1
|
Gonschorek D, Goldin MA, Oesterle J, Schwerd-Kleine T, Arlinghaus R, Zhao Z, Schubert T, Marre O, Euler T. Nitric oxide modulates contrast suppression in a subset of mouse retinal ganglion cells. eLife 2025; 13:RP98742. [PMID: 39783858 PMCID: PMC11717361 DOI: 10.7554/elife.98742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood. In this study, we used two-photon Ca2+ imaging and multi-electrode array (MEA) recordings to measure light-evoked activity of RGCs in the ganglion cell layer in the ex vivo mouse retina. This approach allowed us to investigate the neuromodulatory effects of NO on a cell type-level. Our findings reveal that NO selectively modulates the suppression of temporal responses in a distinct subset of contrast-suppressed RGC types, increasing their activity without altering the spatial properties of their receptive fields. Given that under photopic conditions, NO release is triggered by quick changes in light levels, we propose that these RGC types signal fast contrast changes to higher visual regions. Remarkably, we found that about one-third of the RGC types, recorded using two-photon Ca2+ imaging, exhibited consistent, cell type-specific adaptational response changes throughout an experiment, independent of NO. By employing a sequential-recording paradigm, we could disentangle those additional adaptational response changes from drug-induced modulations. Taken together, our research highlights the selective neuromodulatory effects of NO on RGCs and emphasizes the need of considering non-pharmacological activity changes, like adaptation, in such study designs.
Collapse
Affiliation(s)
- Dominic Gonschorek
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
| | - Matías A Goldin
- Institut de la Vision, Sorbonne Université, INSERM, CNRSParisFrance
| | - Jonathan Oesterle
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Hertie Institute for AI in Brain Health, Tübingen AI Center, University of TübingenTübingenGermany
| | - Tom Schwerd-Kleine
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
| | - Ryan Arlinghaus
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Zhijian Zhao
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Olivier Marre
- Institut de la Vision, Sorbonne Université, INSERM, CNRSParisFrance
| | - Thomas Euler
- Werner Reichardt Centre for Integrative Neuroscience, University of TübingenTübingenGermany
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- GRK 2381 ’cGMP: From Bedside to Bench’, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience, University of TübingenTübingenGermany
| |
Collapse
|
2
|
Zloh M, Kutilek P, Hejda J, Fiserova I, Kubovciak J, Murakami M, Stofkova A. Visual stimulation and brain-derived neurotrophic factor (BDNF) have protective effects in experimental autoimmune uveoretinitis. Life Sci 2024; 355:122996. [PMID: 39173995 DOI: 10.1016/j.lfs.2024.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
AIMS To investigate the therapeutic potential of visual stimulation (VS) and BDNF in murine experimental autoimmune uveoretinitis (EAU). MAIN METHODS Mice were immunized by subcutaneous injection of interphotoreceptor retinoid-binding protein in Freund's complete adjuvant and intravenous injection of pertussis toxin, and were then exposed to high-contrast VS 12 h/day (days 1-14 post-immunization). EAU severity was assessed by examining clinical score, visual acuity, inflammatory markers, and immune cells in the retina. The transcriptome of activated retinal cells was determined by RNA-seq using RNA immunoprecipitated in complex with phosphorylated ribosomal protein S6. The retinal levels of protein products of relevant upregulated genes were quantified. The effect of BDNF on EAU was tested in unstimulated mice by its daily topical ocular administration (days 8-14 post-immunization). KEY FINDINGS VS attenuated EAU development and decreased the expression of pro-inflammatory cytokines/chemokines and numbers of immune cells in the retina (n = 10-20 eyes/group for each analysis). In activated retinal cells of control mice (n = 30 eyes/group), VS upregulated genes encoding immunomodulatory neuropeptides, of which BDNF and vasoactive intestinal peptide (VIP) also showed increased mRNA and protein levels in the retina of VS-treated EAU mice (n = 6-10 eyes/group for each analysis). In unstimulated EAU mice, BDNF treatment mimicked the protective effects of VS by modulating the inflammatory and stem cell properties of Müller cells (n = 5 eyes/group for each analysis). SIGNIFICANCE VS effectively suppresses EAU, at least through enhancing retinal levels of anti-inflammatory and neuroprotective factors, VIP and BDNF. Our findings also suggest BDNF as a promising therapeutic agent for uveitis treatment.
Collapse
Affiliation(s)
- Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Oudeng G, Banerjee S, Wang Q, Jiang D, Fan Y, Wu H, Pan F, Yang M. Photoreceptor-Mimetic Microflowers for Restoring Light Responses in Degenerative Retina through a 2D Nanopetal/Cell Biointerface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400300. [PMID: 38923683 DOI: 10.1002/smll.202400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Retinitis pigmentosa is the main cause of inherited human blindness and is associated with dysfunctional photoreceptors (PRs). Compared with traditional methods, optoelectronic stimulation can better preserve the structural integrity and genetic content of the retina. However, enhancing the spatiotemporal accuracy of stimulation is challenging. Quantum dot-doped ZnIn2S4 microflowers (MF) are utilized to construct a biomimetic photoelectric interface with a 0D/3D heterostructure, aiming to restore the light response in PR-degenerative mice. The MF bio interface has dimensions similar to those of natural PRs and can be distributed within the curved spatial region of the retina, mimicking cellular dispersion. The soft 2D nano petals of the MF provide a large specific surface area for photoelectric activation and simulate the flexibility interfacing between cells. This bio interface can selectively restore the light responses of seven types of retina ganglion cells that encode brightness. The distribution of responsive cells forms a pattern similar to that of normal mice, which may reflect the generation of the initial "neural code" in the degenerative retina. Patch-clamp recordings indicate that the bio interface can induce spiking and postsynaptic currents at the single-neuron level. The results will shed light on the development of a potential bionic subretinal prosthetic toolkit for visual function restoration.
Collapse
Affiliation(s)
- Gerile Oudeng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518033, P. R. China
| | - Seema Banerjee
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Ophthalmology and Genetics Medicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, 22203, USA
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qin Wang
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- University of Health and Rehabilitation Sciences, o. 369, Qingdao National High-Tech Industrial Development Zone, Shandong Province, China
| | - Ding Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213159, P. R. China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Feng Pan
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
4
|
Yamakawa Y, Tsurudome Y, Tamada M, Tsuchimochi Y, Umeda Y, Yoshida Y, Kobayashi D, Kawashiri T, Kubota T, Matsunaga N, Shimazoe T. Cholecystokinin receptor type A are involved in the circadian rhythm of the mouse retina. Heliyon 2024; 10:e32653. [PMID: 39183886 PMCID: PMC11341299 DOI: 10.1016/j.heliyon.2024.e32653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
The retina is the only organ projecting external light to the suprachiasmatic nucleus. Cholecystokinin receptor type A (Cckar/Cckar) is one of the essential factors for light reception in retinal cells. As there was a lack of literature on the matter, we aimed to elucidate the cause of the time-dependent phase change in clock gene expression. We found that Cckar mRNA expression in retinal cells exhibited diurnal variations. The rhythm of expression of the clock gene Per1/Per2 in retinal cells was altered in Cckar -/- mice. The light sensitivity of retinal cells was evaluated in wild-type mice, which showed c-Fos was activated in the ganglion cell layer more than in the inner granular layer. This increase in the number of c-Fos-positive cells was suppressed by lorglumide, a Cckar antagonist. Treatment of rat retina primary cells with lorglumide suppressed Per2 transcription, which was altered in a time-dependent manner relative to the Per2 expression. Light irradiation studies in Cckar -/- mice did not exhibit an increase in Period expression in the suprachiasmatic nucleus. These results indicate that Cckar is among the factors that regulate the cycle of clock genes on the retina. Cckar knockout attenuates the light responsiveness of suprachiasmatic nucleus and reduces the expression amplitude of Period genes in the retina. Thus, Cckar may contribute to entrainment of the light environment and maintenance of the expression cycle of Period gene, which is one of the core clock genes.
Collapse
Affiliation(s)
- Yusuke Yamakawa
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Masaki Tamada
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuki Tsuchimochi
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Umeda
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Toshio Kubota
- Center of Pharmaceutical Care for Community Health, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Jo A, Deniz S, Cherian S, Xu J, Futagi D, DeVries SH, Zhu Y. Modular interneuron circuits control motion sensitivity in the mouse retina. Nat Commun 2023; 14:7746. [PMID: 38008788 PMCID: PMC10679153 DOI: 10.1038/s41467-023-43382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023] Open
Abstract
Neural computations arise from highly precise connections between specific types of neurons. Retinal ganglion cells (RGCs) with similar stratification patterns are positioned to receive similar inputs but often display different response properties. In this study, we used intersectional mouse genetics to achieve single-cell type labeling and identified an object motion sensitive (OMS) AC type, COMS-AC(counter-OMS AC). Optogenetic stimulation revealed that COMS-AC makes glycinergic synapses with the OMS-insensitive HD2p-RGC, while chemogenetic inactivation showed that COMS-AC provides inhibitory control to HD2p-RGC during local motion. This local inhibition, combined with the inhibitory drive from TH2-AC during global motion, explains the OMS-insensitive feature of HD2p-RGC. In contrast, COMS-AC fails to make synapses with W3(UHD)-RGC, allowing it to exhibit OMS under the control of VGlut3-AC and TH2-AC. These findings reveal modular interneuron circuits that endow structurally similar RGC types with different responses and present a mechanism for redundancy-reduction in the retina to expand coding capacity.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Suraj Cherian
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daiki Futagi
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Choi W, Nensel AK, Droho S, Fattah MA, Mokashi-Punekar S, Swygart DI, Burton ST, Schwartz GW, Lavine JA, Gianneschi NC. Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model. SCIENCE ADVANCES 2023; 9:eadi8534. [PMID: 37831763 PMCID: PMC10575579 DOI: 10.1126/sciadv.adi8534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the developed world. Current therapy includes monthly intraocular injections of anti-VEGF antibodies, which are ineffective in up to one third of patients. Thrombospondin-1 (TSP1) inhibits angiogenesis via CD36 binding, and its down-regulated expression is negatively associated with the onset of nAMD. Here, we describe TSP1 mimetic protein-like polymers (TSP1 PLPs). TSP1 PLPs bind CD36 with high affinity, resist degradation, show prolonged intraocular half-lives (13.1 hours), have no toxicity at relevant concentrations in vivo (40 μM), and are more efficacious in ex vivo choroidal sprouting assays compared to the peptide sequence and Eylea (aflibercept), the current standard of care anti-VEGF treatment. Furthermore, PLPs exhibit superior in vivo efficacy in a mouse model for nAMD compared to control PLPs consisting of scrambled peptide sequences, using fluorescein angiography and immunofluorescence. Since TSP-1 inhibits angiogenesis by VEGF-dependent and independent mechanisms, TSP1 PLPs are a potential therapeutic for patients with anti-VEGF treatment-resistant nAMD.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Ashley K. Nensel
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mara A. Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - David I. Swygart
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Spencer T. Burton
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Greg W. Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Biomedical Engineering, Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Jo A, Deniz S, Xu J, Duvoisin RM, DeVries SH, Zhu Y. A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina. Nat Commun 2023; 14:5937. [PMID: 37741839 PMCID: PMC10517963 DOI: 10.1038/s41467-023-41638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Choi J, Li J, Ferdous S, Liang Q, Moffitt JR, Chen R. Spatial organization of the mouse retina at single cell resolution by MERFISH. Nat Commun 2023; 14:4929. [PMID: 37582959 PMCID: PMC10427710 DOI: 10.1038/s41467-023-40674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
The visual signal processing in the retina requires the precise organization of diverse neuronal types working in concert. While single-cell omics studies have identified more than 120 different neuronal subtypes in the mouse retina, little is known about their spatial organization. Here, we generated the single-cell spatial atlas of the mouse retina using multiplexed error-robust fluorescence in situ hybridization (MERFISH). We profiled over 390,000 cells and identified all major cell types and nearly all subtypes through the integration with reference single-cell RNA sequencing (scRNA-seq) data. Our spatial atlas allowed simultaneous examination of nearly all cell subtypes in the retina, revealing 8 previously unknown displaced amacrine cell subtypes and establishing the connection between the molecular classification of many cell subtypes and their spatial arrangement. Furthermore, we identified spatially dependent differential gene expression between subtypes, suggesting the possibility of functional tuning of neuronal types based on location.
Collapse
Affiliation(s)
- Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Salma Ferdous
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qingnan Liang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
12
|
Tien NW, Vitale C, Badea TC, Kerschensteiner D. Layer-Specific Developmentally Precise Axon Targeting of Transient Suppressed-by-Contrast Retinal Ganglion Cells. J Neurosci 2022; 42:7213-7221. [PMID: 36002262 PMCID: PMC9512569 DOI: 10.1523/jneurosci.2332-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022] Open
Abstract
The mouse retina encodes diverse visual features in the spike trains of >40 retinal ganglion cell (RGC) types. Each RGC type innervates a specific subset of the >50 retinorecipient brain areas. Our catalog of RGC types and feature representations is nearing completion. Yet, we know little about where specific RGC types send their information. Furthermore, the developmental strategies by which RGC axons choose their targets and pattern their terminal arbors remain obscure. Here, we identify a genetic intersection (Cck-Cre and Brn3cCKOAP ) that selectively labels transient Suppressed-by-Contrast (tSbC) RGCs, a member of an evolutionarily conserved functionally mysterious RGC subclass. We find that tSbC RGCs selectively innervate the dorsolateral geniculate nucleus (dLGN) and ventrolateral geniculate nucleus (vLGN) of the thalamus, the superior colliculus (SC), and the nucleus of the optic tract (NOT) in mice of either sex. They binocularly innervate dLGN and vLGN but project only contralaterally to SC and NOT. In each target, tSbC RGC axons occupy a specific sublayer, suggesting that they restrict their input to specific circuits. The tSbC RGC axons span the length of the optic tract by birth and remain poised there until they simultaneously innervate their four targets around postnatal day 3. The tSbC RGC axons choose the right targets and establish mature stratification patterns from the outset. This precision is maintained in the absence of Brn3c. Our results provide the first map of SbC inputs to the brain, revealing a narrow target set, unexpected laminar organization, target-specific binocularity, and developmental precision.SIGNIFICANCE STATEMENT In recent years, we have learned a lot about the visual features encoded by RGCs, the output neurons of the eye. In contrast, we know little about where RGCs send their information and how RGC axons, which carry this information, target specific brain areas during development. Here, we develop an intersectional strategy to label a unique RGC type, the tSbC RGC, and map its projections. We find that tSbC RGC axons are highly selective. They innervate few retinal targets and restrict their arbors to specific sublayers within these targets. The selective tSbC RGC projection patterns develop synchronously and without trial and error, suggesting molecular determinism and coordination.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Carmela Vitale
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, Maryland 20892
- Research and Development Institute, Transilvania University of Braşov, Braşov 500484, Romania
- National Center for Brain Research, Research Institute for Artificial Intelligence, Romanian Academy, Bucharest 050711, Romania
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Departments of Neuroscience
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
13
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
14
|
Wienbar S, Schwartz GW. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 2022; 110:2110-2123.e4. [PMID: 35508174 PMCID: PMC9262831 DOI: 10.1016/j.neuron.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
Collapse
Affiliation(s)
- Sophia Wienbar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Summers MT, Feller MB. Distinct inhibitory pathways control velocity and directional tuning in the mouse retina. Curr Biol 2022; 32:2130-2143.e3. [PMID: 35395192 PMCID: PMC9133153 DOI: 10.1016/j.cub.2022.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
The sensory periphery is responsible for detecting ethologically relevant features of the external world, using compact, predominantly feedforward circuits. Visual motion is a particularly prevalent sensory feature, the presence of which can be a signal to enact diverse behaviors ranging from gaze stabilization reflexes to predator avoidance or prey capture. To understand how the retina constructs the distinct neural representations required for these behaviors, we investigated two circuits responsible for encoding different aspects of image motion: ON and ON-OFF direction-selective ganglion cells (DSGCs). Using a combination of two-photon targeted whole-cell electrophysiology, pharmacology, and conditional knockout mice, we show that distinct inhibitory pathways independently control tuning for motion velocity and motion direction in these two cell types. We further employ dynamic clamp and numerical modeling techniques to show that asymmetric inhibition provides a velocity-invariant mechanism of directional tuning, despite the strong velocity dependence of classical models of direction selectivity. We therefore demonstrate that invariant representations of motion features by inhibitory interneurons act as computational building blocks to construct distinct, behaviorally relevant signals at the earliest stages of the visual system.
Collapse
Affiliation(s)
- Mathew T Summers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
17
|
Ruff T, Peters C, Matsumoto A, Ihle SJ, Morales PA, Gaitanos L, Yonehara K, Del Toro D, Klein R. FLRT3 Marks Direction-Selective Retinal Ganglion Cells That Project to the Medial Terminal Nucleus. Front Mol Neurosci 2021; 14:790466. [PMID: 34955746 PMCID: PMC8696037 DOI: 10.3389/fnmol.2021.790466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.
Collapse
Affiliation(s)
- Tobias Ruff
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Laboratory of Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Christian Peters
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Akihiro Matsumoto
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, ETH Zürich, Zurich, Switzerland
| | - Pilar Alcalá Morales
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Louise Gaitanos
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Keisuke Yonehara
- Department of Biomedicine, Nordic-EMBL Partnership for Molecular Medicine, Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Daniel Del Toro
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | - Rüdiger Klein
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
18
|
D'Souza SP, Swygart DI, Wienbar SR, Upton BA, Zhang KX, Mackin RD, Casasent AK, Samuel MA, Schwartz GW, Lang RA. Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells. J Comp Neurol 2021; 530:1247-1262. [PMID: 34743323 PMCID: PMC8969148 DOI: 10.1002/cne.25272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022]
Abstract
Obtaining a parts list of the sensory components of the retina is vital to understanding the effects of light in behavior, health, and disease. Rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) are the best described photoreceptors in the mammalian retina, but recent functional roles have been proposed for retinal neuropsin (Opn5) - an atypical opsin. However, little is known about the pattern of Opn5 expression in the retina. Using cre (Opn5cre ) and cre-dependent reporters, we uncover patterns of Opn5 expression and find that Opn5 is restricted to retinal ganglion cells (RGCs). Opn5-RGCs are non-homogenously distributed through the retina, with greater densities of cells located in the dorsotemporal quadrant. In addition to local topology of these cells, using cre-dependent AAV viral tracing, we surveyed their central targets and found that they are biased towards image-forming and image-stabilizing regions. Finally, molecular and electrophysiological profiling reveal that Opn5-RGCs comprise previously defined RGC types which respond optimally to edges and object-motion (F-mini-ONs, HD2, HD1, LEDs, ooDSRGCs, etc.). Together, these data describe the second collection of RGCs that express atypical opsins in the mouse, and expand the roles of image-forming cells in retinal physiology and function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shane P D'Souza
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology
| | - David I Swygart
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sophia R Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Brian A Upton
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Kevin X Zhang
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA.,The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna K Casasent
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60201, USA
| | - Richard A Lang
- The Visual Systems Group.,Center for Chronobiology, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology.,Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA.,Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| |
Collapse
|
19
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter's morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs' intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs' gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.
Collapse
|
20
|
Grimes WN, Aytürk DG, Hoon M, Yoshimatsu T, Gamlin C, Carrera D, Nath A, Nadal-Nicolás FM, Ahlquist RM, Sabnis A, Berson DM, Diamond JS, Wong RO, Cepko C, Rieke F. A High-Density Narrow-Field Inhibitory Retinal Interneuron with Direct Coupling to Müller Glia. J Neurosci 2021; 41:6018-6037. [PMID: 34083252 PMCID: PMC8276741 DOI: 10.1523/jneurosci.0199-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features, such as edges or directed motion, by mediating excitatory and inhibitory interactions between input (i.e., bipolar) and output (i.e., ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation, and neurovascular control. Here, we report that, in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labeling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus showed selective connections between MACs and a subpopulation of retinal ganglion cell types. Visually evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.SIGNIFICANCE STATEMENT Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics, and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Didem Göz Aytürk
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Daniel Carrera
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Amurta Nath
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Adit Sabnis
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jeffrey S Diamond
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Connie Cepko
- Harvard Medical School, Blavatnik Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
21
|
Nonlinear Spatial Integration Underlies the Diversity of Retinal Ganglion Cell Responses to Natural Images. J Neurosci 2021; 41:3479-3498. [PMID: 33664129 PMCID: PMC8051676 DOI: 10.1523/jneurosci.3075-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. How neurons encode natural stimuli is a fundamental question for sensory neuroscience. In the early visual system, standard encoding models assume that neurons linearly filter incoming stimuli through their receptive fields, but artificial stimuli, such as contrast-reversing gratings, often reveal nonlinear spatial processing. We investigated to what extent such nonlinear processing is relevant for the encoding of natural images in retinal ganglion cells in mice of either sex. We found that standard linear receptive field models yielded good predictions of responses to flashed natural images for a subset of cells but failed to capture the spiking activity for many others. Cells with poor model performance displayed pronounced sensitivity to fine spatial contrast and local signal rectification as the dominant nonlinearity. By contrast, sensitivity to high-frequency contrast-reversing gratings, a classical test for nonlinear spatial integration, was not a good predictor of model performance and thus did not capture the variability of nonlinear spatial integration under natural images. In addition, we also observed a class of nonlinear ganglion cells with inverse tuning for spatial contrast, responding more strongly to spatially homogeneous than to spatially structured stimuli. These findings highlight the diversity of receptive field nonlinearities as a crucial component for understanding early sensory encoding in the context of natural stimuli. SIGNIFICANCE STATEMENT Experiments with artificial visual stimuli have revealed that many types of retinal ganglion cells pool spatial input signals nonlinearly. However, it is still unclear how relevant this nonlinear spatial integration is when the input signals are natural images. Here we analyze retinal responses to natural scenes in large populations of mouse ganglion cells. We show that nonlinear spatial integration strongly influences responses to natural images for some ganglion cells, but not for others. Cells with nonlinear spatial integration were sensitive to spatial structure inside their receptive fields, and a small group of cells displayed a surprising sensitivity to spatially homogeneous stimuli. Traditional analyses with contrast-reversing gratings did not predict this variability of nonlinear spatial integration under natural images.
Collapse
|
22
|
Wu L, Wang Z, Wang B, Chen Q, Bao L, Yu Z, Yang Y, Ling Y, Qin Y, Tang K, Cai Y, Huang R. Emulation of biphasic plasticity in retinal electrical synapses for light-adaptive pattern pre-processing. NANOSCALE 2021; 13:3483-3492. [PMID: 33475123 DOI: 10.1039/d0nr08012h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrical synapses provide rapid, bidirectional communication in nervous systems, accomplishing tasks distinct from and complementary to chemical synapses. Here, we demonstrate an artificial electrical synapse based on second-order conductance transition (SOCT) in an Ag-based memristor for the first time. High-resolution transmission electron microscopy indicates that SOCT is mediated by the virtual silver electrode. Besides the conventional chemical synaptic behaviors, the biphasic plasticity of electrical synapses is well emulated by integrating the device with a photosensitive element to form an optical pre-processing unit (OPU), which contributes to the retinal neural circuitry and is adaptive to ambient illumination. By synergizing the OPU and spiking neural network (SNN), adaptive pattern recognition tasks are accomplished under different light and noise settings. This work not only contributes to the further completion of synaptic behaviour for hardware-level neuromorphic computing, but also potentially enables image pre-processing with light adaptation and noise suppression for adaptive visual recognition.
Collapse
Affiliation(s)
- Lindong Wu
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Zongwei Wang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Advanced Institute of Information Technology (AIIT), Peking University, Hangzhou, Zhejiang 311215, P. R. China
| | - Bowen Wang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Qingyu Chen
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Lin Bao
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Zhizhen Yu
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yunfan Yang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yaotian Ling
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yabo Qin
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Kechao Tang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yimao Cai
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, P. R. China
| | - Ru Huang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
23
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
24
|
Souihel S, Cessac B. On the potential role of lateral connectivity in retinal anticipation. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2021; 11:3. [PMID: 33420903 PMCID: PMC7796858 DOI: 10.1186/s13408-020-00101-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
We analyse the potential effects of lateral connectivity (amacrine cells and gap junctions) on motion anticipation in the retina. Our main result is that lateral connectivity can-under conditions analysed in the paper-trigger a wave of activity enhancing the anticipation mechanism provided by local gain control (Berry et al. in Nature 398(6725):334-338, 1999; Chen et al. in J. Neurosci. 33(1):120-132, 2013). We illustrate these predictions by two examples studied in the experimental literature: differential motion sensitive cells (Baccus and Meister in Neuron 36(5):909-919, 2002) and direction sensitive cells where direction sensitivity is inherited from asymmetry in gap junctions connectivity (Trenholm et al. in Nat. Neurosci. 16:154-156, 2013). We finally present reconstructions of retinal responses to 2D visual inputs to assess the ability of our model to anticipate motion in the case of three different 2D stimuli.
Collapse
Affiliation(s)
- Selma Souihel
- Biovision Team and Neuromod Institute, Inria, Université Côte d'Azur, Nice, France.
| | - Bruno Cessac
- Biovision Team and Neuromod Institute, Inria, Université Côte d'Azur, Nice, France
| |
Collapse
|
25
|
An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 2020; 24:105-115. [PMID: 33230322 PMCID: PMC7769921 DOI: 10.1038/s41593-020-00747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
In the vertebrate retina, the location of a neuron's receptive field in visual space closely corresponds to the physical location of synaptic input onto its dendrites, a relationship called the retinotopic map. We report the discovery of a systematic spatial offset between the ON and OFF receptive subfields in F-mini-ON retinal ganglion cells (RGCs). Surprisingly, this property does not come from spatially offset ON and OFF layer dendrites, but instead arises from a network of electrical synapses via gap junctions to RGCs of a different type, the F-mini-OFF. We show that the asymmetric morphology and connectivity of these RGCs can explain their receptive field offset, and we use a multicell model to explore the effects of receptive field offset on the precision of edge-location representation in a population. This RGC network forms a new electrical channel combining the ON and OFF feedforward pathways within the output layer of the retina.
Collapse
|
26
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Kerstein PC, Leffler J, Sivyer B, Taylor WR, Wright KM. Gbx2 Identifies Two Amacrine Cell Subtypes with Distinct Molecular, Morphological, and Physiological Properties. Cell Rep 2020; 33:108382. [PMID: 33207201 PMCID: PMC7713908 DOI: 10.1016/j.celrep.2020.108382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Our understanding of nervous system function is limited by our ability to identify and manipulate neuronal subtypes within intact circuits. We show that the Gbx2CreERT2-IRES-EGFP mouse line labels two amacrine cell (AC) subtypes in the mouse retina that have distinct morphological, physiological, and molecular properties. Using a combination of RNA-seq, genetic labeling, and patch clamp recordings, we show that one subtype is GABAergic that receives excitatory input from On bipolar cells. The other population is a non-GABAergic, non-glycinergic (nGnG) AC subtype that lacks the expression of standard neurotransmitter markers. Gbx2+ nGnG ACs have smaller, asymmetric dendritic arbors that receive excitatory input from both On and Off bipolar cells. Gbx2+ nGnG ACs also exhibit spatially restricted tracer coupling to bipolar cells (BCs) through gap junctions. This study identifies a genetic tool for investigating the two distinct AC subtypes, and it provides a model for studying synaptic communication and visual circuit function. Investigations into neural circuit development and function are limited by the lack of genetic tools to label and perturb individual neuronal subtypes. Using the Gbx2CreERT2 mouse line, Kerstein et al. identify two amacrine cell subtypes in the mouse retina and explore their distinct molecular, morphological, and physiological characteristics.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph Leffler
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- School of Optometry and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J Neurosci 2020; 40:5177-5195. [PMID: 32457074 PMCID: PMC7329304 DOI: 10.1523/jneurosci.0471-20.2020] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023] Open
Abstract
Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.
Collapse
Affiliation(s)
- Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mallory A Laboulaye
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Inbal Benhar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
29
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
30
|
A retinal circuit for the suppressed-by-contrast receptive field of a polyaxonal amacrine cell. Proc Natl Acad Sci U S A 2020; 117:9577-9583. [PMID: 32273387 DOI: 10.1073/pnas.1913417117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amacrine cells are a diverse population of interneurons in the retina that play a critical role in extracting complex features of the visual world and shaping the receptive fields of retinal output neurons (ganglion cells). While much of the computational power of amacrine cells is believed to arise from the immense mutual interactions among amacrine cells themselves, the intricate circuitry and functions of amacrine-amacrine interactions are poorly understood in general. Here we report a specific interamacrine pathway from a small-field, glutamate-glycine dual-transmitter amacrine cell (vGluT3) to a wide-field polyaxonal amacrine cell (PAS4/5). Distal tips of vGluT3 cell dendrites made selective glycinergic (but not glutamatergic) synapses onto PAS4/5 dendrites to provide a center-inhibitory, surround-disinhibitory drive that helps PAS4/5 cells build a suppressed-by-contrast (sbc) receptive field, which is a unique and fundamental trigger feature previously found only in a small population of ganglion cells. The finding of this trigger feature in a circuit upstream to ganglion cells suggests that the sbc form of visual computation occurs more widely in the retina than previously believed and shapes visual processing in multiple downstream circuits in multiple ways. We also identified two different subpopulations of PAS4/5 cells based on their differential connectivity with vGluT3 cells and their distinct receptive-field and luminance-encoding characteristics. Moreover, our results revealed a form of crosstalk between small-field and large-field amacrine cell circuits, which provides a mechanism for feature-specific local (<150 µm) control of global (>1 mm) retinal activity.
Collapse
|
31
|
Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife 2020; 9:52949. [PMID: 32096758 PMCID: PMC7069718 DOI: 10.7554/elife.52949] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition ‘vetoes’ excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | | | - Mike Delsey
- Department of Biology, University of Victoria, Victoria, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
32
|
Banerjee S, Wang Q, So CH, Pan F. Defocused Images Change Multineuronal Firing Patterns in the Mouse Retina. Cells 2020; 9:cells9030530. [PMID: 32106537 PMCID: PMC7140422 DOI: 10.3390/cells9030530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Myopia is a major public health problem, affecting one third of the population over 12 years old in the United States and more than 80% of people in Hong Kong. Myopia is attributable to elongation of the eyeball in response to defocused images that alter eye growth and refraction. It is known that the retina can sense the focus of an image, but the effects of defocused images on signaling of population of retinal ganglion cells (RGCs) that account either for emmetropization or refractive errors has still to be elucidated. Thorough knowledge of the underlying mechanisms could provide insight to understanding myopia. In this study, we found that focused and defocused images can change both excitatory and inhibitory conductance of ON alpha, OFF alpha and ON–OFF retinal ganglion cells in the mouse retina. The firing patterns of population of RGCs vary under the different powers of defocused images and can be affected by dopamine receptor agonists/antagonists’ application. OFF-delayed RGCs or displaced amacrine cells (dACs) with time latency of more than 0.3 s had synchrony firing with other RGCs and/or dACs. These spatial synchrony firing patterns between OFF-delayed cell and other RGCs/dACs were significantly changed by defocused image, which may relate to edge detection. The results suggested that defocused images induced changes in the multineuronal firing patterns and whole cell conductance in the mouse retina. The multineuronal firing patterns can be affected by dopamine receptors’ agonists and antagonists. Synchronous firing of OFF-delayed cells is possibly related to edge detection, and understanding of this process may reveal a potential therapeutic target for myopia patients.
Collapse
Affiliation(s)
| | | | | | - Feng Pan
- Correspondence: ; Tel.: +852-2766-6640; Fax: +852-2764-6051
| |
Collapse
|
33
|
Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, Lynch MR, Mooney B, Wickham H, Liu P, Schwartz GW, Trimarchi JM. Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep 2019; 9:15778. [PMID: 31673015 PMCID: PMC6823391 DOI: 10.1038/s41598-019-52215-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/11/2019] [Indexed: 01/27/2023] Open
Abstract
Retinal ganglion cells can be classified into more than 40 distinct subtypes, whether by functional classification or transcriptomics. The examination of these subtypes in relation to their physiology, projection patterns, and circuitry would be greatly facilitated through the identification of specific molecular identifiers for the generation of transgenic mice. Advances in single cell transcriptomic profiling have enabled the identification of molecular signatures for cellular subtypes that are only rarely found. Therefore, we used single cell profiling combined with hierarchical clustering and correlate analyses to identify genes expressed in distinct populations of Parvalbumin-expressing cells and functionally classified RGCs. RGCs were manually isolated based either upon fluorescence or physiological distinction through cell-attached recordings. Microarray hybridization and RNA-Sequencing were employed for the characterization of transcriptomes and in situ hybridization was utilized to further characterize gene candidate expression. Gene candidates were identified based upon cluster correlation, as well as expression specificity within physiologically distinct classes of RGCs. Further, we identified Prph, Ctxn3, and Prkcq as potential candidates for ipRGC classification in the murine retina. The use of these genes, or one of the other newly identified subset markers, for the generation of a transgenic mouse would enable future studies of RGC-subtype specific function, wiring, and projection.
Collapse
Affiliation(s)
- Lauren A Laboissonniere
- Department of Molecular Genetics and Microbiology 2033 Mowry Road, University of Florida, Gainesville, FL, 32610, USA
| | - Jillian J Goetz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | | - Ran Bi
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Terry J S Lund
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Laura Ellson
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Madison R Lynch
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bailey Mooney
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hannah Wickham
- Department of Genetics, Development and Cell Biology 2437 Pammel Drive, 2114 Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peng Liu
- Department of Statistics, 2117 Snedecor Hall, Iowa State University, Ames, IA, 50011, USA
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | | |
Collapse
|
34
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Middleton TP, Huang JY, Protti DA. Cannabinoids Modulate Light Signaling in ON-Sustained Retinal Ganglion Cells of the Mouse. Front Neural Circuits 2019; 13:37. [PMID: 31164809 PMCID: PMC6536650 DOI: 10.3389/fncir.2019.00037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
The sole output of the retina to the brain is a signal that results from the integration of excitatory and inhibitory synaptic inputs at the level of retinal ganglion cells (RGCs). Endogenous cannabinoids (eCBs) are found throughout the central nervous system where they modulate synaptic excitability. Cannabinoid receptors and their ligands have been localized to most retinal neurons in mammals, yet their impact on retinal processing is not well known. Here, we set out to investigate the role of the cannabinoid system in retinal signaling using electrophysiological recordings from ON-sustained (ON-S) RGCs that displayed morphological and physiological signatures of ON alpha RGCs in dark adapted mouse retina. We studied the effect of the cannabinoid agonist WIN55212-2 and the inverse agonist AM251 on the spatial tuning of ON-S RGCs. WIN55212-2 significantly reduced their spontaneous spiking activity and responses to optimal spot size as well as altered their spatial tuning by reducing light driven excitatory and inhibitory inputs to RGCs. AM251 produced the opposite effect, increasing spontaneous spiking activity and peak response as well as increasing inhibitory and excitatory inputs. In addition, AM251 sharpened the spatial tuning of ON-S RGCs by increasing the inhibitory effect of the surround. These results demonstrate the presence of a functional cannabinergic system in the retina as well as sensitivity of ON-RGCs to cannabinoids. These results reveal a neuromodulatory system that can regulate the sensitivity and excitability of retinal synapses in a dynamic, activity dependent manner and that endocannabinoids may play a significant role in retinal processing.
Collapse
Affiliation(s)
- Terence Peter Middleton
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jin Yu Huang
- Bosch Institute, The University of Sydney, Sydney, NSW, Australia.,Discipline of Biomedical Science, The University of Sydney, Sydney, NSW, Australia
| | - Dario Alejandro Protti
- Discipline of Physiology, The University of Sydney, Sydney, NSW, Australia.,Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition. J Neurosci 2019; 39:4312-4322. [PMID: 30926751 DOI: 10.1523/jneurosci.3066-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Two types of mammalian direction-selective ganglion cells (DSGCs), ON and ONOFF, operate over different speed ranges. The directional axes of the ON-DSGCs are thought to align with the axes of the vestibular system and provide sensitivity at rotational velocities that are too slow to activate the semicircular canals. ONOFF-DSGCs respond to faster image velocities. Using natural images that simulate the natural visual inputs to freely moving animals, we show that simulated visual saccades suppress responses in ON-DSGCs but not ONOFF-DSGCs recorded in retinas of domestic rabbits of either gender. Analysis of the synaptic inputs shows that this saccadic suppression results from glycinergic inputs that are specific to ON-DSGCs and are absent in ONOFF-DSGCs. When this glycinergic input is blocked, both cell types respond similarly to visual saccades and display essentially identical speed tuning. The results demonstrate that glycinergic circuits within the retina can produce saccadic suppression of retinal ganglion cell activity. The cell-type-specific targeting of the glycinergic circuits further supports the proposed physiological roles of ON-DSGCs in retinal-image stabilization and of ONOFF-DSGCs in detecting local object motion and signaling optical flow.SIGNIFICANCE STATEMENT In the mammalian retina, ON direction-selective ganglion cells (DSGCs) respond preferentially to slow image motion, whereas ONOFF-DSGCs respond better to rapid motion. The mechanisms producing this different speed tuning remain unclear. Here we show that simulated visual saccades suppress ON-DSGCs, but not ONOFF-DSGCs. This selective saccadic suppression is because of the selective targeting of glycinergic inhibitory synaptic inputs to ON-DSGCs. The different saccadic suppression in the two cell types points to different physiological roles, consistent with their projections to distinct areas within the brain. ON-DSGCs may be critical for providing the visual feedback signals that contribute to stabilizing the image on the retina, whereas ONOFF-DSGCs may be important for detecting the onset of saccades or for signaling optical flow.
Collapse
|
37
|
Jacoby J, Nath A, Jessen ZF, Schwartz GW. A Self-Regulating Gap Junction Network of Amacrine Cells Controls Nitric Oxide Release in the Retina. Neuron 2018; 100:1149-1162.e5. [PMID: 30482690 PMCID: PMC6317889 DOI: 10.1016/j.neuron.2018.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Accepted: 09/25/2018] [Indexed: 01/31/2023]
Abstract
Neuromodulators regulate circuits throughout the nervous system, and revealing the cell types and stimulus conditions controlling their release is vital to understanding their function. The effects of the neuromodulator nitric oxide (NO) have been studied in many circuits, including in the vertebrate retina, where it regulates synaptic release, gap junction coupling, and blood vessel dilation, but little is known about the cells that release NO. We show that a single type of amacrine cell (AC) controls NO release in the inner retina, and we report its light responses, electrical properties, and calcium dynamics. We discover that this AC forms a dense gap junction network and that the strength of electrical coupling in the network is regulated by light through NO. A model of the network offers insights into the biophysical specializations leading to auto-regulation of NO release within the network.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Amurta Nath
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA; Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Zachary F Jessen
- Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
38
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
39
|
Jacoby J, Schwartz GW. Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:269. [PMID: 30210298 PMCID: PMC6119723 DOI: 10.3389/fncel.2018.00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) relay ~40 parallel and independent streams of visual information, each encoding a specific feature of a visual scene, to the brain for further processing. The polarity of a visual neuron’s response to a change in contrast is generally the first characteristic used for functional classification: ON cells increase their spike rate to positive contrast; OFF cells increase their spike rate for negative contrast; ON-OFF cells increase their spike rate for both contrast polarities. Suppressed-by-Contrast (SbC) neurons represent a less well-known fourth category; they decrease firing below a baseline rate for both positive and negative contrasts. SbC RGCs were discovered over 50 years ago, and SbC visual neurons have now been found in the thalamus and primary visual cortex of several mammalian species, including primates. Recent discoveries of SbC RGCs in mice have provided new opportunities for tracing upstream circuits in the retina responsible for the SbC computation and downstream targets in the brain where this information is used. We review and clarify recent work on the circuit mechanism of the SbC computation in these RGCs. Studies of mechanism rely on precisely defined cell types, and we argue that, like ON, OFF, and ON-OFF RGCs, SbC RGCs consist of more than one type. A new appreciation of the diversity of SbC RGCs will help guide future work on their targets in the brain and their roles in visual perception and behavior.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
40
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|
41
|
Kim T, Kerschensteiner D. Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina. Cell Rep 2018; 19:1343-1350. [PMID: 28514655 DOI: 10.1016/j.celrep.2017.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Object motion sensitive (OMS) W3-retinal ganglion cells (W3-RGCs) in mice respond to local movements in a visual scene but remain silent during self-generated global image motion. The excitatory inputs that drive responses of W3-RGCs to local motion were recently characterized, but which inhibitory neurons suppress W3-RGCs' responses to global motion, how these neurons encode motion information, and how their connections are organized along the excitatory circuit axis remains unknown. Here, we find that a genetically identified amacrine cell (AC) type, TH2-AC, exhibits fast responses to global motion and slow responses to local motion. Optogenetic stimulation shows that TH2-ACs provide strong GABAA receptor-mediated input to W3-RGCs but only weak input to upstream excitatory neurons. Cell-type-specific silencing reveals that temporally coded inhibition from TH2-ACs cancels W3-RGC spike responses to global but not local motion stimuli and, thus, controls the feature selectivity of OMS signals sent to the brain.
Collapse
Affiliation(s)
- Tahnbee Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
42
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
43
|
Beaudoin DL, Kupershtok M, Demb JB. Selective synaptic connections in the retinal pathway for night vision. J Comp Neurol 2017; 527:117-132. [PMID: 28856684 DOI: 10.1002/cne.24313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.
Collapse
Affiliation(s)
- Deborah L Beaudoin
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mania Kupershtok
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
44
|
Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion. J Neurosci 2017; 37:610-625. [PMID: 28100743 DOI: 10.1523/jneurosci.2804-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/14/2016] [Accepted: 11/25/2016] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON-OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. SIGNIFICANCE STATEMENT The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned "feature detection" profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling show that while these three "high-definition" RGCs share certain receptive-field properties, they also have distinct tuning to the size, speed, and type of motion on the retina, enabling them to occupy different niches in stimulus space.
Collapse
|
45
|
Mani A, Schwartz GW. Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites. Curr Biol 2017; 27:471-482. [PMID: 28132812 DOI: 10.1016/j.cub.2016.12.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022]
Abstract
Center-surround antagonism has been used as the canonical model to describe receptive fields of retinal ganglion cells (RGCs) for decades. We describe a newly identified RGC type in the mouse, called the ON delayed (OND) RGC, with receptive field properties that deviate from center-surround organization. Responding with an unusually long latency to light stimulation, OND RGCs respond earlier as the visual stimulus increases in size. Furthermore, OND RGCs are excited by light falling far beyond their dendrites. We unravel details of the circuit mechanisms behind these phenomena, revealing new roles for inhibition in controlling both temporal and spatial receptive field properties. The non-canonical receptive field properties of the OND RGC-integration of long temporal and large spatial scales-suggest that unlike typical RGCs, it may encode a slowly varying, global property of the visual scene.
Collapse
Affiliation(s)
- Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
46
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
47
|
Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina. J Neurosci 2016; 36:3208-21. [PMID: 26985031 DOI: 10.1523/jneurosci.4554-15.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Orientation selectivity (OS) is a prominent and well studied feature of early visual processing in mammals, but recent work has highlighted the possibility that parallel OS circuits might exist in multiple brain locations. Although both classic and modern work has identified an OS mechanism in selective wiring from lateral geniculate nucleus (LGN) to primary visual cortex, OS responses have now been found upstream of cortex in mouse LGN and superior colliculus, suggesting a possible origin in the retina. Indeed, retinal OS responses have been reported for decades in rabbit and more recently in mouse. However, we still know very little about the properties and mechanisms of retinal OS in the mouse, including whether there is a distinct OS ganglion cell type, which orientations are represented, and what are the synaptic mechanisms of retinal OS. We have identified two novel types of OS ganglion cells in the mouse retina that are highly selective for horizontal and vertical cardinal orientations. Reconstructions of the dendritic trees of these OS ganglion cells and measurements of their synaptic conductances offer insights into the mechanism of the OS computation at the earliest stage of the visual system. SIGNIFICANCE STATEMENT Orientation selectivity (OS) is one of the most well studied computations in the brain and has become a prominent model system in various areas of sensory neuroscience. Although the cortical mechanism of OS suggested by Hubel and Wiesel (1962) has been investigated intensely, other OS cells exist upstream of cortex as early as the retina and the mechanisms of OS in subcortical regions are much less well understood. We identified two ON retinal ganglion cells (RGCs) in mouse that compute OS along the horizontal (nasal-temporal) and vertical (dorsoventral) axes of visual space. We show the relationship between dendritic morphology and OS for each RGC type and reveal new synaptic mechanisms of OS computation in the retina.
Collapse
|
48
|
Tien NW, Kim T, Kerschensteiner D. Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina. Cell Rep 2016; 15:1369-1375. [PMID: 27160915 DOI: 10.1016/j.celrep.2016.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022] Open
Abstract
Neurons that release more than one transmitter exist throughout the CNS. Yet, how these neurons deploy multiple transmitters and shape the function of specific circuits is not well understood. VGluT3-expressing amacrine cells (VG3-ACs) provide glutamatergic input to ganglion cells activated by contrast and motion. Using optogenetics, we find that VG3-ACs provide selective glycinergic input to a retinal ganglion cell type suppressed by contrast and motion (SbC-RGCs). Firing of SbC-RGCs is suppressed at light ON and OFF over a broad range of stimulus sizes. Anatomical circuit reconstructions reveal that VG3-ACs form inhibitory synapses preferentially on processes that link ON and OFF arbors of SbC-RGC dendrites. Removal of VG3-ACs from mature circuits reduces inhibition and attenuates spike suppression of SbC-RGCs in a contrast- and size-selective manner, illustrating the modularity of retinal circuits. VG3-ACs thus use dual transmitters in a target-specific manner and shape suppressive contrast responses in the retina by glycinergic transmission.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tahnbee Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
49
|
Segregated Glycine-Glutamate Co-transmission from vGluT3 Amacrine Cells to Contrast-Suppressed and Contrast-Enhanced Retinal Circuits. Neuron 2016; 90:27-34. [PMID: 26996083 DOI: 10.1016/j.neuron.2016.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/06/2015] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
Since the introduction of Dale's principle of "one neuron releases one transmitter at all its synapses," a growing number of exceptions to this principle have been identified. While the concept of neurotransmitter co-release by a single neuron is now well accepted, the specific synaptic circuitry and functional advantage of co-neurotransmission remain poorly understood in general. Here we report Ca(2+)-dependent co-release of a new combination of inhibitory and excitatory neurotransmitters, namely, glycine and glutamate, by the vGluT3-expressing amacrine cell (GAC) in the mouse retina. GACs selectively make glycinergic synapses with uniformity detectors (UDs) and provide a major inhibitory drive that underlies the suppressed-by-contrast trigger feature of UDs. Meanwhile, GACs release glutamate to excite OFF alpha ganglion cells and a few other nonlinear, contrast-sensitive ganglion cells. This coordinated inhibition and excitation of two separate neuronal circuits by a single interneuron suggests a unique advantage in differential detection of visual field uniformity and contrast.
Collapse
|