta D, Perone I, Wijegunawardana D, Liang F, Morozov YM, Arellano J, Duque A, Xie Z, van Dyck CH, Arnsten AFT. Nanoscale imaging of pT217-tau in aged rhesus macaque entorhinal and dorsolateral prefrontal cortex: Evidence of interneuronal trafficking and early-stage neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566046. [PMID: 37986900 PMCID: PMC10659394 DOI: 10.1101/2023.11.07.566046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
INTRODUCTION pT217-tau is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in brain, as soluble pT217-tau is dephosphorylated postmortem in humans. METHODS We utilized multi-label immunofluorescence and immunoelectron-microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally-occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to CSF/blood. Plasma pT217-tau levels increased across the age-span and thus can serve as a biomarker in macaques. DISCUSSION These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.
Collapse
|
32
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
33
|
Schoonhoven DN, Coomans EM, Millán AP, van Nifterick AM, Visser D, Ossenkoppele R, Tuncel H, van der Flier WM, Golla SSV, Scheltens P, Hillebrand A, van Berckel BNM, Stam CJ, Gouw AA. Tau protein spreads through functionally connected neurons in Alzheimer's disease: a combined MEG/PET study. Brain 2023; 146:4040-4054. [PMID: 37279597 PMCID: PMC10545627 DOI: 10.1093/brain/awad189] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-β pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-β pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anne M van Nifterick
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Denise Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 221 00 Lund, Sweden
| | - Hayel Tuncel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Batenburg KL, Rohde SK, Cornelissen-Steijger P, Breeuwsma N, Heine VM, Scheper W. A Human Neuron/Astrocyte Co-culture to Model Seeded and Spontaneous Intraneuronal Tau Aggregation. Curr Protoc 2023; 3:e900. [PMID: 37801344 DOI: 10.1002/cpz1.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Communication and contact between neurons and astrocytes is important for proper brain physiology. How neuron/astrocyte crosstalk is affected by intraneuronal tau aggregation in neurodegenerative tauopathies is largely elusive. Human induced pluripotent stem cell (iPSC)-derived neurons provide the opportunity to model tau pathology in a translationally relevant in vitro context. However, current iPSC models inefficiently develop tau aggregates, and co-culture models of tau pathology have thus far utilized rodent astrocytes. In this article, we describe the co-culture of human iPSC-derived neurons with primary human astrocytes in a 96-well format compatible with high-content microscopy. By lentiviral overexpression of different mutated tau variants, this protocol can be flexibly adapted for the efficient induction of seeded or spontaneous tau aggregation. We used this novel co-culture model to identify cell type-specific disease mechanisms and to provide proof of concept for intervention by antisense therapy. These results show that this human co-culture model provides a highly translational tool for target discovery and drug development for human tauopathies. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Human neuron/astrocyte co-culture for seeded and spontaneous intraneuronal tau aggregation Support Protocol 1: Human induced pluripotent stem cell culture Support Protocol 2: Human primary astrocyte culture.
Collapse
Affiliation(s)
- Kevin Llewelyn Batenburg
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, De Boelelaan, Amsterdam, The Netherlands
| | - Susan Karijn Rohde
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, De Boelelaan, Amsterdam, The Netherlands
| | - Paulien Cornelissen-Steijger
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
| | - Nicole Breeuwsma
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
| | - Vivi Majella Heine
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, De Boelelaan, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience-Neurodegeneration, De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Vogel JW, Corriveau-Lecavalier N, Franzmeier N, Pereira JB, Brown JA, Maass A, Botha H, Seeley WW, Bassett DS, Jones DT, Ewers M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat Rev Neurosci 2023; 24:620-639. [PMID: 37620599 DOI: 10.1038/s41583-023-00731-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.
Collapse
Affiliation(s)
- Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden.
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Acadamy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Neuro Division, Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Dani S Bassett
- Departments of Bioengineering, Electrical and Systems Engineering, Physics and Astronomy, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
36
|
Huang M, Tallon C, Zhu X, Huizar KDJ, Picciolini S, Thomas AG, Tenora L, Liyanage W, Rodà F, Gualerzi A, Kannan RM, Bedoni M, Rais R, Slusher BS. Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice. Pharmaceutics 2023; 15:2364. [PMID: 37765332 PMCID: PMC10536502 DOI: 10.3390/pharmaceutics15092364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
| | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lukas Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (W.L.); (R.M.K.)
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), 20148 Milan, Italy; (S.P.); (F.R.); (A.G.); (M.B.)
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (M.H.); (C.T.); (X.Z.); (K.D.J.H.); (A.G.T.); (L.T.); (R.R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Prokopiou PC, Engels-Domínguez N, Schultz AP, Sepulcre J, Koops EA, Papp KV, Marshall GA, Normandin MD, El Fakhri G, Rentz D, Sperling RA, Johnson KA, Jacobs HIL. Association of Novelty-Related Locus Coeruleus Function With Entorhinal Tau Deposition and Memory Decline in Preclinical Alzheimer Disease. Neurology 2023; 101:e1206-e1217. [PMID: 37491329 PMCID: PMC10516269 DOI: 10.1212/wnl.0000000000207646] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nina Engels-Domínguez
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aaron P Schultz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jorge Sepulcre
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elouise A Koops
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kathryn V Papp
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marc D Normandin
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georges El Fakhri
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dorene Rentz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Reisa A Sperling
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keith A Johnson
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Heidi I L Jacobs
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
38
|
Hromadkova L, Kim C, Haldiman T, Peng L, Zhu X, Cohen M, de Silva R, Safar JG. Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer's disease tau. Cell Biosci 2023; 13:174. [PMID: 37723591 PMCID: PMC10507869 DOI: 10.1186/s13578-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVES Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses. METHODS To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers. RESULTS At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event. CONCLUSIONS The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Chae Kim
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Tracy Haldiman
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Lihua Peng
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Xiongwei Zhu
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mark Cohen
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Jiri G Safar
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
- Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Departments of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
39
|
Han F, Lee J, Chen X, Ziontz J, Ward T, Landau SM, Baker SL, Harrison TM, Jagust WJ. Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557492. [PMID: 37745434 PMCID: PMC10515801 DOI: 10.1101/2023.09.12.557492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Amyloid-β (Aβ) and tau deposition constitute Alzheimer's disease (AD) neuropathology. Cortical tau deposits first in the entorhinal cortex and hippocampus and then propagates to neocortex in an Aβ-dependent manner. Tau also tends to accumulate earlier in higher-order association cortex than in lower-order primary sensory-motor cortex. While previous research has examined the production and spread of tau, little attention has been paid to its clearance. Low-frequency (<0.1 Hz) global brain activity during the resting state is coupled with cerebrospinal fluid (CSF) flow and potentially reflects glymphatic clearance. Here we report that tau deposition in subjects with evaluated Aβ, accompanied by cortical thinning and cognitive decline, is strongly associated with decreased coupling between CSF flow and global brain activity. Substantial modulation of global brain activity is also manifested as propagating waves of brain activation between higher- and lower-order regions, resembling tau spreading. Together, the findings suggest an important role of resting-state global brain activity in AD tau pathology.
Collapse
Affiliation(s)
- Feng Han
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - JiaQie Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xi Chen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob Ziontz
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Tyler Ward
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
40
|
Ulloa Severino FP, Lawal OO, Sakers K, Wang S, Kim N, Friedman AD, Johnson SA, Sriworarat C, Hughes RH, Soderling SH, Kim IH, Yin HH, Eroglu C. Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control. Nat Commun 2023; 14:5522. [PMID: 37684234 PMCID: PMC10491649 DOI: 10.1038/s41467-023-41078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Synaptogenesis is essential for circuit development; however, it is unknown whether it is critical for the establishment and performance of goal-directed voluntary behaviors. Here, we show that operant conditioning via lever-press for food reward training in mice induces excitatory synapse formation onto a subset of anterior cingulate cortex neurons projecting to the dorsomedial striatum (ACC→DMS). Training-induced synaptogenesis is controlled by the Gabapentin/Thrombospondin receptor α2δ-1, which is an essential neuronal protein for proper intracortical excitatory synaptogenesis. Using germline and conditional knockout mice, we found that deletion of α2δ-1 in the adult ACC→DMS circuit diminishes training-induced excitatory synaptogenesis. Surprisingly, this manipulation does not impact learning but results in a significant increase in effort exertion without affecting sensitivity to reward value or changing contingencies. Bidirectional optogenetic manipulation of ACC→DMS neurons rescues or phenocopies the behaviors of the α2δ-1 cKO mice, highlighting the importance of synaptogenesis within this cortico-striatal circuit in regulating effort exertion.
Collapse
Affiliation(s)
- Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Cajal Institute (CSIC), Madrid, 28001, Spain.
| | | | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Sarah Anne Johnson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Ryan H Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA
| | - Il Hwan Kim
- Department of Anatomy & Neurobiology, University of Tennessee Health and Science Center, Memphis, TN, 38103, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Mate De Gerando A, Welikovitch LA, Khasnavis A, Commins C, Glynn C, Chun JE, Perbet R, Hyman BT. Tau seeding and spreading in vivo is supported by both AD-derived fibrillar and oligomeric tau. Acta Neuropathol 2023; 146:191-210. [PMID: 37341831 PMCID: PMC10329061 DOI: 10.1007/s00401-023-02600-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer's disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW), due to their properties on size-exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl-insoluble and HMW tau from the frontal cortex of Alzheimer patients and compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl-insoluble fibrillar tau comprises abundant paired-helical filaments (PHF) as quantified by electron microscopy (EM) and is more resistant to proteinase K, compared to HMW tau, which is mostly in an oligomeric form. Sarkosyl-insoluble and HMW tau are nearly equivalent in potency in HEK cell bioactivity assay for seeding aggregates, and their injection reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response including Clec7a-positive rod microglia in the absence of neurodegeneration or synapse loss and promotes more rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties to fibrillar sarkosyl-insoluble tau with regard to tau seeding potential, but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant to tau-related Alzheimer phenotypes.
Collapse
Affiliation(s)
- Anastasie Mate De Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Lindsay A Welikovitch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Calina Glynn
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Joshua E Chun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
43
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
44
|
Lamontagne-Kam D, Ulfat AK, Hervé V, Vu TM, Brouillette J. Implication of tau propagation on neurodegeneration in Alzheimer's disease. Front Neurosci 2023; 17:1219299. [PMID: 37483337 PMCID: PMC10360202 DOI: 10.3389/fnins.2023.1219299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Propagation of tau fibrils correlate closely with neurodegeneration and memory deficits seen during the progression of Alzheimer's disease (AD). Although it is not well-established what drives or attenuates tau spreading, new studies on human brain using positron emission tomography (PET) have shed light on how tau phosphorylation, genetic factors, and the initial epicenter of tau accumulation influence tau accumulation and propagation throughout the brain. Here, we review the latest PET studies performed across the entire AD continuum looking at the impact of amyloid load on tau pathology. We also explore the effects of structural, functional, and proximity connectivity on tau spreading in a stereotypical manner in the brain of AD patients. Since tau propagation can be quite heterogenous between individuals, we then consider how the speed and pattern of propagation are influenced by the starting localization of tau accumulation in connected brain regions. We provide an overview of some genetic variants that were shown to accelerate or slow down tau spreading. Finally, we discuss how phosphorylation of certain tau epitopes affect the spreading of tau fibrils. Since tau pathology is an early event in AD pathogenesis and is one of the best predictors of neurodegeneration and memory impairments, understanding the process by which tau spread from one brain region to another could pave the way to novel therapeutic avenues that are efficient during the early stages of the disease, before neurodegeneration induces permanent brain damage and severe memory loss.
Collapse
|
45
|
Lopez DM, Maltby CJ, Warming H, Divecha N, Vargas-Caballero M, Coldwell MJ, Deinhardt K. A luminescence-based reporter to study tau secretion reveals overlapping mechanisms for the release of healthy and pathological tau. Front Neurosci 2023; 17:1196007. [PMID: 37342467 PMCID: PMC10277490 DOI: 10.3389/fnins.2023.1196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
In Alzheimer's disease, tau pathology is thought to spread via a prion-like manner along connected neuronal networks. For this to occur, the usually cytosolic tau protein must be secreted via an unconventional mechanism prior to uptake into the connected neuron. While secretion of healthy and pathological tau has been documented, it remains under-investigated whether this occurs via overlapping or distinct processes. Here, we established a sensitive bioluminescence-based assay to assess mechanisms underlying the secretion of pseudohyperphosphorylated and wild-type tau in cultured murine hippocampal neurons. We found that under basal conditions, both wild-type and mutant tau are secreted, with mutant tau being more robustly secreted. Pharmacological stimulation of neuronal activity led to a modest increase of wild-type and mutant tau secretion, whereas inhibition of activity had no effect. Interestingly, inhibition of heparin sulfate proteoglycan (HSPG) biosynthesis drastically decreased secretion of both wild-type and mutant tau without affecting cell viability. This shows that native and pathological tau share release mechanisms; both activity-dependent and non-activity-dependent secretion of tau is facilitated by HSPGs.
Collapse
|
46
|
Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EGB, De Deyn PP, Ducharme S, Jonsson M, Schneider A, Rinne JO, Ludolph AC, Bodenschatz R, Kordasiewicz H, Swayze EE, Fitzsimmons B, Mignon L, Moore KM, Yun C, Baumann T, Li D, Norris DA, Crean R, Graham DL, Huang E, Ratti E, Bennett CF, Junge C, Lane RM. Tau-targeting antisense oligonucleotide MAPT Rx in mild Alzheimer's disease: a phase 1b, randomized, placebo-controlled trial. Nat Med 2023; 29:1437-1447. [PMID: 37095250 PMCID: PMC10287562 DOI: 10.1038/s41591-023-02326-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023]
Abstract
Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .
Collapse
Affiliation(s)
- Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK.
| | | | - Daniel J Blackburn
- Sheffield Teaching Hospital NHS Foundation Trust, NIHR Sheffield Clinical Research Facility and NIHR Sheffield Biomedical Research Centre, Royal Hallamshire Hospital, Sheffield, UK
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Peter Paul De Deyn
- University Medical Center Groningen / RUG, Alzheimer Center Groningen, Groningen, the Netherlands
| | - Simon Ducharme
- Douglas Mental Health University Institute and McConnell Brain Imaging Centre of the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael Jonsson
- Memory Clinic, Psychiatry - Cognition and Geriatric Psychiatry, Sahlgrenska University Hospital, Gothenburg/Molndal, Sweden
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, and Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Juha O Rinne
- CRST Oy; Turku PET Centre University of Turku and Turku University Hospital, Turku, Finland
| | - Albert C Ludolph
- Department of Neurology University of Ulm and DZNE, Ulm, Germany
| | - Ralf Bodenschatz
- Pharmakologisches Studienzentrum Chemnitz GmbH Mittweida, Mittweida, Germany
| | | | | | | | | | | | - Chris Yun
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Dan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
48
|
Jarrah R, Nathani KR, Bhandarkar S, Ezeudu CS, Nguyen RT, Amare A, Aljameey UA, Jarrah SI, Bhandarkar AR, Fiani B. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations. Regen Med 2023; 18:413-423. [PMID: 37125510 DOI: 10.2217/rme-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Among the greatest general challenges in bioengineering is to mimic human physiology. Advanced efforts in tissue engineering have led to sophisticated 'brain-on-chip' (BoC) microfluidic devices that can mimic structural and functional aspects of brain tissue. BoC may be used to understand the biochemical pathways of neurolgical pathologies and assess promising therapeutic agents for facilitating regenerative medicine. We evaluated the potential of microfluidic BoC devices in various neurological pathologies, such as Alzheimer's, glioblastoma, traumatic brain injury, stroke and epilepsy. We also discuss the principles, limitations and future considerations of BoC technology. Results suggest that BoC models can help understand complex neurological pathologies and augment drug testing efforts for regenerative applications. However, implementing organ-on-chip technology to clinical practice has some practical limitations that warrant greater attention to improve large-scale applicability. Nevertheless, they remain to be versatile and powerful tools that can broaden our understanding of pathophysiological and therapeutic uncertainties to neurological diseases.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shaan Bhandarkar
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chibuze S Ezeudu
- Texas A&M School of Medicine,Texas A&M University, Bryan, TX 77807, USA
| | - Ryan T Nguyen
- University of Hawaii John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Abrham Amare
- Morehouse School of Medicine, Morehouse College, Atlanta, GA 30310, USA
| | - Usama A Aljameey
- Lincoln Memorial University DeBusk School of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Brian Fiani
- Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA
| |
Collapse
|
49
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
50
|
Hosseini-Gerami L, Ficulle E, Humphryes-Kirilov N, Airey DC, Scherschel J, Kananathan S, Eastwood BJ, Bose S, Collier DA, Laing E, Evans D, Broughton H, Bender A. Mechanism of action deconvolution of the small-molecule pathological tau aggregation inhibitor Anle138b. Alzheimers Res Ther 2023; 15:52. [PMID: 36918909 PMCID: PMC10012450 DOI: 10.1186/s13195-023-01182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND A key histopathological hallmark of Alzheimer's disease (AD) is the presence of neurofibrillary tangles of aggregated microtubule-associated protein tau in neurons. Anle138b is a small molecule which has previously shown efficacy in mice in reducing tau aggregates and rescuing AD disease phenotypes. METHODS In this work, we employed bioinformatics analysis-including pathway enrichment and causal reasoning-of an in vitro tauopathy model. The model consisted of cultured rat cortical neurons either unseeded or seeded with tau aggregates derived from human AD patients, both of which were treated with Anle138b to generate hypotheses for its mode of action. In parallel, we used a collection of human target prediction models to predict direct targets of Anle138b based on its chemical structure. RESULTS Combining the different approaches, we found evidence supporting the hypothesis that the action of Anle138b involves several processes which are key to AD progression, including cholesterol homeostasis and neuroinflammation. On the pathway level, we found significantly enriched pathways related to these two processes including those entitled "Superpathway of cholesterol biosynthesis" and "Granulocyte adhesion and diapedesis". With causal reasoning, we inferred differential activity of SREBF1/2 (involved in cholesterol regulation) and mediators of the inflammatory response such as NFKB1 and RELA. Notably, our findings were also observed in Anle138b-treated unseeded neurons, meaning that the inferred processes are independent of tau pathology and thus represent the direct action of the compound in the cellular system. Through structure-based ligand-target prediction, we predicted the intracellular cholesterol carrier NPC1 as well as NF-κB subunits as potential targets of Anle138b, with structurally similar compounds in the model training set known to target the same proteins. CONCLUSIONS This study has generated feasible hypotheses for the potential mechanism of action of Anle138b, which will enable the development of future molecular interventions aiming to reduce tau pathology in AD patients.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- AbsoluteAi Ltd, London, UK
| | - Elena Ficulle
- Eli Lilly and Company, Windlesham, UK
- Zifo RnD Solutions, London, UK
| | | | - David C Airey
- Eli Lilly and Company, Corporate Centre, Indianapolis, IN, USA
| | | | | | - Brian J Eastwood
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Eli Lilly and Company (Retired), Bracknell, UK
| | - Suchira Bose
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
| | - David A Collier
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London and Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Windlesham, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Windlesham, UK
- DeepMind, London, UK
| | | | - Andreas Bender
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|