1
|
Yin Z, Huang D, Kuhn EMA, Moriarty TF, Li G, Wang X. Unraveling persistent bacteria: Formation, niches, and eradication strategies. Microbiol Res 2025; 297:128189. [PMID: 40311456 DOI: 10.1016/j.micres.2025.128189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Persistent bacteria (persisters) are phenotypic variants that emerge either randomly or in response to a range of adverse environmental conditions. Persistence represents a state whereby a subpopulation of microorganisms can spontaneously enter a "dormant" state in response to environmental factors, while simultaneously exhibiting elevated tolerance to antimicrobial agents. This review provides the current definition of bacterial persistence and summarizes the mechanisms of persisters formation as well as the various niches of bacterial persistence encountered in clinical practice. Strategies targeting persisters are outlined, including but not limited to direct killing, awakening of persistent bacteria, combined clearance, and inhibition of persistence formation, and we conclude by proposing challenges and solutions for addressing bacterial persistence in current clinical practice.
Collapse
Affiliation(s)
- Zibo Yin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China
| | - Diandian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China
| | | | | | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China.
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR China.
| |
Collapse
|
2
|
Song PY, Tsai CE, Chen YC, Huang YW, Chen PP, Wang TH, Hu CY, Chen PY, Ku C, Hsia KC, Ting SY. An interbacterial cysteine protease toxin inhibits cell growth by targeting type II DNA topoisomerases GyrB and ParE. PLoS Biol 2025; 23:e3003208. [PMID: 40424468 DOI: 10.1371/journal.pbio.3003208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteria deploy a diverse arsenal of toxic effectors to antagonize competitors, profoundly influencing the composition of microbial communities. Previous studies have identified an interbacterial toxin predicted to exhibit proteolytic activity that is broadly distributed among gram-negative bacteria. However, the precise mechanism of intoxication remains unresolved. Here, we demonstrate that one such protease toxin from Escherichia coli, Cpe1, disrupts DNA replication and chromosome segregation by cleaving conserved sequences within the ATPase domain of type II DNA topoisomerases GyrB and ParE. This cleavage effectively inhibits topoisomerase-mediated relaxation of supercoiled DNA, resulting in impaired bacterial growth. Cpe1 belongs to the papain-like cysteine protease family and is associated with toxin delivery pathways, including the type VI secretion system and contact-dependent growth inhibition. The structure of Cpe1 in complex with its immunity protein reveals a neutralization mechanism involving competitive substrate binding rather than active site occlusion, distinguishing it from previously characterized effector-immunity pairs. Our findings unveil a unique mode of interbacterial intoxication and provide insights into how bacteria protect themselves from self-poisoning by protease toxins.
Collapse
Affiliation(s)
- Pin-Yi Song
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-En Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Pang Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Haw Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chao-Yuan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Po-Yin Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - See-Yeun Ting
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang H, Tao S, Chen H, Fang Y, Xu Y, Han AX, Ma F, Liang W. Type II Toxin-Antitoxin Systems in Escherichia coli. Infect Drug Resist 2025; 18:1083-1096. [PMID: 40027916 PMCID: PMC11869752 DOI: 10.2147/idr.s501485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
The toxin-antitoxin (TA) system is widespread in prokaryotes and archaea, comprising toxins and antitoxins that counterbalance each other. Based on the nature and mode of action of antitoxins, they are classified into eight groups (type I to VIII). Both the toxins and the antitoxins are proteins in type II TA systems, and the antitoxin gene is usually upstream of the toxin gene. Both genes are organized in an operon and expression of which is regulated at the transcriptional level by the antitoxin-toxin complex, which binds the operon DNA through the DNA-binding domain of the antitoxin. The TA system plays a crucial role in various cellular processes, such as programmed cell death, cell growth, persistence, and virulence. Currently, Type II TA systems have been used as a target for developing new antibacterial agents for treatment. Therefore, the focus of this review is to understand the unique response of Type II TA in Escherichia coli to stress and its contribution to the maintenance of resistant strains. Here, we review the Type II TA system in E. coli and describe their regulatory mechanisms and biological functions. Understanding how TA promotes phenotypic heterogeneity and pathogenesis mechanisms may help to develop new treatments for infections caused by pathogens rationally.
Collapse
Affiliation(s)
- He Zhang
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - A-Xiang Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Fang Ma
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
Borde C, Bruno L, Espéli O. Untangling bacterial DNA topoisomerases functions. Biochem Soc Trans 2024; 52:2321-2331. [PMID: 39508659 DOI: 10.1042/bst20240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Topoisomerases are the main enzymes capable of resolving the topological constraints imposed by DNA transactions such as transcription or replication. All bacteria possess topoisomerases of different types. Although bacteria with circular replicons should encounter similar DNA topology issues, the distribution of topoisomerases varies from one bacterium to another, suggesting polymorphic functioning. Recently, several proteins restricting, enhancing or modifying the activity of topoisomerases were discovered, opening the way to a new area of understanding DNA topology management during the bacterial cell cycle. In this review, we discuss the distribution of topoisomerases across the bacterial phylum and current knowledge on the interplay among the different topoisomerases to maintain topological homeostasis.
Collapse
Affiliation(s)
- Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lisa Bruno
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
6
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
7
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
8
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
9
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Choi W, Maharjan A, Im HG, Park JY, Park JT, Park JH. Identification and Characterization of HEPN-MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH. J Microbiol 2023; 61:411-421. [PMID: 37071293 DOI: 10.1007/s12275-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/19/2023]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jungpyeong, 27909, Republic of Korea
| | - Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae Gang Im
- BIORCHESTRA Co., LTD., Daejeon, 34013, Republic of Korea
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
11
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonika Sonika
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Mishra
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashikala Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
12
|
Cho YY, Ko KS. ColE-type plasmid bearing bla OXA-232 increases persister cell formation. J Glob Antimicrob Resist 2023; 32:113-117. [PMID: 36806700 DOI: 10.1016/j.jgar.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES Bacterial persister cells are a sub-population of cells that are tolerant to high concentrations of antibiotics. In this study, we investigated the effect of plasmids bearing carbapenemase genes on persister cell formation. METHODS Three plasmids, IncX3-type plasmid with blaNDM-1, IncN-type plasmid with blaKPC-2, and ColE-type plasmid with blaOXA-232, were transformed into Escherichia coli MG1655. For the ColE-type plasmid (pM5_OXA232), gene-deletion plasmids were constructed and transformed into the MG1655. Persister assays were performed against ciprofloxacin and amikacin, and expression levels of relA and spoT were measured for the wild-type E. coli and all transformants. RESULTS Unlike the other two plasmids, transformation of ColE-type plasmid (pM5_OXA232) caused a significant increase in the formation of persister cells. Compared with transformants that harboured intact pM5_OXA232, transformants that harboured plasmids with deletions of gene(s), vbhA, hypothetical gene, or a mobile gene cassette showed decreased persister cell formation. Expression levels of relA and spoT exhibited patterns similar to those of persister cell formation rates, particularly against ciprofloxacin. CONCLUSION In this study, we showed that a small ColE-type plasmid bearing blaOXA-232 has an effect on persister cell formation, possibly contributing to the dissemination of low-level carbapanemase.
Collapse
Affiliation(s)
- Yun Young Cho
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Kato F, Yamaguchi Y, Inouye K, Matsuo K, Ishida Y, Inouye M. A novel gyrase inhibitor from toxin-antitoxin system expressed by Staphylococcus aureus. FEBS J 2023; 290:1502-1518. [PMID: 36148483 DOI: 10.1111/febs.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Toxin-antitoxin (TA) systems consist of a toxin inhibiting essential cellular functions (such as DNA, RNA and protein synthesis), and its cognate antitoxin neutralizing the toxicity. Recently, we identified a TA system termed TsbA/TsbT in the Staphylococcus aureus genome. The induction of the tsbT gene in Escherichia coli halted both DNA and RNA synthesis, reduced supercoiled plasmid and resulted in increasingly relaxed DNA. These results suggested that DNA gyrase was the target of TsbT. In addition, TsbT inhibited both E. coli and S. aureus DNA gyrase activity and induced linearization of plasmid DNA in vitro. Taken together, these results demonstrate that the TsbT toxin targets DNA gyrase in vivo. Site-directed mutagenesis experiments showed that the E27 and D37 residues in TsbT are critical for toxicity. Secondary structure prediction combining the analysis of vacuum-ultraviolet circular-dichroism spectroscopy and neural network method demonstrated that the 22nd-32nd residues of TsbT form an α-helix structure, and that the E27 residue is located around the centre of the α-helix segment. These findings give new insights not only into S. aureus TA systems, but also into bacterial toxins targeting DNA topoisomerases.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Sciences, Osaka City University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yojiro Ishida
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
14
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
15
|
Dorman CJ. Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Mol Microbiol 2023; 119:19-28. [PMID: 36565252 PMCID: PMC10108321 DOI: 10.1111/mmi.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
Wang D, Zhu L, Zhen X, Yang D, Li C, Chen Y, Wang H, Qu Y, Liu X, Yin Y, Gu H, Xu L, Wan C, Wang Y, Ouyang S, Shen X. A secreted effector with a dual role as a toxin and as a transcriptional factor. Nat Commun 2022; 13:7779. [PMID: 36522324 PMCID: PMC9755527 DOI: 10.1038/s41467-022-35522-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria have evolved multiple secretion systems for delivering effector proteins into the cytosol of neighboring cells, but the roles of many of these effectors remain unknown. Here, we show that Yersinia pseudotuberculosis secretes an effector, CccR, that can act both as a toxin and as a transcriptional factor. The effector is secreted by a type VI secretion system (T6SS) and can enter nearby cells of the same species and other species (such as Escherichia coli) via cell-cell contact and in a contact-independent manner. CccR contains an N-terminal FIC domain and a C-terminal DNA-binding domain. In Y. pseudotuberculosis cells, CccR inhibits its own expression by binding through its DNA-binding domain to the cccR promoter, and affects the expression of other genes through unclear mechanisms. In E. coli cells, the FIC domain of CccR AMPylates the cell division protein FtsZ, inducing cell filamentation and growth arrest. Thus, our results indicate that CccR has a dual role, modulating gene expression in neighboring cells of the same species, and inhibiting the growth of competitors.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangkai Zhen
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Daoyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yating Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huannan Wang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanling Yin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanxing Wan
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
de Castro GV, Worm DJ, Grabe GJ, Rowan FC, Haggerty L, de la Lastra AL, Popescu O, Helaine S, Barnard A. Characterization of the Key Determinants of Phd Antitoxin Mediated Doc Toxin Inactivation in Salmonella. ACS Chem Biol 2022; 17:1598-1606. [PMID: 35647667 PMCID: PMC9207808 DOI: 10.1021/acschembio.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the search for novel antimicrobial therapeutics, toxin-antitoxin (TA) modules are promising yet underexplored targets for overcoming antibiotic failure. The bacterial toxin Doc has been associated with the persistence of Salmonella in macrophages, enabling its survival upon antibiotic exposure. After developing a novel method to produce the recombinant toxin, we have used antitoxin-mimicking peptides to thoroughly investigate the mechanism by which its cognate antitoxin Phd neutralizes the activity of Doc. We reveal insights into the molecular detail of the Phd-Doc relationship and discriminate antitoxin residues that stabilize the TA complex from those essential for inhibiting the activity of the toxin. Coexpression of Doc and antitoxin peptides in Salmonella was able to counteract the activity of the toxin, confirming our in vitro results with equivalent sequences. Our findings provide key principles for the development of chemical tools to study and therapeutically interrogate this important class of protein-protein interactions.
Collapse
Affiliation(s)
- Guilherme V. de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Dennis J. Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Grzegorz J. Grabe
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Fiona C. Rowan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Lucy Haggerty
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Ana L. de la Lastra
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Oana Popescu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
18
|
Bikmetov D, Hall AMJ, Livenskyi A, Gollan B, Ovchinnikov S, Gilep K, Kim J, Larrouy-Maumus G, Zgoda V, Borukhov S, Severinov K, Helaine S, Dubiley S. GNAT toxins evolve toward narrow tRNA target specificities. Nucleic Acids Res 2022; 50:5807-5817. [PMID: 35609997 PMCID: PMC9177977 DOI: 10.1093/nar/gkac356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are two-gene modules widely distributed among prokaryotes. GNAT toxins associated with the DUF1778 antitoxins represent a large family of type II TAs. GNAT toxins inhibit cell growth by disrupting translation via acetylation of aminoacyl-tRNAs. In this work, we explored the evolutionary trajectory of GNAT toxins. Using LC/MS detection of acetylated aminoacyl-tRNAs combined with ribosome profiling, we systematically investigated the in vivo substrate specificity of an array of diverse GNAT toxins. Our functional data show that the majority of GNAT toxins are specific to Gly-tRNA isoacceptors. However, the phylogenetic analysis shows that the ancestor of GNAT toxins was likely a relaxed specificity enzyme capable of acetylating multiple elongator tRNAs. Together, our data provide a remarkable snapshot of the evolution of substrate specificity.
Collapse
Affiliation(s)
| | | | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Bridget Gollan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stepan Ovchinnikov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Konstantin Gilep
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Jenny Y Kim
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119435, Russia
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | | | | | - Svetlana Dubiley
- To whom correspondence should be addressed. Tel: +7 499 135 6089;
| |
Collapse
|
19
|
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacteria that consist of a growth-inhibiting toxin and its cognate antitoxin. These systems are prevalent in bacterial chromosomes, plasmids, and phage genomes, but individual systems are not highly conserved, even among closely related strains. The biological functions of TA systems have been controversial and enigmatic, although a handful of these systems have been shown to defend bacteria against their viral predators, bacteriophages. Additionally, their patterns of conservation-ubiquitous, but rapidly acquired and lost from genomes-as well as the co-occurrence of some TA systems with known phage defense elements are suggestive of a broader role in mediating phage defense. Here, we review the existing evidence for phage defense mediated by TA systems, highlighting how toxins are activated by phage infection and how toxins disrupt phage replication. We also discuss phage-encoded systems that counteract TA systems, underscoring the ongoing coevolutionary battle between bacteria and phage. We anticipate that TA systems will continue to emerge as central players in the innate immunity of bacteria against phage. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Abstract
The phylum "Candidatus Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic Methanosaeta, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to Bacteria and to Archaea indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "Candidatus Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM. IMPORTANCE Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on Archaea and Bacteria. We detected sick and dead cells of the filamentous archaeon Methanosaeta in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "Candidatus Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "Candidatus Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "Candidatus Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.
Collapse
|
21
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
22
|
Takashima A, Kawano H, Ueda T, Suzuki-Minakuchi C, Okada K, Nojiri H. A toxin-antitoxin system confers stability to the IncP-7 plasmid pCAR1. Gene 2021; 812:146068. [PMID: 34838639 DOI: 10.1016/j.gene.2021.146068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems. Previously, our studies implied that the high stability of the IncP-7 plasmid pCAR1 in different Pseudomonas spp. hosts was due to the presence of a TA system on the plasmid. Bioinformatics approaches suggested that ORF174 and ORF175 could constitute a type II TA system, a member of the RES-Xre family, and that these two open reading frames (ORFs) constitute a single operon. As expected, the ORF175 product is a toxin, which decreases the viability of the host, P. resinovorans, while the ORF174 product functions as an antitoxin that counteracts the effect of ORF175 on cell growth. Based on these findings, we renamed ORF174 and ORF175 as prcA (antitoxin gene) and prcT (toxin gene), respectively. The prcA and prcT genes were cloned into the unstable plasmid vector pSEVA644. The recombinant vector was stably maintained in P. resinovorans and Escherichia coli cells under nonselective conditions following 6 days of daily subculturing. The empty vector (without the prcA and prcT genes) could not be maintained, which suggested that the PrcA/T system can be used as a tool to improve the stability of otherwise unstable plasmids in P. resinovorans and E. coli strains.
Collapse
Affiliation(s)
- Aya Takashima
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hibiki Kawano
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomomi Ueda
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
24
|
Hill V, Akarsu H, Barbarroja RS, Cippà VL, Kuhnert P, Heller M, Falquet L, Heller M, Stoffel MH, Labroussaa F, Jores J. Minimalistic mycoplasmas harbor different functional toxin-antitoxin systems. PLoS Genet 2021; 17:e1009365. [PMID: 34673769 PMCID: PMC8562856 DOI: 10.1371/journal.pgen.1009365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/02/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mycoplasmas are minute bacteria controlled by very small genomes ranging from 0.6 to 1.4 Mbp. They encompass several important medical and veterinary pathogens that are often associated with a wide range of chronic diseases. The long persistence of mycoplasma cells in their hosts can exacerbate the spread of antimicrobial resistance observed for many species. However, the nature of the virulence factors driving this phenomenon in mycoplasmas is still unclear. Toxin-antitoxin systems (TA systems) are genetic elements widespread in many bacteria that were historically associated with bacterial persistence. Their presence on mycoplasma genomes has never been carefully assessed, especially for pathogenic species. Here we investigated three candidate TA systems in M. mycoides subsp. capri encoding a (i) novel AAA-ATPase/subtilisin-like serine protease module, (ii) a putative AbiEii/AbiEi pair and (iii) a putative Fic/RelB pair. We sequence analyzed fourteen genomes of M. mycoides subsp. capri and confirmed the presence of at least one TA module in each of them. Interestingly, horizontal gene transfer signatures were also found in several genomic loci containing TA systems for several mycoplasma species. Transcriptomic and proteomic data confirmed differential expression profiles of these TA systems during mycoplasma growth in vitro. While the use of heterologous expression systems based on E. coli and B. subtilis showed clear limitations, the functionality and neutralization capacities of all three candidate TA systems were successfully confirmed using M. capricolum subsp. capricolum as a host. Additionally, M. capricolum subsp. capricolum was used to confirm the presence of functional TA system homologs in mycoplasmas of the Hominis and Pneumoniae phylogenetic groups. Finally, we showed that several of these M. mycoides subsp. capri toxins tested in this study, and particularly the subtilisin-like serine protease, could be used to establish a kill switch in mycoplasmas for industrial applications.
Collapse
Affiliation(s)
- Virginia Hill
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Hatice Akarsu
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Valentina L. Cippà
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Martin Heller
- Friedrich-Loeffler-Institute—Federal Research Institute for Animal Health, Jena, Germany
| | - Laurent Falquet
- Biochemistry Unit, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Gulen B, Itzen A. Revisiting AMPylation through the lens of Fic enzymes. Trends Microbiol 2021; 30:350-363. [PMID: 34531089 DOI: 10.1016/j.tim.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
AMPylation, a post-translational modification (PTM) first discovered in the late 1960s, is catalyzed by adenosine monophosphate (AMP)-transferring enzymes. The observation that filamentation-induced-by-cyclic-AMP (fic) enzymes are associated with this unique PTM revealed that AMPylation plays a major role in hijacking of host signaling by pathogenic bacteria during infection. Studies over the past decade showed that AMPylation is conserved across all kingdoms of life and, outside their role in infection, also modulates cellular functions. Many aspects of AMPylation are yet to be uncovered. In this review we present the advancement in research on AMPylation and Fic enzymes as well as other distinct classes of enzymes that catalyze AMPylation.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany; Present address: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Evolutionary Diversification of Host-Targeted Bartonella Effectors Proteins Derived from a Conserved FicTA Toxin-Antitoxin Module. Microorganisms 2021; 9:microorganisms9081645. [PMID: 34442725 PMCID: PMC8401265 DOI: 10.3390/microorganisms9081645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Proteins containing a FIC domain catalyze AMPylation and other post-translational modifications (PTMs). In bacteria, they are typically part of FicTA toxin-antitoxin modules that control conserved biochemical processes such as topoisomerase activity, but they have also repeatedly diversified into host-targeted virulence factors. Among these, Bartonella effector proteins (Beps) comprise a particularly diverse ensemble of FIC domains that subvert various host cellular functions. However, no comprehensive comparative analysis has been performed to infer molecular mechanisms underlying the biochemical and functional diversification of FIC domains in the vast Bep family. Here, we used X-ray crystallography, structural modelling, and phylogenetic analyses to unravel the expansion and diversification of Bep repertoires that evolved in parallel in three Bartonella lineages from a single ancestral FicTA toxin-antitoxin module. Our analysis is based on 99 non-redundant Bep sequences and nine crystal structures. Inferred from the conservation of the FIC signature motif that comprises the catalytic histidine and residues involved in substrate binding, about half of them represent AMP transferases. A quarter of Beps show a glutamate in a strategic position in the putative substrate binding pocket that would interfere with triphosphate-nucleotide binding but may allow binding of an AMPylated target for deAMPylation or another substrate to catalyze a distinct PTM. The β-hairpin flap that registers the modifiable target segment to the active site exhibits remarkable structural variability. The corresponding sequences form few well-defined groups that may recognize distinct target proteins. The binding of Beps to promiscuous FicA antitoxins is well conserved, indicating a role of the antitoxin to inhibit enzymatic activity or to serve as a chaperone for the FIC domain before translocation of the Bep into host cells. Taken together, our analysis indicates a remarkable functional plasticity of Beps that is mostly brought about by structural changes in the substrate pocket and the target dock. These findings may guide future structure–function analyses of the highly versatile FIC domains.
Collapse
|
27
|
Kurata T, Brodiazhenko T, Alves Oliveira SR, Roghanian M, Sakaguchi Y, Turnbull KJ, Bulvas O, Takada H, Tamman H, Ainelo A, Pohl R, Rejman D, Tenson T, Suzuki T, Garcia-Pino A, Atkinson GC, Hauryliuk V. RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Mol Cell 2021; 81:3160-3170.e9. [PMID: 34174184 DOI: 10.1016/j.molcel.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
Collapse
Affiliation(s)
- Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.
| | | | | | - Mohammad Roghanian
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Hedvig Tamman
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Andres Ainelo
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | | | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
28
|
Chatterjee BK, Truttmann MC. Fic and non-Fic AMPylases: protein AMPylation in metazoans. Open Biol 2021; 11:210009. [PMID: 33947243 PMCID: PMC8097203 DOI: 10.1098/rsob.210009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein AMPylation refers to the covalent attachment of an AMP moiety to the amino acid side chains of target proteins using ATP as nucleotide donor. This process is catalysed by dedicated AMP transferases, called AMPylases. Since this initial discovery, several research groups have identified AMPylation as a critical post-translational modification relevant to normal and pathological cell signalling in both bacteria and metazoans. Bacterial AMPylases are abundant enzymes that either regulate the function of endogenous bacterial proteins or are translocated into host cells to hijack host cell signalling processes. By contrast, only two classes of metazoan AMPylases have been identified so far: enzymes containing a conserved filamentation induced by cAMP (Fic) domain (Fic AMPylases), which primarily modify the ER-resident chaperone BiP, and SelO, a mitochondrial AMPylase involved in redox signalling. In this review, we compare and contrast bacterial and metazoan Fic and non-Fic AMPylases, and summarize recent technological and conceptual developments in the emerging field of AMPylation.
Collapse
Affiliation(s)
- Bhaskar K Chatterjee
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias C Truttmann
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.,Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Conti BJ, Leicht AS, Kirchdoerfer RN, Sussman MR. Mass spectrometric based detection of protein nucleotidylation in the RNA polymerase of SARS-CoV-2. Commun Chem 2021; 4:41. [PMID: 34189273 PMCID: PMC8238455 DOI: 10.1038/s42004-021-00476-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.
Collapse
Affiliation(s)
- Brian J. Conti
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI USA
| | - Andrew S. Leicht
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI USA
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
30
|
Wang X, Yao J, Sun YC, Wood TK. Type VII Toxin/Antitoxin Classification System for Antitoxins that Enzymatically Neutralize Toxins. Trends Microbiol 2020; 29:388-393. [PMID: 33342606 DOI: 10.1016/j.tim.2020.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Toxin/antitoxin (TA) systems are present in nearly all bacterial and archaeal strains and consist of a toxin that reduces growth and an antitoxin that masks toxin activity. Currently there are six primary classes for TA systems based on the nature of the antitoxin and the way that the antitoxin inactivates the toxin. Here we show that there now are at least three additional and distinct TA systems in which the antitoxin is an enzyme and the cognate toxin is the direct target of the antitoxin: Hha/TomB (antitoxin oxidizes Cys18 of the toxin), TglT/TakA (antitoxin phosphorylates Ser78 of the toxin), and HepT/MntA (antitoxin adds three AMPs to Tyr104 of the toxin). Thus, we suggest the type VII TA system should be used to designate those TA systems in which the enzyme antitoxin chemically modifies the toxin post-translationally to neutralize it. Defining the type VII TA system using this specific criterion will aid researchers in classifying newly discovered TA systems as well as refine the framework for recognizing the diverse biochemical functions in TA systems.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA.
| |
Collapse
|
31
|
Zhang SP, Feng HZ, Wang Q, Kempher ML, Quan SW, Tao X, Niu S, Wang Y, Feng HY, He YX. Bacterial type II toxin-antitoxin systems acting through post-translational modifications. Comput Struct Biotechnol J 2020; 19:86-93. [PMID: 33384857 PMCID: PMC7758455 DOI: 10.1016/j.csbj.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
The post-translational modification (PTM) serves as an important molecular switch mechanism to modulate diverse biological functions in response to specific cues. Though more commonly found in eukaryotic cells, many PTMs have been identified and characterized in bacteria over the past decade, highlighting the importance of PTMs in regulating bacterial physiology. Several bacterial PTM enzymes have been characterized to function as the toxin component of type II TA systems, which consist of a toxin that inhibits cell growth and an antitoxin that protects the cell from poisoning by the toxin. While TA systems can be classified into seven types based on nature of the antitoxin and its activity, type II TA systems are perhaps the most studied among the different TA types and widely distributed in eubacteria and archaea. The type II toxins possessing PTM activities typically modify various cellular targets mostly associated with protein translation and DNA replication. This review mainly focuses on the enzymatic activities, target specificities, antitoxin neutralizing mechanisms of the different families of PTM toxins. We also proposed that TA systems can be conceptually viewed as molecular switches where the 'on' and 'off' state of the system is tightly controlled by antitoxins and discussed the perspective on toxins having other physiologically roles apart from growth inhibition by acting on the nonessential cellular targets.
Collapse
Affiliation(s)
- Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Han-Zhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Qian Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Shuo-Wei Quan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Shaomin Niu
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, PR China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hu-Yuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
32
|
Songailiene I, Juozapaitis J, Tamulaitiene G, Ruksenaite A, Šulčius S, Sasnauskas G, Venclovas Č, Siksnys V. HEPN-MNT Toxin-Antitoxin System: The HEPN Ribonuclease Is Neutralized by OligoAMPylation. Mol Cell 2020; 80:955-970.e7. [PMID: 33290744 DOI: 10.1016/j.molcel.2020.11.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.
Collapse
Affiliation(s)
- Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Jonas Juozapaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
33
|
Yao J, Zhen X, Tang K, Liu T, Xu X, Chen Z, Guo Y, Liu X, Wood TK, Ouyang S, Wang X. Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Res 2020; 48:11054-11067. [PMID: 33045733 PMCID: PMC7641770 DOI: 10.1093/nar/gkaa855] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
The two-gene module HEPN/MNT is predicted to be the most abundant toxin/antitoxin (TA) system in prokaryotes. However, its physiological function and neutralization mechanism remains obscure. Here, we discovered that the MntA antitoxin (MNT-domain protein) acts as an adenylyltransferase and chemically modifies the HepT toxin (HEPN-domain protein) to block its toxicity as an RNase. Biochemical and structural studies revealed that MntA mediates the transfer of three AMPs to a tyrosine residue next to the RNase domain of HepT in Shewanella oneidensis. Furthermore, in vitro enzymatic assays showed that the three AMPs are transferred to HepT by MntA consecutively with ATP serving as the substrate, and this polyadenylylation is crucial for reducing HepT toxicity. Additionally, the GSX10DXD motif, which is conserved among MntA proteins, is the key active motif for polyadenylylating and neutralizing HepT. Thus, HepT/MntA represents a new type of TA system, and the polyadenylylation-dependent TA neutralization mechanism is prevalent in bacteria and archaea.
Collapse
Affiliation(s)
- Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiangkai Zhen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Xu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, USA
| | - Songying Ouyang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Li Z, Shi C, Gao S, Zhang X, Lu D, Liu G. Characteristic and role of chromosomal type II toxin-antitoxin systems locus in Enterococcus faecalis ATCC29212. J Microbiol 2020; 58:1027-1036. [PMID: 33095389 DOI: 10.1007/s12275-020-0079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Enterococcus faecalis is currently one of the major pathogens of nosocomial infections. The lifestyle of E. faecalis relies primarily on its remarkable capacity to face and survive in harsh environmental conditions. Toxin-antitoxin (TA) systems have been linked to the growth control of bacteria in response to adverse environments but have rarely been reported in Enterococcus. Three functional type II TA systems were identified among the 10 putative TA systems encoded by E. faecalis ATCC29212. These toxin genes have conserved domains homologous to MazF (DR75_1948) and ImmA/IrrE family metallo-endopeptidases (DR75_1673 and DR75_2160). Overexpression of toxin genes could inhibit the growth of Escherichia coli. However, the toxin DR75_1673 could not inhibit bacterial growth, and the bacteriostatic effect occurred only when it was coexpressed with the antitoxin DR75_1672. DR75_1948-DR75_1949 and DR75_160-DR75_2161 could maintain the stable inheritance of the unstable plasmid pLMO12102 in E. coli. Moreover, the transcription levels of these TAs showed significant differences when cultivated under normal conditions and with different temperatures, antibiotics, anaerobic agents and H2O2. When DR75_2161 was knocked out, the growth of the mutant strain at high temperature and oxidative stress was limited. The experimental characterization of these TAs loci might be helpful to investigate the key roles of type II TA systems in the physiology and environmental stress responses of Enterococcus.
Collapse
Affiliation(s)
- Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China.
| | - Chao Shi
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, P. R. China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Di Lu
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Guangzhi Liu
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| |
Collapse
|
35
|
Sierra R, Prados J, Panasenko OO, Andrey DO, Fleuchot B, Redder P, Kelley WL, Viollier PH, Renzoni A. Insights into the global effect on Staphylococcus aureus growth arrest by induction of the endoribonuclease MazF toxin. Nucleic Acids Res 2020; 48:8545-8561. [PMID: 32735661 PMCID: PMC7470975 DOI: 10.1093/nar/gkaa617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
A crucial bacterial strategy to avoid killing by antibiotics is to enter a growth arrested state, yet the molecular mechanisms behind this process remain elusive. The conditional overexpression of mazF, the endoribonuclease toxin of the MazEF toxin–antitoxin system in Staphylococcus aureus, is one approach to induce bacterial growth arrest, but its targets remain largely unknown. We used overexpression of mazF and high-throughput sequence analysis following the exact mapping of non-phosphorylated transcriptome ends (nEMOTE) technique to reveal in vivo toxin cleavage sites on a global scale. We obtained a catalogue of MazF cleavage sites and unearthed an extended MazF cleavage specificity that goes beyond the previously reported one. We correlated transcript cleavage and abundance in a global transcriptomic profiling during mazF overexpression. We observed that MazF affects RNA molecules involved in ribosome biogenesis, cell wall synthesis, cell division and RNA turnover and thus deliver a plausible explanation for how mazF overexpression induces stasis. We hypothesize that autoregulation of MazF occurs by directly modulating the MazEF operon, such as the rsbUVW genes that regulate the sigma factor SigB, including an observed cleavage site on the MazF mRNA that would ultimately play a role in entry and exit from bacterial stasis.
Collapse
Affiliation(s)
- Roberto Sierra
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Olesya O Panasenko
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland
| | - Diego O Andrey
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Betty Fleuchot
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Redder
- Centre de Biologie Intégrative, Université de Toulouse III, Toulouse 31400, France
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, Geneva University Hospitals and Medical School, Geneva 1211, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
36
|
Lu CH, McCloskey A, Chen FR, Nakayasu ES, Zhang LQ, Luo ZQ. Fic Proteins Inhibit the Activity of Topoisomerase IV by AMPylation in Diverse Bacteria. Front Microbiol 2020; 11:2084. [PMID: 32983060 PMCID: PMC7479194 DOI: 10.3389/fmicb.2020.02084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The Fic (filamentation induced by cyclic AMP) domain is a widely distributed motif with a conserved sequence of HPFx[D/E]GN[G/K]R, some of which regulate cellular activity by catalyzing the transfer of the AMP moiety from ATP to protein substrates. Some Fic proteins, including Fic-1 from the soil bacterium Pseudomonas fluorescens strain 2P24, have been shown to inhibit bacterial DNA replication by AMPylating the subunit B of DNA gyrase (GyrB), but the biochemical activity and cellular target of most Fic proteins remain unknown. Here, we report that Fic-2, which is another Fic protein from strain 2P24 and Fic-1 AMPylate the topoisomerase IV ParE at Tyr109. We also examined Fic proteins from several phylogenetically diverse bacteria and found that those from Yersinia pseudotuberculosis and Staphylococcus aureus AMPylate ParE and GrlB, the counterpart of ParE in Gram-positive bacteria, respectively. Modification by Fic-1 of P. fluorescens and FicY of Y. pseudotuberculosis inhibits the relaxation activity of topoisomerase IV. Consistent with the inhibition of ParE activity, ectopic expression of these Fic proteins causes cell filamentation akin to the canonical par phenotype in which nucleoids are assembled in the center of elongated cells, a process accompanied by the induction of the SOS response. Our results establish that Fic proteins from diverse bacterial species regulate chromosome division and cell separation in bacteria by targeting ParE.
Collapse
Affiliation(s)
- Can-Hua Lu
- Yunnan Academy of Tobacco Agriculture Science, Kunming, China.,Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alix McCloskey
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Fu-Rong Chen
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Li-Qun Zhang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
37
|
Song S, Wood TK. A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition. Front Microbiol 2020; 11:1895. [PMID: 32903830 PMCID: PMC7438911 DOI: 10.3389/fmicb.2020.01895] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Toxin/antitoxin (TA) systems are present in most prokaryote genomes. Toxins are almost exclusively proteins that reduce metabolism (but do not cause cell death), and antitoxins are either RNA or proteins that counteract the toxin or the RNA that encodes it. Although TA systems clearly stabilize mobile genetic elements, after four decades of research, the physiological roles of chromosomal TA systems are less clear. For example, recent reports have challenged the notion of TA systems as stress-response elements, including a role in creating the dormant state known as persistence. Here, we present evidence that a primary physiological role of chromosomally encoded TA systems is phage inhibition, a role that is also played by some plasmid-based TA systems. This includes results that show some CRISPR-Cas system elements are derived from TA systems and that some CRISPR-Cas systems mimic the host growth inhibition invoked by TA systems to inhibit phage propagation.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si, South Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
38
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
39
|
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Jurėnas D, Van Melderen L. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Front Genet 2020; 11:262. [PMID: 32362907 PMCID: PMC7180214 DOI: 10.3389/fgene.2020.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type II Toxin-antitoxin (TA) modules are bacterial operons that encode a toxic protein and its antidote, which form a self-regulating genetic system. Antitoxins put a halter on toxins in many ways that distinguish different types of TA modules. In type II TA modules, toxin and antitoxin are proteins that form a complex which physically sequesters the toxin, thereby preventing its toxic activity. Type II toxins inhibit various cellular processes, however, the translation process appears to be their favorite target and nearly every step of this complex process is inhibited by type II toxins. The structural features, enzymatic activities and target specificities of the different toxin families are discussed. Finally, this review emphasizes that the structural folds presented by these toxins are not restricted to type II TA toxins or to one particular cellular target, and discusses why so many of them evolved to target translation as well as the recent developments regarding the role(s) of these systems in bacterial physiology and evolution.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
41
|
Chimal-Cázares F, Hernández-Martínez G, Pacheco S, Ares MA, Soria-Bustos J, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Ibarra JA, González-Y-Merchand JA, Gorvel JP, Méresse S, De la Cruz MA. Molecular Characterization of SehB, a Type II Antitoxin of Salmonella enterica Serotype Typhimurium: Amino Acid Residues Involved in DNA-Binding, Homodimerization, Toxin Interaction, and Virulence. Front Microbiol 2020; 11:614. [PMID: 32328049 PMCID: PMC7160566 DOI: 10.3389/fmicb.2020.00614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of S. Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin. It was previously reported that the absence of the SehB antitoxin affects the growth of S. Typhimurium. In addition, the SehB antitoxin can interact directly with the SehA toxin neutralizing its toxic effect as well as repressing its own expression. We identified conserved residues on SehB homologous proteins. Point mutations were introduced at both N- and C-terminal of SehB antitoxin to analyze the effect of these changes on its transcription repressor function, on its ability to form homodimers and on the virulence of S. Typhimurium. All changes in amino acid residues at both the N- and C-terminal affected the repressor function of SehB antitoxin and they were required for DNA-binding activity. Mutations in the amino acid residues at the N-terminal showed a lower capacity for homodimer formation of the SehB protein. However, none of the SehB point mutants were affected in the interaction with the SehA toxin. In terms of virulence, the eight single-amino acid mutations were attenuated for virulence in the mouse model. In agreement with our results, the eight amino acid residues of SehB antitoxin were required for its repressor activity, affecting both homodimerization and DNA-binding activity, supporting the notion that both activities of SehB antitoxin are required to confer virulence to Salmonella enterica.
Collapse
Affiliation(s)
- Fernando Chimal-Cázares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Hernández-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Jose Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
42
|
Panasenko OO, Bezrukov F, Komarynets O, Renzoni A. YjbH Solubility Controls Spx in Staphylococcus aureus: Implication for MazEF Toxin-Antitoxin System Regulation. Front Microbiol 2020; 11:113. [PMID: 32117138 PMCID: PMC7016130 DOI: 10.3389/fmicb.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial cells respond to environmental stresses by modulating their gene expression and adjusting their proteome. In Staphylococcus aureus, selective degradation by ClpP protease eliminates damaged proteins and regulates the abundance of functional proteins such as many important stress-induced transcriptional regulators. Degradation by ClpP requires the unfolding activity of partner Clp ATPases, such as ClpX and ClpC, and assistance of substrate-specific adaptor proteins such as YjbH and TrfA. Herein, we demonstrated that YjbH is aggregated in response to growth stress stimuli, such as oxidative and antibiotic stresses. In consequence, its function as an adaptor protein is compromised. YjbH controls the degradation of the stress-induced transcriptional regulator, Spx. Aggregated YjbH cannot assist Spx degradation, which results in Spx accumulation. We discovered that depending on the stress stimulus, Spx can be soluble or insoluble, and, consequently, transcriptionally active or inactive. Therefore, Spx accumulation and solubility are key components governing activation of Spx-dependent genes. Spx positively regulates expression of a ClpCP adaptor protein TrfA. TrfA in turn is required for degradation of MazE antitoxin, the unstable component of the MazEF toxin-antitoxin system, that neutralizes the endoribonuclease activity of MazF toxin. Bacterial toxin-antitoxin systems are associated with dormancy and tolerance to antibiotics that are related to chronic and relapsing infections, and it is at present a key unresolved problem in medicine. MazF activity was linked to growth stasis, yet the precise environmental signals that trigger MazE degradation and MazF activation are poorly understood. Here we propose a model where YjbH serves as a sensor of environmental stresses for downstream regulation of MazEF activity. YjbH aggregation, soluble Spx, and TrfA, coordinately control MazE antitoxin levels and consequently MazF toxin activity. This model implies that certain stress conditions culminate in modulation of MazF activity resulting in growth stasis during in vivo infections.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fedor Bezrukov
- Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Olga Komarynets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medical Specialties, University Hospital and Medical School of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Microbiologyopen 2019; 8:e902. [PMID: 31309747 PMCID: PMC6813445 DOI: 10.1002/mbo3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells—a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%–80%). Our aim is to evaluate the equivalency of chromosomally derived ParE toxin activity depending on its bacterial species of origin. Nine ParE toxins were analyzed, originating from six different bacterial species. Based on the resulting toxicity, three categories can be established: ParE toxins that do not exert toxicity under the experimental conditions, toxins that exert toxicity within the first four hours, and those that exert toxicity only after 10–12 hr of exposure. All tested ParE toxins produce a cellular morphologic change from rods to filaments, consistent with disruption of DNA topology. Analysis of the distribution of filamented cells within a population reveals a correlation between the extent of filamentation and toxicity. No membrane septation is visible along the length of the cell filaments, whereas aberrant lipid blebs are evident. Potent ParE‐mediated toxicity is also correlated with a hallmark signature of abortive DNA replication, consistent with the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
44
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
45
|
Dehio C, Tsolis RM. Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species. Curr Top Microbiol Immunol 2019. [PMID: 29536363 DOI: 10.1007/978-3-319-75241-9_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Bartonella and Brucella species comprise closely related genera of the order Rhizobiales within the class α-proteobacteria. Both groups of bacteria are mammalian pathogens with a facultative intracellular lifestyle and are capable of causing chronic infections, but members of each genus have evolved broadly different infection and transmission strategies. While Brucella spp. transmit in general via the reproductive tract in their natural hosts, the Bartonella spp. have evolved to transmit via arthropod vectors. However, a shared feature of both groups of pathogens is their reliance on type IV secretion systems (T4SSs) to interact with cells in their mammalian hosts. The genomes of Bartonella spp. encode three types of T4SS, Trw, Vbh/TraG, and VirB/VirD4, whereas those of Brucella spp. uniformly contain a single T4SS of the VirB type. The VirB systems of Bartonella and Brucella are associated with distinct groups of effector proteins that collectively mediate interactions with host cells. This chapter discusses recent findings on the role of T4SS in the biology of Bartonella spp. and Brucella spp. with emphasis on effector repertoires, on recent advances in our understanding of their evolution, how individual effectors function at the molecular level, and on the consequences of these interactions for cellular and immune responses in the host.
Collapse
Affiliation(s)
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Sengupta R, Poderycki MJ, Mattoo S. CryoAPEX - an electron tomography tool for subcellular localization of membrane proteins. J Cell Sci 2019; 132:132/6/jcs222315. [PMID: 30886003 DOI: 10.1242/jcs.222315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
We describe a method, termed cryoAPEX, which couples chemical fixation and high-pressure freezing of cells with peroxidase tagging (APEX) to allow precise localization of membrane proteins in the context of a well-preserved subcellular membrane architecture. Further, cryoAPEX is compatible with electron tomography. As an example, we apply cryoAPEX to obtain a high-resolution three-dimensional contextual map of the human FIC (filamentation induced by cAMP) protein, HYPE (also known as FICD). HYPE is a single-pass membrane protein that localizes to the endoplasmic reticulum (ER) lumen and regulates the unfolded protein response. Alternate cellular locations for HYPE have been suggested. CryoAPEX analysis shows that, under normal and/or resting conditions, HYPE localizes robustly within the subdomains of the ER and is not detected in the secretory pathway or other organelles. CryoAPEX is broadly applicable for assessing both lumenal and cytosol-facing membrane proteins.
Collapse
Affiliation(s)
- Ranjan Sengupta
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| | - Michael J Poderycki
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
48
|
Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol 2019; 21:e13004. [PMID: 30644157 PMCID: PMC6519360 DOI: 10.1111/cmi.13004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
The α‐proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep‐branching lineages (L1–L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type‐IV‐secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw‐T4SS confined to the species‐rich L4 mediates host‐specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4‐T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species‐specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.
Collapse
Affiliation(s)
- Alexander Wagner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Proc Natl Acad Sci U S A 2018; 116:826-834. [PMID: 30598453 DOI: 10.1073/pnas.1814633116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems interfere with essential cellular processes and are implicated in bacterial lifestyle adaptations such as persistence and the biofilm formation. Here, we present structural, biochemical, and functional data on an uncharacterized TA system, the COG5654-COG5642 pair. Bioinformatic analysis showed that this TA pair is found in 2,942 of the 16,286 distinct bacterial species in the RefSeq database. We solved a structure of the toxin bound to a fragment of the antitoxin to 1.50 Å. This structure suggested that the toxin is a mono-ADP-ribosyltransferase (mART). The toxin specifically modifies phosphoribosyl pyrophosphate synthetase (Prs), an essential enzyme in nucleotide biosynthesis conserved in all organisms. We propose renaming the toxin ParT for Prs ADP-ribosylating toxin and ParS for the cognate antitoxin. ParT is a unique example of an intracellular protein mART in bacteria and is the smallest known mART. This work demonstrates that TA systems can induce bacteriostasis through interference with nucleotide biosynthesis.
Collapse
|
50
|
Skjerning RB, Senissar M, Winther KS, Gerdes K, Brodersen DE. The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD+. Mol Microbiol 2018; 111:221-236. [PMID: 30315706 DOI: 10.1111/mmi.14150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Type II toxin-antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res-xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES-Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix-turn-helix DNA-binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP-ribosylating enzymes such as diphtheria toxin but has an atypical NAD+ -binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.
Collapse
Affiliation(s)
- Ragnhild Bager Skjerning
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Meriem Senissar
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Kristoffer S Winther
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|