1
|
Wang Y, Zhou S, Wang X, Lu D, Yang J, Lu Y, Fan X, Li C, Wang Y. Electroactive membranes enhance in-situ alveolar ridge preservation via spatiotemporal electrical modulation of cell motility. Biomaterials 2025; 317:123077. [PMID: 39756273 DOI: 10.1016/j.biomaterials.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Post-extraction alveolar bone resorption invariably compromises implant placement and aesthetic restoration outcomes. Current non-resorbable membranes exhibit limited efficacy in alveolar ridge preservation (ARP) due to insufficient cell recruitment and osteoinductive capabilities. Herein, we introduce a multifunctional electroactive membrane (PPy-BTO/P(VDF-TrFE), PB/PT) designed to spatiotemporally regulate cell migration and osteogenesis, harmonizing with the socket healing process. Initially, the membrane's endogenous-level surface potential recruits stem cells from the socket. Subsequently, adherent cell-migration-triggered forces generate on-demand piezopotential, stimulating intracellular calcium ion fluctuations and activating the Ca2+/calcineurin/NFAT1 signaling pathway via Cav3.2 channels. This enhances cell motility and osteogenic differentiation predominantly in the coronal socket region, counteracting the natural healing trajectory. The membrane's self-powered energy supply, proportional to cell migration velocity and manifested as nanoparticle deformation, mitigates ridge shrinkage, both independently and in conjunction with bone grafts. This energy-autonomous membrane, based on the spatiotemporal modulation of cell motility, presents a novel approach for in-situ ARP treatment and the development of 4D bionic scaffolds.
Collapse
Affiliation(s)
- Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaoshuang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongheng Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaolei Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Changhao Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
2
|
Valencia-Expósito A, Khalilgharibi N, Martínez-Abarca Millán A, Mao Y, Martín-Bermudo MD. Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding. EMBO J 2025; 44:2002-2024. [PMID: 39962267 PMCID: PMC11961693 DOI: 10.1038/s44318-025-00384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
During development, epithelial sheets sculpt organs by folding, either apically or basally, into complex 3D structures. Given the presence of actomyosin networks and cell adhesion sites on both sides of cells, a common machinery mediating apical and basal epithelial tissue folding has been proposed. However, unlike for apical folding, little is known about the mechanisms that regulate epithelial folding towards the basal side. Here, using the Drosophila wing imaginal disc and combining genetic perturbations and computational modeling, we demonstrate opposing roles for cell-cell and cell-extracellular matrix (ECM) adhesion systems during epithelial folding. While cadherin-mediated adhesion, linked to actomyosin network, regulates apical folding, a localized reduction on integrin-dependent adhesion, followed by changes in cell shape and reorganization of the basal actomyosin cytoskeleton and E-Cadherin (E-Cad) levels, is necessary and sufficient to trigger basal folding. These results suggest that modulation of the cell mechanical landscape through the crosstalk between integrins and cadherins is essential for correct epithelial folding.
Collapse
Affiliation(s)
| | - Nargess Khalilgharibi
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, UK
| | - María D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla, 41013, Spain.
| |
Collapse
|
3
|
Goyal R, Castro PA, Levin JB, Shim S, Mizuno GO, Tian L, Borodinsky LN. Vesicular glutamate release is necessary for neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.05.631426. [PMID: 39829813 PMCID: PMC11741360 DOI: 10.1101/2025.01.05.631426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear. Here we show that in Xenopus laevis embryos, neural plate cells release glutamate during neural plate folding in a Ca 2+ and vesicular glutamate transporter-1 (VGluT1)-dependent manner. Vesicular release of glutamate elicits Ca 2+ transients in neural plate cells that correlate with activation of Erk1/2. Knocking down or out VGluT1 leads to NTDs through increased expression of Sox2, neural stem cell transcription factor, and neural plate cell proliferation. Exposure during early pregnancy to neuroactive drugs that disrupt these signaling mechanisms might increase the risk of NTDs in offspring.
Collapse
|
4
|
Alvarez YD, van der Spuy M, Wang JX, Noordstra I, Tan SZ, Carroll M, Yap AS, Serralbo O, White MD. A Lifeact-EGFP quail for studying actin dynamics in vivo. J Cell Biol 2024; 223:e202404066. [PMID: 38913324 PMCID: PMC11194674 DOI: 10.1083/jcb.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.
Collapse
Affiliation(s)
- Yanina D. Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marise van der Spuy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Xiong Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Murron Carroll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Olivier Serralbo
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Geelong, Australia
| | - Melanie D. White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Noncanonical function of folate through folate receptor 1 during neural tube formation. Nat Commun 2024; 15:1642. [PMID: 38388461 PMCID: PMC10883926 DOI: 10.1038/s41467-024-45775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Folate supplementation reduces the occurrence of neural tube defects (NTDs), birth defects consisting in the failure of the neural tube to form and close. The mechanisms underlying NTDs and their prevention by folate remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. FOLR1 knockdown in neural organoids and in Xenopus laevis embryos leads to NTDs that are rescued by pteroate, a folate precursor that is unable to participate in metabolism. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein, molecule essential for apical endocytosis and turnover of C-cadherin in neural plate cells. In addition, folates increase Ca2+ transient frequency, suggesting that folate and FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
Affiliation(s)
- Olga A Balashova
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| | - Alexios A Panoutsopoulos
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Olesya Visina
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jacob Selhub
- Tufts-USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Paul S Knoepfler
- Department of Cell Biology & Human Anatomy, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Mak S, Hammes A. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development. Int J Mol Sci 2024; 25:1426. [PMID: 38338705 PMCID: PMC10855338 DOI: 10.3390/ijms25031426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.
Collapse
Affiliation(s)
- Shermin Mak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute for Biology, Free University of Berlin, 14159 Berlin, Germany
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
| |
Collapse
|
7
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
8
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
10
|
Donath S, Seidler AE, Mundin K, Wenzel J, Scholz J, Gentemann L, Kalies J, Faix J, Ngezahayo A, Bleich A, Heisterkamp A, Buettner M, Kalies S. Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery. iScience 2023; 26:108139. [PMID: 37867948 PMCID: PMC10585398 DOI: 10.1016/j.isci.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids.
Collapse
Affiliation(s)
- Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Karlina Mundin
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Julia Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, 30167 Hannover, Germany
| | - André Bleich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Manuela Buettner
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| |
Collapse
|
11
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Non-canonical function of folate/folate receptor 1 during neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549718. [PMID: 37503108 PMCID: PMC10370062 DOI: 10.1101/2023.07.19.549718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Folate supplementation reduces the occurrence of neural tube defects, one of the most common and serious birth defects, consisting in the failure of the neural tube to form and close early in pregnancy. The mechanisms underlying neural tube defects and folate action during neural tube formation remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. Knockdown of FOLR1 in human neural organoids as well as in the Xenopus laevis in vivo model leads to neural tube defects that are rescued by pteroate, a folate precursor that binds to FOLR1 but is unable to participate in metabolic pathways. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein (CD2AP), a molecule that we find is essential for apical endocytosis and the spatiotemporal turnover of the cell adherens junction component C-cadherin in neural plate cells. The counteracting action of FOLR1 on these processes is mediated by regulating CD2AP protein level via a degradation-dependent mechanism. In addition, folate and pteroate increase Ca 2+ transient frequency in the neural plate in a FOLR1-dependent manner, suggesting that folate/FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
|
13
|
Baldwin A, Popov IK, Keller R, Wallingford J, Chang C. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during Xenopus gastrulation. Mol Biol Cell 2023; 34:ar64. [PMID: 37043306 PMCID: PMC10295481 DOI: 10.1091/mbc.e22-09-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Apical constriction results in apical surface reduction in epithelial cells and is a widely used mechanism for epithelial morphogenesis. Both medioapical and junctional actomyosin remodeling are involved in apical constriction, but the deployment of medial versus junctional actomyosin and their genetic regulation in vertebrate embryonic development have not been fully described. In this study, we investigate actomyosin dynamics and their regulation by the RhoGEF protein Plekhg5 in Xenopus bottle cells. Using live imaging and quantitative image analysis, we show that bottle cells assume different shapes, with rounding bottle cells constricting earlier in small clusters followed by fusiform bottle cells forming between the clusters. Both medioapical and junctional actomyosin signals increase as surface area decreases, though correlation of apical constriction with medioapical actomyosin localization appears to be stronger. F-actin bundles perpendicular to the apical surface form in constricted cells, which may correspond to microvilli previously observed in the apical membrane. Knockdown of plekhg5 disrupts medioapical and junctional actomyosin activity and apical constriction but does not affect initial F-actin dynamics. Taking the results together, our study reveals distinct cell morphologies, uncovers actomyosin behaviors, and demonstrates the crucial role of a RhoGEF protein in controlling actomyosin dynamics during apical constriction of bottle cells in Xenopus gastrulation.
Collapse
Affiliation(s)
- Austin Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903
| | - John Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
14
|
Francou A, Anderson KV, Hadjantonakis AK. A ratchet-like apical constriction drives cell ingression during the mouse gastrulation EMT. eLife 2023; 12:e84019. [PMID: 37162187 PMCID: PMC10171865 DOI: 10.7554/elife.84019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells acquire mesenchymal phenotypes and the ability to migrate. EMT is the hallmark of gastrulation, an evolutionarily conserved developmental process. In mammals, epiblast cells ingress at the primitive streak to form mesoderm. Cells ingress and exit the epiblast epithelial layer and the associated EMT is dynamically regulated and involves a stereotypical sequence of cell behaviors. 3D time-lapse imaging of gastrulating mouse embryos combined with cell and tissue scale data analyses revealed the asynchronous ingression of epiblast cells at the primitive streak. Ingressing cells constrict their apical surfaces in a pulsed ratchet-like fashion through asynchronous shrinkage of apical junctions. A quantitative analysis of the distribution of apical proteins revealed the anisotropic and reciprocal enrichment of members of the actomyosin network and Crumbs2 complexes, potential regulators of asynchronous shrinkage of cell junctions. Loss of function analyses demonstrated a requirement for Crumbs2 in myosin II localization and activity at apical junctions, and as a candidate regulator of actomyosin anisotropy.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
15
|
Rosa C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.529936. [PMID: 36993651 PMCID: PMC10055172 DOI: 10.1101/2023.03.17.529936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lattice cells (LCs) in the developing Drosophila retina constantly move and change shape before attaining final forms. Previously we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here we describe a second contributing factor, the assembly of a medioapical actomyosin ring composed of nodes linked by filaments that attract each other, fuse, and contract the LCs' apical area. This medioapical actomyosin network is dependent on Rho1 and its known effectors. Apical cell area contraction alternates with relaxation, generating pulsatile changes in apical cell area. Strikingly, cycles of contraction and relaxation of cell area are reciprocally synchronized between adjacent LCs. Further, in a genetic screen, we identified RhoGEF2 as an activator of these Rho1 functions and RhoGAP71E/C-GAP as an inhibitor. Thus, Rho1 signaling regulates pulsatile medioapical actomyosin contraction exerting force on neighboring cells, coordinating cell behavior across the epithelium. This ultimately serves to control cell shape and maintain tissue integrity during epithelial morphogenesis of the retina.
Collapse
|
16
|
Zhu H, Oâ Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533016. [PMID: 36993262 PMCID: PMC10055118 DOI: 10.1101/2023.03.16.533016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A much-studied example is ventral furrow formation in Drosophila , marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principle resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos, this catastrophic outcome is averted by pulsatile myosin time-dependence, a time-averaging effect that rescues furrowing. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
|
17
|
Ampartzidis I, Efstathiou C, Paonessa F, Thompson EM, Wilson T, McCann CJ, Greene NDE, Copp AJ, Livesey FJ, Elvassore N, Giobbe GG, De Coppi P, Maniou E, Galea GL. Synchronisation of apical constriction and cell cycle progression is a conserved behaviour of pseudostratified neuroepithelia informed by their tissue geometry. Dev Biol 2023; 494:60-70. [PMID: 36509125 PMCID: PMC10570144 DOI: 10.1016/j.ydbio.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry.
Collapse
Affiliation(s)
- Ioakeim Ampartzidis
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Christoforos Efstathiou
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Francesco Paonessa
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Elliott M Thompson
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Tyler Wilson
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Conor J McCann
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Nicholas DE Greene
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Frederick J Livesey
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Nicola Elvassore
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; Veneto Institute of Molecular Medicine, Padova, Italy; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Giovanni G Giobbe
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK
| | - Paolo De Coppi
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research Into Rare Disease in Children, London, UK; Specialist Neonatal and Paediatric Unit, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
18
|
Christodoulou N, Skourides PA. Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development. Front Cell Dev Biol 2023; 10:1091629. [PMID: 36699010 PMCID: PMC9868421 DOI: 10.3389/fcell.2022.1091629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Neural tube closure is a fundamental process during vertebrate embryogenesis, which leads to the formation of the central nervous system. Defective neural tube closure leads to neural tube defects which are some of the most common human birth defects. While the intrinsic morphogenetic events shaping the neuroepithelium have been studied extensively, how tissues mechanically coupled with the neural plate influence neural tube closure remains poorly understood. Here, using Xenopus laevis embryos, live imaging in combination with loss of function experiments and morphometric analysis of fixed samples we explore the reciprocal mechanical communication between the neural plate and the somitic mesoderm and its impact on tissue morphogenesis. We show that although somitic mesoderm convergent extension occurs independently from neural plate morphogenesis neural tube closure depends on somitic mesoderm morphogenesis. Specifically, impaired somitic mesoderm remodelling results in defective apical constriction within the neuroepithelium and failure of neural tube closure. Last, our data reveal that mild abnormalities in somitic mesoderm and neural plate morphogenesis have a synergistic effect during neurulation, leading to severe neural tube closure defects. Overall, our data reveal that defective morphogenesis of tissues mechanically coupled with the neural plate can not only drastically exacerbate mild neural tube defects that may arise from abnormalities within the neural tissue but can also elicit neural tube defects even when the neural plate is itself free of inherent defects.
Collapse
|
19
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
20
|
Baldwin AT, Kim JH, Wallingford JB. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure. Dev Biol 2022; 491:105-112. [PMID: 36113571 PMCID: PMC10118288 DOI: 10.1016/j.ydbio.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
During neural tube closure, neural ectoderm cells constrict their apical surfaces to bend and fold the tissue into a tube that will become the central nervous system. Recent data from mice and humans with neural tube defects suggest that key genes required for neural tube closure can exert non-cell autonomous effects on cell behavior, but the nature of these effects remains obscure. Here, we coupled tissue-scale, high-resolution time-lapse imaging of the closing neural tube of Xenopus to multivariate regression modeling, and we show that medial actin accumulation drives apical constriction non-autonomously in neighborhoods of cells, rather than solely in individual cells. To further explore this effect, we examined mosaic crispant embryos and identified both autonomous and non-autonomous effects of the apical constriction protein Shroom3.
Collapse
Affiliation(s)
- Austin T Baldwin
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - Juliana H Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
21
|
Post-gastrulation transition from whole-body to tissue-specific intercellular calcium signaling in the appendicularian tunicate Oikopleuradioica. Dev Biol 2022; 492:37-46. [PMID: 36162551 DOI: 10.1016/j.ydbio.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/09/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
We recently described calcium signaling in the appendicularian tunicate Oikopleura dioica during pre-gastrulation stages, and showed that regularly occurring calcium waves progress throughout the embryo in a characteristic spatiotemporal pattern from an initiation site in muscle lineage blastomeres (Mikhaleva et al., 2019). Here, we have extended our observations to the period spanning from gastrulation to post-hatching stages. We find that repetitive Ca2+ waves persist throughout this developmental window, albeit with a gradual increase in frequency. The initiation site of the waves shifts from muscle cells at gastrulation and early tailbud stages, to the central nervous system at late tailbud and post-hatching stages, indicating a transition from muscle-driven to neurally driven events as tail movements emerge. At these later stages, both the voltage gated Na + channel blocker tetrodotoxin (TTX) and the T-type Ca2+ channel blocker and nAChR antagonist mecamylamine eliminate tail movements. At late post-hatching stages, mecamylamine blocks Ca2+ signals in the muscles but not the central nervous system. Post-gastrulation Ca2+ signals also arise in epithelial cells, first in a haphazard pattern in scattered cells during tailbud stages, evolving after hatching into repetitive rostrocaudal waves with a different frequency than the nervous system-to-muscle waves, and insensitive to mecamylamine. The desynchronization of Ca2+ waves arising in different parts of the body indicates a shift from whole-body to tissue/organ-specific Ca2+ signaling dynamics as organogenesis occurs, with neurally driven Ca2+ signaling dominating at the later stages when behavior emerges.
Collapse
|
22
|
Tarannum N, Singh R, Woolner S. Sculpting an Embryo: The Interplay between Mechanical Force and Cell Division. J Dev Biol 2022; 10:37. [PMID: 36135370 PMCID: PMC9502278 DOI: 10.3390/jdb10030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
The journey from a single fertilised cell to a multicellular organism is, at the most fundamental level, orchestrated by mitotic cell divisions. Both the rate and the orientation of cell divisions are important in ensuring the proper development of an embryo. Simultaneous with cell proliferation, embryonic cells constantly experience a wide range of mechanical forces from their surrounding tissue environment. Cells must be able to read and respond correctly to these forces since they are known to affect a multitude of biological functions, including cell divisions. The interplay between the mechanical environment and cell divisions is particularly crucial during embryogenesis when tissues undergo dynamic changes in their shape, architecture, and overall organisation to generate functional tissues and organs. Here we review our current understanding of the cellular mechanisms by which mechanical force regulates cell division and place this knowledge within the context of embryogenesis and tissue morphogenesis.
Collapse
Affiliation(s)
- Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
23
|
McMillen P, Walker SI, Levin M. Information Theory as an Experimental Tool for Integrating Disparate Biophysical Signaling Modules. Int J Mol Sci 2022; 23:9580. [PMID: 36076979 PMCID: PMC9455895 DOI: 10.3390/ijms23179580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing appreciation in the fields of cell biology and developmental biology that cells collectively process information in time and space. While many powerful molecular tools exist to observe biophysical dynamics, biologists must find ways to quantitatively understand these phenomena at the systems level. Here, we present a guide for the application of well-established information theory metrics to biological datasets and explain these metrics using examples from cell, developmental and regenerative biology. We introduce a novel computational tool named after its intended purpose, calcium imaging, (CAIM) for simple, rigorous application of these metrics to time series datasets. Finally, we use CAIM to study calcium and cytoskeletal actin information flow patterns between Xenopus laevis embryonic animal cap stem cells. The tools that we present here should enable biologists to apply information theory to develop a systems-level understanding of information processing across a diverse array of experimental systems.
Collapse
Affiliation(s)
- Patrick McMillen
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Sara I. Walker
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85281, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
24
|
Christodoulou N, Skourides PA. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 2022; 149:275604. [PMID: 35662330 PMCID: PMC9340557 DOI: 10.1242/dev.200358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis. Summary: Detailed characterization of the contribution of distinct morphogenetic processes and mechanical tissue coupling during neural tube closure, a process indispensable for central nervous system formation in vertebrates.
Collapse
Affiliation(s)
- Neophytos Christodoulou
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| | - Paris A. Skourides
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| |
Collapse
|
25
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
26
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
27
|
Selvaggi L, Ackermann M, Pasakarnis L, Brunner D, Aegerter CM. Force measurements of Myosin II waves at the yolk surface during Drosophila dorsal closure. Biophys J 2022; 121:410-420. [PMID: 34971619 PMCID: PMC8822616 DOI: 10.1016/j.bpj.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The mechanical properties and the forces involved during tissue morphogenesis have been the focus of much research in the last years. Absolute values of forces during tissue closure events have not yet been measured. This is also true for a common force-producing mechanism involving Myosin II waves that results in pulsed cell surface contractions. Our patented magnetic tweezer, CAARMA, integrated into a spinning disk confocal microscope, provides a powerful explorative tool for quantitatively measuring forces during tissue morphogenesis. Here, we used this tool to quantify the in vivo force production of Myosin II waves that we observed at the dorsal surface of the yolk cell in stage 13 Drosophila melanogaster embryos. In addition to providing for the first time to our knowledge quantitative values on an active Myosin-driven force, we elucidated the dynamics of the Myosin II waves by measuring their periodicity in both absence and presence of external perturbations, and we characterized the mechanical properties of the dorsal yolk cell surface.
Collapse
Affiliation(s)
- Lara Selvaggi
- Physik-Institut, Universität Zürich, Zürich, Switzerland,Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | | | - Laurynas Pasakarnis
- Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | - Damian Brunner
- Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | - Christof M. Aegerter
- Physik-Institut, Universität Zürich, Zürich, Switzerland,Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland,Corresponding author
| |
Collapse
|
28
|
Farahani PE, Nelson CM. Revealing epithelial morphogenetic mechanisms through live imaging. Curr Opin Genet Dev 2022; 72:61-68. [PMID: 34864332 PMCID: PMC8860867 DOI: 10.1016/j.gde.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Epithelial morphogenesis is guided by mechanical forces and biochemical signals that vary spatiotemporally. As many morphogenetic events are driven by rapid cellular processes, understanding morphogenesis requires monitoring development in real time. Here, we discuss how live-imaging approaches can help identify morphogenetic mechanisms otherwise missed in static snapshots of development. We begin with a summary of live-imaging strategies, including recent advances that push the limits of spatiotemporal resolution and specimen size. We then describe recent efforts that employ live imaging to uncover morphogenetic mechanisms. We conclude by discussing how information collected from live imaging can be enhanced by genetically encoded biosensors and spatiotemporal perturbation techniques to determine the dynamics of patterning of developmental signals and their importance for guiding morphogenesis.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
29
|
Pérez-Verdugo F, Reig G, Cerda M, Concha ML, Soto R. Geometrical characterization of active contraction pulses in epithelial cells using the two-dimensional vertex model. J R Soc Interface 2022; 19:20210851. [PMID: 35078339 PMCID: PMC8790349 DOI: 10.1098/rsif.2021.0851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/28/2023] Open
Abstract
Several models have been proposed to describe the dynamics of epithelial tissues undergoing morphogenetic changes driven by apical constriction pulses, which differ in where the constriction is applied, either at the perimeter or in the medial regions. To help discriminate between these models, we analyse the impact of where constriction is applied on the final geometry of the active contracted cell, using the two-dimensional vertex model. We find that medial activity, characterized by a reduction in the reference area, generates anisotropic cell shapes, whereas isotropic cell shapes are produced when the reference perimeter is reduced. When plasticity is included, sufficiently slow processes of medial contractile activity, compared with the characteristic times of elasticity and plasticity, cells can achieve less elongated shapes. Similarly, for perimeter activity, the highest level of contraction is achieved. Finally, we apply the model to describe the apical contractile pulses observed within the epithelial enveloping cell layer during the pre-epiboly of the annual killifish Austrolebias nigripinnis. The analysis of the cell shape changes allowed a global fit of all parameters of the vertex model, with the pulses being quantitatively captured using perimeter activity and area plasticity.
Collapse
Affiliation(s)
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Dokmegang J. Modeling Epiblast Shape in Implanting Mammalian Embryos. Methods Mol Biol 2022; 2490:281-296. [PMID: 35486253 DOI: 10.1007/978-1-0716-2281-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An indispensable prerequisite of mammalian development is successful morphogenesis in the epiblast, the embryonic tissue that gives rise to all differentiated cells of the adult mammal. The right control of both epiblast morphogenesis and the events that regulate its shape in particular during implantation is henceforth of tremendous importance. However, monitoring the process of development in implanting human embryos is ethically and technically challenging, making it difficult to troubleshoot when things go wrong, as it is unfortunately the case with over 30% of pregnancy failures. Although modern in vitro techniques have proven very insightful lately, more tools are needed in the quest to elucidate mammalian and human development. Mathematical and computational modeling position themselves as helpful complementary tools in the biologist's toolbox, enabling the exploration of the living in silico, beyond the boundaries set by ethical concerns and the potential limitations of wet lab techniques. Here, we show how mathematical modeling and computer simulations can be used to emulate and investigate mechanisms driving epiblast shape changes in mouse and human embryos during implantation.
Collapse
Affiliation(s)
- Joel Dokmegang
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
31
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
32
|
Stability bounds of a delay visco-elastic rheological model with substrate friction. J Math Biol 2021; 83:71. [PMID: 34870766 DOI: 10.1007/s00285-021-01699-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 10/24/2022]
Abstract
Cells and tissues exhibit sustained oscillatory deformations during remodelling, migration or embryogenesis. Although it has been shown that these oscillations correlate with intracellular biochemical signalling, the role of these oscillations is as yet unclear, and whether they may trigger drastic cell reorganisation events or instabilities remains unknown. Here, we present a rheological model that incorporates elastic, viscous and frictional components, and that is able to generate oscillatory response through a delay adaptive process of the rest-length. We analyse its stability as a function of the model parameters and deduce analytical bounds of the stable domain. While increasing values of the delay and remodelling rate render the model unstable, we also show that increasing friction with the substrate destabilises the oscillatory response. This fact was unexpected and still needs to be verified experimentally. Furthermore, we numerically verify that the extension of the model with non-linear deformation measures is able to generate sustained oscillations converging towards a limit cycle. We interpret this sustained regime in terms of non-linear time varying stiffness parameters that alternate between stable and unstable regions of the linear model. We also note that this limit cycle is not present in the linear model. We study the phase diagram and the bifurcations of the non-linear model, based on our conclusions on the linear one. Such dynamic analysis of the delay visco-elastic model in the presence of friction is absent in the literature for both linear and non-linear rheologies. Our work also shows how increasing values of some parameters such as delay and friction decrease its stability, while other parameters such as stiffness stabilise the oscillatory response.
Collapse
|
33
|
Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation. PLoS One 2021; 16:e0254763. [PMID: 34320001 PMCID: PMC8318228 DOI: 10.1371/journal.pone.0254763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast, trophectoderm and primitive endoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG# (MechanoGenetic Sharp), an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours in silico. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is essential to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed can dictate the cup shape of the epiblast and fosters its movement towards the uterine tissue. Our results offer novel mechanical insights into mouse peri-implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.
Collapse
|
34
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
35
|
Kowalczyk I, Lee C, Schuster E, Hoeren J, Trivigno V, Riedel L, Görne J, Wallingford JB, Hammes A, Feistel K. Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. Development 2021; 148:dev195008. [PMID: 33500317 PMCID: PMC7860117 DOI: 10.1242/dev.195008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.
Collapse
Affiliation(s)
- Izabela Kowalczyk
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elisabeth Schuster
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Josefine Hoeren
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Valentina Trivigno
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Levin Riedel
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annette Hammes
- Disorders of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Kerstin Feistel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Atieh Y, Wyatt T, Zaske AM, Eisenhoffer GT. Pulsatile contractions promote apoptotic cell extrusion in epithelial tissues. Curr Biol 2021; 31:1129-1140.e4. [PMID: 33400921 DOI: 10.1016/j.cub.2020.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Extrusion is a mechanism used to eliminate unfit, excess, or dying cells from epithelial tissues. The initial events guiding which cells will be selectively extruded from the epithelium are not well understood. Here, we induced damage in a subset of epithelial cells in the developing zebrafish and used time-lapse imaging to examine cell and cytoskeletal dynamics leading to extrusion. We show that cell extrusion is preceded by actomyosin contractions that are pulsatile. Our data show that pulsatile contractions are induced by a junctional to medial re-localization of myosin. Analysis of cell area during contractions revealed that cells pulsing with the longest duration and highest amplitude undergo progressive area loss and extrude. Although pulses were driven by local increases in tension, damage to many cells promoted an overall decrease in the tensile state of the epithelium. We demonstrate that caspase activation leads to sphingosine-1-phosphate enrichment that controls both tissue tension and pulses to dictate areas of extrusion. These data suggest that the kinetics of pulsatile contractions define a key behavioral difference between extruding and non-extruding cells and are predictive of extrusion. Altogether, our study provides mechanistic insight into how localized changes in physical forces are coordinated to remove defective cells for homeostatic maintenance of living epithelial tissues.
Collapse
Affiliation(s)
- Youmna Atieh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Wyatt
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Ana Maria Zaske
- Atomic Force Microscopy Service Center, The University of Texas Health Science Center, Houston, TX, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
37
|
Townshend RF, Shao Y, Wang S, Cortez CL, Esfahani SN, Spence JR, O'Shea KS, Fu J, Gumucio DL, Taniguchi K. Effect of Cell Spreading on Rosette Formation by Human Pluripotent Stem Cell-Derived Neural Progenitor Cells. Front Cell Dev Biol 2020; 8:588941. [PMID: 33178701 PMCID: PMC7593581 DOI: 10.3389/fcell.2020.588941] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Neural rosettes (NPC rosettes) are radially arranged groups of cells surrounding a central lumen that arise stochastically in monolayer cultures of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPC). Since NPC rosette formation is thought to mimic cell behavior in the early neural tube, these rosettes represent important in vitro models for the study of neural tube morphogenesis. However, using current protocols, NPC rosette formation is not synchronized and results are inconsistent among different hPSC lines, hindering quantitative mechanistic analyses and challenging live cell imaging. Here, we report a rapid and robust protocol to induce rosette formation within 6 h after evenly-sized “colonies” of NPC are generated through physical cutting of uniformly polarized NESTIN+/PAX6+/PAX3+/DACH1+ NPC monolayers. These NPC rosettes show apically polarized lumens studded with primary cilia. Using this assay, we demonstrate reduced lumenal size in the absence of PODXL, an important apical determinant recently identified as a candidate gene for juvenile Parkinsonism. Interestingly, time lapse imaging reveals that, in addition to radial organization and apical lumen formation, cells within cut NPC colonies initiate rapid basally-driven spreading. Further, using chemical, genetic and biomechanical tools, we show that NPC rosette morphogenesis requires this basal spreading activity and that spreading is tightly regulated by Rho/ROCK signaling. This robust and quantitative NPC rosette platform provides a sensitive system for the further investigation of cellular and molecular mechanisms underlying NPC rosette morphogenesis.
Collapse
Affiliation(s)
- Ryan F Townshend
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sicong Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Chari L Cortez
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - K Sue O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Deborah L Gumucio
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kenichiro Taniguchi
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
38
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
39
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Nematbakhsh A, Levis M, Kumar N, Chen W, Zartman JJ, Alber M. Epithelial organ shape is generated by patterned actomyosin contractility and maintained by the extracellular matrix. PLoS Comput Biol 2020; 16:e1008105. [PMID: 32817654 PMCID: PMC7480841 DOI: 10.1371/journal.pcbi.1008105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/09/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023] Open
Abstract
Epithelial sheets define organ architecture during development. Here, we employed an iterative multiscale computational modeling and quantitative experimental approach to decouple direct and indirect effects of actomyosin-generated forces, nuclear positioning, extracellular matrix, and cell-cell adhesion in shaping Drosophila wing imaginal discs. Basally generated actomyosin forces generate epithelial bending of the wing disc pouch. Surprisingly, acute pharmacological inhibition of ROCK-driven actomyosin contractility does not impact the maintenance of tissue height or curved shape. Computational simulations show that ECM tautness provides only a minor contribution to modulating tissue shape. Instead, passive ECM pre-strain serves to maintain the shape independent from actomyosin contractility. These results provide general insight into how the subcellular forces are generated and maintained within individual cells to induce tissue curvature. Thus, the results suggest an important design principle of separable contributions from ECM prestrain and actomyosin tension during epithelial organogenesis and homeostasis. The regulation and maintenance of an organ’s shape is a major outstanding problem in developmental biology. An iterative approach combining multiscale computational modelling and quantitative experimental approach was used to decouple direct and indirect roles of subcellular mechanical forces, nuclear positioning, and extracellular matrix in shaping the major axis of the wing pouch during the larval stage in fruit flies, which serves as a prototypical system for investigating epithelial morphogenesis. The research findings in this paper demonstrate that subcellular mechanical forces can effectively generate the curved tissue profile, while extracellular matrix is necessary for preserving the bent shape even in the absence of subcellular mechanical forces once the shape is generated. The developed integrated multiscale modelling environment can be readily extended to generate and test hypothesized novel mechanisms of developmental dynamics of other systems, including organoids that consist of several cellular and extracellular matrix layers.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (JJZ); (MA)
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
- School of Medicine, University of California, Riverside, Riverside, California, United States of America
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (JJZ); (MA)
| |
Collapse
|
41
|
Liu L, Liu W, Shi Y, Li L, Gao Y, Lei Y, Finnell R, Zhang T, Zhang F, Jin L, Li H, Tao W, Wang H. DVL mutations identified from human neural tube defects and Dandy-Walker malformation obstruct the Wnt signaling pathway. J Genet Genomics 2020; 47:301-310. [PMID: 32900645 DOI: 10.1016/j.jgg.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Wnt signaling pathways, including the canonical Wnt/β-catenin pathway, planar cell polarity pathway, and Wnt/Ca2+ signaling pathway, play important roles in neural development during embryonic stages. The DVL genes encode the hub proteins for Wnt signaling pathways. The mutations in DVL2 and DVL3 were identified from patients with neural tube defects (NTDs), but their functions in the pathogenesis of human neural diseases remain elusive. Here, we sequenced the coding regions of three DVL genes in 176 stillborn or miscarried fetuses with NTDs or Dandy-Walker malformation (DWM) and 480 adult controls from a Han Chinese population. Four rare mutations were identified: DVL1 p.R558H, DVL1 p.R606C, DVL2 p.R633W, and DVL3 p.R222Q. To assess the effect of these mutations on NTDs and DWM, various functional analyses such as luciferase reporter assay, stress fiber formation, and in vivo teratogenic assay were performed. The results showed that the DVL2 p.R633W mutation destabilized DVL2 protein and upregulated activities for all three Wnt signalings (Wnt/β-catenin signaling, Wnt/planar cell polarity signaling, and Wnt/Ca2+ signaling) in mammalian cells. In contrast, DVL1 mutants (DVL1 p.R558H and DVL1 p.R606C) decreased canonical Wnt/β-catenin signaling but increased the activity of Wnt/Ca2+ signaling, and DVL3 p.R222Q only decreased the activity of Wnt/Ca2+ signaling. We also found that only the DVL2 p.R633W mutant displayed more severe teratogenicity in zebrafish embryos than wild-type DVL2. Our study demonstrates that these four rare DVL mutations, especially DVL2 p.R633W, may contribute to human neural diseases such as NTDs and DWM by obstructing Wnt signaling pathways.
Collapse
Affiliation(s)
- Lingling Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Weiqi Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Yunqian Gao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard Finnell
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Huili Li
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Wufan Tao
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; Insititute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China; NHC Key Lab of Reproduction (Shanghai Institute of Planned Parenthood Research), Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China; Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Benavides-Rivas C, Tovar LM, Zúñiga N, Pinto-Borguero I, Retamal C, Yévenes GE, Moraga-Cid G, Fuentealba J, Guzmán L, Coddou C, Bascuñán-Godoy L, Castro PA. Altered Glutaminase 1 Activity During Neurulation and Its Potential Implications in Neural Tube Defects. Front Pharmacol 2020; 11:900. [PMID: 32636743 PMCID: PMC7316894 DOI: 10.3389/fphar.2020.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/02/2020] [Indexed: 01/04/2023] Open
Abstract
The neurulation process is regulated by a large amount of genetic and environmental factors that determine the establishment, folding, and fusion of the neural plate to form the neural tube, which develops into the main structure of the central nervous system. A recently described factor involved in this process is glutamate. Through NMDA ionotropic receptor, glutamate modifies intracellular Ca2+ dynamics allowing the oriented cell migration and proliferation, essentials processes in neurulation. Glutamate synthesis depends on the mitochondrial enzyme known as glutaminase 1 (GLS1) that is widely expressed in brain and kidney. The participation of GLS 1 in prenatal neurogenic processes and in the adult brain has been experimentally established, however, its participation in early stages of embryonic development has not been described. The present investigation describes for the first time the presence and functionality of GLS1 in Xenopus laevis embryos during neurulation. Although protein expression levels remains constant, the catalytic activity of GLS1 increases significantly (~66%) between early (stage 12) and middle to late (stages 14-19) neurulation process. Additionally, the use of 6-diazo-5-oxo-L-norleucine (L-DON, competitive inhibitor of glutamine-depend enzymes), reduced significantly the GLS1 specific activity during neurulation (~36%) and induce the occurrence of neural tube defects involving its possible participation in the neural tube closure in Xenopus laevis embryos.
Collapse
Affiliation(s)
- Camila Benavides-Rivas
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Lina Mariana Tovar
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nicolás Zúñiga
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Pinto-Borguero
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio Retamal
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Luisa Bascuñán-Godoy
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
43
|
Goyal R, Spencer KA, Borodinsky LN. From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development. Front Mol Neurosci 2020; 13:62. [PMID: 32390800 PMCID: PMC7193536 DOI: 10.3389/fnmol.2020.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural cells that in turn regulate the needed cellular processes taking place during each developmental period. These include neural cell proliferation and neuronal differentiation, which are crucial for developmental events ranging from the earliest steps of morphogenesis of the neural tube through the establishment of neuronal circuits. Here, we compile studies assessing the ontogeny of ionic currents in the developing nervous system. We then review work demonstrating a role for ion channels in neural tube formation, to underscore the necessity of the signaling downstream ion channels even at the earliest stages of neural development. We discuss the function of ion channels in neural cell proliferation and neuronal differentiation and conclude with how the regulation of all these morphogenetic and cellular processes by electrical activity enables the appropriate development of the nervous system and the establishment of functional circuits adapted to respond to a changing environment.
Collapse
Affiliation(s)
- Raman Goyal
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kira A Spencer
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
44
|
Pulido Companys P, Norris A, Bischoff M. Coordination of cytoskeletal dynamics and cell behaviour during Drosophila abdominal morphogenesis. J Cell Sci 2020; 133:jcs235325. [PMID: 32229579 PMCID: PMC7132776 DOI: 10.1242/jcs.235325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
During morphogenesis, cells exhibit various behaviours, such as migration and constriction, which need to be coordinated. How this is achieved remains elusive. During morphogenesis of the Drosophila adult abdominal epidermis, larval epithelial cells (LECs) migrate directedly before constricting apically and undergoing apoptosis. Here, we study the mechanisms underlying the transition from migration to constriction. We show that LECs possess a pulsatile apical actomyosin network, and that a change in network polarity correlates with behavioural change. Exploring the properties of the contractile network, we find that cell contractility, as determined by myosin activity, has an impact on the behaviour of the network, as well as on cytoskeletal architecture and cell behaviour. Pulsed contractions occur only in cells with intermediate levels of contractility. Furthermore, increasing levels of the small Rho GTPase Rho1 disrupts pulsing, leading to cells that cycle between two states, characterised by a junctional cortical and an apicomedial actin network. Our results highlight that behavioural change relies on tightly controlled cellular contractility. Moreover, we show that constriction can occur without pulsing, raising questions why constricting cells pulse in some contexts but not in others.
Collapse
Affiliation(s)
- Pau Pulido Companys
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Anneliese Norris
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Marcus Bischoff
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
45
|
Abstract
Cell and tissue shape changes are the fundamental elements of morphogenesis that drive normal development of embryos into fully functional organisms. This requires a variety of cellular processes including establishment and maintenance of polarity, tissue growth and apoptosis, and cell differentiation, rearrangement, and migration. It is widely appreciated that the cytoskeletal networks play an important role in regulating many of these processes and, in particular, that pulsed actomyosin contractions are a core cellular mechanism driving cell shape changes and cell rearrangement. In this review, we discuss the role of pulsed actomyosin contractions during developmental morphogenesis, advances in our understanding of the mechanisms regulating actomyosin pulsing, and novel techniques to probe the role of pulsed actomyosin processes in
in vivo model systems.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
46
|
Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat Commun 2019; 10:3557. [PMID: 31391456 PMCID: PMC6686005 DOI: 10.1038/s41467-019-11482-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
Mammalian embryos change shape dramatically upon implantation. The cellular and molecular mechanism underlying this transition are largely unknown. Here, we show that this transition is directed by cross talk between the embryonic epiblast and the first extra-embryonic tissue, the trophectoderm. Specifically, we show via visualisation of a Cdx2-GFP reporter line and pharmacologically mediated loss and gain of function experiments that the epiblast provides FGF signal that results in differential fate acquisition in the multipotent trophectoderm leading to the formation of a tissue boundary within this tissue. The trophectoderm boundary becomes essential for expansion of the tissue into a multi-layered epithelium. Folding of this multi-layered trophectoderm induces spreading of the second extra-embryonic tissue, the primitive endoderm. Together, these events remodel the pre-implantation embryo into its post-implantation cylindrical shape. Our findings uncover how communication between embryonic and extra-embryonic tissues provides positional cues to drive shape changes in mammalian development during implantation.
Collapse
|
47
|
Butler MB, Short NE, Maniou E, Alexandre P, Greene NDE, Copp AJ, Galea GL. Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. J Cell Sci 2019; 132:jcs.230300. [PMID: 31182644 PMCID: PMC6633395 DOI: 10.1242/jcs.230300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular generation of mechanical forces required to close the presumptive spinal neural tube, the 'posterior neuropore' (PNP), involves interkinetic nuclear migration (INM) and apical constriction. Both processes change the apical surface area of neuroepithelial cells, but how they are biomechanically integrated is unknown. Rho kinase (Rock; herein referring to both ROCK1 and ROCK2) inhibition in mouse whole embryo culture progressively widens the PNP. PNP widening is not caused by increased mechanical tension opposing closure, as evidenced by diminished recoil following laser ablation. Rather, Rock inhibition diminishes neuroepithelial apical constriction, producing increased apical areas in neuroepithelial cells despite diminished tension. Neuroepithelial apices are also dynamically related to INM progression, with the smallest dimensions achieved in cells positive for the pan-M phase marker Rb phosphorylated at S780 (pRB-S780). A brief (2 h) Rock inhibition selectively increases the apical area of pRB-S780-positive cells, but not pre-anaphase cells positive for phosphorylated histone 3 (pHH3+). Longer inhibition (8 h, more than one cell cycle) increases apical areas in pHH3+ cells, suggesting cell cycle-dependent accumulation of cells with larger apical surfaces during PNP widening. Consequently, arresting cell cycle progression with hydroxyurea prevents PNP widening following Rock inhibition. Thus, Rock-dependent apical constriction compensates for the PNP-widening effects of INM to enable progression of closure.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Max B Butler
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nina E Short
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK .,Comparative Bioveterinary Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
48
|
A simple mechanochemical model for calcium signalling in embryonic epithelial cells. J Math Biol 2019; 78:2059-2092. [PMID: 30826846 PMCID: PMC6560504 DOI: 10.1007/s00285-019-01333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/14/2018] [Indexed: 12/17/2022]
Abstract
Calcium signalling is one of the most important mechanisms of information propagation in the body. In embryogenesis the interplay between calcium signalling and mechanical forces is critical to the healthy development of an embryo but poorly understood. Several types of embryonic cells exhibit calcium-induced contractions and many experiments indicate that calcium signals and contractions are coupled via a two-way mechanochemical feedback mechanism. We present a new analysis of experimental data that supports the existence of this coupling during apical constriction. We then propose a simple mechanochemical model, building on early models that couple calcium dynamics to the cell mechanics and we replace the hypothetical bistable calcium release with modern, experimentally validated calcium dynamics. We assume that the cell is a linear, viscoelastic material and we model the calcium-induced contraction stress with a Hill function, i.e. saturating at high calcium levels. We also express, for the first time, the "stretch-activation" calcium flux in the early mechanochemical models as a bottom-up contribution from stretch-sensitive calcium channels on the cell membrane. We reduce the model to three ordinary differential equations and analyse its bifurcation structure semi-analytically as two bifurcation parameters vary-the [Formula: see text] concentration, and the "strength" of stretch activation, [Formula: see text]. The calcium system ([Formula: see text], no mechanics) exhibits relaxation oscillations for a certain range of [Formula: see text] values. As [Formula: see text] is increased the range of [Formula: see text] values decreases and oscillations eventually vanish at a sufficiently high value of [Formula: see text]. This result agrees with experimental evidence in embryonic cells which also links the loss of calcium oscillations to embryo abnormalities. Furthermore, as [Formula: see text] is increased the oscillation amplitude decreases but the frequency increases. Finally, we also identify the parameter range for oscillations as the mechanical responsiveness factor of the cytosol increases. This work addresses a very important and not well studied question regarding the coupling between chemical and mechanical signalling in embryogenesis.
Collapse
|
49
|
Martin JB, Muccioli M, Herman K, Finnell RH, Plageman TF. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism. Biol Open 2019; 8:8/1/bio041160. [PMID: 30670450 PMCID: PMC6361208 DOI: 10.1242/bio.041160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Folic acid supplementation can prevent neural tube defects, but the specific molecular mechanisms by which it does have not been elucidated. During neural plate morphogenesis, epithelial cell apical constriction cooperates with other events to drive tissue-bending, and when defective, can result in neural tube defects. A Rho-kinase deficient binding mutant of the apical constriction regulating protein, Shroom3 (Shroom3R1838C), is one of only a handful of mouse mutant lines with neural tube defects that can be rescued by folic acid supplementation. This provided a unique opportunity to probe the functional rescue of a protein linked to neural tube development by folic acid. Utilizing an epithelial cell culture model of apical constriction, it was observed that treatment with exogenous folic acid, as well as co-expression of the folic acid receptor Folr1, can rescue the function of the Rho-kinase binding deficient mutant of Shroom3 in vitro It was also determined that the rescuing ability of folic acid is RhoA and Rho-kinase independent but myosin light chain kinase (MLCK) and Src-kinase dependent. Inhibition of Rho-kinase-dependent apical constriction in chick embryo neural epithelium was also observed to be rescued by exogenous folic acid and that treatment with folic acid is accompanied by elevated activated myosin light chain and MLCK. Furthermore, doubly heterozygous mouse embryos lacking one copy each of Shroom3 and Folr1 exhibit a low rate of neural tube defects and also have lower levels of activated myosin light chain and MLCK. These studies suggest a novel mechanism by which folic acid modifies epithelial cell shape during morphogenesis, shedding light onto how folic acid may prevent neural tube defects.
Collapse
Affiliation(s)
- Jessica B Martin
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Maria Muccioli
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Kenneth Herman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy F Plageman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Visetsouk MR, Falat EJ, Garde RJ, Wendlick JL, Gutzman JH. Basal epithelial tissue folding is mediated by differential regulation of microtubules. Development 2018; 145:dev.167031. [PMID: 30333212 PMCID: PMC6262788 DOI: 10.1242/dev.167031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
The folding of epithelial tissues is crucial for development of three-dimensional structure and function. Understanding this process can assist in determining the etiology of developmental disease and engineering of tissues for the future of regenerative medicine. Folding of epithelial tissues towards the apical surface has long been studied, but the molecular mechanisms that mediate epithelial folding towards the basal surface are just emerging. Here, we utilize zebrafish neuroepithelium to identify mechanisms that mediate basal tissue folding to form the highly conserved embryonic midbrain-hindbrain boundary. Live imaging revealed Wnt5b as a mediator of anisotropic epithelial cell shape, both apically and basally. In addition, we uncovered a Wnt5b-mediated mechanism for specific regulation of basal anisotropic cell shape that is microtubule dependent and likely to involve JNK signaling. We propose a model in which a single morphogen can differentially regulate apical versus basal cell shape during tissue morphogenesis. Summary: Examination of cell shape changes during zebrafish neuroepithelium tissue folding reveals that Wnt5b specifically regulates basal anisotropic cell shape via a microtubule-dependent mechanism, likely involving JNK signaling.
Collapse
Affiliation(s)
- Mike R Visetsouk
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Ryan J Garde
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer L Wendlick
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| |
Collapse
|