1
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. eLife 2025; 13:RP101035. [PMID: 40353820 PMCID: PMC12068872 DOI: 10.7554/elife.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using singlecell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Northwestern University, Dept of NeurobiologyEvanstonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Chuyu Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Northwestern University Feinberg School of Medicine, Dept of PharmacologyChicagoUnited States
| | - Daniel Dombeck
- Northwestern University, Dept of NeurobiologyEvanstonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Loukia Parisiadou
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Jean-Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and NeurosurgeryMontrealCanada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of NeurologyChicagoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
2
|
Cavalcante JC, da Silva FG, Sáenz de Miera C, Elias CF. The ventral premammillary nucleus at the interface of environmental cues and social behaviors. Front Neurosci 2025; 19:1589156. [PMID: 40276575 PMCID: PMC12018337 DOI: 10.3389/fnins.2025.1589156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The survival of species heavily depends on social behaviors, which in turn rely on the ability to recognize conspecifics within an appropriate environmental context. These behaviors are regulated by the hypothalamus, which processes signals from both the external environment (such as food availability, photoperiod, and chemical cues from other animals) and the internal state (including sex, estrous cycle stage, nutritional status, and levels of stress). Understanding the brain circuits responsible for specific behaviors in experimental animals is a complex task given the intricate interactions between these factors and the diverse behavioral strategies employed by different species. In this review, we will critically evaluate recent studies focused on the ventral premammillary nucleus (PMv) and discuss findings that reveal the PMv as a key, yet sometimes overlooked, node in integrating external and internal environmental cues. We will examine its structural components, internal connectivity, humoral influences, and associated functions, demonstrating the PMv role in the neural regulation of neuroendocrine responses and social behaviors. While much of the existing research centers on rats and mice as model organisms, we will highlight relevant species differences and include a dedicated section for findings in other species.
Collapse
Affiliation(s)
- Judney Cley Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiano Gomes da Silva
- Laboratory of Neuroanatomy, Department of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Basu S, Waghade A, Parveen R, Kushwaha A, Mitra S, Kokare DM, Singru PS. CART neurons in the hypothalamic ventral premammillary nucleus (PMv) in rats mediate maternal, but not inter-male aggression. J Neurosci 2025; 45:e2140242025. [PMID: 40086871 PMCID: PMC12019109 DOI: 10.1523/jneurosci.2140-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Compared to males, aggression is less frequently noticed in females. Fierce maternal-aggression to thwart the attack/threat of male-conspecific/intruder is transiently expressed as she defends her pups. The odor cues emanated by the intruder provoke aggressive behavior by robustly activating the ventral-premammillary nucleus (PMv) in the hypothalamic-attack area (HAA). But, how PMv activation triggers aggression is unclear. In view of neuropeptide CART's potential to reconfigure neural circuits for behavioral demands, occurrence throughout aggression-circuitry, and abundance particularly in PMv, we test the role of PMvCART in maternal and inter-male aggression in the rats. Males/dams actively attacked the intruder; virgin-females did not. The dams/males without intruder showed isolated cFos-cells in PMv, but intruder's presence triggered cFos-activation in different PMv-subdivisions in dams/males. Compared to dams without intruder, confrontation with intruder robustly activated PMvCART-neurons, augmented CART-ir in ventral-PMv and cart-mRNA in PMv-containing tissues in dams. Conversely, in males, intruder's presence activated lateral-PMv CART neurons, but CART-levels remained unaltered. Intra-PMv CART-siRNA administration suppressed maternal-aggression but male-aggression was unaffected. Since PMv is strongly connected with ventrolateral-ventromedial hypothalamus (VMHvl) and medial-preoptic nucleus (MPN), we test whether CART-signalling to these nuclei triggers maternal-aggression. While VMHvl showed stronger CARTergic-axonal input than MPN, immunoneutralization of CART in VMHvl but not MPN, blocked maternal-aggression. CART may drive the circuit beyond HAA since VMHvl neurons contacted by CART-axons project to periaqueductal-gray. We identify engagement of vPMv and lPMv during maternal and inter-male aggression, respectively, and CART as a key mediator in PMv-VMHvl-pathway to express maternal-aggression in rats.Significance statement Pregnant/lactating rat transiently become fiercely aggressive to protect her pups when challenged by an intruder. The neural mechanism underlying this transitory expression of aggressive behavior is not clear. We identify the role of neuropeptide CART-containing neurons in the hypothalamic premammillary nucleus (PMv) in dams that gives her the behavioral flexibility to display maternal-aggression. A subset of PMvCART neurons in dams shows dramatic activation when provoked by an intruder while silencing of these neurons suppressed maternal- but not male-male aggression. Further, CART signals the ventrolateral part of the ventromedial hypothalamus to trigger aggression in dams. The study shows CART as a novel messenger in aggression circuitry and PMvCART a key regulator of maternal-aggression.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Akash Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Roshni Parveen
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ayushi Kushwaha
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj (R.T.M.) Nagpur University, Nagpur, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Sáenz de Miera C, Bellefontaine N, Silveira MA, Fortin CN, Zampieri TT, Donato J, Williams KW, Mendes-da-Silva C, Heikkinen L, Broberger C, Frazao R, Elias CF. Nutritionally responsive PMv DAT neurons are dynamically regulated during pubertal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636271. [PMID: 39975315 PMCID: PMC11838509 DOI: 10.1101/2025.02.03.636271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pubertal development is tightly regulated by energy balance. The crosstalk between metabolism and reproduction is orchestrated by complex neural networks and leptin action in the hypothalamus plays a critical role. The ventral premammillary nucleus (PMv) leptin receptor (LepRb) neurons act as an essential relay for leptin action on reproduction. Here, we show that mouse PMv cells expressing the dopamine transporter (DAT) gene, Slc6a3 (PMvDAT) form a novel subpopulation of LepRb neurons. Virtually all PMvDAT neurons expressed Lepr mRNA and responded to acute leptin treatment. Electrophysiological recordings from DATCRE;tdTomato mice showed that PMvDAT cells in prepubertal females have a hyperpolarized resting membrane potential compared to diestrous females. Slc6a3 mRNA expression in the PMv was higher in prepubertal than in adult females. In prepubertal females Slc6a3 mRNA expression was higher in overnourished females from small size litters than in controls. Prepubertal Lep ob females showed decreased PMv Slc6a3 mRNA expression, that recovered to control levels after 3 days of leptin injections. Using a tracer adenoassociated virus in the PMv of adult DATCre;Kiss1hrGFP females, we observed PMvDAT projections in the anteroventral periventricular and periventricular nucleus (AVPV/PeN), surrounding Kiss1hrGFP neurons, a population critical for sexual maturation and positive estrogen feedback in females. The DATCRE;tdTomato projections to the AVPV were denser in adult than in prepubertal females. In adults, they surrounded tyrosine hydroxylase neurons. Overall, these findings suggest that the DAT expressing PMvLepRb subpopulation play a role in leptin regulation of sexual maturation via actions on AVPV kisspeptin/tyrosine hydroxylase neurons.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Marina A Silveira
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Chelsea N Fortin
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390
| | | | - Laura Heikkinen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christian Broberger
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
5
|
Papp RS, Könczöl K, Sípos K, Tóth ZE. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. Int J Mol Sci 2025; 26:739. [PMID: 39859453 PMCID: PMC11765514 DOI: 10.3390/ijms26020739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis. The anorexigenic peptide nesfatin-1 is a leptin-independent central regulator of blood glucose. Therefore, its integrative role in male rats can be assumed. To investigate this, we mapped the distribution of nesfatin-1 mRNA- and protein-producing cells in the PMv during postnatal development via in situ hybridization and immunohistochemistry, respectively. Fos-nesfatin-1, double immunostaining was used to determine the combined effect of heterosexual pheromone challenge and insulin-induced hypoglycemia on neuronal activation in adults. We found that ~75% of the pheromone-activated neurons were nesfatin-1 cells. Hypoglycemia reduced pheromone-induced cell activation, particularly in nesfatin-1 neurons. Immuno-electron microscopy revealed innervation of PMv nesfatin-1 neurons by urocortin3-immunoreactive terminals, reportedly originating from the medial amygdala. Nesfatin-1 immunopositive neurons expressed GPR10 mRNA, a receptor associated with metabolic signaling, but did not respond with accumulation of phosphorylated STAT3 immunopositivity, a marker of leptin receptor signaling, in response to intracerebroventricular leptin treatment. Our results suggest that PMv nesfatin-1 neurons are primarily responsible for integrating reproductive and metabolic signaling in male rats.
Collapse
Affiliation(s)
- Rege Sugárka Papp
- Human Brain Tissue Bank and Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Katalin Könczöl
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Klaudia Sípos
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary; (K.K.); (K.S.)
| |
Collapse
|
6
|
Gaertner Z, Oram C, Schneeweis A, Schonfeld E, Bolduc C, Chen C, Dombeck D, Parisiadou L, Poulin JF, Awatramani R. Molecular and spatial transcriptomic classification of midbrain dopamine neurons and their alterations in a LRRK2 G2019S model of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597807. [PMID: 38895448 PMCID: PMC11185743 DOI: 10.1101/2024.06.06.597807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Several studies have revealed that midbrain dopamine (DA) neurons, even within a single neuroanatomical area, display heterogeneous properties. In parallel, studies using single cell profiling techniques have begun to cluster DA neurons into subtypes based on their molecular signatures. Recent work has shown that molecularly defined DA subtypes within the substantia nigra (SNc) display distinctive anatomic and functional properties, and differential vulnerability in Parkinson's disease (PD). Based on these provocative results, a granular understanding of these putative subtypes and their alterations in PD models, is imperative. We developed an optimized pipeline for single-nuclear RNA sequencing (snRNA-seq) and generated a high-resolution hierarchically organized map revealing 20 molecularly distinct DA neuron subtypes belonging to three main families. We integrated this data with spatial MERFISH technology to map, with high definition, the location of these subtypes in the mouse midbrain, revealing heterogeneity even within neuroanatomical sub-structures. Finally, we demonstrate that in the preclinical LRRK2G2019S knock-in mouse model of PD, subtype organization and proportions are preserved. Transcriptional alterations occur in many subtypes including those localized to the ventral tier SNc, where differential expression is observed in synaptic pathways, which might account for previously described DA release deficits in this model. Our work provides an advancement of current taxonomic schemes of the mouse midbrain DA neuron subtypes, a high-resolution view of their spatial locations, and their alterations in a prodromal mouse model of PD.
Collapse
Affiliation(s)
- Zachary Gaertner
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cameron Oram
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Amanda Schneeweis
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elan Schonfeld
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
| | - Cyril Bolduc
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Chuyu Chen
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Dombeck
- Northwestern University, Dept of Neurobiology, Evanston, IL 60201
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Loukia Parisiadou
- Northwestern University Feinberg School of Medicine, Dept of Pharmacology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jean-Francois Poulin
- McGill University (Montreal Neurological Institute), Faculty of Medicine and Health Sciences, Dept of Neurology and Neurosurgery, Montreal (QC), Canada
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Dept of Neurology, Chicago, IL 60611
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
7
|
Yan R, Wei D, Varshneya A, Shan L, Dai B, Asencio HJ, Gollamudi A, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. Cell 2024; 187:6785-6803.e18. [PMID: 39406242 PMCID: PMC11784869 DOI: 10.1016/j.cell.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.
Collapse
Affiliation(s)
- Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Avni Varshneya
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lynn Shan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hector J Asencio
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Aishwarya Gollamudi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
8
|
Hemminger Z, Sanchez-Tam G, Ocampo HD, Wang A, Underwood T, Xie F, Zhao Q, Song D, Li JJ, Dong H, Wollman R. Spatial Single-Cell Mapping of Transcriptional Differences Across Genetic Backgrounds in Mouse Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617260. [PMID: 39416191 PMCID: PMC11483037 DOI: 10.1101/2024.10.08.617260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Genetic variation can alter brain structure and, consequently, function. Comparative statistical analysis of mouse brains across genetic backgrounds requires spatial, single-cell, atlas-scale data, in replicates-a challenge for current technologies. We introduce Atlas-scale Transcriptome Localization using Aggregate Signatures (ATLAS), a scalable tissue mapping method. ATLAS learns transcriptional signatures from scRNAseq data, encodes them in situ with tens of thousands of oligonucleotide probes, and decodes them to infer cell types and imputed transcriptomes. We validated ATLAS by comparing its cell type inferences with direct MERFISH measurements of marker genes and quantitative comparisons to four other technologies. Using ATLAS, we mapped the central brains of five male and five female C57BL/6J (B6) mice and five male BTBR T+ tf/J (BTBR) mice, an idiopathic model of autism, collectively profiling over 40 million cells across over 400 coronal sections. Our analysis revealed over 40 significant differences in cell type distributions and identified 16 regional composition changes across male-female and B6-BTBR comparisons. ATLAS thus enables systematic comparative studies, facilitating organ-level structure-function analysis of disease models.
Collapse
Affiliation(s)
| | | | | | - Aihui Wang
- Department of Chemistry and Biochemistry, UCLA
| | | | - Fangming Xie
- Department of Chemical Biology, David Geffen School of Medicine at UCLA
| | - Qiuying Zhao
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | | | - Jingyi Jessica Li
- Department of Statistics and Data Science, UCLA
- Institute of Quantitative Biosciences, UCLA
| | - Hongwei Dong
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, UCLA
- Institute of Quantitative Biosciences, UCLA
- Department of Integrative Biology and Physiology, UCLA
| |
Collapse
|
9
|
Yan R, Wei D, Varshneya A, Shan L, Asencio HJ, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608611. [PMID: 39229201 PMCID: PMC11370333 DOI: 10.1101/2024.08.19.608611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect". Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice, which is supported by three stages of plasticity in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10-day winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, a transient local connectivity strengthening, and a delayed excitability increase. These plasticity events are causally linked. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the cascade of plasticity events as those during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning that ultimately leads to an increase in "aggressiveness" in repeated winners.
Collapse
|
10
|
Singh R, Gobrogge K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci 2024; 14:794. [PMID: 39199486 PMCID: PMC11352925 DOI: 10.3390/brainsci14080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Aggression is a fundamental behavior with essential roles in dominance assertion, resource acquisition, and self-defense across the animal kingdom. However, dysregulation of the aggression circuitry can have severe consequences in humans, leading to economic, emotional, and societal burdens. Previous inconsistencies in aggression research have been due to limitations in techniques for studying these neurons at a high spatial resolution, resulting in an incomplete understanding of the neural mechanisms underlying aggression. Recent advancements in optogenetics, pharmacogenetics, single-cell RNA sequencing, and in vivo electrophysiology have provided new insights into this complex circuitry. This review aims to explore the aggression-provoking stimuli and their detection in rodents, particularly through the olfactory systems. Additionally, we will examine the core regions associated with aggression, their interactions, and their connection with the prefrontal cortex. We will also discuss the significance of top-down cognitive control systems in regulating atypical expressions of aggressive behavior. While the focus will primarily be on rodent circuitry, we will briefly touch upon the modulation of aggression in humans through the prefrontal cortex and discuss emerging therapeutic interventions that may benefit individuals with aggression disorders. This comprehensive understanding of the neural substrates of aggression will pave the way for the development of novel therapeutic strategies and clinical interventions. This approach contrasts with the broader perspective on neural mechanisms of aggression across species, aiming for a more focused analysis of specific pathways and their implications for therapeutic interventions.
Collapse
Affiliation(s)
- Rhea Singh
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Kyle Gobrogge
- Undergraduate Program in Neuroscience, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
11
|
Stagkourakis S, Williams P, Spigolon G, Khanal S, Ziegler K, Heikkinen L, Fisone G, Broberger C. Maternal Aggression Driven by the Transient Mobilisation of a Dormant Hormone-Sensitive Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.02.526862. [PMID: 38585740 PMCID: PMC10996482 DOI: 10.1101/2023.02.02.526862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggression, a sexually dimorphic behaviour, is prevalent in males and typically absent in virgin females. Following parturition, however, the transient expression of aggression in adult female mice protects pups from predators and infanticide by male conspecifics. While maternal hormones are known to elicit nursing, their potential role in maternal aggression remains elusive. Here, we show in mice that a molecularly defined subset of ventral premammillary (PMvDAT) neurons, instrumental for intermale aggression, switch from quiescence to a hyperexcitable state during lactation. We identify that the maternal hormones prolactin and oxytocin excite these cells through actions that include T-type Ca2+ channels. Optogenetic manipulation or genetic ablation of PMvDAT neurons profoundly affects maternal aggression, while activation of these neurons impairs the expression of non-aggression-related maternal behaviours. This work identifies a monomorphic neural substrate that can incorporate hormonal cues to enable the transient expression of a dormant behavioural program in lactating females.
Collapse
Affiliation(s)
- Stefanos Stagkourakis
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Paul Williams
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Giada Spigolon
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Shreya Khanal
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Katharina Ziegler
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Laura Heikkinen
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| |
Collapse
|
12
|
Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science 2023; 382:399-404. [PMID: 37883550 PMCID: PMC11105421 DOI: 10.1126/science.adh8489] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.
Collapse
Affiliation(s)
- Long Mei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
13
|
Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, Chien J, Yamaguchi T, Urtecho A, Tong X, Chen ZS, Lin D. Neural dynamics in the limbic system during male social behaviors. Neuron 2023; 111:3288-3306.e4. [PMID: 37586365 PMCID: PMC10592239 DOI: 10.1016/j.neuron.2023.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Sexual and aggressive behaviors are vital for species survival and individual reproductive success. Although many limbic regions have been found relevant to these behaviors, how social cues are represented across regions and how the network activity generates each behavior remains elusive. To answer these questions, we utilize multi-fiber photometry (MFP) to simultaneously record Ca2+ signals of estrogen receptor alpha (Esr1)-expressing cells from 13 limbic regions in male mice during mating and fighting. We find that conspecific sensory information and social action signals are widely distributed in the limbic system and can be decoded from the network activity. Cross-region correlation analysis reveals striking increases in the network functional connectivity during the social action initiation phase, whereas late copulation is accompanied by a "dissociated" network state. Based on the response patterns, we propose a mating-biased network (MBN) and an aggression-biased network (ABN) for mediating male sexual and aggressive behaviors, respectively.
Collapse
Affiliation(s)
- Zhichao Guo
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; School of Life Sciences, Peking University, Beijing 100871, China
| | - Luping Yin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Veronica Diaz
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley Urtecho
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe S Chen
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
14
|
Abstract
Reproduction is the biological process by which new individuals are produced by their parents. It is the fundamental feature of all known life and is required for the existence of all species. All mammals reproduce sexually, a process that involves the union of two reproductive cells, one from a male and one from a female. Sexual behaviors are a series of actions leading to reproduction. They are composed of appetitive, action, and refractory phases, each supported by dedicated developmentally-wired neural circuits to ensure high reproduction success. In rodents, successful reproduction can only occur during female ovulation. Thus, female sexual behavior is tightly coupled with ovarian activity, namely the estrous cycle. This is achieved through the close interaction between the female sexual behavior circuit and the hypothalamic-pituitary-gonadal (HPG) axis. In this review, we will summarize our current understanding, learned mainly in rodents, regarding the neural circuits underlying each phase of the female sexual behaviors and their interaction with the HPG axis, highlighting the gaps in our knowledge that require future investigation.
Collapse
Affiliation(s)
- Luping Yin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Wei D, Osakada T, Guo Z, Yamaguchi T, Varshneya A, Yan R, Jiang Y, Lin D. A hypothalamic pathway that suppresses aggression toward superior opponents. Nat Neurosci 2023; 26:774-787. [PMID: 37037956 PMCID: PMC11101994 DOI: 10.1038/s41593-023-01297-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/09/2023] [Indexed: 04/12/2023]
Abstract
Aggression is costly and requires tight regulation. Here we identify the projection from estrogen receptor alpha-expressing cells in the caudal part of the medial preoptic area (cMPOAEsr1) to the ventrolateral part of the ventromedial hypothalamus (VMHvl) as an essential pathway for modulating aggression in male mice. cMPOAEsr1 cells increase activity mainly during male-male interaction, which differs from the female-biased response pattern of rostral MPOAEsr1 (rMPOAEsr1) cells. Notably, cMPOAEsr1 cell responses to male opponents correlated with the opponents' fighting capability, which mice could estimate based on physical traits or learn through physical combats. Inactivating the cMPOAEsr1-VMHvl pathway increased aggression, whereas activating the pathway suppressed natural intermale aggression. Thus, cMPOAEsr1 is a key population for encoding opponents' fighting capability-information that could be used to prevent animals from engaging in disadvantageous conflicts with superior opponents by suppressing the activity of VMHvl cells essential for attack behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Zhichao Guo
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Avni Varshneya
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yiwen Jiang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
16
|
Nair A, Karigo T, Yang B, Ganguli S, Schnitzer MJ, Linderman SW, Anderson DJ, Kennedy A. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 2023; 186:178-193.e15. [PMID: 36608653 PMCID: PMC9990527 DOI: 10.1016/j.cell.2022.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.
Collapse
Affiliation(s)
- Aditya Nair
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute; Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA.
| | - Ann Kennedy
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
| |
Collapse
|
17
|
Neural circuit control of innate behaviors. SCIENCE CHINA. LIFE SCIENCES 2022; 65:466-499. [PMID: 34985643 DOI: 10.1007/s11427-021-2043-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.
Collapse
|
18
|
Yamamoto R, Furuyama T, Zhao Q, Masuoka T, Hori Y, Ito T, Ono M, Kato N. [Characterization of the dorsal raphe-periaqueductal grey DAT neurons innervating onto the extended amygdala]. Nihon Yakurigaku Zasshi 2022; 157:443-447. [PMID: 36328558 DOI: 10.1254/fpj.22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It has been known that a number of tyrosine hydroxylase (TH)-positive neurons, which are regarded as dopaminergic (DA) neurons, exist in the dorsal raphe (DR). These DA neurons in the DR and periaqueductal gray (PAG) region (DADR-PAG neurons) are thought to belong to the A10 cluster, which is known to be heterogeneous. This DA population projects to the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) and has been reported to modulate various affective behaviors. The DA transporter (DAT) neurons, which are well overlapping with DA neurons, in the DR-PAG region are also expected to be heterogeneous. However, even though the heterogeneity of DA/DATDR-PAG neurons has been suggested, the characteristics of each DA/DATDR-PAG neuron subpopulation are not well investigated. In this paper, we summarize the previous reports investigating the heterogeneity of DA/DATDR-PAG neurons and the functional importance of DA/DATDR-PAG neurons on various affective behaviors and introduce our recent findings that DATDR-PAG neurons consist of two subpopulations: TH+/vasoactive intestinal peptide (VIP)- putative DA neurons and TH-/VIP+ putative glutamatergic neurons.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University
| | | | - Qin Zhao
- Department of Physiology, Kanazawa Medical University
| | | | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University
| | - Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University
| |
Collapse
|
19
|
Zha X, Xu XH. Neural circuit mechanisms that govern inter-male attack in mice. Cell Mol Life Sci 2021; 78:7289-7307. [PMID: 34687319 PMCID: PMC11072497 DOI: 10.1007/s00018-021-03956-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Individuals of many species fight with conspecifics to gain access to or defend critical resources essential for survival and reproduction. Such intraspecific fighting is evolutionarily selected for in a species-, sex-, and environment-dependent manner when the value of resources secured exceeds the cost of fighting. One such example is males fighting for chances to mate with females. Recent advances in new tools open up ways to dissect the detailed neural circuit mechanisms that govern intraspecific, particularly inter-male, aggression in the model organism Mus musculus (house mouse). By targeting and functional manipulating genetically defined populations of neurons and their projections, these studies reveal a core neural circuit that controls the display of reactive male-male attacks in mice, from sensory detection to decision making and action selection. Here, we summarize these critical results. We then describe various modulatory inputs that route into the core circuit to afford state-dependent and top-down modulation of inter-male attacks. While reviewing these exciting developments, we note that how the inter-male attack circuit converges or diverges with neural circuits that mediate other forms of social interactions remain not fully understood. Finally, we emphasize the importance of combining circuit, pharmacological, and genetic analysis when studying the neural control of aggression in the future.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
20
|
Liu XJ, Wang HJ, Wang XY, Ning YX, Gao J. GABABR1 in DRN mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Neurochem Int 2021; 150:105180. [PMID: 34509561 DOI: 10.1016/j.neuint.2021.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.
Collapse
Affiliation(s)
- Xiao-Ju Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hai-Juan Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Xiao-Yu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Yin-Xia Ning
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jie Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
21
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
22
|
Kramer DJ, Aisenberg EE, Kosillo P, Friedmann D, Stafford DA, Lee AYF, Luo L, Hockemeyer D, Ngai J, Bateup HS. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep 2021; 35:109123. [PMID: 33979604 PMCID: PMC8240967 DOI: 10.1016/j.celrep.2021.109123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic projections exert widespread influence over multiple brain regions and modulate various behaviors including movement, reward learning, and motivation. It is increasingly appreciated that dopamine neurons are heterogeneous in their gene expression, circuitry, physiology, and function. Current approaches to target dopamine neurons are largely based on single gene drivers, which either label all dopamine neurons or mark a subset but concurrently label non-dopaminergic neurons. Here, we establish a mouse line with Flpo recombinase expressed from the endogenous Slc6a3 (dopamine active transporter [DAT]) locus. DAT-P2A-Flpo mice can be used together with Cre-expressing mouse lines to efficiently and selectively label dopaminergic subpopulations using Cre/Flp-dependent intersectional strategies. We demonstrate the utility of this approach by generating DAT-P2A-Flpo;NEX-Cre mice that specifically label Neurod6-expressing dopamine neurons, which project to the nucleus accumbens medial shell. DAT-P2A-Flpo mice add to a growing toolbox of genetic resources that will help parse the diverse functions mediated by dopaminergic circuits. Kramer et al. generate a DAT-P2A-Flpo mouse line that enables intersectional genetic targeting of dopamine neuron subpopulations using Flp/Cre-dependent constructs. They show that ventral tegmental area dopamine neurons expressing Neurod6 give rise to the majority of dopaminergic projections to the nucleus accumbens medial shell and olfactory tubercle.
Collapse
Affiliation(s)
- Daniel J Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Drew Friedmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David A Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Yiu-Fai Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Raam T, Hong W. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Curr Opin Neurobiol 2021; 68:124-136. [PMID: 33940499 DOI: 10.1016/j.conb.2021.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The medial amygdala (MeA) is critical for the expression of a broad range of social behaviors, and is also connected to many other brain regions that mediate those same behaviors. Here, we summarize recent advances toward elucidating mechanisms that enable the MeA to regulate a diversity of social behaviors, and also consider what role the MeA plays within the broader network of regions that orchestrate social sensorimotor transformations. We outline the molecular, anatomical, and electrophysiological features of the MeA that segregate distinct social behaviors, propose experimental strategies to disambiguate sensory representations from behavioral function in the context of a social interaction, and consider to what extent MeA function may overlap with other regions mediating similar behaviors.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Wasinski F, Chaves FM, Pedroso JA, Mansano NS, Camporez JP, Gusmão DO, List EO, Kopchick JJ, Frazão R, Szawka RE, Donato J. Growth hormone receptor in dopaminergic neurones regulates stress-induced prolactin release in male mice. J Neuroendocrinol 2021; 33:e12957. [PMID: 33769619 PMCID: PMC9670090 DOI: 10.1111/jne.12957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Arcuate nucleus (ARH) dopaminergic neurones regulate several biological functions, including prolactin secretion and metabolism. These cells are responsive to growth hormone (GH), although it is still unknown whether GH action on ARH dopaminergic neurones is required to regulate different physiological aspects. Mice carrying specific deletion of GH receptor (GHR) in tyrosine hydroxylase (TH)- or dopamine transporter (DAT)-expressing cells were produced. We investigated possible changes in energy balance, glucose homeostasis, fertility, pup survival and restraint stress-induced prolactin release. GHR deletion in DAT- or TH-expressing cells did not cause changes in food intake, energy expenditure, ambulatory activity, nutrient oxidation, glucose tolerance, insulin sensitivity and counter-regulatory response to hypoglycaemia in male and female mice. In addition, GHR deletion in dopaminergic cells caused no gross effects on reproduction and pup survival. However, restraint stress-induced prolactin release was significantly impaired in DAT- and TH-specific GHR knockout male mice, as well as in pegvisomant-treated wild-type males, whereas an intact response was observed in females. Patch clamp recordings were performed in ARH DAT neurones and, in contrast to prolactin, GH did not cause acute changes in the electrical activity of DAT neurones. Furthermore, TH phosphorylation at Ser40 in ARH neurones and median eminence axonal terminals was not altered in DAT-specific GHR knockout male mice during restraint stress. In conclusion, GH action in dopaminergic neurones is required for stress-induced prolactin release in male mice, suggesting the existence of sex differences in the capacity of GHR signalling to affect prolactin secretion. The mechanism behind this regulation still needs to be identified.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Fernanda M. Chaves
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - João A.B. Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Naira S. Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - João Paulo Camporez
- Universidade de Sao Paulo, Faculdade de Medicina de Ribeirao Preto, Departamento de Fisiologia, Ribeirao Preto, Brazil
| | - Daniela O. Gusmão
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Renata Frazão
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Raphael E. Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| |
Collapse
|
25
|
Schalbetter SM, Mueller FS, Scarborough J, Richetto J, Weber-Stadlbauer U, Meyer U, Notter T. Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab Anim (NY) 2021; 50:69-75. [PMID: 33619409 DOI: 10.1038/s41684-021-00723-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.
Collapse
Affiliation(s)
- Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tina Notter
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
26
|
Hyland L, Park SB, Abdelaziz Y, Abizaid A. Metabolic effects of ghrelin delivery into the hypothalamic ventral premammilary nucleus of male mice. Physiol Behav 2021; 228:113208. [PMID: 33068562 DOI: 10.1016/j.physbeh.2020.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Ghrelin is a 28 amino acid peptide hormone that targets the brain to promote feeding and adiposity. The ghrowth hormone secretagogue receptor 1a (GHSR1a) is expressed within many hypothalamic nuclei, including the ventral premammillary nucleus (PMV), but the role of GHSR1a signaling in this region is unknown. In order to investigate whether GHSR1a signaling within the PMV modulates energy balance, we implanted osmotic minipumps connected to cannulae that were implanted intracranially and aiming at the PMV. The cannulae delivered either saline or ghrelin (10 µg/day at a flow rate of 0.11μL/h for 28 days) into the PMV of adult male C57BLJ6 mice. We found that chronic infusion of ghrelin into the PMV increased weight gain, promoted the oxidation of carbohydrates as a fuel source and resulted in hyperglycemia, without affecting food intake, or body fat. This suggests that ghrelin signaling in the PMV contributes to the modulation of metabolic fuel utilization and glucose homeostasis.
Collapse
Affiliation(s)
- Lindsay Hyland
- Carleton University, Department of Neuroscience, Ottawa, ON, Canada
| | - Su-Bin Park
- Carleton University, Department of Neuroscience, Ottawa, ON, Canada
| | - Yosra Abdelaziz
- Carleton University, Department of Neuroscience, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Carleton University, Department of Neuroscience, Ottawa, ON, Canada
| |
Collapse
|
27
|
Neuronal activity increases translocator protein (TSPO) levels. Mol Psychiatry 2021; 26:2025-2037. [PMID: 32398717 PMCID: PMC8440208 DOI: 10.1038/s41380-020-0745-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.
Collapse
|
28
|
Altered baseline and amphetamine-mediated behavioral profiles in dopamine transporter Cre (DAT-Ires-Cre) mice compared to tyrosine hydroxylase Cre (TH-Cre) mice. Psychopharmacology (Berl) 2020; 237:3553-3568. [PMID: 32778904 PMCID: PMC10120402 DOI: 10.1007/s00213-020-05635-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Transgenic mouse lines expressing Cre-recombinase under the regulation of either dopamine transporter (DAT) or tyrosine hydroxylase (TH) promoters are commonly used to study the dopamine (DA) system. While use of the TH promoter appears to have less liability to changes in native gene expression, transgene insertion in the DAT locus results in reduced DAT expression and function. This confound is sometimes overlooked in genetically targeted behavioral experiments. OBJECTIVES We sought to evaluate the suitability of DAT-Ires-Cre and TH-Cre transgenic lines for behavioral pharmacology experiments with DA agonists. We hypothesized that DAT-Ires-Cre expression would impact DAT-mediated behaviors, but no impact of TH-Cre expression would be observed. METHODS DAT-Ires-Cre and TH-Cre mice bred on mixed 129S6/C57BL/6 and pure C57BL/6 backgrounds were evaluated for novelty-induced, baseline, and amphetamine (AMPH)-induced locomotion, and for AMPH and D1 agonist (SKF-38393)-induced preservative behaviors. RESULTS DAT-Ires-Cre mice on both mixed 129S6/C57BL/6 and pure C57BL/6 backgrounds displayed increased novelty-induced activity and decreased AMPH-induced locomotion, with mixed results for AMPH-induced stereotypy. TH-Cre mice on both backgrounds showed typical baseline activity and AMPH-induced stereotypy, with a difference in AMPH-induced locomotion observed only on the mixed background. Both transgenic lines displayed unaltered SKF-38393-induced grooming behavior. CONCLUSIONS Our findings indicate that the DAT-Ires-Cre transgenic line may lead to confounds for experiments that are dependent on DAT expression. The TH-Cre transgenic line studied here may be a more useful option, depending on background strain, because of its lack of baseline and drug-induced phenotypes. These data highlight the importance of appropriate controls in studies employing transgenic mice.
Collapse
|
29
|
Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. eLife 2020; 9:58901. [PMID: 33119507 PMCID: PMC7595735 DOI: 10.7554/elife.58901] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023] Open
Abstract
The ventral posterior hypothalamus (VPH) is an anatomically complex brain region implicated in arousal, reproduction, energy balance, and memory processing. However, neuronal cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles of distinct VPH circuits in physiology and behavior. To address this question, we employed a droplet-based single-cell RNA sequencing (scRNA-seq) approach to systematically classify molecularly distinct cell populations in the mouse VPH. Analysis of >16,000 single cells revealed 20 neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We validated differentially expressed genes in selected neuronal populations through fluorescence in situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-distinct clusters that exhibit neuroanatomical parcellation within MB subdivisions and topographic projections to the thalamus. This single-cell transcriptomic atlas of VPH cell types provides a resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH circuits.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, United States
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, United States
| | - Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Lydia Wilson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, United States
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| |
Collapse
|
30
|
Neural mechanisms of aggression across species. Nat Neurosci 2020; 23:1317-1328. [PMID: 33046890 DOI: 10.1038/s41593-020-00715-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Aggression is a social behavior essential for securing resources and defending oneself and family. Thanks to its indispensable function in competition and thus survival, aggression exists widely across animal species, including humans. Classical works from Tinbergen and Lorenz concluded that instinctive behaviors including aggression are mediated by hardwired brain circuitries that specialize in processing certain sensory inputs to trigger stereotyped motor outputs. They further suggest that instinctive behaviors are influenced by an animal's internal state and past experiences. Following this conceptual framework, here we review our current understanding regarding the neural substrates underlying aggression generation, highlighting an evolutionarily conserved 'core aggression circuit' composed of four subcortical regions. We further discuss the neural mechanisms that support changes in aggression based on the animal's internal state. We aim to provide an overview of features of aggression and the relevant neural substrates across species, highlighting findings in rodents, primates and songbirds.
Collapse
|
31
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
32
|
Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, Wang DY, Zhang M, Zhang YL, Song N, Jiao ZL, Xu C, Zhu SJ, Xu XH. Specific Hypothalamic Neurons Required for Sensing Conspecific Male Cues Relevant to Inter-male Aggression. Neuron 2020; 108:763-774.e6. [PMID: 32961129 DOI: 10.1016/j.neuron.2020.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/26/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023]
Abstract
The hypothalamus regulates innate social interactions, but how hypothalamic neurons transduce sex-related sensory signals emitted by conspecifics to trigger appropriate behaviors remains unclear. Here, we addressed this issue by identifying specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. By in vivo recording of neuronal activities in behaving mice, we showed that neurons expressing dopamine transporter (DAT+) in the ventral premammillary nucleus (PMv) of the hypothalamus responded to male urine cues in a vomeronasal organ (VNO)-dependent manner in naive males. Retrograde trans-synaptic tracing further revealed a specific group of neurons in the bed nucleus of the stria terminalis (BNST) that convey male-relevant signals from VNO to PMv. Inhibition of PMvDAT+ neurons abolished the preference for male urine cues and reduced inter-male attacks, while activation of these neurons promoted urine marking and aggression. Thus, PMvDAT+ neurons exemplify a hypothalamic node that transforms sex-related chemo-signals into recognition and behaviors.
Collapse
Affiliation(s)
- Ai-Xiao Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Lei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Jing Ding
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Dan-Yang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhuo-Lei Jiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Shu-Jia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
33
|
Zell V, Steinkellner T, Hollon NG, Warlow SM, Souter E, Faget L, Hunker AC, Jin X, Zweifel LS, Hnasko TS. VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron 2020; 107:864-873.e4. [PMID: 32610039 PMCID: PMC7780844 DOI: 10.1016/j.neuron.2020.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/21/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
Abstract
Like ventral tegmental area (VTA) dopamine (DA) neurons, VTA glutamate neuron activity can support positive reinforcement. However, a subset of VTA neurons co-release DA and glutamate, and DA release might be responsible for behavioral reinforcement induced by VTA glutamate neuron activity. To test this, we used optogenetics to stimulate VTA glutamate neurons in which tyrosine hydroxylase (TH), and thus DA biosynthesis, was conditionally ablated using either floxed Th mice or viral-based CRISPR/Cas9. Both approaches led to loss of TH expression in VTA glutamate neurons and loss of DA release from their distal terminals in nucleus accumbens (NAc). Despite loss of the DA signal, optogenetic activation of VTA glutamate cell bodies or axon terminals in NAc was sufficient to support reinforcement. These results suggest that glutamate release from VTA is sufficient to promote reinforcement independent of concomitant DA co-release, establishing a non-DA mechanism by which VTA activity can support reward-seeking behaviors.
Collapse
Affiliation(s)
- Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Steinkellner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nick G Hollon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shelley M Warlow
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Souter
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Research Service VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
34
|
Gavini CK, Bonomo R, Mansuy-Aubert V. Neuronal LXR Regulates Neuregulin 1 Expression and Sciatic Nerve-Associated Cell Signaling in Western Diet-fed Rodents. Sci Rep 2020; 10:6396. [PMID: 32286429 PMCID: PMC7156713 DOI: 10.1038/s41598-020-63357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/21/2020] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain caused by peripheral nerve injuries significantly affects sensory perception and quality of life. Accumulating evidence strongly link cholesterol with development and progression of Obesity and Diabetes associated-neuropathies. However, the exact mechanisms of how cholesterol/lipid metabolism in peripheral nervous system (PNS) contributes to the pathogenesis of neuropathy remains poorly understood. Dysregulation of LXR pathways have been identified in many neuropathic models. The cholesterol sensor, LXR α/β, expressed in sensory neurons are necessary for proper peripheral nerve function. Deletion of LXR α/β from sensory neurons lead to pain-like behaviors. In this study, we identified that LXR α/β expressed in sensory neurons regulates neuronal Neuregulin 1 (Nrg1), protein involved in cell-cell communication. Using in vivo cell-specific approaches, we observed that loss of LXR from sensory neurons altered genes in non-neuronal cells located in the sciatic nerve (potentially representing Schwann cells (SC)). Our data suggest that neuronal LXRs may regulate non-neuronal cell function via a Nrg1-dependent mechanism. The decrease in Nrg1 expression in DRG neurons of WD-fed mice may suggest an altered Nrg1-dependent neuron-SC communication in Obesity. The communication between neurons and non-neuronal cells such as SC could be a new biological pathway to study and understand the molecular and cellular mechanism underlying Obesity-associated neuropathy and PNS dysfunction.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, 60153, USA
| | - Raiza Bonomo
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, 60153, USA.
| |
Collapse
|
35
|
Poulin JF, Gaertner Z, Moreno-Ramos OA, Awatramani R. Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches. Trends Neurosci 2020; 43:155-169. [PMID: 32101709 PMCID: PMC7285906 DOI: 10.1016/j.tins.2020.01.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/13/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zachary Gaertner
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
36
|
Gavini CK, Bookout AL, Bonomo R, Gautron L, Lee S, Mansuy-Aubert V. Liver X Receptors Protect Dorsal Root Ganglia from Obesity-Induced Endoplasmic Reticulum Stress and Mechanical Allodynia. Cell Rep 2019; 25:271-277.e4. [PMID: 30304667 PMCID: PMC7732131 DOI: 10.1016/j.celrep.2018.09.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with many complications, including type 2 diabetes and painful neuropathy. There is no cure or prevention for obesity-induced pain, and the neurobiology underlying the onset of the disease is still obscure. In this study, we observe that western diet (WD)-fed mice developed early allodynia with an increase of ER stress markers in the sensory neurons of the dorsal root ganglia (DRG). Using cell-specific approaches, we demonstrate that neuronal liver X receptor (LXR) activation delays ER stress and allodynia in WD-fed mice. Our findings suggest that lipid-binding nuclear receptors expressed in the sensory neurons of the DRG play a role in the onset of obesity-induced hypersensitivity. The LXR and lipid-sensor pathways represent a research avenue to identify targets to prevent debilitating complications affecting the peripheral nerve system in obesity. The mechanism underlying obesityinduced pain is explored by Gavini et al. using cell-specific models. Their analysis reveals that in sensory neurons of the dorsal root ganglia, LXR activation delays western diet-induced ER stress and allodynia. These findings suggest that LXRs in sensory neurons are involved in nociception induced by western diet nutrition.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raiza Bonomo
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
37
|
Neural circuits for coping with social defeat. Curr Opin Neurobiol 2019; 60:99-107. [PMID: 31837481 DOI: 10.1016/j.conb.2019.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
When resources, such as food, territory, and potential mates are limited, competition among animals of the same species is inevitable. Over bouts of agonistic interactions, winners and losers are determined. Losing is a traumatic experience, both physically and psychologically. Losers not only need to deploy a set of species-specific defensive behaviors to minimize the physical damage during defeat, but also adjust their behavior towards the winners to avoid future fights in which they are likely disadvantaged. The expression of defensive behaviors and the fast and long-lasting changes in behaviors accompanying defeat must be supported by a complex neural circuit. This review summarizes the brain regions that have been implicated in coping with social defeat, one centered on basolateral amygdala and the other on ventromedial hypothalamus. Gaps in our knowledge and hypotheses that may help guide future experiments are also discussed.
Collapse
|
38
|
Off-Target Effects in Transgenic Mice: Characterization of Dopamine Transporter (DAT)-Cre Transgenic Mouse Lines Exposes Multiple Non-Dopaminergic Neuronal Clusters Available for Selective Targeting within Limbic Neurocircuitry. eNeuro 2019; 6:ENEURO.0198-19.2019. [PMID: 31481399 PMCID: PMC6873162 DOI: 10.1523/eneuro.0198-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Transgenic mouse lines are instrumental in our attempt to understand brain function. Promoters driving transgenic expression of the gene encoding Cre recombinase are crucial to ensure selectivity in Cre-mediated targeting of floxed alleles using the Cre-Lox system. For the study of dopamine (DA) neurons, promoter sequences driving expression of the Dopamine transporter (Dat) gene are often implemented and several DAT-Cre transgenic mouse lines have been found to faithfully direct Cre activity to DA neurons. While evaluating an established DAT-Cre mouse line, reporter gene expression was unexpectedly identified in cell somas within the amygdala. To indiscriminately explore Cre activity in DAT-Cre transgenic lines, systematic whole-brain analysis of two DAT-Cre mouse lines was performed upon recombination with different types of floxed reporter alleles. Results were compared with data available from the Allen Institute for Brain Science. The results identified restricted DAT-Cre-driven reporter gene expression in cell clusters within several limbic areas, including amygdaloid and mammillary subnuclei, septum and habenula, areas classically associated with glutamatergic and GABAergic neurotransmission. While no Dat gene expression was detected, ample co-localization between DAT-Cre-driven reporter and markers for glutamatergic and GABAergic neurons was found. Upon viral injection of a fluorescent reporter into the amygdala and habenula, distinct projections from non-dopaminergic DAT-Cre neurons could be distinguished. The study demonstrates that DAT-Cre transgenic mice, beyond their usefulness in recombination of floxed alleles in DA neurons, could be implemented as tools to achieve selective targeting in restricted excitatory and inhibitory neuronal populations within the limbic neurocircuitry.
Collapse
|
39
|
Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019; 1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Social connections are vital to survival throughout the animal kingdom and are dynamic across the life span. There are debilitating consequences of social isolation and loneliness, and social support is increasingly a primary consideration in health care, disease prevention, and recovery. Considering social connection as an "innate need," it is hypothesized that evolutionarily conserved neural systems underlie the maintenance of social connections: alerting the individual to their absence and coordinating effector mechanisms to restore social contact. This is reminiscent of a homeostatic system designed to maintain social connection. Here, we explore the identity of neural systems regulating "social homeostasis." We review findings from rodent studies evaluating the rapid response to social deficit (in the form of acute social isolation) and propose that parallel, overlapping circuits are engaged to adapt to the vulnerabilities of isolation and restore social connection. By considering the neural systems regulating other homeostatic needs, such as energy and fluid balance, we discuss the potential attributes of social homeostatic circuitry. We reason that uncovering the identity of these circuits/mechanisms will facilitate our understanding of how loneliness perpetuates long-term disease states, which we speculate may result from sustained recruitment of social homeostatic circuits.
Collapse
Affiliation(s)
- Gillian A Matthews
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts.,The Salk Institute for Biological Sciences, La Jolla, California
| |
Collapse
|
40
|
Zhu X, Nedelcovych MT, Thomas AG, Hasegawa Y, Moreno-Megui A, Coomer W, Vohra V, Saito A, Perez G, Wu Y, Alt J, Prchalova E, Tenora L, Majer P, Rais R, Rojas C, Slusher BS, Kamiya A. JHU-083 selectively blocks glutaminase activity in brain CD11b + cells and prevents depression-associated behaviors induced by chronic social defeat stress. Neuropsychopharmacology 2019; 44:683-694. [PMID: 30127344 PMCID: PMC6372721 DOI: 10.1038/s41386-018-0177-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
Abstract
There are a number of clinically effective treatments for stress-associated psychiatric diseases, including major depressive disorder (MDD). Nonetheless, many patients exhibit resistance to first-line interventions calling for novel interventions based on pathological mechanisms. Accumulating evidence implicates altered glutamate signaling in MDD pathophysiology, suggesting that modulation of glutamate signaling cascades may offer novel therapeutic potential. Here we report that JHU-083, our recently developed prodrug of the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) ameliorates social avoidance and anhedonia-like behaviors in mice subjected to chronic social defeat stress (CSDS). JHU-083 normalized CSDS-induced increases in glutaminase activity specifically in microglia-enriched CD11b+ cells isolated from the prefrontal cortex and hippocampus. JHU-083 treatment also reverses the CSDS-induced inflammatory activation of CD11b+ cells. These results support the importance of altered glutamate signaling in the behavioral abnormalities observed in the CSDS model, and identify glutaminase in microglia-enriched CD11b+ cells as a pharmacotherapeutic target implicated in the pathophysiology of stress-associated psychiatric conditions such as MDD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michael T. Nedelcovych
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ajit G. Thomas
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yuto Hasegawa
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Aisa Moreno-Megui
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Wade Coomer
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Varun Vohra
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Atsushi Saito
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gabriel Perez
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ying Wu
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jesse Alt
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Eva Prchalova
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lukáš Tenora
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Pavel Majer
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Rana Rais
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Camilo Rojas
- 0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Barbara S. Slusher
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Divergent medial amygdala projections regulate approach-avoidance conflict behavior. Nat Neurosci 2019; 22:565-575. [PMID: 30804529 PMCID: PMC6446555 DOI: 10.1038/s41593-019-0337-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Avoidance of innate threats is often in conflict with motivations to engage in exploratory approach behavior. The neural pathways that mediate this approach-avoidance conflict are not well resolved. Here we isolated a population of dopamine D1 receptor (D1R)-expressing neurons within the posteroventral region of the medial amygdala (MeApv) in mice that are activated either during approach or during avoidance of an innate threat stimulus. Distinct subpopulations of MeApv-D1R neurons differentially innervate the ventromedial hypothalamus and bed nucleus of the stria terminalis, and these projections have opposing effects on investigation or avoidance of threatening stimuli. These projections are potently modulated through opposite actions of D1R signaling that bias approach behavior. These data demonstrate divergent pathways in the MeApv that can be differentially weighted toward exploration or evasion of threats.
Collapse
|
42
|
Alpár A, Harkany T. Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. J Intern Med 2018; 284:568-580. [PMID: 30027599 DOI: 10.1111/joim.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian hypothalamus contains an astounding heterogeneity of neurons to achieve its role in coordinating central responses to virtually any environmental stressor over the life-span of an individual. Therefore, while core features of intrahypothalamic neuronal modalities and wiring patterns are stable during vertebrate evolution, integration of the hypothalamus into hierarchical brain-wide networks evolved to coordinate its output with emotionality, cognition and conscious decision-making. The advent of single-cell technologies represents a recent milestone in the study of hypothalamic organization by allowing the dissection of cellular heterogeneity and establishing causality between opto- and chemogenetic activity modulation of molecularly-resolved neuronal contingents and specific behaviours. Thus, organizational rules to accumulate an unprecedented variety of hierarchical neuroendocrine command networks into a minimal brain volume are being unravelled. Here, we review recent understanding at nanoscale resolution on how neuronal heterogeneity in the mammalian hypothalamus underpins the diversification of hormonal and synaptic output and keeps those sufficiently labile for continuous adaptation to meet environmental demands. Particular emphasis is directed towards the dissection of neuronal circuitry for aggression and food intake. Mechanistic data encompass cell identities, synaptic connectivity within and outside the hypothalamus to link vegetative and conscious levels of innate behaviours, and context- and circadian rhythm-dependent rules of synaptic neurophysiology to distinguish hypothalamic foci that either tune the body's metabolic set-point or specify behaviours. Consequently, novel insights emerge to explain the evolutionary advantages of non-laminar organization for neuroendocrine circuits coincidently using fast neurotransmitters and neuropeptides. These are then accrued into novel therapeutic principles that meet therapeutic criteria for human metabolic diseases.
Collapse
Affiliation(s)
- A Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - T Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
43
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
44
|
Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr Opin Behav Sci 2018; 24:104-112. [PMID: 30746430 DOI: 10.1016/j.cobeha.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggression is a crucial survival behavior: it is employed to defend territory, compete for food and mating opportunities, protect kin, and resolve disputes. Although widely differing in its behavioral expression, aggression is observed across many species. The neural substrates of aggression have been investigated for nearly a century and two highly conserved circuitries emerge as critical substrates for generating and modulating aggression. One circuitry centers on the medial hypothalamus. Activity of the medial hypothalamic cells closely correlates with attacks and can bi-directionally modulate aggressive behaviors. The other aggression-related circuit involves the mesolimbic dopamine cells. Dopaminergic antagonists are the most commonly used treatment for suppressing human aggression in psychotic patients. Animal studies support essential roles of dopaminergic signaling in the nucleus accumbens in assessing the reward value of aggression and reinforcing the aggressive behaviors. In this review, we will provide an overview regarding the functions of medial hypothalamus and dopaminergic system in mediating aggressive behaviors and the potential interactions between these two circuitries.
Collapse
|
45
|
Ferhat AT, Halbedl S, Schmeisser MJ, Kas MJ, Bourgeron T, Ey E. Behavioural Phenotypes and Neural Circuit Dysfunctions in Mouse Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 224:85-101. [PMID: 28551752 DOI: 10.1007/978-3-319-52498-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterised by alterations in social interaction and communication combined with the presence of restricted interests and stereotyped behaviours. Mutations in several genes have been associated with ASD resulting in the generation of corresponding mouse models. Here, we focus on the behavioural (social and stereotyped behaviours), functional and structural traits of mice with mutations in genes encoding defined synaptic proteins including adhesion proteins, scaffolding proteins and subunits of channels and receptors. A meta-analysis on ASD mouse models shows that they can be divided into two subgroups. Cluster I gathered models highly impaired in social interest, stereotyped behaviours, synaptic physiology and protein composition, while Cluster II regrouped much less impaired models, with typical social interactions. This distribution was not related to gene families. Even within the large panel of mouse models carrying mutations in Shank3, the number of mutated isoforms was not related to the severity of the phenotype. Our study points that the majority of structural or functional analyses were performed in the hippocampus. However, to robustly link the structural and functional impairments with the behavioural deficits observed, brain structures forming relevant nodes in networks involved in social and stereotyped behaviours should be targeted in the future. In addition, the characterisation of core ASD-like behaviours needs to be more detailed using new approaches quantifying the variations in social motivation, recognition and stereotyped behaviours.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sonja Halbedl
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France.,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,FondaMental Foundation, Créteil, France.,Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elodie Ey
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France. .,CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France. .,Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
46
|
A neural network for intermale aggression to establish social hierarchy. Nat Neurosci 2018; 21:834-842. [DOI: 10.1038/s41593-018-0153-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
|
47
|
Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci 2017; 11:94. [PMID: 29375329 PMCID: PMC5770748 DOI: 10.3389/fnsys.2017.00094] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action.
Collapse
Affiliation(s)
- Yoshiko Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Annegret L Falkner
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
48
|
Incomplete concordance of dopamine transporter Cre (DAT IREScre)-mediated recombination and tyrosine hydroxylase immunoreactivity in the mouse forebrain. J Chem Neuroanat 2017; 90:40-48. [PMID: 29217488 DOI: 10.1016/j.jchemneu.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 12/03/2017] [Indexed: 11/20/2022]
Abstract
Co-localization of the expression of the dopamine transporter (DAT) with the catecholamine synthesising enzyme tyrosine hydroxylase (TH) has been investigated using transgenic mice expressing Cre recombinase (Cre) dependent green fluorescent protein (GFP) under the control of the DAT promoter (DATIREScre/GFP). Brain sections from adult female mice were stained for Cre-induced GFP and TH using immunohistochemistry, revealing a high degree of co-expression in the midbrain dopaminergic neurons (A8-10) with the exception of the periaqueductal and dorsal raphe nuclei where dual-labelling was notably lower. In contrast, most of the rostral groups of TH-expressing neurons in the forebrain (A11, A13 - A15) showed little or no co-localization with Cre-induced GFP. Interestingly, a subpopulation of about 30% of the TH-immunoreactive neurons in the arcuate nucleus (A12) also express GFP staining. This observation supports the proposal that this hypothalamic cluster of dopaminergic neurons is neurochemically, and thus potentially functionally, heterogeneous. This study extends earlier literature focusing primarily on DAT expression in midbrain structures to demonstrate a heterogeneity of DAT and TH co-localization in forebrain neurons, particularly those in the hypothalamus. It also highlights the importance of carefully selecting and validating transgenic mouse lines when studying dopaminergic neurons.
Collapse
|
49
|
McCarthy EA, Maqsudlu A, Bass M, Georghiou S, Cherry JA, Baum MJ. DREADD-induced silencing of the medial amygdala reduces the preference for male pheromones and the expression of lordosis in estrous female mice. Eur J Neurosci 2017; 46:2035-2046. [PMID: 28677202 DOI: 10.1111/ejn.13636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023]
Abstract
Sexually naïve estrous female mice seek out male urinary pheromones; however, they initially display little receptive (lordosis) behavior in response to male mounts. Vomeronasal-accessory olfactory bulb inputs to the medial amygdala (Me) regulate courtship in female rodents. We used a reversible inhibitory chemogenetic technique (Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) to assess the contribution of Me signaling to females' preference for male pheromones and improvement in receptivity normally seen with repeated testing. Sexually naïve females received bilateral Me injections of an adeno-associated virus carrying an inhibitory DREADD. Females were later ovariectomized, treated with ovarian hormones, and given behavioral tests following intraperitoneal injections of saline or clozapine-N-oxide (CNO; which hyperpolarizes infected Me neurons). CNO attenuated females' preference to investigate male vs. female urinary odors. Repeated CNO treatment also slowed the increase in lordosis otherwise seen in females given saline. However, when saline was given to females previously treated with CNO, their lordosis quotients were as high as other females repeatedly given saline. No disruptive behavioral effects of CNO were seen in estrous females lacking DREADD infections of the Me. Finally, CNO attenuated the ability of male pheromones to stimulate Fos expression in the Me of DREADD-infected mice but not in non-infected females. Our results affirm the importance of Me signaling in females' chemosensory preferences and in the acute expression of lordosis. However, they provide no indication that Me signaling is required for the increase in receptivity normally seen after repeated hormone priming and testing with a male.
Collapse
Affiliation(s)
| | - Arman Maqsudlu
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Matthew Bass
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Sofia Georghiou
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Michael J Baum
- Department of Biology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
50
|
Dobrzanski G, Kossut M. Application of the DREADD technique in biomedical brain research. Pharmacol Rep 2017; 69:213-221. [DOI: 10.1016/j.pharep.2016.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
|