1
|
Ahmad A, Tigabu B, Ivanov A, Jerebtsova M, Ammosova T, Ramanathan P, Kumari N, Brantner CA, Pietzsch CA, Simhadri J, Abdullah G, Uversky VN, Paromov V, Popratiloff A, Widen S, Bukreyev A, Nekhai S. Ebola virus nucleoprotein interaction with host protein phosphatase-1 regulates its dimerization and capsid formation. J Biol Chem 2025; 301:108541. [PMID: 40288648 DOI: 10.1016/j.jbc.2025.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Ebola virus (EBOV) replication is regulated by the host protein phosphatases, PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The PP1-targeting compound 1E7-03 induces VP30 phosphorylation and inhibits EBOV infection. Here, we investigate the broader role of PP1 in EBOV replication and transcription, including its interaction with nucleoprotein (NP). When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was found and selected for further analysis. The NP E619K mutation moderately reduced the EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Proteomics, immunoprecipitation, dimerization, split NanoBit, and colocalization analyses indicated that NP interacts with PP1 and that NP E619K mutations enhanced this binding. Treatment with 1E7-03 dissociated PP1-NP complex, but enhanced NP dimerization, which was more pronounced for NP E619K mutant. Mutation and deletion analyses pointed to several potential PP1-binding sites in NP that were located in the moderately disordered NP regions. When NP was co-expressed with VP24 and VP35, formation of EBOV capsids was impaired with NP E619K mutation. Treatment with 1E7-03 restored the capsid formation by the NP E619K mutant but inhibited capsids formed by WT NP. Our findings suggest that PP1 binds to NP and that this binding might regulate NP dimerization and capsid formation. Collectively, our results point to a new role for PP1 in EBOV replication, in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.
Collapse
Affiliation(s)
- Asrar Ahmad
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA
| | - Bersabeh Tigabu
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA
| | - Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, The George Washington University, Washington, District of Columbia, USA
| | - Colette A Pietzsch
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Jyothirmai Simhadri
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA
| | - Ghadeer Abdullah
- Department of Biology, College of Art and Science, Howard University, Washington, District of Columbia, USA
| | - Vladmir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Anastas Popratiloff
- GW Nanofabrication and Imaging Center, The George Washington University, Washington, District of Columbia, USA
| | - Steve Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, Texas, USA; Department Microbiology & Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA.
| |
Collapse
|
2
|
Fujita-Fujiharu Y, Hu S, Hirabayashi A, Takamatsu Y, Ng YN, Houri K, Muramoto Y, Nakano M, Sugita Y, Noda T. Structural basis for Ebola virus nucleocapsid assembly and function regulated by VP24. Nat Commun 2025; 16:2171. [PMID: 40064872 PMCID: PMC11894184 DOI: 10.1038/s41467-025-57236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
The Ebola virus, a member of the Filoviridae family, causes severe hemorrhagic fever in humans. Filamentous virions contain a helical nucleocapsid responsible for genome transcription, replication, and packaging into progeny virions. The nucleocapsid consists of a helical nucleoprotein (NP)-viral genomic RNA complex forming the core structure, to which VP24 and VP35 bind externally. Two NPs, each paired with a VP24 molecule, constitute a repeating unit. However, the detailed nucleocapsid structure remains unclear. Here, we determine the nucleocapsid-like structure within virus-like particles at 4.6 Å resolution using single-particle cryo-electron microscopy. Mutational analysis identifies specific interactions between the two NPs and two VP24s and demonstrates that each of the two VP24s in different orientations distinctively regulates nucleocapsid assembly, viral RNA synthesis, intracellular transport of the nucleocapsid, and infectious virion production. Our findings highlight the sophisticated mechanisms underlying the assembly and functional regulation of the nucleocapsid and provide insights into antiviral development.
Collapse
Affiliation(s)
- Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Shangfan Hu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki City, Nagasaki, 852-8102, Japan
| | - Yen Ni Ng
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Kazuya Houri
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Saitama, Kawaguchi, 332-0012, Japan.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Basse V, Wang Y, Rodrigues-Machado C, Henry C, Richard CA, Leyrat C, Galloux M. Regulation of respiratory syncytial virus nucleoprotein oligomerization by phosphorylation. J Biol Chem 2025; 301:108256. [PMID: 39909382 PMCID: PMC11910103 DOI: 10.1016/j.jbc.2025.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The negative-sense RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N, forming a left-handed helical nucleocapsid which serves as template for the viral polymerase. Specific oligomerization of N along the viral genome necessitates a switch of conformation of N, from the neosynthesized monomeric and RNA-free N protein, named N0, to N-RNA oligomers. Although the binding of the N-terminal part of RSV phosphoprotein P plays the role of chaperone to impair RNA binding to N, N0-P interaction alone is not sufficient to prevent N oligomerization. Here, we explored the potential role of post translational modifications that could participate in the stability of N0. Among the post translational modifications specifically identified on recombinant monomeric N, we validated the presence of a phosphorylation site on residue Y88 of N which modulates N oligomerization. Our results suggest that RSV N oligomerization depends on the regulation by post translational modifications.
Collapse
Affiliation(s)
- Vincent Basse
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Yao Wang
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Céline Henry
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
5
|
Vallbracht M, Bodmer BS, Fischer K, Makroczyova J, Winter SL, Wendt L, Wachsmuth-Melm M, Hoenen T, Chlanda P. Nucleocapsid assembly drives Ebola viral factory maturation and dispersion. Cell 2025; 188:704-720.e17. [PMID: 39742805 DOI: 10.1016/j.cell.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection. We show that viral NCs transition from loosely packed helical assemblies in early VFs to compact cylinders that arrange into highly organized parallel bundles later in infection. Early VFs associate with intermediate filaments and are devoid of other host material but become progressively accessible to cellular components. Our data suggest that this process is coupled to VF solidification, loss of sphericity, and dispersion and promotes cytoplasmic exposure of NCs to facilitate their transport to budding sites.
Collapse
Affiliation(s)
- Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| | - Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Konstantin Fischer
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Zhan J, Chakraborty S, Sethi A, Mok YF, Yan F, Moseley GW, Gooley PR. Analysis of mechanisms of the rabies virus P protein-nucleocapsid interaction using engineered N-protein peptides and potential applications in antivirals design. Antiviral Res 2025; 234:106075. [PMID: 39736335 DOI: 10.1016/j.antiviral.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The Phosphoprotein (P protein) of the rabies virus has multiple roles in virus replication. A critical function is to act as a cofactor in genome replication and mRNA production through binding via its N-terminal region to the L protein, the essential enzyme for mRNA and genome synthesis/processing, and via its C-terminal domain (PCTD) to the N protein and viral RNA (N-RNA) ribonucleoprotein complex. The binding site of the PCTD on the N protein is a disordered loop that is expected to be phosphorylated at Ser389. This interface may provide novel targets for antiviral approaches. Following an alanine scan of the peptide we selected two single site mutations that showed improved affinity and combined these mutations with a phosphomimetic (S389E) to produce double and triple mutants in the context of linear and cyclic peptides of the disordered loop, with the goal of generating a competitive peptide against the N-RNA complex. To assess the binding properties of the peptides we characterized their thermodynamics identifying complex properties of improved enthalpy but with compensating entropy for mutants and cyclized peptides. Nevertheless, a triple mutant shows 3.5-fold stronger affinity for PCTD than the full-length S389E N protein. Structural characterization of the triple mutant suggests the improved affinity may be due to trapping a favoured β-strand structure for binding to the PCTD. This novel peptide may serve as a template for the future design of antivirals.
Collapse
Affiliation(s)
- Jingyu Zhan
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Shatabdi Chakraborty
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia; Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd, 3168, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Fei Yan
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC, 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, 3010, Parkville, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 3010, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Watanabe R, Zyla D, Parekh D, Hong C, Jones Y, Schendel SL, Wan W, Castillon G, Saphire EO. Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography. Cell 2024; 187:5587-5603.e19. [PMID: 39293445 PMCID: PMC11455616 DOI: 10.1016/j.cell.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.
Collapse
Affiliation(s)
- Reika Watanabe
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dawid Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Connor Hong
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ying Jones
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN 37235, USA
| | - Guillaume Castillon
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
9
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
11
|
Pennington H, Birtles D, Shi ZW, Lee J. A Salt Bridge and Disulfide Bond within the Lassa Virus Fusion Domain Are Required for the Initiation of Membrane Fusion. ACS OMEGA 2024; 9:4920-4930. [PMID: 38313535 PMCID: PMC10831964 DOI: 10.1021/acsomega.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infection with Lassa virus (LASV), an Old-World arenavirus that is endemic to West Africa, causes Lassa fever, a lethal hemorrhagic fever. Delivery of LASV's genetic material into the host cell is an integral component of its lifecycle. This is accomplished via membrane fusion, a process initiated by a hydrophobic sequence known as the fusion domain (FD). The LASV FD (G260-N295) consists of two structurally distinct regions: an N-terminal fusion peptide (FP: G260-T274) and an internal fusion loop (FL: C279-N295) that is connected by a short linker region (P275-Y278). However, the molecular mechanisms behind how the LASV FD initiates fusion remain unclear. Here, we demonstrate that the LASV FD adopts a fusogenic, helical conformation at a pH akin to that of the lysosomal compartment. Additionally, we identified a conserved disulfide bond (C279 and C292) and salt bridge (R282 and E289) within the FL that are pertinent to fusion. We found that the disulfide bond must be present so that the FD can bind to the lipid bilayer and subsequently initiate fusion. Moreover, the salt bridge is essential for the secondary structure of the FD such that it can associate with the lipid bilayer in the proper orientation for full functionality. In conclusion, our findings indicate that the LASV FD preferentially initiates fusion at a pH akin to that of the lysosome through a mechanism that requires a conserved salt bridge and, to a lesser extent, an intact disulfide bond within the internal FL.
Collapse
Affiliation(s)
- Hallie
N. Pennington
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Daniel Birtles
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Zoe W. Shi
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Jinwoo Lee
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| |
Collapse
|
12
|
Donnelly CM, Stewart M, Roby JA, Sundaramoorthy V, Forwood JK. Structural Determination of the Australian Bat Lyssavirus Nucleoprotein and Phosphoprotein Complex. Viruses 2023; 16:33. [PMID: 38229694 PMCID: PMC7615531 DOI: 10.3390/v16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that is crucial for viral assembly, and understanding the interface between these two proteins has the potential to provide insight into a key feature: the viral lifecycle. In this study, we used recombinant chimeric protein expression and X-ray crystallography to determine the structure of ABLV nucleoprotein bound to residues 1-40 of its phosphoprotein chaperone. Comparison of our results with the recently generated structure of RABV CVS-11 N0P demonstrated a highly conserved interface in this complex. Because the N0P interface is conserved in the lyssaviruses of phylogroup I, it is an attractive therapeutic target for multiple rabies-causing viral species.
Collapse
Affiliation(s)
- Camilla M. Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
13
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
14
|
Ferrero DS, Tomás Gilabert O, Verdaguer N. Structural insights on the nucleoprotein C-terminal domain of Měnglà virus. Microbiol Spectr 2023; 11:e0237323. [PMID: 37888996 PMCID: PMC10714759 DOI: 10.1128/spectrum.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Filoviruses are the causative agents of severe and often fatal hemorrhagic disease in humans. Měnglà virus (MLAV) is a recently reported filovirus, isolated from fruit bats that is capable to replicate in human cells, representing a potential risk for human health. An in-depth structural and functional knowledge of MLAV proteins is an essential step for antiviral research on this virus that can also be extended to other emerging filoviruses. In this study, we determined the first crystal structures of the C-terminal domain (CTD) of the MLAV nucleoprotein (NP), showing important similarities to the equivalent domain in MARV. The structural data also show that the NP CTD has the ability to form large helical oligomers that may participate in the control of cytoplasmic inclusion body formation during viral replication.
Collapse
Affiliation(s)
| | | | - Nuria Verdaguer
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
15
|
Bodmer BS, Vallbracht M, Ushakov DS, Wendt L, Chlanda P, Hoenen T. Ebola virus inclusion bodies are liquid organelles whose formation is facilitated by nucleoprotein oligomerization. Emerg Microbes Infect 2023; 12:2223727. [PMID: 37306660 PMCID: PMC10288931 DOI: 10.1080/22221751.2023.2223727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures. While it has been proposed that also EBOV IBs are liquid organelles, this has so far not been formally demonstrated. Here we used a combination of live cell microscopy, fluorescence recovery after photobleaching assays, and mutagenesis approaches together with reverse genetics-based generation of recombinant viruses to study the formation of EBOV IBs. Our results demonstrate that EBOV IBs are indeed liquid organelles, and that oligomerization but not IDRs of the EBOV nucleoprotein plays a key role in their formation. Additionally, VP35 (often considered the phosphoprotein-equivalent of EBOV) is not essential for IB formation, but alters their liquid behaviour. These findings define the molecular mechanism for the formation of EBOV IBs, which play a central role in the life cycle of this deadly virus.
Collapse
Affiliation(s)
- Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dmitry S. Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
16
|
Collados Rodríguez M, Maillard P, Journeaux A, Komarova AV, Najburg V, David RYS, Helynck O, Guo M, Zhong J, Baize S, Tangy F, Jacob Y, Munier-Lehmann H, Meurs EF. Novel Antiviral Molecules against Ebola Virus Infection. Int J Mol Sci 2023; 24:14791. [PMID: 37834238 PMCID: PMC10573436 DOI: 10.3390/ijms241914791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.
Collapse
Affiliation(s)
- Mila Collados Rodríguez
- School of Infection & Immunity (SII), College of Medical, Veterinary and Life Sciences (MVLS), Sir Michael Stoker Building, MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Alexandra Journeaux
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France;
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Raul-Yusef Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Blizard Institute—Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Mingzhe Guo
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Sylvain Baize
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Yves Jacob
- Université Paris Cité, 75013 Paris, France;
- Unité Génétique Moléculaire des Virus à ARN, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Eliane F. Meurs
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| |
Collapse
|
17
|
Fang J, Castillon G, Phan S, McArdle S, Hariharan C, Adams A, Ellisman MH, Deniz AA, Saphire EO. Spatial and functional arrangement of Ebola virus polymerase inside phase-separated viral factories. Nat Commun 2023; 14:4159. [PMID: 37443171 PMCID: PMC10345124 DOI: 10.1038/s41467-023-39821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Scripps Research, La Jolla, CA, USA
| | - Guillaume Castillon
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Aiyana Adams
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | | | |
Collapse
|
18
|
Ahmad A, Tigabu B, Ivanov A, Jerebtsova M, Ammosova T, Ramanathan P, Kumari N, Brantner CA, Pietzsch CA, Abdullah G, Popratiloff A, Widen S, Bukreyev A, Nekhai S. Ebola Virus NP Binding to Host Protein Phosphatase-1 Regulates Capsid Formation. RESEARCH SQUARE 2023:rs.3.rs-2963943. [PMID: 37333330 PMCID: PMC10274954 DOI: 10.21203/rs.3.rs-2963943/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication. When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was selected. This mutation moderately reduced EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Formation of EBOV capsids, when NP was co-expressed with VP24 and VP35, was impaired with NPE 619K. Treatment with 1E7-03 restored capsid formation by NP E619K mutation, but inhibited capsids formed by WT NP. The dimerization of NP E619K, tested in a split NanoBiT assay, was significantly decreased (~ 15-fold) compared to WT NP. NP E619K bound more efficiently to PP1 (~ 3-fold) but not B56 subunit of PP2A or VP30. Cross-linking and co-immunoprecipitation experiments showed fewer monomers and dimers for NP E619K which were increased with 1E7-03 treatment. NP E619K showed increased co-localization with PP1α compared to WT NP. Mutations of potential PP1 binding sites and NP deletions disrupted its interaction with PP1. Collectively, our findings suggest that PP1 binding to the NP regulates NP dimerization and capsid formation, and that NP E619K mutation, which has the enhanced PP1 binding, disrupts these processes. Our results point to a new role for PP1 in EBOV replication in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Steve Widen
- UTMB: The University of Texas Medical Branch at Galveston
| | | | | |
Collapse
|
19
|
Gérard FCA, Bourhis JM, Mas C, Branchard A, Vu DD, Varhoshkova S, Leyrat C, Jamin M. Structure and Dynamics of the Unassembled Nucleoprotein of Rabies Virus in Complex with Its Phosphoprotein Chaperone Module. Viruses 2022; 14:v14122813. [PMID: 36560817 PMCID: PMC9786881 DOI: 10.3390/v14122813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.
Collapse
Affiliation(s)
- Francine C. A. Gérard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, CNRS, CEA, EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anaïs Branchard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Duc Duy Vu
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Varhoshkova
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- Correspondence: (C.L.); (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
- Correspondence: (C.L.); (M.J.)
| |
Collapse
|
20
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Zinzula L, Mereu AM, Orsini M, Seeleitner C, Bracher A, Nagy I, Baumeister W. Ebola and Marburg virus VP35 coiled-coil validated as antiviral target by tripartite split-GFP complementation. iScience 2022; 25:105354. [PMID: 36325051 PMCID: PMC9619376 DOI: 10.1016/j.isci.2022.105354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) are highly pathogenic viruses in humans, against which approved antivirals are lacking. During EBOV and MARV infection, coiled-coil mediated oligomerization is essential for the virion protein 35 (VP35) polymerase co-factor function and type I interferon antagonism, making VP35 coiled-coil an elective drug target. We established a tripartite split-green fluorescent protein (GFP) fluorescence complementation (FC) system based on recombinant GFP-tagged EBOV and MARV VP35, which probes VP35 coiled-coil assembly by monitoring fluorescence on E. coli colonies, or in vitro in 96/384-multiwell. Oligomerization-defective VP35 mutants showed that correct coiled-coil knobs-into-holes pairing within VP35 oligomer is pre-requisite for GFP tags and GFP detector to reconstitute fluorescing full-length GFP. The method was validated by screening a small compound library, which identified Myricetin and 4,5,6,7-Tetrabromobenzotriazole as inhibitors of EBOV and MARV VP35 oligomerization-dependent FC with low-micromolar IC50 values. These findings substantiate the VP35 coiled-coil value as antiviral target. Ebola and Marburg virus VP35 oligomerize via trimeric and tetrameric coiled-coil VP35 coiled-coil assembly triggers fluorescence of a tripartite split-GFP system Mutations perturbing VP35 coiled-coil hamper split-GFP complementation Myricetin and TBBT inhibit split-GFP complementation mediated by VP35 coiled-coil
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| | - Angela Maria Mereu
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Risk Analysis and Public Health Surveillance, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Christine Seeleitner
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| |
Collapse
|
22
|
Yuan B, Peng Q, Cheng J, Wang M, Zhong J, Qi J, Gao GF, Shi Y. Structure of the Ebola virus polymerase complex. Nature 2022; 610:394-401. [PMID: 36171293 PMCID: PMC9517992 DOI: 10.1038/s41586-022-05271-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease1,2, there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis3. Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.
Collapse
Affiliation(s)
- Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Gonnin L, Richard CA, Gutsche I, Chevret D, Troussier J, Vasseur JJ, Debart F, Eléouët JF, Galloux M. Importance of RNA length for in vitro encapsidation by the nucleoprotein of human Respiratory Syncytial Virus. J Biol Chem 2022; 298:102337. [PMID: 35931116 PMCID: PMC9436823 DOI: 10.1016/j.jbc.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus has a negative-sense single-stranded RNA genome constitutively encapsidated by the viral nucleoprotein N, forming a helical nucleocapsid which is the template for viral transcription and replication by the viral polymerase L. Recruitment of L onto the nucleocapsid depends on the viral phosphoprotein P, which is an essential L cofactor. A prerequisite for genome and antigenome encapsidation is the presence of the monomeric, RNA-free, neosynthesized N protein, named N0. Stabilization of N0 depends on the binding of the N-terminal residues of P to its surface, which prevents N oligomerization. However, the mechanism involved in the transition from N0-P to nucleocapsid assembly, and thus in the specificity of viral genome encapsidation, is still unknown. Furthermore, the specific role of N oligomerization and RNA in the morphogenesis of viral factories, where viral transcription and replication occur, have not been elucidated although the interaction between P and N complexed to RNA has been shown to be responsible for this process. Here, using a chimeric protein comprising N and the first 40 N-terminal residues of P, we succeeded in purifying a recombinant N0-like protein competent for RNA encapsidation in vitro. Our results showed the importance of RNA length for stable encapsidation and revealed that the nature of the 5′ end of RNA does not explain the specificity of encapsidation. Finally, we showed that RNA encapsidation is crucial for the in vitro reconstitution of pseudo-viral factories. Together, our findings provide insight into respiratory syncytial virus viral genome encapsidation specificity.
Collapse
Affiliation(s)
- Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Irina Gutsche
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Didier Chevret
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Joris Troussier
- IBMM, Université de Montpellier, ENSCM, CNRS, UMR 5247, Montpellier, France
| | | | - Françoise Debart
- IBMM, Université de Montpellier, ENSCM, CNRS, UMR 5247, Montpellier, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
| |
Collapse
|
24
|
Abstract
Filovirus-infected cells are characterized by typical cytoplasmic inclusion bodies (IBs) located in the perinuclear region. The formation of these IBs is induced mainly by the accumulation of the filoviral nucleoprotein NP, which recruits the other nucleocapsid proteins, the polymerase co-factor VP35, the polymerase L, the transcription factor VP30 and VP24 via direct or indirect protein-protein interactions. Replication of the negative-strand RNA genomes by the viral polymerase L and VP35 occurs in the IBs, resulting in the synthesis of positive-strand genomes, which are encapsidated by NP, thus forming ribonucleoprotein complexes (antigenomic RNPs). These newly formed antigenomic RNPs in turn serve as templates for the synthesis of negative-strand RNA genomes that are also encapsidated by NP (genomic RNPs). Still in the IBs, genomic RNPs mature into tightly packed transport-competent nucleocapsids (NCs) by the recruitment of the viral protein VP24. NCs are tightly coiled left-handed helices whose structure is mainly determined by the multimerization of NP at its N-terminus, and these helices form the inner layer of the NCs. The RNA genome is fixed by 2 lobes of the NP N-terminus and is thus guided by individual NP molecules along the turns of the helix. Direct interaction of the NP C-terminus with the VP35 and VP24 molecules forms the outer layer of the NCs. Once formed, NCs that are located at the border of the IBs recruit actin polymerization machinery to one of their ends to drive their transport to budding sites for their envelopment and final release. Here, we review the current knowledge on the structure, assembly, and transport of filovirus NCs.
Collapse
Affiliation(s)
- Olga Dolnik
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
25
|
Wang F, Sheppard CM, Mistry B, Staller E, Barclay WS, Grimes JM, Fodor E, Fan H. The C-terminal LCAR of host ANP32 proteins interacts with the influenza A virus nucleoprotein to promote the replication of the viral RNA genome. Nucleic Acids Res 2022; 50:5713-5725. [PMID: 35639917 PMCID: PMC9177957 DOI: 10.1093/nar/gkac410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The segmented negative-sense RNA genome of influenza A virus is assembled into ribonucleoprotein complexes (RNP) with viral RNA-dependent RNA polymerase and nucleoprotein (NP). It is in the context of these RNPs that the polymerase transcribes and replicates viral RNA (vRNA). Host acidic nuclear phosphoprotein 32 (ANP32) family proteins play an essential role in vRNA replication by mediating the dimerization of the viral polymerase via their N-terminal leucine-rich repeat (LRR) domain. However, whether the C-terminal low-complexity acidic region (LCAR) plays a role in RNA synthesis remains unknown. Here, we report that the LCAR is required for viral genome replication during infection. Specifically, we show that the LCAR directly interacts with NP and this interaction is mutually exclusive with RNA. Furthermore, we show that the replication of a short vRNA-like template that can be replicated in the absence of NP is less sensitive to LCAR truncations compared with the replication of full-length vRNA segments which is NP-dependent. We propose a model in which the LCAR interacts with NP to promote NP recruitment to nascent RNA during influenza virus replication, ensuring the co-replicative assembly of RNA into RNPs.
Collapse
Affiliation(s)
- Fangzheng Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carol M Sheppard
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, UK
| | - Bhakti Mistry
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Department of Infectious Disease, Faculty of Medicine, Imperial College, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, UK.,Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Galão RP, Wilson H, Schierhorn KL, Debeljak F, Bodmer BS, Goldhill D, Hoenen T, Wilson SJ, Swanson CM, Neil SJD. TRIM25 and ZAP target the Ebola virus ribonucleoprotein complex to mediate interferon-induced restriction. PLoS Pathog 2022; 18:e1010530. [PMID: 35533151 PMCID: PMC9119685 DOI: 10.1371/journal.ppat.1010530] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/19/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.
Collapse
Affiliation(s)
- Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Kristina L. Schierhorn
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Franka Debeljak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Daniel Goldhill
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sam J. Wilson
- MRC Centre for Virus Research, University of Glasgow, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| |
Collapse
|
27
|
van Tol S, Kalveram B, Ilinykh PA, Ronk A, Huang K, Aguilera-Aguirre L, Bharaj P, Hage A, Atkins C, Giraldo MI, Wakamiya M, Gonzalez-Orozco M, Warren AN, Bukreyev A, Freiberg AN, Rajsbaum R. Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathog 2022; 18:e1010532. [PMID: 35533195 PMCID: PMC9119628 DOI: 10.1371/journal.ppat.1010532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/19/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Ebola virus (EBOV) VP35 is a polyfunctional protein involved in viral genome packaging, viral polymerase function, and host immune antagonism. The mechanisms regulating VP35's engagement in different functions are not well-understood. We previously showed that the host E3 ubiquitin ligase TRIM6 ubiquitinates VP35 at lysine 309 (K309) to facilitate virus replication. However, how K309 ubiquitination regulates the function of VP35 as the viral polymerase co-factor and the precise stage(s) of the EBOV replication cycle that require VP35 ubiquitination are not known. Here, we generated recombinant EBOVs encoding glycine (G) or arginine (R) mutations at VP35/K309 (rEBOV-VP35/K309G/-R) and show that both mutations prohibit VP35/K309 ubiquitination. The K309R mutant retains dsRNA binding and efficient type-I Interferon (IFN-I) antagonism due to the basic residue conservation. The rEBOV-VP35/K309G mutant loses the ability to efficiently antagonize the IFN-I response, while the rEBOV-VP35/K309R mutant's suppression is enhanced. The replication of both mutants was significantly attenuated in both IFN-competent and -deficient cells due to impaired interactions with the viral polymerase. The lack of ubiquitination on VP35/K309 or TRIM6 deficiency disrupts viral transcription with increasing severity along the transcriptional gradient. This disruption of the transcriptional gradient results in unbalanced viral protein production, including reduced synthesis of the viral transcription factor VP30. In addition, lack of ubiquitination on K309 results in enhanced interactions with the viral nucleoprotein and premature nucleocapsid packaging, leading to dysregulation of virus assembly. Overall, we identified a novel role of VP35 ubiquitination in coordinating viral transcription and assembly.
Collapse
Affiliation(s)
- Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adam Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Preeti Bharaj
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Abbey N. Warren
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
28
|
Wang Y, Binning JM, Pintilie GD, Chiu W, Amarasinghe GK, Leung DW, Su Z. Cryo-EM analysis of Ebola virus nucleocapsid-like assembly. STAR Protoc 2022; 3:101030. [PMID: 34977676 PMCID: PMC8689349 DOI: 10.1016/j.xpro.2021.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This protocol describes the reconstitution of the filamentous Ebola virus nucleocapsid-like assembly in vitro. This is followed by solving the cryo-EM structure using helical reconstruction, and flexible fitting of the existing model into the 5.8 Å cryo-EM map. The protocol can be applied to other filamentous viral protein assemblies, particularly those with high flexibility and moderate resolution maps, which present technical challenges to model building. For complete details on the use and execution of this profile, please refer to Su et al. (2018). Preparation of Ebola nucleocapsid-like assembly for cryo-EM Cryo-EM helical reconstruction of flexible filamentous protein assembly Flexible fitting of protein model into cryo-EM density at moderate resolution
Collapse
Affiliation(s)
- Yan Wang
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Jennifer M. Binning
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Grigore D. Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Wah Chiu
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Corresponding author
| | - Daisy W. Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Corresponding author
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy and Cancer Center, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
- Corresponding author
| |
Collapse
|
29
|
Fujita-Fujiharu Y, Sugita Y, Takamatsu Y, Houri K, Igarashi M, Muramoto Y, Nakano M, Tsunoda Y, Taniguchi I, Becker S, Noda T. Structural insight into Marburg virus nucleoprotein-RNA complex formation. Nat Commun 2022; 13:1191. [PMID: 35246537 PMCID: PMC8897395 DOI: 10.1038/s41467-022-28802-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
The nucleoprotein (NP) of Marburg virus (MARV), a close relative of Ebola virus (EBOV), encapsidates the single-stranded, negative-sense viral genomic RNA (vRNA) to form the helical NP-RNA complex. The NP-RNA complex constitutes the core structure for the assembly of the nucleocapsid that is responsible for viral RNA synthesis. Although appropriate interactions among NPs and RNA are required for the formation of nucleocapsid, the structural basis of the helical assembly remains largely elusive. Here, we show the structure of the MARV NP-RNA complex determined using cryo-electron microscopy at a resolution of 3.1 Å. The structures of the asymmetric unit, a complex of an NP and six RNA nucleotides, was very similar to that of EBOV, suggesting that both viruses share common mechanisms for the nucleocapsid formation. Structure-based mutational analysis of both MARV and EBOV NPs identified key residues for helical assembly and subsequent viral RNA synthesis. Importantly, most of the residues identified were conserved in both viruses. These findings provide a structural basis for understanding the nucleocapsid formation and contribute to the development of novel antivirals against MARV and EBOV.
Collapse
Affiliation(s)
- Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuki Takamatsu
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-city, Tokyo, 208-0011, Japan
| | - Kazuya Houri
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichiro Taniguchi
- Laboratory of RNA system, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Stephan Becker
- Institute of Virology, University of Marburg, 35043, Marburg, Germany
- German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, University of Marburg, 35043, Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
30
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
31
|
Corona A, Fanunza E, Salata C, Morwitzer MJ, Distinto S, Zinzula L, Sanna C, Frau A, Daino GL, Quartu M, Taglialatela-Scafati O, Rigano D, Reid S, Mirazimi A, Tramontano E. Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production. Antiviral Res 2022; 198:105251. [DOI: 10.1016/j.antiviral.2022.105251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
|
32
|
The Nucleocapsid of Paramyxoviruses: Structure and Function of an Encapsidated Template. Viruses 2021; 13:v13122465. [PMID: 34960734 PMCID: PMC8708338 DOI: 10.3390/v13122465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Viruses of the Paramyxoviridae family share a common and complex molecular machinery for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex, termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L) and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several aspects of paramyxovirus transcription and replication, including structural and functional data on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts, interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase complex (release of the encased RNA and interaction network allowing the progress of the polymerase complex). Finally, this review presents models of paramyxovirus transcription and replication.
Collapse
|
33
|
Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses 2021; 13:v13122449. [PMID: 34960719 PMCID: PMC8706346 DOI: 10.3390/v13122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.
Collapse
|
34
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
35
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
36
|
Jalali T, Salehi-Vaziri M, Pouriayevali MH, Gargari SLM. Aptamer based diagnosis of crimean-congo hemorrhagic fever from clinical specimens. Sci Rep 2021; 11:12639. [PMID: 34135365 PMCID: PMC8209218 DOI: 10.1038/s41598-021-91826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease. The widespread geographic distribution of the disease and the increase in the incidence of the disease from new regions, placed CCHF in a list of public health emergency contexts. The rapid diagnosis, in rural and remote areas where the majority of cases occur, is essential for patient management. Aptamers are considered as a specific and sensitive tool for being used in rapid diagnostic methods. The Nucleoprotein (NP) of the CCHF virus (CCHFV) was selected as the target for the isolation of aptamers based on its abundance and conservative structure, among other viral proteins. A total of 120 aptamers were obtained through 9 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment) from the ssDNA aptamer library, including the random 40-nucleotide ssDNA region between primer binding sites (GCCTGTTGTGAGCCTCCTAAC(N40)GGGAGACAAGAATAAGCA). The KD of aptamers was calculated using the SPR technique. The Apt33 with the highest affinity to NP was selected to design the aptamer-antibody ELASA test. It successfully detected CCHF NP in the concentration of 90 ng/ml in human serum. Evaluation of aptamer-antibody ELASA with clinical samples showed 100% specificity and sensitivity of the test. This simple, specific, and the sensitive assay can be used as a rapid and early diagnosis tool, as well as the use of this aptamer in point of care test near the patient. Our results suggest that the discovered aptamer can be used in various aptamer-based rapid diagnostic tests for the diagnosis of CCHF virus infection.
Collapse
Affiliation(s)
- Tahmineh Jalali
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran.,Reaserch Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
37
|
Zinzula L, Beck F, Klumpe S, Bohn S, Pfeifer G, Bollschweiler D, Nagy I, Plitzko JM, Baumeister W. Cryo-EM structure of the cetacean morbillivirus nucleoprotein-RNA complex. J Struct Biol 2021; 213:107750. [PMID: 34089875 DOI: 10.1016/j.jsb.2021.107750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Cetacean morbillivirus (CeMV) is an emerging and highly infectious paramyxovirus that causes outbreaks in cetaceans and occasionally in pinnipeds, representing a major threat to biodiversity and conservation of endangered marine mammal populations in both hemispheres. As for all non-segmented, negative-sense, single-stranded RNA (ssRNA) viruses, the morbilliviral genome is enwrapped by thousands of nucleoprotein (N) protomers. Each bound to six ribonucleotides, N protomers assemble to form a helical ribonucleoprotein (RNP) complex that serves as scaffold for nucleocapsid formation and as template for viral replication and transcription. While the molecular details on RNP complexes elucidated in human measles virus (MeV) served as paradigm model for these processes in all members of the Morbillivirus genus, no structural information has been obtained from other morbilliviruses, nor has any CeMV structure been solved so far. We report the structure of the CeMV RNP complex, reconstituted in vitro upon binding of recombinant CeMV N to poly-adenine ssRNA hexamers and solved to 4.0 Å resolution by cryo-electron microscopy. In spite of the amino acid sequence similarity and consequently similar folding of the N protomer, the CeMV RNP complex exhibits different helical parameters as compared to previously reported MeV orthologs. The CeMV structure reveals exclusive interactions leading to more extensive protomer-RNA and protomer-protomer interfaces. We identified twelve residues, among those varying between CeMV strains, as putatively important for the stabilization of the RNP complex, which highlights the need to study the potential of CeMV N mutations that modulate nucleocapsid assembly to also affect viral phenotype and host adaptation.
Collapse
Affiliation(s)
- Luca Zinzula
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Beck
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sven Klumpe
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stefan Bohn
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Günter Pfeifer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Daniel Bollschweiler
- Max-Planck Institute of Biochemistry, Cryo-EM Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen M Plitzko
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
38
|
Xu C, Katyal N, Nesterova T, Perilla JR. Molecular determinants of Ebola nucleocapsid stability from molecular dynamics simulations. J Chem Phys 2021; 153:155102. [PMID: 33092380 DOI: 10.1063/5.0021491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebola virus (EBOV) is a human pathogen with the ability to cause hemorrhagic fever and bleeding diathesis in hosts. The life cycle of EBOV depends on its nucleocapsid. The Ebola nucleocapsid consists of a helical assembly of nucleoproteins (NPs) encapsidating single-stranded viral RNA (ssRNA). Knowledge of the molecular determinants of Ebola nucleocapsid stability is essential for the development of therapeutics against EBOV. However, large degrees of freedom associated with the Ebola nucleocapsid helical assembly pose a computational challenge, thereby limiting the previous simulation studies to the level of monomers. In the present work, we have performed all atom molecular dynamics (MD) simulations of the helical assembly of EBOV nucleoproteins in the absence and presence of ssRNA. We found that ssRNA is essential for maintaining structural integrity of the nucleocapsid. Other molecular determinants observed to stabilize the nucleocapsid include NP-RNA and NP-NP interactions and ion distributions. Additionally, the structural and dynamical behavior of the nucleocapsid monomer depends on its position in the helical assembly. NP monomers present on the longitudinal edges of the helical tube are more exposed, flexible, and have weaker NP-NP interactions than those residing in the center. This work provides key structural features stabilizing the nucleocapsid that may serve as therapeutic targets.
Collapse
Affiliation(s)
- Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Nidhi Katyal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Tanya Nesterova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
39
|
Crystal structure of human LC8 bound to a peptide from Ebola virus VP35. J Microbiol 2021; 59:410-416. [PMID: 33630249 DOI: 10.1007/s12275-021-0641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central β-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.
Collapse
|
40
|
Wu L, Jin D, Wang D, Jing X, Gong P, Qin Y, Chen M. The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding. Protein Cell 2020; 13:120-140. [PMID: 33141416 PMCID: PMC8783937 DOI: 10.1007/s13238-020-00764-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped negative-sense RNA virus and a member of the filovirus family. Nucleoprotein (NP) expression alone leads to the formation of inclusion bodies (IBs), which are critical for viral RNA synthesis. The matrix protein, VP40, not only plays a critical role in virus assembly/budding, but also can regulate transcription and replication of the viral genome. However, the molecular mechanism by which VP40 regulates viral RNA synthesis and virion assembly/budding is unknown. Here, we show that within IBs the N-terminus of NP recruits VP40 and is required for VLP-containing NP release. Furthermore, we find four point mutations (L692A, P697A, P698A and W699A) within the C-terminal hydrophobic core of NP result in a stronger VP40-NP interaction within IBs, sequestering VP40 within IBs, reducing VP40-VLP egress, abolishing the incorporation of NC-like structures into VP40-VLP, and inhibiting viral RNA synthesis, suggesting that the interaction of N-terminus of NP with VP40 induces a conformational change in the C-terminus of NP. Consequently, the C-terminal hydrophobic core of NP is exposed and binds VP40, thereby inhibiting RNA synthesis and initiating virion assembly/budding.
Collapse
Affiliation(s)
- Linjuan Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dongning Jin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuping Jing
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
41
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
42
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
43
|
Miyake T, Farley CM, Neubauer BE, Beddow TP, Hoenen T, Engel DA. Ebola Virus Inclusion Body Formation and RNA Synthesis Are Controlled by a Novel Domain of Nucleoprotein Interacting with VP35. J Virol 2020; 94:e02100-19. [PMID: 32493824 PMCID: PMC7394894 DOI: 10.1128/jvi.02100-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) inclusion bodies (IBs) are cytoplasmic sites of nucleocapsid formation and RNA replication, housing key steps in the virus life cycle that warrant further investigation. During infection, IBs display dynamic properties regarding their size and location. The contents of IBs also must transition prior to further viral maturation, assembly, and release, implying additional steps in IB function. Interestingly, the expression of the viral nucleoprotein (NP) alone is sufficient for the generation of IBs, indicating that it plays an important role in IB formation during infection. In addition to NP, other components of the nucleocapsid localize to IBs, including VP35, VP24, VP30, and the RNA polymerase L. We previously defined and solved the crystal structure of the C-terminal domain of NP (NP-Ct), but its role in virus replication remained unclear. Here, we show that NP-Ct is necessary for IB formation when NP is expressed alone. Interestingly, we find that NP-Ct is also required for the production of infectious virus-like particles (VLPs), and that defective VLPs with NP-Ct deletions are significantly reduced in viral RNA content. Furthermore, coexpression of the nucleocapsid component VP35 overcomes deletion of NP-Ct in triggering IB formation, demonstrating a functional interaction between the two proteins. Of all the EBOV proteins, only VP35 is able to overcome the defect in IB formation caused by the deletion of NP-Ct. This effect is mediated by a novel protein-protein interaction between VP35 and NP that controls both regulation of IB formation and RNA replication itself and that is mediated by a newly identified functional domain of NP, the central domain.IMPORTANCE Inclusion bodies (IBs) are cytoplasmic sites of RNA synthesis for a variety of negative-sense RNA viruses, including Ebola virus. In addition to housing important steps in the viral life cycle, IBs protect new viral RNA from innate immune attack and contain specific host proteins whose function is under study. A key viral factor in Ebola virus IB formation is the nucleoprotein, NP, which also is important in RNA encapsidation and synthesis. In this study, we have identified two domains of NP that control inclusion body formation. One of these, the central domain (CD), interacts with viral protein VP35 to control both inclusion body formation and RNA synthesis. The other is the NP C-terminal domain (NP-Ct), whose function has not previously been reported. These findings contribute to a model in which NP and its interactions with VP35 link the establishment of IBs to the synthesis of viral RNA.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Charlotte M Farley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Benjamin E Neubauer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Beddow
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
44
|
Ivanov A, Ramanathan P, Parry C, Ilinykh PA, Lin X, Petukhov M, Obukhov Y, Ammosova T, Amarasinghe GK, Bukreyev A, Nekhai S. Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell Mol Life Sci 2020; 77:2579-2603. [PMID: 31562565 PMCID: PMC7101265 DOI: 10.1007/s00018-019-03303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.
Collapse
Affiliation(s)
- Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Christian Parry
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- College of Dentistry, Howard University, Washington, D.C., 20059, USA
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Russian Nuclear Physics Institute Named After B. P. Konstantinov, National Research Center "Kurchatov Institute", Gatchina, 188300, Russia
- Russian Scientific Center of Radiology and Surgical Technologies Named After A. M. Granov, St. Petersburg, 197758, Russia
| | - Yuri Obukhov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Medicine, Howard University, Washington, D.C., 20059, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Department of Microbiology and Immunology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Galveston National Laboratory, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA.
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA.
- Department of Medicine, Howard University, Washington, D.C., 20059, USA.
| |
Collapse
|
45
|
Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nat Commun 2020; 11:2953. [PMID: 32528005 PMCID: PMC7289892 DOI: 10.1038/s41467-020-16768-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
The West Africa Ebola outbreak was the largest outbreak ever recorded, with over 28,000 reported infections; this devastating epidemic emphasized the need to understand the mechanisms to counteract virus infection. Here, we screen a library of nearly 400 interferon-stimulated genes (ISGs) against a biologically contained Ebola virus and identify several ISGs not previously known to affect Ebola virus infection. Overexpression of the top ten ISGs attenuates virus titers by up to 1000-fold. Mechanistic studies demonstrate that three ISGs interfere with virus entry, six affect viral transcription/replication, and two inhibit virion formation and budding. A comprehensive study of one ISG (CCDC92) that shows anti-Ebola activity in our screen reveals that CCDC92 can inhibit viral transcription and the formation of complete virions via an interaction with the viral protein NP. Our findings provide insights into Ebola virus infection that could be exploited for the development of therapeutics against this virus. Here, Kuroda et al. screen a library of nearly 400 interferon-stimulated genes (ISGs) and identify several ISGs that inhibit Ebola virus entry, viral transcription/replication, or virion formation. The study provides insights into interactions between Ebola and the host cells.
Collapse
|
46
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Lin AE, Diehl WE, Cai Y, Finch CL, Akusobi C, Kirchdoerfer RN, Bollinger L, Schaffner SF, Brown EA, Saphire EO, Andersen KG, Kuhn JH, Luban J, Sabeti PC. Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses 2020; 12:E105. [PMID: 31952352 PMCID: PMC7019320 DOI: 10.3390/v12010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/17/2023] Open
Abstract
For highly pathogenic viruses, reporter assays that can be rapidly performed are critically needed to identify potentially functional mutations for further study under maximal containment (e.g., biosafety level 4 [BSL-4]). The Ebola virus nucleoprotein (NP) plays multiple essential roles during the viral life cycle, yet few tools exist to study the protein under BSL-2 or equivalent containment. Therefore, we adapted reporter assays to measure NP oligomerization and virion-like particle (VLP) production in live cells and further measured transcription and replication using established minigenome assays. As a proof-of-concept, we examined the NP-R111C substitution, which emerged during the 2013‒2016 Western African Ebola virus disease epidemic and rose to high frequency. NP-R111C slightly increased NP oligomerization and VLP budding but slightly decreased transcription and replication. By contrast, a synthetic charge-reversal mutant, NP-R111E, greatly increased oligomerization but abrogated transcription and replication. These results are intriguing in light of recent structures of NP oligomers, which reveal that the neighboring residue, K110, forms a salt bridge with E349 on adjacent NP molecules. By developing and utilizing multiple reporter assays, we find that the NP-111 position mediates a complex interplay between NP's roles in protein structure, virion budding, and transcription and replication.
Collapse
Affiliation(s)
- Aaron E. Lin
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; (S.F.S.); (E.A.B.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (Y.C.); (C.L.F.); (L.B.); (J.H.K.)
| | - Courtney L. Finch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (Y.C.); (C.L.F.); (L.B.); (J.H.K.)
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02120, USA;
| | | | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (Y.C.); (C.L.F.); (L.B.); (J.H.K.)
| | - Stephen F. Schaffner
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; (S.F.S.); (E.A.B.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A. Brown
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; (S.F.S.); (E.A.B.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kristian G. Andersen
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Scripps Translational Science Institute, La Jolla, CA 92037, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (Y.C.); (C.L.F.); (L.B.); (J.H.K.)
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Pardis C. Sabeti
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; (S.F.S.); (E.A.B.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
48
|
The Ebola Virus Nucleoprotein Recruits the Nuclear RNA Export Factor NXF1 into Inclusion Bodies to Facilitate Viral Protein Expression. Cells 2020; 9:cells9010187. [PMID: 31940815 PMCID: PMC7017048 DOI: 10.3390/cells9010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
Ebola virus (EBOV) causes severe outbreaks of viral hemorrhagic fever in humans. While virus-host interactions are promising targets for antivirals, there is only limited knowledge regarding the interactions of EBOV with cellular host factors. Recently, we performed a genome-wide siRNA screen that identified the nuclear RNA export factor 1 (NXF1) as an important host factor for the EBOV life cycle. NXF1 is a major component of the nuclear mRNA export pathway that is usurped by many viruses whose life cycles include nuclear stages. However, the role of NXF1 in the life cycle of EBOV, a virus replicating in cytoplasmic inclusion bodies, remains unknown. In order to better understand the role of NXF1 in the EBOV life cycle, we performed a combination of co-immunoprecipitation and double immunofluorescence assays to characterize the interactions of NXF1 with viral proteins and RNAs. Additionally, using siRNA-mediated knockdown of NXF1 together with functional assays, we analyzed the role of NXF1 in individual aspects of the virus life cycle. With this approach we identified the EBOV nucleoprotein (NP) as a viral interaction partner of NXF1. Further studies revealed that NP interacts with the RNA-binding domain of NXF1 and competes with RNA for this interaction. Co-localization studies showed that RNA binding-deficient, but not wildtype NXF1, accumulates in NP-derived inclusion bodies, and knockdown experiments demonstrated that NXF1 is necessary for viral protein expression, but not for viral RNA synthesis. Finally, our results showed that NXF1 interacts with viral mRNAs, but not with viral genomic RNAs. Based on these results we suggest a model whereby NXF1 is recruited into inclusion bodies to promote the export of viral mRNA:NXF1 complexes from these sites. This would represent a novel function for NXF1 in the life cycle of cytoplasmically replicating viruses, and may provide a basis for new therapeutic approaches against EBOV, and possibly other emerging viruses.
Collapse
|
49
|
Chen J, He Z, Yuan Y, Huang F, Luo B, Zhang J, Pan T, Zhang H, Zhang J. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg Microbes Infect 2020; 8:1347-1360. [PMID: 31516086 PMCID: PMC6758638 DOI: 10.1080/22221751.2019.1662736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polymerase complex of Ebola virus (EBOV) is the functional unit for transcription and replication of viral genome. Nucleoprotein (NP) is a multifunctional protein with high RNA binding affinity and recruits other viral proteins to form functional polymerase complex. In our study, we investigated host proteins associated with EBOV polymerase complex using NP as bait in a transcription and replication competent minigenome system by mass spectrometry analysis and identified SET and MYND domain-containing protein 3 (SMYD3) as a novel host protein which was required for the replication of EBOV. SMYD3 specifically interacted with NP and was recruited to EBOV inclusion bodies through NP. The depletion of SMYD3 dramatically suppressed EBOV mRNA production. A mimic of non-phosphorylated VP30, which is a transcription activator, could partially rescue the viral mRNA production downregulated by the depletion of SMYD3. In addition, SMYD3 promoted NP-VP30 interaction in a dose-dependent manner. These results revealed that SMYD3 was a novel host factor recruited by NP to supporting EBOV mRNA transcription through increasing the binding of VP30 to NP. Thus, our study provided a new understanding of mechanism underlying the transcription of EBOV genome, and a novel anti-EBOV drug design strategy by targeting SMYD3.
Collapse
Affiliation(s)
- Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Jianhua Zhang
- CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
50
|
[Structural studies on negative-strand RNA virus]. Uirusu 2020; 70:91-100. [PMID: 33967118 DOI: 10.2222/jsv.70.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Negative-strand RNA viruses do not possess a rigid viral shell, and their structures are flexible and fragile. We have applied various electron microscopies to analyze the morphologies of influenza and Ebola virus. Our studies have revealed the native interior and exterior ultrastructures of influenza virus as well as the assembly of Ebola virus core in atomic detail.
Collapse
|