1
|
Robinson K, Singh SK, Walkup RB, Fawwal DV, Adeyemo WL, Beaty TH, Butali A, Buxó CJ, Chung WK, Cutler DJ, Epstein MP, Fashina A, Gasser B, Gowans LJJ, Hecht JT, Uribe LM, Scott DA, Shaw GM, Thomas MA, Weinberg SM, Brand H, Marazita ML, Lipinski RJ, Murray JC, Cornell RA, Leslie-Clarkson EJ. Rare variants in PRKCI cause Van der Woude syndrome and other features of peridermopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.17.25320742. [PMID: 39867391 PMCID: PMC11759255 DOI: 10.1101/2025.01.17.25320742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis. Both IRF6 and GRHL3 function in a transcriptional regulatory network governing differentiation of periderm, a single layer of epithelial cells that prevents pathological adhesions during palatogenesis. Disruption of this layer results in a spectrum of phenotypes ranging from lip pits and OFCs to severe pterygia and other congenital anomalies that can be incompatible with life. Understanding the mechanisms of peridermopathies is vital in improving health outcomes for affected individuals. We reasoned that genes encoding additional members of the periderm gene regulatory network, including kinases acting upstream of IRF6 (i.e., atypical protein kinase C family members, RIPK4, and CHUK), are candidates to harbor variants resulting in VWS. Consistent with this prediction, we identified 6 de novo variants (DNs) and 11 rare variants in PRKCI, an atypical protein kinase C, in 17 individuals with clinical features consistent with syndromic OFCs and peridermopathies. Of the identified DNs, 4 were identical p.(Asn383Ser) variants in unrelated individuals with syndromic OFCs, indicating a likely hotspot mutation. We also performed functional validation of 12 variants using the enveloping layer in zebrafish embryos, a structure analogous to the periderm. Three patient-specific alleles (p.Arg130His, p.(Asn383Ser), and p.Leu385Phe) were confirmed to be loss-of-function variants. In summary, we identified PRKCI as a novel causal gene for VWS and syndromic OFC with other features of peridermopathies.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Sunil K. Singh
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Walkup
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA, USA
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Azeez Fashina
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | | - Lord JJ Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX, USA
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
2
|
Wu Y, Zhang Z, Cai H, Zhang W, Zhang L, Li Z, Yang L, Chen Y, Corner TP, Song Z, Yue J, Yang F, Li X, Schofield CJ, Zhang X. Discovery of ZG-2305, an Orally Bioavailable Factor Inhibiting HIF Inhibitor for the Treatment of Obesity and Fatty Liver Disease. J Med Chem 2025; 68:212-235. [PMID: 39432709 DOI: 10.1021/acs.jmedchem.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Genetic loss of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH) enhances both glycolysis and aerobic metabolism. FIH is thus a potential target for adiposity control and improving hepatic steatosis. We describe development of a series of novel, potent, and selective FIH inhibitors that occupy both the FIH catalytic site and a recently defined tyrosine conformational-flip pocket. ZG-2305, with a Ki of 79.6 nM for FIH, manifests 38-fold selectivity over the hypoxia-inducible factor (HIF) prolyl hydroxylase PHD2. Oral administration of ZG-2305 in the western-diet induced obesity mouse model results in improved lipid accumulation and recovery from abnormal body weight/hepatic steatosis. Amelioration of nonalcoholic steatohepatitis (NASH) related pathological phenotypes in the HF-CDAA-diet induced NASH mouse model was observed. Preliminary preclinical studies indicate ZG-2305 has good pharmacokinetic properties and an acceptable safety profile. The results imply ZG-2305 is a promising candidate for treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zewei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haiping Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Weiqing Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Le Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yafen Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zhe Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Yue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Ouyang H, How CY, Wang X, Yu C, Luo A, Huang L, Chen Y. Crosslinking-mediated Interactome Analysis Identified PHD2-HIF1α Interaction Hotspots and the Role of PHD2 in Regulating Protein Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628769. [PMID: 39763868 PMCID: PMC11702602 DOI: 10.1101/2024.12.16.628769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins. In this study, we engineered HeLa cells that stably express HTBH-tagged PHD2 to facilitate the identification of PHD2 interactome. Using DSSO-based cross-linking mass spectrometry (XL-MS) technology and LC-MSn analysis, we mapped PHD2-HIF1α interaction hotspots and identified over 300 PHD2 interacting proteins. Furthermore, we validated the COP9 Signalosome (CSN) complex, a major deneddylase complex, as a novel PHD2 interactor. DMOG treatment promoted interaction between PHD2 and CSN complex and enhanced the deneddylase activity of the CSN complex, resulting in increased level of free Cullin and reduced target protein ubiquitination. This mechanism may serve as a negative feedback regulation of the HIF transcription pathway.
Collapse
Affiliation(s)
- Haiping Ouyang
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Cindy Y. How
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
He J, Yu Y, Liu W, Li Z, Qi Z, Weng S, Guo C, He J. Molecular mechanism of infectious spleen and kidney necrosis virus in manipulating the hypoxia-inducible factor pathway to augment virus replication. Virulence 2024; 15:2349027. [PMID: 38680083 PMCID: PMC11085990 DOI: 10.1080/21505594.2024.2349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wenhui Liu
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhang Qi
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
5
|
Li Q, Liu Y, Wu J, Zhu Z, Fan J, Zhai L, Wang Z, Du G, Zhang L, Hu J, Ma DK, Liu JO, Huang H, Tan M, Dang Y, Jiang W. P4HA2 hydroxylates SUFU to regulate the paracrine Hedgehog signaling and promote B-cell lymphoma progression. Leukemia 2024; 38:1751-1763. [PMID: 38909089 PMCID: PMC11286522 DOI: 10.1038/s41375-024-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Aberrations in the Hedgehog (Hh) signaling pathway are significantly prevailed in various cancers, including B-cell lymphoma. A critical facet of Hh signal transduction involves the dynamic regulation of the suppressor of fused homolog (SUFU)-glioma-associated oncogene homolog (GLI) complex within the kinesin family member 7 (KIF7)-supported ciliary tip compartment. However, the specific post-translational modifications of SUFU-GLI complex within this context have remained largely unexplored. Our study reveals a novel regulatory mechanism involving prolyl 4-hydroxylase 2 (P4HA2), which forms a complex with KIF7 and is essential for signal transduction of Hh pathway. We demonstrate that, upon Hh pathway activation, P4HA2 relocates alongside KIF7 to the ciliary tip. Here, it hydroxylates SUFU to inhibit its function, thus amplifying the Hh signaling. Moreover, the absence of P4HA2 significantly impedes B lymphoma progression. This effect can be attributed to the suppression of Hh signaling in stromal fibroblasts, resulting in decreased growth factors essential for malignant proliferation of B lymphoma cells. Our findings highlight the role of P4HA2-mediated hydroxylation in modulating Hh signaling and propose a novel stromal-targeted therapeutic strategy for B-cell lymphoma.
Collapse
Affiliation(s)
- Quanfu Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yiyang Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jingxian Wu
- Department of pathology, College of Basic Medicine, Molecular Medicine Diagnostic and Testing Center, Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Zewen Zhu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Linhui Zhai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guiping Du
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dengke K Ma
- Department of Physiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Volkova YL, Jucht AE, Oechsler N, Krishnankutty R, von Kriegsheim A, Wenger RH, Scholz CC. Selective Hypoxia-Sensitive Oxomer Formation by FIH Prevents Binding of the NF-κB Inhibitor IκBβ to NF-κB Subunits. Mol Cell Biol 2024; 44:138-148. [PMID: 38644795 PMCID: PMC11110689 DOI: 10.1080/10985549.2024.2338727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical in vivo models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor β (IκBβ). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBβ oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBβ oxomer formation did not occur via an IκBβ asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBβ ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBβ from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBβ contributes to the hypoxia-dependent regulation of inflammation.
Collapse
Affiliation(s)
- Yulia L. Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Nina Oechsler
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C. Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
8
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
9
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Batie M, Fasanya T, Kenneth NS, Rocha S. Oxygen-regulated post-translation modifications as master signalling pathway in cells. EMBO Rep 2023; 24:e57849. [PMID: 37877678 DOI: 10.15252/embr.202357849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Oxygen is essential for viability in mammalian organisms. However, cells are often exposed to changes in oxygen availability, due to either increased demand or reduced oxygen supply, herein called hypoxia. To be able to survive and/or adapt to hypoxia, cells activate a variety of signalling cascades resulting in changes to chromatin, gene expression, metabolism and viability. Cellular signalling is often mediated via post-translational modifications (PTMs), and this is no different in response to hypoxia. Many enzymes require oxygen for their activity and oxygen can directly influence several PTMS. Here, we review the direct impact of changes in oxygen availability on PTMs such as proline, asparagine, histidine and lysine hydroxylation, lysine and arginine methylation and cysteine dioxygenation, with a focus on mammalian systems. In addition, indirect hypoxia-dependent effects on phosphorylation, ubiquitination and sumoylation will also be discussed. Direct and indirect oxygen-regulated changes to PTMs are coordinated to achieve the cell's ultimate response to hypoxia. However, specific oxygen sensitivity and the functional relevance of some of the identified PTMs still require significant research.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Temitope Fasanya
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Niall S Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Cell and Systems Biology, Institute of Molecular Systems and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Li Y, Yuan T, Zhang H, Liu S, Lun J, Guo J, Wang Y, Zhang Y, Fang J. PHD3 inhibits colon cancer cell metastasis through the occludin-p38 pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1749-1757. [PMID: 37814811 PMCID: PMC10679873 DOI: 10.3724/abbs.2023103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 10/11/2023] Open
Abstract
Prolyl hydroxylase 3 (PHD3) hydroxylates HIFα in the presence of oxygen, leading to HIFα degradation. PHD3 inhibits tumorigenesis. However, the underlying mechanism is not well understood. Herein, we demonstrate that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 MAPK pathway independent of its hydroxylase activity. We find that PHD3 inhibits colon cancer cell metastasis in the presence of the PHD inhibitor DMOG, and prolyl hydroxylase-deficient PHD3(H196A) suppresses cell metastasis as well. PHD3 controls the stability of the tight junction protein occludin in a hydroxylase-independent manner. We further find that PHD3-inhibited colon cancer cell metastasis is rescued by knockdown of occludin and that occludin acts as a negative regulator of cell metastasis, implying that PHD3 suppresses metastasis through occludin. Furthermore, knockdown of occludin induces phosphorylation of p38 MAPK, and the p38 inhibitor SB203580 impedes cell migration and invasion induced by occludin knockdown, indicating that occludin functions through p38. Moreover, knockdown of occludin enhances the expression of MKK3/6, the upstream kinase of p38, while overexpression of occludin decreases its expression. Our results suggest that PHD3 inhibits the metastasis of colon cancer cells through the occludin-p38 pathway independent of its hydroxylase activity. These findings reveal a previously undiscovered mechanism underlying the regulation of cancer cell metastasis by PHD3 and highlight a noncanonical hydroxylase-independent function of PHD3 in the suppression of cancer cells.
Collapse
Affiliation(s)
- Yuyao Li
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Tanglong Yuan
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Synthetic BiologyMinistry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityJinan250014China
| | - Shuting Liu
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Jie Lun
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Jing Guo
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Yu Wang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Yuying Zhang
- School of Public HealthQingdao UniversityQingdao266071China
| | - Jing Fang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao Cancer InstituteQingdao266071China
| |
Collapse
|
12
|
Yoo S, Choi S, Kim I, Kim IS. Hypoxic regulation of extracellular vesicles: Implications for cancer therapy. J Control Release 2023; 363:201-220. [PMID: 37739015 DOI: 10.1016/j.jconrel.2023.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Extracellular vesicles (EVs) play a pivotal role in intercellular communication and have been implicated in cancer progression. Hypoxia, a pervasive hallmark of cancer, is known to regulate EV biogenesis and function. Hypoxic EVs contain a specific set of proteins, nucleic acids, lipids, and metabolites, capable of reprogramming the biology and fate of recipient cells. Enhancing the intrinsic therapeutic efficacy of EVs can be achieved by strategically modifying their structure and contents. Moreover, the use of EVs as drug delivery vehicles holds great promise for cancer treatment. However, various hurdles must be overcome to enable their clinical application as cancer therapeutics. In this review, we aim to discuss the current knowledge on the hypoxic regulation of EVs. Additionally, we will describe the underlying mechanisms by which EVs contribute to cancer progression in hypoxia and outline the progress and limitations of hypoxia-related EV therapeutics for cancer.
Collapse
Affiliation(s)
- Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Sanga Choi
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
13
|
Nolan A, Raso C, Kolch W, von Kriegsheim A, Wynne K, Matallanas D. Proteomic Mapping of the Interactome of KRAS Mutants Identifies New Features of RAS Signalling Networks and the Mechanism of Action of Sotorasib. Cancers (Basel) 2023; 15:4141. [PMID: 37627169 PMCID: PMC10452836 DOI: 10.3390/cancers15164141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
RAS proteins are key regulators of cell signalling and control different cell functions including cell proliferation, differentiation, and cell death. Point mutations in the genes of this family are common, particularly in KRAS. These mutations were thought to cause the constitutive activation of KRAS, but recent findings showed that some mutants can cycle between active and inactive states. This observation, together with the development of covalent KRASG12C inhibitors, has led to the arrival of KRAS inhibitors in the clinic. However, most patients develop resistance to these targeted therapies, and we lack effective treatments for other KRAS mutants. To accelerate the development of RAS targeting therapies, we need to fully characterise the molecular mechanisms governing KRAS signalling networks and determine what differentiates the signalling downstream of the KRAS mutants. Here we have used affinity purification mass-spectrometry proteomics to characterise the interactome of KRAS wild-type and three KRAS mutants. Bioinformatic analysis associated with experimental validation allows us to map the signalling network mediated by the different KRAS proteins. Using this approach, we characterised how the interactome of KRAS wild-type and mutants is regulated by the clinically approved KRASG12C inhibitor Sotorasib. In addition, we identified novel crosstalks between KRAS and its effector pathways including the AKT and JAK-STAT signalling modules.
Collapse
Affiliation(s)
- Aoife Nolan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Cinzia Raso
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| |
Collapse
|
14
|
Xue Y, Cui A, Wei S, Ma F, Liu Z, Fang X, Huo S, Sun X, Li W, Hu Z, Liu Y, Cai G, Su W, Zhao J, Yan X, Gao C, Wen J, Zhang H, Li H, Liu Y, Lin X, Xu Y, Fu W, Fang J, Li Y. Proline hydroxylation of CREB-regulated transcriptional coactivator 2 controls hepatic glucose metabolism. Proc Natl Acad Sci U S A 2023; 120:e2219419120. [PMID: 37252972 PMCID: PMC10266032 DOI: 10.1073/pnas.2219419120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.
Collapse
Affiliation(s)
- Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xia Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | | | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200031, China
| | - Wenjing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jian Wen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Wenguang Fu
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao266071, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
15
|
Szwarc MM, Guarnieri AL, Joshi M, Duc HN, Laird MC, Pandey A, Khanal S, Dohm E, Bui AK, Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. FAM193A is a positive regulator of p53 activity. Cell Rep 2023; 42:112230. [PMID: 36897777 PMCID: PMC10164416 DOI: 10.1016/j.celrep.2023.112230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna L Guarnieri
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison C Laird
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Santosh Khanal
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Dohm
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Aimee K Bui
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
SGOL2 promotes prostate cancer progression by inhibiting RAB1A ubiquitination. Aging (Albany NY) 2022; 14:10050-10066. [PMID: 36566018 PMCID: PMC9831743 DOI: 10.18632/aging.204443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the most prevalent genitourinary malignant cancer in men worldwide. Patients with prostate cancer who progress to castration-resistant prostate cancer (CRPC) or metastatic CRPC have significantly poorer survival. Advanced prostate cancer is a clinical challenge due to the lack of effective treatment strategies. In the field of oncology, SGOL2 was an emerging and differentially expressed molecule, which enhanced the proliferation of cell populations in vitro in our studies. Mass spectrum and Co-IP validated the interaction of SGOL2 and RAB1A in a protein-protein manner. We further investigated the role of SGOL2 in the regulatory mechanism of RAB1A in prostate cancer cell lines. Furthermore, SGOL2 regulated RAB1A expression by inhibiting its ubiquitination. Rescue Experiments demonstrated that SGOL2 promoted prostate cancer cell proliferation and migration by upregulating RAB1A expression. Finally, we found that SGOL2 and RAB1A may regulate the tumor microenvironment (TME) in prostate cancer. In conclusion, our findings concluded that SGOL2 stabilized RAB1A expression to promote prostate cancer development. Both of them were of great importance in TME modulation.
Collapse
|
17
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Gong Y, Behera G, Erber L, Luo A, Chen Y. HypDB: A functionally annotated web-based database of the proline hydroxylation proteome. PLoS Biol 2022; 20:e3001757. [PMID: 36026437 PMCID: PMC9455854 DOI: 10.1371/journal.pbio.3001757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/08/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Proline hydroxylation (Hyp) regulates protein structure, stability, and protein-protein interaction. It is widely involved in diverse metabolic and physiological pathways in cells and diseases. To reveal functional features of the Hyp proteome, we integrated various data sources for deep proteome profiling of the Hyp proteome in humans and developed HypDB (https://www.HypDB.site), an annotated database and web server for Hyp proteome. HypDB provides site-specific evidence of modification based on extensive LC-MS analysis and literature mining with 14,413 nonredundant Hyp sites on 5,165 human proteins including 3,383 Class I and 4,335 Class II sites. Annotation analysis revealed significant enrichment of Hyp on key functional domains and tissue-specific distribution of Hyp abundance across 26 types of human organs and fluids and 6 cell lines. The network connectivity analysis further revealed a critical role of Hyp in mediating protein-protein interactions. Moreover, the spectral library generated by HypDB enabled data-independent analysis (DIA) of clinical tissues and the identification of novel Hyp biomarkers in lung cancer and kidney cancer. Taken together, our integrated analysis of human proteome with publicly accessible HypDB revealed functional diversity of Hyp substrates and provides a quantitative data source to characterize Hyp in pathways and diseases.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gaurav Behera
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kim I, Choi S, Yoo S, Lee M, Kim IS. Cancer-Associated Fibroblasts in the Hypoxic Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143321. [PMID: 35884382 PMCID: PMC9320406 DOI: 10.3390/cancers14143321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancers have regions of low oxygen concentration where hypoxia-related signaling pathways are activated. The hypoxic tumor microenvironment has been widely accepted as a hallmark of cancer and shown to be a critical factor in the crosstalk between cancer and stromal cells. Fibroblasts are one of the most abundant cellular components in the tumor stroma and are also significantly affected by oxygen deprivation. In this case, we discuss the molecular and cellular mechanisms that regulate fibroblasts under hypoxic conditions and their effect on cancer development and progression. Unraveling these regulatory mechanisms could be exploited in developing potential fibroblast-specific therapeutics for cancer. Abstract Solid cancers are composed of malignant cells and their surrounding matrix components. Hypoxia plays a critical role in shaping the tumor microenvironment that contributes to cancer progression and treatment failure. Cancer-associated fibroblasts (CAFs) are one of the most prominent components of the tumor microenvironment. CAFs are highly sensitive to hypoxia and participates in the crosstalk with cancer cells. Hypoxic CAFs modulate several mechanisms that induce cancer malignancy, such as extracellular matrix (ECM) remodeling, immune evasion, metabolic reprogramming, angiogenesis, metastasis, and drug resistance. Key signaling molecules regulating CAFs in hypoxia include transforming growth factor (TGF-β) and hypoxia-inducible factors (HIFs). In this article, we summarize the mechanisms underlying the hypoxic regulation of CAFs and how hypoxic CAFs affect cancer development and progression. We also discuss the potential therapeutic strategies focused on targeting CAFs in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
- Correspondence: (I.K.); (I.-S.K.)
| | - Sanga Choi
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Seongkyeong Yoo
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, Korea
- Correspondence: (I.K.); (I.-S.K.)
| |
Collapse
|
20
|
Li S, Li W, Yuan J, Bullova P, Wu J, Zhang X, Liu Y, Plescher M, Rodriguez J, Bedoya-Reina OC, Jannig PR, Valente-Silva P, Yu M, Henriksson MA, Zubarev RA, Smed-Sörensen A, Suzuki CK, Ruas JL, Holmberg J, Larsson C, Christofer Juhlin C, von Kriegsheim A, Cao Y, Schlisio S. Impaired oxygen-sensitive regulation of mitochondrial biogenesis within the von Hippel-Lindau syndrome. Nat Metab 2022; 4:739-758. [PMID: 35760869 PMCID: PMC9236906 DOI: 10.1038/s42255-022-00593-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome. TFAM is hydroxylated by EGLN3 and subsequently bound by the von Hippel-Lindau tumour-suppressor protein, which stabilizes TFAM by preventing mitochondrial proteolysis. Cells lacking wild-type VHL or in which EGLN3 is inactivated have reduced mitochondrial mass. Tumorigenic VHL variants leading to different clinical manifestations fail to bind hydroxylated TFAM. In contrast, cells harbouring the Chuvash polycythaemia VHLR200W mutation, involved in hypoxia-sensing disorders without tumour development, are capable of binding hydroxylated TFAM. Accordingly, VHL-related tumours, such as pheochromocytoma and renal cell carcinoma cells, display low mitochondrial content, suggesting that impaired mitochondrial biogenesis is linked to VHL tumorigenesis. Finally, inhibiting proteolysis by targeting LONP1 increases mitochondrial content in VHL-deficient cells and sensitizes therapy-resistant tumours to sorafenib treatment. Our results offer pharmacological avenues to sensitize therapy-resistant VHL tumours by focusing on the mitochondria.
Collapse
Affiliation(s)
- Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Wenyu Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Yuan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Bullova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xuepei Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Monika Plescher
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Javier Rodriguez
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Oscar C Bedoya-Reina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paulo R Jannig
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paula Valente-Silva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meng Yu
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Molecular Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alex von Kriegsheim
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Lun J, Wang Y, Gao Q, Wang Y, Zhang H, Fang J. PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9. Acta Biochim Biophys Sin (Shanghai) 2022; 54:708-715. [PMID: 35920196 PMCID: PMC9827955 DOI: 10.3724/abbs.2022043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which mediates ubiquitination and degradation of hydroxylated HIFα. PHD3 and pVHL are found to inhibit the expression of PAX2, however, the molecular mechanism is unclear. Here we demonstrate that PHD3 hydroxylates PAX2 at proline 9, which is required for pVHL to mediate PAX2 ubiquitination and degradation. Overexpression of PHD3 enhances prolyl hydroxylation, ubiquitination and degradation of PAX2 with little effect on those of PAX2(P9A). PHD3 does not influence PAX2 expression in VHL-null cells. pVHL binds to PAX2 and enhances PAX2 ubiquitination and degradation. However, pVHL does not bind with PAX2(P9A) and cannot enhance its ubiquitination and degradation. Our results suggest that proline 9 hydroxylation is a prerequisite for PAX2 degradation by pVHL. Functional studies indicate that introduction of PAX2 into PAX2-null COS-7 cells promotes cell proliferation, which is suppressed by co-expression of PHD3 but not by hydroxylase-deficient PHD3(H196A). PHD3 inhibits PAX2-induced, but not PAX2(P9A)-induced proliferation of COS-7 cells. These results suggest that PHD3 hydroxylates PAX2, followed by pVHL-mediated PAX2 ubiquitination and degradation. This study also suggests that PHD3 inhibits cell proliferation through downregulating PAX2.
Collapse
Affiliation(s)
- Jie Lun
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Yuxin Wang
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Qiang Gao
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care HospitalJinan250014China
| | - Jing Fang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China,Correspondence address. Tel: +86-532-82991017; E-mail:
| |
Collapse
|
22
|
He J, Yu Y, Li ZM, Liu ZX, Weng SP, Guo CJ, He JG. Hypoxia triggers the outbreak of infectious spleen and kidney necrosis virus disease through viral hypoxia response elements. Virulence 2022; 13:714-726. [PMID: 35465839 PMCID: PMC9045828 DOI: 10.1080/21505594.2022.2065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypoxia frequently occurs in aquatic environments, especially in aquaculture areas. However, research on the relationship between hypoxic aquatic environments with viral diseases outbreak is limited, and its underlying mechanisms remain elusive. Herein, we demonstrated that hypoxia directly triggers the outbreak of infectious spleen and kidney necrosis virus (ISKNV) disease. Hypoxia or activated hypoxia-inducible factor (HIF) pathway could remarkably increase the levels of viral genomic DNA, titers, and gene expression, indicating that ISKNV can response to hypoxia and HIF pathway. To reveal the mechanism of ISKNV respond to HIF pathway, we identified the viral hypoxia response elements (HREs) in ISKNV genome. Fifteen viral HREs were identified, and four related viral genes responded to the HIF pathway, in which the hre-orf077r promoter remarkably responded to the HIF pathway. The level of orf077r mRNA dramatically increased after the infected cells were treated with dimethyloxalylglycine (DMOG) or the infected cells/fish subjected to hypoxic conditions, and overexpressed orf077r could remarkably increase the ISKNV replication. These finding shows that hypoxic aquatic environments induce the expression of viral genes through the viral HREs to promote ISKNV replication, indicating that viral HREs might be important biomarkers for the evaluation of the sensitivity of aquatic animal viral response to hypoxia stress. Furthermore, the frequencies of viral HREs in 43 species aquatic viral genomes from 16 families were predicted and the results indicate that some aquatic animal viruses, such as Picornavirdea, Dicistronviridae, and Herpesviridae, may have a high risk to outbreak when the aquatic environment encounters hypoxic stress.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Zhi-Xuan Liu
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, PR China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangzhou, PR China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
23
|
Schützhold V, Gravemeyer J, Bicker A, Hager T, Padberg C, Schäfer J, Wrobeln A, Steinbrink M, Zeynel S, Hankeln T, Becker JC, Fandrey J, Winning S. Knockout of Factor-Inhibiting HIF ( Hif1an) in Colon Epithelium Attenuates Chronic Colitis but Does Not Reduce Colorectal Cancer in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1280-1291. [PMID: 35121641 DOI: 10.4049/jimmunol.2100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.
Collapse
Affiliation(s)
- Vera Schützhold
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Anne Bicker
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Thomas Hager
- Institut für Pathologie, Universität Duisburg-Essen, Essen, Germany
| | - Claudia Padberg
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jana Schäfer
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | | | - Seher Zeynel
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany;
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean LSN, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. eLife 2022; 11:e69348. [PMID: 35188460 PMCID: PMC8860444 DOI: 10.7554/elife.69348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFβ increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.
Collapse
Affiliation(s)
- Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
- Leslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lareb SN Dean
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Soran Mohammed
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Timothy Wallis
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Ali Tavassoli
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Benjamin G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College DublinDublinIreland
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
| | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
| | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Matthew Loxham
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
25
|
Batie M, Kenneth NS, Rocha S. Systems approaches to understand oxygen sensing: how multi-omics has driven advances in understanding oxygen-based signalling. Biochem J 2022; 479:245-257. [PMID: 35119457 PMCID: PMC8883490 DOI: 10.1042/bcj20210554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Hypoxia is a common denominator in the pathophysiology of a variety of human disease states. Insight into how cells detect, and respond to low oxygen is crucial to understanding the role of hypoxia in disease. Central to the hypoxic response is rapid changes in the expression of genes essential to carry out a wide range of functions to adapt the cell/tissue to decreased oxygen availability. These changes in gene expression are co-ordinated by specialised transcription factors, changes to chromatin architecture and intricate balances between protein synthesis and destruction that together establish changes to the cellular proteome. In this article, we will discuss the advances of our understanding of the cellular oxygen sensing machinery achieved through the application of 'omics-based experimental approaches.
Collapse
Affiliation(s)
- Michael Batie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Niall S. Kenneth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
26
|
Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth. Oncogene 2022; 41:1752-1766. [PMID: 35124697 PMCID: PMC8933280 DOI: 10.1038/s41388-022-02203-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
AbstractEGLN3 is critically important for growth of various cancers including lung cancer. However, virtually nothing is known about the role and mechanism for EGLN3 hydroxylase activity in cancers. EGLN3 catalyzes the hydroxylation of extracellular signal-regulated kinase 3 (Erk3), a potent driver of cancers. The role and mechanism for EGLN3-induced stabilization of Erk3 remain to be defined. Here, we show that Erk3 interacts with heat shock cognate protein of 70 kDa (HSC70) and lysosome-associated membrane protein type 2 A (LAMP2A), two core components of chaperone-mediated autophagy (CMA). As a consequence, Erk3 is degraded by the CMA-lysosome pathway. EGLN3-catalyzed hydroxylation antagonizes CMA-dependent destruction of Erk3. Mechanistically, hydroxylation blunts the interaction of Erk3 with LAMP2A, thereby blocking lysosomal decay of Erk3. EGLN3 inactivation inhibits macrophage migration, efferocytosis, and M2 polarization. Studies using EGLN3 catalytically inactive knock-in mice indicate that inactivation of EGLN3 hydroxylase in host cells ameliorates LLC cancer growth through reprogramming the tumor microenvironment (TME). Adoptive transfer of macrophages with inactivated EGLN3 restrains tumor growth by mounting anti-tumor immunity and restricting angiogenesis. Administration of EGLN3 hydroxylase pharmacologic inhibitor to mice bearing LLC carcinoma impedes cancer growth by targeting the TME. LLC cells harboring inactivated EGLN3 exhibit reduced tumor burden via mitigating immunosuppressive milieu and inducing cancer senescence. This study provides novel insights into the role of CMA in regulating Erk3 stability and the mechanism behind EGLN3-enhanced stability of Erk3. This work demonstrates that inactivation of EGLN3 in malignant and stromal cells suppresses tumor by orchestrating reciprocal interplays between cancer cells and the TME. This work sheds new light on the role and mechanism for EGLN3 catalytic activity in regulating cancer growth. Manipulating EGLN3 activity holds promise for cancer treatment.
Collapse
|
27
|
An HJ, Lee CJ, Lee GE, Choi Y, Jeung D, Chen W, Lee HS, Kang HC, Lee JY, Kim DJ, Choi JS, Cho ES, Choi JS, Cho YY. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med 2022; 54:35-46. [PMID: 35022544 PMCID: PMC8813941 DOI: 10.1038/s12276-021-00721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.
Collapse
Affiliation(s)
- Hyun-Jung An
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Cheol-Jung Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea
| | - Ga-Eun Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Youngwon Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dohyun Jeung
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Weidong Chen
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Hye Suk Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Han Chang Kang
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Joo Young Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dae Joon Kim
- grid.449717.80000 0004 5374 269XDepartment of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAleen, TX 78504 USA
| | - Jin-Sung Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea
| | - Eun Suh Cho
- grid.17635.360000000419368657College of Biological Science, University of Minnesota, 3-104 MCB, 420 Washington Ave SE, Minneapolis, MN 55455 USA
| | - Jong-Soon Choi
- grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do, 14662, Republic of Korea. .,BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do, 14662, Republic of Korea.
| |
Collapse
|
28
|
Li QY, Liu F, Tang X, Fu H, Mao J. Renoprotective Role of Hypoxia-Inducible Factors and the Mechanism. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:44-56. [PMID: 35224006 PMCID: PMC8820168 DOI: 10.1159/000520141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The kidney requires abundant blood supply, and oxygen is transmitted by diffusion through blood vessels. Most physiological metabolism of the kidney depends on oxygen, so it is very sensitive to oxygen. An increasing pool of evidence suggests that hypoxia is involved in almost all acute and chronic kidney diseases (CKDs). Vascular damage, tubular injury, and fibrosis are the main pathologies associated during hypoxia. Hypoxia-inducible factors (HIFs) are the main mediators during hypoxia, but their functions remain controversial. This article reviewed recent studies and described its mechanisms on renoprotection. SUMMARY HIF is degraded rapidly during under normal oxygen. But under hypoxia, HIFs accumulate and many target genes are regulated by HIFs. Homeostasis during injury is maintained through these genes. Pretreatment of HIF can protect the kidney from acute hypoxia and can improve repair, but HIF's role in CKD and in renal tumor is still controversial. Due to its mechanism in kidney disease, many drugs toward HIFs are widely researched, even some of which have been used in clinical or in clinical research. KEY MESSAGES In this review, we described the known physiological mechanisms, target genes, and renal protective roles of HIFs, and we discussed several drugs that are researched due to such renal protective roles.
Collapse
|
29
|
Nowak R, Tumber A, Hendrix E, Ansari MS, Sabatino M, Antonini L, Andrijes R, Salah E, Mautone N, Pellegrini FR, Simelis K, Kawamura A, Johansson C, Passeri D, Pellicciari R, Ciogli A, Del Bufalo D, Ragno R, Coleman ML, Trisciuoglio D, Mai A, Oppermann U, Schofield CJ, Rotili D. First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53. J Med Chem 2021; 64:17031-17050. [PMID: 34843649 PMCID: PMC8667043 DOI: 10.1021/acs.jmedchem.1c00605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/05/2023]
Abstract
MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4-6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.
Collapse
Affiliation(s)
- Radosław
P. Nowak
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Anthony Tumber
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Eline Hendrix
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Mohammad Salik
Zeya Ansari
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Manuela Sabatino
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Lorenzo Antonini
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Regina Andrijes
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Nicola Mautone
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Francesca Romana Pellegrini
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Klemensas Simelis
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Akane Kawamura
- Chemistry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Catrine Johansson
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Daniela Passeri
- TES
Pharma S.r.l. Via P. Togliatti 20, Corciano, Perugia 06073, Italy
| | | | - Alessia Ciogli
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Donatella Del Bufalo
- Preclinical
Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Rino Ragno
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Mathew L. Coleman
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Daniela Trisciuoglio
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Antonello Mai
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Udo Oppermann
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Dante Rotili
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
30
|
Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells. Int J Mol Sci 2021; 22:ijms222111805. [PMID: 34769235 PMCID: PMC8583962 DOI: 10.3390/ijms222111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.
Collapse
|
31
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
34
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
35
|
Veerappa AM. Cascade of interactions between candidate genes reveals convergent mechanisms in keratoconus disease pathogenesis. Ophthalmic Genet 2021; 42:114-131. [PMID: 33554698 DOI: 10.1080/13816810.2020.1868013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Keratoconus is a progressive thinning, steepening and distortion of the cornea which can lead to loss of vision if left untreated. Keratoconus has a complex multifactorial etiology, with genetic and environmental components contributing to the disease pathophysiology. Studies have observed high concordance between monozygotic twins, discordance between dizygotic twins, and high familial segregation indicating the presence of a very strong genetic component in the pathogenesis of keratoconus. The use of genome-wide linkage studies on families and twins, genome-wide association studies (GWAS) on case-controls, next-generation sequencing (NGS)-based genomic screens on both familial and non-familial cohorts have led to the identification of keratoconus candidate genes with much greater success and increased resproducibility of genetic findings. This review focuses on candidate genes identified till date and attempts to understand their role in biological processes underlying keratoconus pathogenesis. In addition, using these genes I propose molecular pathways that could contribute to keratoconus pathogenesis. The pathways identified the presence of direct cross-talk between known candidate genes of keratoconus and remarkably, 28 known candidate genes have a direct relationship among themselves that involves direct protein-protein binding, regulatory activities such as activation and inhibition, chaperone, transcriptional activation/co-activation, and enzyme catalysis. This review attempts to describe these relationships and cross-talks in the context of keratoconus pathogenesis.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Department of Ophthalmology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
36
|
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression. Int J Mol Sci 2020; 21:ijms21218162. [PMID: 33142830 PMCID: PMC7663541 DOI: 10.3390/ijms21218162] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer.
Collapse
|
37
|
Abstract
Anaplerosis and the associated mitochondrial metabolite transporters generate unique cytosolic metabolic signaling molecules that can regulate insulin release from pancreatic β-cells. It has been shown that mitochondrial metabolites, transported by the citrate carrier (CIC), dicarboxylate carrier (DIC), oxoglutarate carrier (OGC), and mitochondrial pyruvate carrier (MPC) play a vital role in the regulation of glucose-stimulated insulin secretion (GSIS). Metabolomic studies on static and biphasic insulin secretion, suggests that several anaplerotic derived metabolites, including α-ketoglutarate (αKG), are strongly associated with nutrient regulated insulin secretion. Support for a role of αKG in the regulation of insulin secretion comes from studies looking at αKG dependent enzymes, including hypoxia-inducible factor-prolyl hydroxylases (PHDs) in clonal β-cells, and rodent and human islets. This review will focus on the possible link between defective anaplerotic-derived αKG, PHDs, and the development of type 2 diabetes (T2D).
Collapse
Affiliation(s)
- M. Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
- CONTACT J. W. Joseph School of Pharmacy, University of Waterloo, Kitchener, ONN2G1C5, Canada
| |
Collapse
|
38
|
Lee SB, Ko A, Oh YT, Shi P, D'Angelo F, Frangaj B, Koller A, Chen EI, Cardozo T, Iavarone A, Lasorella A. Proline Hydroxylation Primes Protein Kinases for Autophosphorylation and Activation. Mol Cell 2020; 79:376-389.e8. [PMID: 32640193 PMCID: PMC7849370 DOI: 10.1016/j.molcel.2020.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.
Collapse
Affiliation(s)
- Sang Bae Lee
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peiguo Shi
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Antonius Koller
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily I Chen
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
39
|
Rodriguez J, Haydinger CD, Peet DJ, Nguyen LK, von Kriegsheim A. Asparagine Hydroxylation is a Reversible Post-translational Modification. Mol Cell Proteomics 2020; 19:1777-1789. [PMID: 32759169 DOI: 10.1074/mcp.ra120.002189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Amino acid hydroxylation is a common post-translational modification, which generally regulates protein interactions or adds a functional group that can be further modified. Such hydroxylation is currently considered irreversible, necessitating the degradation and re-synthesis of the entire protein to reset the modification. Here we present evidence that the cellular machinery can reverse FIH-mediated asparagine hydroxylation on intact proteins. These data suggest that asparagine hydroxylation is a flexible and dynamic post-translational modification akin to modifications involved in regulating signaling networks, such as phosphorylation, methylation and ubiquitylation.
Collapse
Affiliation(s)
- Javier Rodriguez
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol Dial Transplant 2020; 36:1782-1790. [PMID: 33895835 DOI: 10.1093/ndt/gfaa091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as an alteration of kidney structure and/or function lasting for >3 months [1]. CKD affects 10% of the general adult population and is responsible for large healthcare costs [2]. Since the end of the last century, the role of hypoxia in CKD progression has controversially been discussed. To date, there is evidence of the presence of hypoxia in late-stage renal disease, but we lack time-course evidence, stage correlation and also spatial co-localization with fibrotic lesions to ensure its causative role. The classical view of hypoxia in CKD progression is that it is caused by peritubular capillary alterations, renal anaemia and increased oxygen consumption regardless of the primary injury. In this classical view, hypoxia is assumed to further induce pro-fibrotic and pro-inflammatory responses, as well as oxidative stress, leading to CKD worsening as part of a vicious circle. However, recent investigations tend to question this paradigm, and both the presence of hypoxia and its role in CKD progression are still not clearly demonstrated. Hypoxia-inducible factor (HIF) is the main transcriptional regulator of the hypoxia response. Genetic HIF modulation leads to variable effects on CKD progression in different murine models. In contrast, pharmacological modulation of the HIF pathway [i.e. by HIF hydroxylase inhibitors (HIs)] appears to be generally protective against fibrosis progression experimentally. We here review the existing literature on the role of hypoxia, the HIF pathway and HIF HIs in CKD progression and summarize the evidence that supports or rejects the hypoxia hypothesis, respectively.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland.,Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
41
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
42
|
Kim I, Park JW. Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Lett 2020; 489:41-49. [PMID: 32522693 DOI: 10.1016/j.canlet.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying hypoxia-driven chromatin remodeling is a long-lasting question. For the last two decades, this question has been resolved in part. It is now widely agreed that hypoxia dynamically changes the methylation status of histones to control gene expression. Hypoxia-inducible factor (HIF) plays a central role in cellular responses to hypoxia through transcriptional activation of numerous genes. At least in part, the hypoxic regulation of histone methylation is attributed to the HIF-mediated expression of histone modifying enzymes. Protein hydroxylation and histone demethylation have emerged as the oxygen sensing processes because they are catalyzed by a family of 2-oxoglutarate (2OG)-dependent dioxygenases whose activities depend upon the ambient oxygen level. Recently, it has been extensively investigated that the 2OG dioxygenases oxygen-dependently regulate histone methylation. Nowadays, the hypoxic change in the histone methylation status is regarded as an important event to drive malignant behaviors of cancer cells. In this review, we introduced and summarized the cellular processes that govern hypoxia-driven regulation of histone methylation in the context of cancer biology. We also discussed the emerging roles of histone methyltransferases and demethylases in epigenetic response to hypoxia.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Luo A, Chen Y. Label-Free Interactome Analysis Revealed an Essential Role of CUL3-KEAP1 Complex in Mediating the Ubiquitination and Degradation of PHD2. J Proteome Res 2020; 19:260-268. [PMID: 31763849 DOI: 10.1021/acs.jproteome.9b00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2/EGLN1) is a key regulatory enzyme that plays a fundamental role in the cellular hypoxic response pathway, mediating proline hydroxylation-dependent protein degradation of selected target proteins. However, the regulation of PHD2 homeostasis at the protein level is not well understood. Here, we perform label-free quantitative interactome analysis through immunoprecipitation coupled with mass spectrometry analysis. To minimize the side effects caused by ectopic overexpression, in HeLa cells, we stably overexpressed Flag-tagged PHD2 while suppressing the endogenous PHD2 by using an shRNA targeting its 3' UTR region. We identified and validated Cullin 3 as a novel PHD2 interactor in vivo. Through candidate screening, we further identified CUL3-KEAP1 E3 ubiquitin ligase complex as the major enzyme that regulates PHD2 degradation. Overexpression of either CUL3, KEAP1, or both significantly increases PHD2 ubiquitination and reduces PHD2 protein abundance. The knockdown of CUL3 or KEAP1 decreased PHD2 ubiquitination and inhibited PHD2 degradation. Accordingly, loss of the CUL3-KEAP1 complex under hypoxia promoted PHD2 stabilization and led to significantly reduced abundance of the PHD2 target, hypoxia-inducible factor 1A (HIF1A). Thus, CUL3-KEAP1 is an essential pathway that regulates PHD2 ubiquitination and degradation in cells.
Collapse
Affiliation(s)
- Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics , The University of Minnesota at Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics , The University of Minnesota at Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
44
|
Sulser P, Pickel C, Günter J, Leissing TM, Crean D, Schofield CJ, Wenger RH, Scholz CC. HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J 2019; 34:2344-2358. [PMID: 31908020 DOI: 10.1096/fj.201902240r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Pharmacologic HIF hydroxylase inhibitors (HIs) are effective for the treatment of anemia in chronic kidney disease patients and may also be beneficial for the treatment of diseases such as chronic inflammation and ischemia-reperfusion injury. The selectivities of many HIs for HIF hydroxylases and possible off-target effects in cellulo are unclear, delaying the translation from preclinical studies to clinical trials. We developed a novel assay that discriminates between the inhibition of HIF-α prolyl-4-hydroxylase domain (PHD) enzymes and HIF-α asparagine hydroxylase factor inhibiting HIF (FIH). We characterized 15 clinical and preclinical HIs, categorizing them into pan-HIF-α hydroxylase (broad spectrum), PHD-selective, and FIH-selective inhibitors, and investigated their effects on HIF-dependent transcriptional regulation, erythropoietin production, and cellular energy metabolism. While energy homeostasis was generally maintained following HI treatment, the pan-HIs led to a stronger increase in pericellular pO2 than the PHD/FIH-selective HIs. Combined knockdown of FIH and PHD-selective inhibition did not further increase pericellular pO2 . Hence, the additional increase in pericellular pO2 by pan- over PHD-selective HIs likely reflects HIF hydroxylase independent off-target effects. Overall, these analyses demonstrate that HIs can lead to oxygen redistribution within the cellular microenvironment, which should be considered as a possible contributor to HI effects in the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Pascale Sulser
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Daniel Crean
- School of Veterinary Medicine & UCD Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
45
|
Zurlo G, Liu X, Takada M, Fan C, Simon JM, Ptacek TS, Rodriguez J, von Kriegsheim A, Liu J, Locasale JW, Robinson A, Zhang J, Holler JM, Kim B, Zikánová M, Bierau J, Xie L, Chen X, Li M, Perou CM, Zhang Q. Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer. Nat Commun 2019; 10:5177. [PMID: 31729379 PMCID: PMC6858455 DOI: 10.1038/s41467-019-13168-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Travis S Ptacek
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Javier Rodriguez
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Adam Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jessica M Holler
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mingjie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
47
|
Erber L, Luo A, Chen Y. Targeted and Interactome Proteomics Revealed the Role of PHD2 in Regulating BRD4 Proline Hydroxylation. Mol Cell Proteomics 2019; 18:1772-1781. [PMID: 31239290 PMCID: PMC6731074 DOI: 10.1074/mcp.ra119.001535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Proline hydroxylation is a critical cellular mechanism regulating energy homeostasis and development. Our previous study identified and validated Bromodomain-containing protein 4 (BRD4) as a proline hydroxylation substrate in cancer cells. Yet, the regulatory mechanism and the functional significance of the modification remain unknown. In this study, we developed targeted quantification assays using parallel-reaction monitoring and biochemical analysis to identify the major regulatory enzyme of BRD4 proline hydroxylation. We further performed quantitative interactome analysis to determine the functional significance of the modification pathway in BRD4-mediated protein-protein interactions and gene transcription. Our findings revealed that PHD2 is the key regulatory enzyme of BRD4 proline hydroxylation and the modification significantly affects BRD4 interactions with key transcription factors as well as BRD4-mediated transcriptional activation. Taken together, this study provided mechanistic insights into the oxygen-dependent modification of BRD4 and revealed new roles of the pathway in regulating BRD4-dependent gene expression.
Collapse
Affiliation(s)
- Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455.
| |
Collapse
|
48
|
EglN3 hydroxylase stabilizes BIM-EL linking VHL type 2C mutations to pheochromocytoma pathogenesis and chemotherapy resistance. Proc Natl Acad Sci U S A 2019; 116:16997-17006. [PMID: 31375625 DOI: 10.1073/pnas.1900748116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the discovery of the oxygen-sensitive regulation of HIFα by the von Hippel-Lindau (VHL) protein, the mechanisms underlying the complex genotype/phenotype correlations in VHL disease remain unknown. Some germline VHL mutations cause familial pheochromocytoma and encode proteins that preserve their ability to down-regulate HIFα. While type 1, 2A, and 2B VHL mutants are defective in regulating HIFα, type 2C mutants encode proteins that preserve their ability to down-regulate HIFα. Here, we identified an oxygen-sensitive function of VHL that is abolished by VHL type 2C mutations. We found that BIM-EL, a proapoptotic BH3-only protein, is hydroxylated by EglN3 and subsequently bound by VHL. VHL mutants fail to bind hydroxylated BIM-EL, regardless of whether they have the ability to bind hydroxylated HIFα or not. VHL binding inhibits BIM-EL phosphorylation by extracellular signal-related kinase (ERK) on serine 69. This causes BIM-EL to escape from proteasomal degradation, allowing it to enhance EglN3-induced apoptosis. BIM-EL was rapidly degraded in cells lacking wild-type VHL or in which EglN3 was inactivated genetically or by lack of oxygen, leading to enhanced cell survival and chemotherapy resistance. Combination therapy using ERK inhibitors, however, resensitizes VHL- and EglN3-deficient cells that are otherwise cisplatin-resistant.
Collapse
|
49
|
Pickel C, Günter J, Ruiz-Serrano A, Spielmann P, Fabrizio JA, Wolski W, Peet DJ, Wenger RH, Scholz CC. Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biol 2019; 26:101265. [PMID: 31299612 PMCID: PMC6624438 DOI: 10.1016/j.redox.2019.101265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase. FIH forms a (likely amide) bond with client proteins. Bond formation is highly hypoxia sensitive and occurs co-translationally. FIH forms a heterotrimer with the client protein OTUB1 (FIH2OTUB11). Complex formation between OTUB1 and FIH regulates OTUB1 deubiquitinase activity. Bond formation by hydroxylases is an alternative mechanism for hypoxia adaptation.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland
| | | | - Patrick Spielmann
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| |
Collapse
|
50
|
Xu Y, Gao Q, Xue Y, Li X, Xu L, Li C, Qin Y, Fang J. Prolyl hydroxylase 3 stabilizes the p53 tumor suppressor by inhibiting the p53-MDM2 interaction in a hydroxylase-independent manner. J Biol Chem 2019; 294:9949-9958. [PMID: 31092600 DOI: 10.1074/jbc.ra118.007181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Prolyl hydroxylase 3 (PHD3) has initially been reported to hydroxylase hypoxia-inducible factor α (HIFα) and mediate HIFα degradation. More recent studies have shown that, in addition to HIFα, PHD3 has also other substrates. Moreover, pHD3 is believed to act as a tumor suppressor, but the underlying mechanism remains to be elucidated. Here, we demonstrate that PHD3 stabilizes p53 in a hydroxylase-independent manner. We found that PHD3 overexpression increases and PHD3 knockdown decreases p53 levels. Mechanistically, PHD3 bound MDM2 proto-oncogene (MDM2) and prevented MDM2 from interacting with p53, thereby inhibiting MDM2-mediated p53 degradation. Interestingly, we found that PHD3 overexpression could enhance p53 in the presence of the prolyl hydroxylase inhibitor dimethyloxalylglycine, and the prolyl hydroxylase activity-deficient variant PHD3-H196A also inhibited the p53-MDM2 interaction and stabilized p53. Genetic ablation of PHD3 decreased p53 protein levels in mice intestinal epithelial cells, but a genetic knockin of PHD3-H196A did not affect p53 protein levels in vivo These results suggest that the prolyl hydroxylase activity of PHD3 is dispensable for its ability to stabilize p53. We found that both PHD3 and PHD3-H196A suppress the expression of the stem cell-associated gene NANOG and inhibited the properties of colon cancer stem cells through p53. Our results reveal an additional critical mechanism underlying the regulation of p53 expression and highlight that PHD3 plays a role in the suppression of colon cancer cell stemness in a hydroxylase-independent manner.
Collapse
Affiliation(s)
- Yiming Xu
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Qiang Gao
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Yaqian Xue
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Xiuxiu Li
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Liang Xu
- the Institute for Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenwei Li
- Shanghai Sunstem Biotechnology, Shanghai 200437, China
| | - Yanqing Qin
- From the Shanghai Institute for Nutrition and Health, Shanghai Institutes for Biological Sciences and
| | - Jing Fang
- the Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao 266061, China, and .,the Cancer Institute, Qingdao University, Qingdao 266061, China
| |
Collapse
|