1
|
Wang R, Zhao C, Ou Z, Chen L. KHSRP promotes the malignant behavior and cisplatin resistance of bladder cancer cells through the CLASP2/MAPRE1 axis. THE PHARMACOGENOMICS JOURNAL 2025; 25:14. [PMID: 40382315 DOI: 10.1038/s41397-025-00374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Bladder cancer (BC) is a highly prevalent form of cancer worldwide, and cisplatin (CDDP) resistance poses a major challenge to patients. Cytoplasmic linker-associated protein 2 (CLASP2) is a member of the microtubule plus-end tracking protein family and is involved in the regulation of microtubule dynamics. In this study, we evaluated the influence of CLASP2 on BC progression and cisplatin resistance. Levels of CLASP2, HNRNPA1, NONO, ZRANB2, FUS, KHSRP and QKI in BC tissues and cells were tested by RT-qPCR. Protein levels of CLASP2 and KHSRP were detected by Western blot. Cell viability and IC50 of cisplatin-treated BC cells were measured by CCK-8. Cell proliferation and apoptosis were determined using colony formation assay and flow cytometry, respectively. RNA immunoprecipitation (RIP) and Co-immunoprecipitation (Co-IP) experiments were adopted to verify target genes of CLASP2. Cellular localization of CLASP2 and MAPRE1 was detected utilizing immunofluorescence staining. The xenograft tumor model was established in BALB/c nude mice. We found that iCLASP2 levels were increased in CDDP-resistant BC tissues and cells. Suppression of CLASP2 impeded BC cell proliferation and alleviated their resistance to CDDP. KHSRP positively influenced the stability of CLASP2 mRNA. There was a protein interaction between CLASP2 and MAPRE1. Silencing KHSRP or MAPRE1 reversed the effect exerted of CLASP2 on BC cells. CLASP2 decreased the sensitivity of BC to CDDP in vivo. Our results imply that CLASP2 contributes to tumorigenesis and cisplatin resistance in BC via targeting MAPRE1, thereby promoting BC progression and providing a new therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Ruizhe Wang
- Department of Urology, Xiangya Hospital Central South University, Changsha City, Hunan Province, China
| | - Cheng Zhao
- Department of Urology, Xiangya Hospital Central South University, Changsha City, Hunan Province, China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital Central South University, Changsha City, Hunan Province, China
| | - Lingxiao Chen
- Department of Urology, Xiangya Hospital Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
2
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
3
|
Russomanno P, Zizza P, Cerofolini L, D'Aria F, Iachettini S, Di Vito S, Biroccio A, Amato J, Fragai M, Pagano B. Expanding the Functions of KHSRP Protein: Insights into DNA G-Quadruplex Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410086. [PMID: 39763191 PMCID: PMC11848572 DOI: 10.1002/advs.202410086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Indexed: 02/25/2025]
Abstract
KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells. Therefore, the recognition of G4s by specific proteins is crucial for modulating physiological and pathological pathways. Given the growing interest in DNA G4s, a deeper understanding of the proteins that interact with them and their molecular recognition is imperative. This study demonstrates that KHSRP binds to these DNA structures. Biophysical analyses provide insights into the thermodynamics, kinetics, and structural aspects of these interactions, showing that G4 structural variability significantly influences KHSRP binding, in which the KH3 protein domain plays a key role. Validation of these interactions in cancer cells further highlights their biological relevance. Notably, the G4 ligand pyridostatin affects KHSRP/G4 interactions both in vitro and in cells, suggesting that small molecules can modulate this molecular recognition. These findings underscore KHSRP's potential role in regulating cellular mechanisms through binding to G4-forming DNA, positioning it as a possible therapeutic target in cancer.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Pasquale Zizza
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Linda Cerofolini
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Federica D'Aria
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Sara Iachettini
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Serena Di Vito
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Annamaria Biroccio
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Marco Fragai
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| |
Collapse
|
4
|
Wang Y, Liu C, Tang K, Zhang J, Liu X, Ma Y, Li X. Exploring shared pathogenesis of multiple myeloma and osteoporosis via bioinformatic analysis. Expert Rev Hematol 2025; 18:167-176. [PMID: 39943780 DOI: 10.1080/17474086.2025.2465456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/29/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND The purpose of this study is to explore the common differentially expressed genes (DEGs) between multiple myeloma (MM) and osteoporosis and the associated molecular mechanisms. RESEARCH DESIGN AND METHODS We obtained the overlapping DEGs between MM and osteoporosis with the GEO2R online tool. Then, the DEGs were clustered on the MetaCore website to identify the biological process and pathway. In addition, the STRING database and Cytoscape were used to construct the protein-protein interaction (PPI) network and identify hub genes. Finally, miRNA-gene and transcriptional factor (TF)-gene interaction networks were constructed. RESULTS A total of 252 genes were identified as DEGs in the overlapping two datasets. Functional analysis emphasizes the crucial role of the cell cycle in these two diseases. 10 hub genes were identified using cytoHubba, including CCNA2, ASPM, MKI67, FN1, FEN1, STAT1, DEPDC1, ITGB8, DYNC2LI1, HBEGF. In addition, according to the miRNA-gene and TF-gene interaction networks, part of TFs (RELA, TP53), and miRNAs (miR-26b-5p, miR-192-5p) may be identified as key regulators in MM and osteoporosis at the same time. CONCLUSIONS The present study reveals the common pathogenesis of MM and osteoporosis. These shared pathways may provide new targets for further mechanistic studies of the pathogenesis and treatment of MM and osteoporosis.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengdi Liu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kegong Tang
- Department of Pathology, The First Affiliated Hospital, Shandong First Medical University& Shandong Qianfoshan Hospital, Jinan, Shandong, China
| | - Jiyun Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinran Liu
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Ma
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Gill SK, Gomer RH. New therapeutic approaches for fibrosis: harnessing translational regulation. Trends Mol Med 2024:S1471-4914(24)00312-5. [PMID: 39690057 DOI: 10.1016/j.molmed.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating lung disease characterized by excessive extracellular matrix deposition and tissue scarring. The median survival of patients with IPF is only 4.5 years following diagnosis, and effective treatment options are scarce. Recent studies found aberrant translation of specific mRNAs in various fibrosing diseases, highlighting the role of key translational regulators, including RNA binding proteins (RBPs), microRNAs, long noncoding RNAs, and transcript modifications. Notably, when inhibited, 10 profibrotic RBPs cause a significant attenuation of fibrosis, illuminating potential therapeutic targets. In this review, we describe translational regulation in fibrosis and highlight a model where a conserved evolutionary mechanism may explain this regulation.
Collapse
Affiliation(s)
- Sumeen Kaur Gill
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Yang YC, Ho KH, Hua KT, Chien MH. Roles of K(H)SRP in modulating gene transcription throughout cancer progression: Insights from cellular studies to clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189202. [PMID: 39447687 DOI: 10.1016/j.bbcan.2024.189202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The KH-type splicing regulatory protein (KHSRP), also known as KSRP, is an RNA-binding protein that regulates gene expressions through various mechanisms, including messenger (m)RNA degradation, micro (mi)RNA maturation, and transcriptional activity. KSRP has been implicated in a wide range of physiological and pathological processes, with emerging evidence highlighting its role in modulating diverse aspects of cancer behaviors. In this review, we provide a comprehensive overview of KSRP's clinical relevance and its multifaceted regulatory mechanisms in cancer. Our extensive pan-cancer analysis uncovers associations of KSRP with clinical outcomes and identifies cell cycle progression as a key signaling pathway correlated with KSRP expression. Furthermore, we identify miR-17-5p as critical miRNAs positively correlated with KSRP, and it is associated with poor survival in various cancers. Collectively, this review offers new insights into the potential of KSRP as a target for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Li M, Fang Q, Xiao P, Yin Z, Mei G, Wang C, Xiang Y, Zhao X, Qu L, Xu T, Zhang J, Liu K, Li X, Dong H, Xiao R, Zhou R. KHSRP ameliorates acute liver failure by regulating pre-mRNA splicing through its interaction with SF3B1. Cell Death Dis 2024; 15:618. [PMID: 39187547 PMCID: PMC11347664 DOI: 10.1038/s41419-024-06886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Acute liver failure (ALF) is characterized by the rapidly progressive deterioration of hepatic function, which, without effective medical intervention, results in high mortality and morbidity. Here, using proteomic and transcriptomic analyses in murine ALF models, we found that the expression of multiple splicing factors was downregulated in ALF. Notably, we found that KH-type splicing regulatory protein (KHSRP) has a protective effect in ALF. Knockdown of KHSRP resulted in dramatic splicing defects, such as intron retention, and led to the exacerbation of liver injury in ALF. Moreover, we demonstrated that KHSRP directly interacts with splicing factor 3b subunit 1 (SF3B1) and enhances the binding of SF3B1 to the intronic branch sites, thereby promoting pre-mRNA splicing. Using splicing inhibitors, we found that Khsrp protects against ALF by regulating pre-mRNA splicing in vivo. Overall, our findings demonstrate that KHSRP is an important splicing activator and promotes the expression of genes associated with ALF progression by interacting with SF3B1; thus, KHSRP could be a possible target for therapeutic intervention in ALF.
Collapse
Affiliation(s)
- Mingxuan Li
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Qian Fang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Pingping Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Zhinang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Guangbo Mei
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ying Xiang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xuejun Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Tian Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Jiaxi Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ruijing Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
- Department of Medical Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
8
|
Micheva ID, Atanasova SA. MicroRNA dysregulation in myelodysplastic syndromes: implications for diagnosis, prognosis, and therapeutic response. Front Oncol 2024; 14:1410656. [PMID: 39156702 PMCID: PMC11327013 DOI: 10.3389/fonc.2024.1410656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders with heterogeneous clinical course and risk of transformation to acute myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing disease development and progression. MiRNAs, known for their regulatory roles in gene expression, have emerged as promising biomarkers in various malignant diseases. This review aims to explore the diagnostic and prognostic roles of miRNAs in MDS. We discuss research efforts aimed at understanding the clinical utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific chromosomal abnormalities in MDS, providing insights into the molecular landscape of the disease. Circulating miRNAs in plasma offer a less invasive avenue for diagnostic and prognostic assessment, with distinct miRNA profiles identified in MDS patients. Additionally, we discuss investigations concerning the role of miRNAs as markers for treatment response to hypomethylating and immunomodulating agents, which could lead to improved treatment decision-making and monitoring. Despite significant progress, further research in larger patient cohorts is needed to fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized approaches to patient care.
Collapse
Affiliation(s)
- Ilina Dimitrova Micheva
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Svilena Angelova Atanasova
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
9
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
10
|
Barssotti L, Soares GM, Marconato-Júnior E, Lourençoni Alves B, Oliveira KM, Carneiro EM, Boschero AC, Barbosa HCL. KSRP improves pancreatic beta cell function and survival. Sci Rep 2024; 14:6136. [PMID: 38480757 PMCID: PMC10937633 DOI: 10.1038/s41598-024-55505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Impaired insulin production and/or secretion by pancreatic beta cells can lead to high blood glucose levels and type 2 diabetes (T2D). Therefore, investigating new proteins involved in beta cell response to stress conditions could be useful in finding new targets for therapeutic approaches. KH-type splicing regulatory protein (KSRP) is a protein usually involved in gene expression due to its role in post-transcriptional regulation. Although there are studies describing the important role of KSRP in tissues closely related to glucose homeostasis, its effect on pancreatic beta cells has not been explored so far. Pancreatic islets from diet-induced obese mice (C57BL/6JUnib) were used to determine KSRP expression and we also performed in vitro experiments exposing INS-1E cells (pancreatic beta cell line) to different stressors (palmitate or cyclopiazonic acid-CPA) to induce cellular dysfunction. Here we show that KSRP expression is reduced in all the beta cell dysfunction models tested. In addition, when manipulated to knock down KSRP, beta cells exhibited increased death and impaired insulin secretion, whereas KSRP overexpression prevented cell death and increased insulin secretion. Taken together, our findings suggest that KSRP could be an important target to protect beta cells from impaired functioning and death.
Collapse
Affiliation(s)
- Leticia Barssotti
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Emílio Marconato-Júnior
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Kênia Moreno Oliveira
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil
| | - Helena Cristina Lima Barbosa
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083864, Brazil.
| |
Collapse
|
11
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int J Mol Sci 2023; 24:11139. [PMID: 37446317 DOI: 10.3390/ijms241311139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.
Collapse
Affiliation(s)
- Matteo Lucchini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Santoro
- Energy and Sustainable Economic Development, Division of Health Protection Technologies ENEA-Italian National Agency for New Technologies, 00123 Rome, Italy
| | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Aldobrando Broccolini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
14
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
15
|
Park HJ, Hoffman JR, Brown ME, Bheri S, Brazhkina O, Son YH, Davis ME. Knockdown of deleterious miRNA in progenitor cell-derived small extracellular vesicles enhances tissue repair in myocardial infarction. SCIENCE ADVANCES 2023; 9:eabo4616. [PMID: 36867699 PMCID: PMC9984177 DOI: 10.1126/sciadv.abo4616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Small extracellular vesicles (sEVs) play a critical role in cardiac cell therapy by delivering molecular cargo and mediating cellular signaling. Among sEV cargo molecule types, microRNA (miRNA) is particularly potent and highly heterogeneous. However, not all miRNAs in sEV are beneficial. Two previous studies using computational modeling identified miR-192-5p and miR-432-5p as potentially deleterious in cardiac function and repair. Here, we show that knocking down miR-192-5p and miR-432-5p in cardiac c-kit+ cell (CPC)-derived sEVs enhances the therapeutic capabilities of sEVs in vitro and in a rat in vivo model of cardiac ischemia reperfusion. miR-192-5p- and miR-432-5p-depleted CPC-sEVs enhance cardiac function by reducing fibrosis and necrotic inflammatory responses. miR-192-5p-depleted CPC-sEVs also enhance mesenchymal stromal cell-like cell mobilization. Knocking down deleterious miRNAs from sEV could be a promising therapeutic strategy for treatment of chronic myocardial infarction.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jessica R. Hoffman
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Milton E. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Young Hoon Son
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
17
|
Mongiorgi S, De Stefano A, Ratti S, Indio V, Astolfi A, Casalin I, Pellagatti A, Paolini S, Parisi S, Cavo M, Pession A, McCubrey JA, Suh PG, Manzoli L, Boultwood J, Finelli C, Cocco L, Follo MY. A miRNA screening identifies miR-192-5p as associated with response to azacitidine and lenalidomide therapy in myelodysplastic syndromes. Clin Epigenetics 2023; 15:27. [PMID: 36803590 PMCID: PMC9940408 DOI: 10.1186/s13148-023-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide. Recent data showed that, during azacitidine and lenalidomide therapy, the concurrent acquisition of specific point mutations affecting inositide signalling pathways is associated with lack or loss of response to therapy. As these molecules are implicated in epigenetic processes, possibly involving miRNA regulation, and in leukemic progression, through the regulation of proliferation, differentiation and apoptosis, here we performed a new miRNA expression analysis of 26 high-risk patients with myelodysplastic syndromes treated with azacitidine and lenalidomide at baseline and during therapy. miRNA array data were processed, and bioinformatic results were correlated with clinical outcome to investigate the translational relevance of selected miRNAs, while the relationship between selected miRNAs and specific molecules was experimentally tested and proven. RESULTS Patients' overall response rate was 76.9% (20/26 cases): complete remission (5/26, 19.2%), partial remission (1/26, 3.8%), marrow complete remission (2/26, 7.7%), hematologic improvement (6/26, 23.1%), hematologic improvement with marrow complete remission (6/26, 23.1%), whereas 6/26 patients (23.1%) had a stable disease. miRNA paired analysis showed a statistically significant up-regulation of miR-192-5p after 4 cycles of therapy (vs baseline), that was confirmed by real-time PCR analyses, along with an involvement of BCL2, that was proven to be a miR-192-5p target in hematopoietic cells by luciferase assays. Furthermore, Kaplan-Meier analyses showed a significant correlation between high levels of miR-192-5p after 4 cycles of therapy and overall survival or leukemia-free survival, that was stronger in responders, as compared with patients early losing response and non-responders. CONCLUSIONS This study shows that high levels of miR-192-5p are associated with higher overall survival and leukemia-free survival in myelodysplastic syndromes responding to azacitidine and lenalidomide. Moreover, miR-192-5p specifically targets and inhibits BCL2, possibly regulating proliferation and apoptosis and leading to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Irene Casalin
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Stefania Paolini
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Sarah Parisi
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Michele Cavo
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Pession
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Division of Pediatrics, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Carlo Finelli
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
18
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
19
|
Sullivan R, Montgomery A, Scipioni A, Jhaveri P, Schmidt AT, Hicks SD. Confounding Factors Impacting microRNA Expression in Human Saliva: Methodological and Biological Considerations. Genes (Basel) 2022; 13:genes13101874. [PMID: 36292760 PMCID: PMC9602126 DOI: 10.3390/genes13101874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
There is growing interest in saliva microRNAs (miRNAs) as non-invasive biomarkers for human disease. Such an approach requires understanding how differences in experimental design affect miRNA expression. Variations in technical methodologies, coupled with inter-individual variability may reduce study reproducibility and generalizability. Another barrier facing salivary miRNA biomarker research is a lack of recognized “control miRNAs”. In one of the largest studies of human salivary miRNA to date (922 healthy individuals), we utilized 1225 saliva samples to quantify variability in miRNA expression resulting from aligner selection (Bowtie1 vs. Bowtie2), saliva collection method (expectorated vs. swabbed), RNA stabilizer (presence vs. absence), and individual biological factors (sex, age, body mass index, exercise, caloric intake). Differential expression analyses revealed that absence of RNA stabilizer introduced the greatest variability, followed by differences in methods of collection and aligner. Biological factors generally affected a smaller number of miRNAs. We also reported coefficients of variations for 643 miRNAs consistently present in saliva, highlighting several salivary miRNAs to serve as reference genes. Thus, the results of this analysis can be used by researchers to optimize parameters of salivary miRNA measurement, exclude miRNAs confounded by numerous biologic factors, and identify appropriate miRNA controls.
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Austin Montgomery
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Anna Scipioni
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
- Department of Obstetrics, Morsani College of Medicine, University of Southern Florida, Tampa, FL 33606, USA
| | - Pooja Jhaveri
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Steven D. Hicks
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-0003
| |
Collapse
|
20
|
Lu X, Zhong J, Liu L, Zhang W, Zhao S, Chen L, Wei Y, Zhang H, Wu J, Chen W, Ge F. The function and regulatory mechanism of RNA-binding proteins in breast cancer and their future clinical treatment prospects. Front Oncol 2022; 12:929037. [PMID: 36052258 PMCID: PMC9424610 DOI: 10.3389/fonc.2022.929037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common female malignancy, but the mechanisms regulating gene expression leading to its development are complex. In recent years, as epigenetic research has intensified, RNA-binding proteins (RBPs) have been identified as a class of posttranscriptional regulators that can participate in regulating gene expression through the regulation of RNA stabilization and degradation, intracellular localization, alternative splicing and alternative polyadenylation, and translational control. RBPs play an important role in the development of normal mammary glands and breast cancer. Functional inactivation or abnormal expression of RBPs may be closely associated with breast cancer development. In this review, we focus on the function and regulatory mechanisms of RBPs in breast cancer, as well as the advantages and challenges of RBPs as potential diagnostic and therapeutic targets in breast cancer, and discuss the potential of RBPs in clinical treatment.
Collapse
Affiliation(s)
- Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jian Zhong
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jingxuan Wu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| |
Collapse
|
21
|
Han P, Cao P, Yue J, Kong K, Hu S, Deng Y, Li L, Li F, Zhao B. Knockdown of hnRNPA1 Promotes NSCLC Metastasis and EMT by Regulating Alternative Splicing of LAS1L exon 9. Front Oncol 2022; 12:837248. [PMID: 35814393 PMCID: PMC9260696 DOI: 10.3389/fonc.2022.837248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor metastasis is still an insurmountable obstacle in tumor treatment. Lung cancer represents one of the most common malignancies with high morbidity worldwide. hnRNPA1 has been reported to be involved in the regulation of tumor metastasis, while its specific role in tumor metastasis seems to be controversial and its molecular mechanism in lung cancer metastasis remains to be further elucidated. In this study, we confirmed that knockdown of the hnRNPA1 led to enhanced migration, invasion and EMT transition in lung cancer cells. Bioinformatics analysis of the GSE34992 dataset revealed that hnRNPA1 may regulate the alternative splicing (AS) of LAS1L exon 9. Further AGE assays and RIP assays revealed that hnRNPA1 can directly bind to the LAS1L pre-mRNA to inhibit the splicing of LAS1L exon 9. The RNA pull-down assays showed that hnRNPA1 can specifically bind to the two sites (UAGGGU(WT1) and UGGGGU(WT3)) of LAS1L Intron 9. Further Transwell assays indicated that the expression ratio of LAS1L-L/LAS1L-S regulated by hnRNPA1 can further promote the migration, invasion and EMT transition in lung cancer cells. Moreover, hnRNPA1 expression showed significant heterogeneity in lung cancer tissues, which may contain new research directions and potential therapeutic targets. Our results indicate that hnRNPA1 can affect the metastasis of lung cancer cells by modulating the AS of LAS1L exon 9, highlighting the potential significance of hnRNPA1 in lung cancer metastasis.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Yue
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| |
Collapse
|
22
|
Effect of Hypoxia-Induced Micro-RNAs Expression on Oncogenesis. Int J Mol Sci 2022; 23:ijms23116294. [PMID: 35682972 PMCID: PMC9181687 DOI: 10.3390/ijms23116294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. An aberrant regulation of gene expression by miRNAs is associated with numerous diseases, including cancer. MiRNAs expression can be influenced by various stimuli, among which hypoxia; however, the effects of different types of continuous hypoxia (moderate or marked) on miRNAs are still poorly studied. Lately, some hypoxia-inducible miRNAs (HRMs, hypoxia-regulated miRNAs) have been identified. These HRMs are often activated in different types of cancers, suggesting their role in tumorigenesis. The aim of this study was to evaluate changes in miRNAs expression both in moderate continuous hypoxia and marked continuous hypoxia to better understand the possible relationship between hypoxia, miRNAs, and colorectal cancer. We used RT-PCR to detect the miRNAs expression in colorectal cancer cell lines in conditions of moderate and marked continuous hypoxia. The expression of miRNAs was analyzed using a two-way ANOVA test to compare the differential expression of miRNAs among groups. The levels of almost all analyzed miRNAs (miR-21, miR-23b, miR-26a, miR-27b, and miR-145) were greater in moderate hypoxia versus marked hypoxia, except for miR-23b and miR-21. This study identified a series of miRNAs involved in the response to different types of continuous hypoxia (moderate and marked), highlighting that they play a role in the development of cancer. To date, there are no other studies that demonstrate how these two types of continuous hypoxia could be able to activate different molecular pathways that lead to a different expression of specific miRNAs involved in tumorigenesis.
Collapse
|
23
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
24
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
25
|
Chen H, Zhao L, Meng Y, Qian X, Fan Y, Zhang Q, Wang C, Lin F, Chen B, Xu L, Huang W, Chen J, Wang X. Sulfonylurea receptor 1-expressing cancer cells induce cancer-associated fibroblasts to promote non-small cell lung cancer progression. Cancer Lett 2022; 536:215611. [PMID: 35240233 DOI: 10.1016/j.canlet.2022.215611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression; however, how CAFs are induced remains elusive. Sulfonylurea receptor 1 (SUR1) is a tumor-enhancer in non-small cell lung carcinoma (NSCLC). Here, we probed the influence of SUR1-expressing cancer cells on CAFs. Results showed that high SUR1 expression positively correlated with α-SMA positive staining of CAFs in tumor tissues and poor prognosis of NSCLC patients. SUR1 contributed to normal fibroblast (NF) transformation into CAFs and facilitated the growth and metastasis of NSCLC in vivo. Conditioned medium (CM) and exosomes from SUR1-expressing cancer cells induced CAFs and promoted fibroblast migration. In cancer cells, SUR1 promoted p70S6K-induced KH-type splicing regulatory protein (KHSRP) phosphorylation at S395 to inhibit the binding of KHSRP with let-7a precursor (pre-let-7a) and decreasing mature let-7a-5p expression in cancer cells and exosomes. Let-7a-5p delivered by exosomes blocked NF transformation into CAFs by targeting TGFBR1 to inactivate the TGF-β signaling pathway. Glibenclamide, which targets SUR1, restrained CAFs and suppressed tumor growth in patient-derived xenograft models. Furthermore, we found that let-7a-5p was decreased in the tissues and plasma exosomes of NSCLC patients. In summary, SUR1-expressing cancer cells induce NF transformation into CAFs in the tumor microenvironment and promote NSCLC progression by transferring less exosomal let-7a-5p. Glibenclamide is a promising anti-cancer drug, and plasma exosomal let-7a-5p level is a potential diagnostic biomarker for NSCLC patients. These findings provide new therapeutic strategies by targeting SUR1 in NSCLC.
Collapse
Affiliation(s)
- Hongling Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Li Zhao
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuting Meng
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xixi Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ya Fan
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Fan Lin
- Department of Cellular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Jing Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
26
|
Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021; 13:pharmaceutics13122116. [PMID: 34959397 PMCID: PMC8708448 DOI: 10.3390/pharmaceutics13122116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (Z.Z.)
- Correspondence: (Z.Z.); (H.C.)
| |
Collapse
|
27
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
28
|
Ma Y, Yin S, Liu XF, Hu J, Cai N, Zhang XB, Fu L, Cao XC, Yu Y. Comprehensive Analysis of the Functions and Prognostic Value of RNA-Binding Proteins in Thyroid Cancer. Front Oncol 2021; 11:625007. [PMID: 33816259 PMCID: PMC8010172 DOI: 10.3389/fonc.2021.625007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
RNA binding proteins (RBPs) have been proved to play pivotal roles in a variety types of tumors. However, there is no convincible evidence disclosing the functions of RBPs in thyroid cancer (THCA) thoroughly and systematically. Integrated analysis of the functional and prognostic effect of RBPs help better understanding tumorigenesis and development in thyroid and may provide a novel therapeutic method for THCA. In this study, we obtained a list of human RBPs from Gerstberger database, which covered 1,542 genes encoding RBPs. Gene expression data of THCA was downloaded from The Cancer Genome Atlas (TCGA, n = 567), from which we extracted 1,491 RBPs' gene expression data. We analyzed differentially expressed RBPs using R package "limma". Based on differentially expressed RBPs, we constructed protein-protein interaction network and the GO and KEGG pathway enrichment analyses were carried out. We found six RBPs (AZGP1, IGF2BP2, MEX3A, NUDT16, NUP153, USB1) independently associated with prognosis of patients with thyroid cancer according to univariate and multivariate Cox proportional hazards regression models. The survival analysis and risk score analysis achieved good performances from this six-gene prognostic model. Nomogram was constructed to guide clinical decision in practice. Finally, biological experiments disclosed that NUP153 and USB1 can significantly impact cancer cell proliferation and migration. In conclusion, our research provided a new insight of thyroid tumorigenesis and development based on analyses of RBPs. More importantly, the six-gene model may play an important role in clinical practice in the future.
Collapse
Affiliation(s)
- Yue Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Shi Yin
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiao-feng Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jing Hu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ning Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-bei Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Li Fu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xu-chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
29
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
30
|
Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J, Zhang Y. Noncoding RNAs regulate alternative splicing in Cancer. J Exp Clin Cancer Res 2021; 40:11. [PMID: 33407694 PMCID: PMC7789004 DOI: 10.1186/s13046-020-01798-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
AS (alternative splicing) is a fundamental process by which a gene can generate multiple distinct mRNA transcripts to increase protein diversity. Defects in AS influence the occurrence and development of many diseases, including cancers, and are frequently found to participate in various aspects of cancer biology, such as promoting invasion, metastasis, apoptosis resistance and drug resistance. NcRNAs (noncoding RNAs) are an abundant class of RNAs that do not encode proteins. NcRNAs include miRNAs (microRNAs), lncRNAs (long noncoding RNAs), circRNAs (circular RNAs) and snRNAs (small nuclear RNAs) and have been proven to act as regulatory molecules that mediate cancer processes through AS. NcRNAs can directly or indirectly influence a plethora of molecular targets to regulate cis-acting elements, trans-acting factors, or pre-mRNA transcription at multiple levels, affecting the AS process and generating alternatively spliced isoforms. Consequently, ncRNA-mediated AS outcomes affect multiple cellular signaling pathways that promote or suppress cancer progression. In this review, we summarize the current mechanisms by which ncRNAs regulate AS in cancers and discuss their potential clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xin Liu
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, the Third XiangYa Hospital of Central South University, Changsha, 410013, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
31
|
Zapparoli E, Briata P, Rossi M, Brondolo L, Bucci G, Gherzi R. Comprehensive multi-omics analysis uncovers a group of TGF-β-regulated genes among lncRNA EPR direct transcriptional targets. Nucleic Acids Res 2020; 48:9053-9066. [PMID: 32756918 PMCID: PMC7498312 DOI: 10.1093/nar/gkaa628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can affect multiple layers of gene expression to control crucial cellular functions. We have previously demonstrated that the lncRNA EPR, by controlling gene expression at different levels, affects cell proliferation and migration in cultured mammary gland cells and impairs breast tumor formation in an orthotopic transplant model in mice. Here, we used ChIRP-Seq to identify EPR binding sites on chromatin of NMuMG mammary gland cells overexpressing EPR and identified its trans binding sites in the genome. Then, with the purpose of relating EPR/chromatin interactions to the reshaping of the epitranscriptome landscape, we profiled histone activation marks at promoter/enhancer regions by ChIP-Seq. Finally, we integrated data derived from ChIRP-Seq, ChIP-Seq as well as RNA-Seq in a comprehensive analysis and we selected a group of bona fide direct transcriptional targets of EPR. Among them, we identified a subset of EPR targets whose expression is controlled by TGF-β with one of them—Arrdc3—being able to modulate Epithelial to Mesenchymal Transition. This experimental framework allowed us to correlate lncRNA/chromatin interactions with the real outcome of gene expression and to start defining the gene network regulated by EPR as a component of the TGF-β pathway.
Collapse
Affiliation(s)
- Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Brondolo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriele Bucci
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
32
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
33
|
Briata P, Gherzi R. Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Noncoding RNA 2020; 6:ncrna6030040. [PMID: 32957640 PMCID: PMC7549350 DOI: 10.3390/ncrna6030040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.
Collapse
|
34
|
An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. ACTA ACUST UNITED AC 2020; 1:410-422. [PMID: 34109316 DOI: 10.1038/s43018-020-0054-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggressive myeloid leukemias such as blast crisis chronic myeloid leukemia and acute myeloid leukemia remain highly lethal. Here we report a genome-wide in vivo CRISPR screen to identify new dependencies in this disease. Among these, RNA-binding proteins (RBPs) in general, and the double-stranded RBP Staufen2 (Stau2) in particular, emerged as critical regulators of myeloid leukemia. In a newly developed knockout mouse, loss of Stau2 led to a profound decrease in leukemia growth and improved survival in mouse models of the disease. Further, Stau2 was required for growth of primary human blast crisis chronic myeloid leukemia and acute myeloid leukemia. Finally, integrated analysis of CRISPR, eCLIP and RNA-sequencing identified Stau2 as a regulator of chromatin-binding factors, driving global alterations in histone methylation. Collectively, these data show that in vivo CRISPR screening is an effective tool for defining new regulators of myeloid leukemia progression and identify the double-stranded RBP Stau2 as a critical dependency of myeloid malignancies.
Collapse
|
35
|
Santoro M, Piacentini R, Perna A, Pisano E, Severino A, Modoni A, Grassi C, Silvestri G. Resveratrol corrects aberrant splicing of RYR1 pre-mRNA and Ca 2+ signal in myotonic dystrophy type 1 myotubes. Neural Regen Res 2020; 15:1757-1766. [PMID: 32209783 PMCID: PMC7437583 DOI: 10.4103/1673-5374.276336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a spliceopathy related to the mis-splicing of several genes caused by sequestration of nuclear transcriptional RNA-binding factors from non-coding CUG repeats of DMPK pre-mRNAs. Dysregulation of ryanodine receptor 1 (RYR1), sarcoplasmatic/endoplasmatic Ca2+-ATPase (SERCA) and α1S subunit of voltage-gated Ca2+ channels (Cav1.1) is related to Ca2+ homeostasis and excitation-contraction coupling impairment. Though no pharmacological treatment for DM1 exists, aberrant splicing correction represents one major therapeutic target for this disease. Resveratrol (RES, 3,5,4′-trihydroxy-trans-stilbene) is a promising pharmacological tools for DM1 treatment for its ability to directly bind the DNA and RNA influencing gene expression and alternative splicing. Herein, we analyzed the therapeutic effects of RES in DM1 myotubes in a pilot study including cultured myotubes from two DM1 patients and two healthy controls. Our results indicated that RES treatment corrected the aberrant splicing of RYR1, and this event appeared associated with restoring of depolarization-induced Ca2+ release from RYR1 dependent on the electro-mechanical coupling between RYR1 and Cav1.1. Interestingly, immunoblotting studies showed that RES treatment was associated with a reduction in the levels of CUGBP Elav-like family member 1, while RYR1, Cav1.1 and SERCA1 protein levels were unchanged. Finally, RES treatment did not induce any major changes either in the amount of ribonuclear foci or sequestration of muscleblind-like splicing regulator 1. Overall, the results of this pilot study would support RES as an attractive compound for future clinical trials in DM1. Ethical approval was obtained from the Ethical Committee of IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy (rs9879/14) on May 20, 2014.
Collapse
Affiliation(s)
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessia Perna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenia Pisano
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Severino
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Modoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Silvestri
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
36
|
Caiazza F, Oficjalska K, Tosetto M, Phelan JJ, Noonan S, Martin P, Killick K, Breen L, O'Neill F, Nolan B, Furney S, Power R, Fennelly D, Craik CS, O'Sullivan J, Sheahan K, Doherty GA, Ryan EJ. KH-Type Splicing Regulatory Protein Controls Colorectal Cancer Cell Growth and Modulates the Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1916-1932. [PMID: 31404541 PMCID: PMC6892187 DOI: 10.1016/j.ajpath.2019.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/18/2023]
Abstract
KH-type splicing regulatory protein (KHSRP) is a multifunctional nucleic acid binding protein implicated in key aspects of cancer cell biology: inflammation and cell-fate determination. However, the role KHSRP plays in colorectal cancer (CRC) tumorigenesis remains largely unknown. Using a combination of in silico analysis of large data sets, ex vivo analysis of protein expression in patients, and mechanistic studies using in vitro models of CRC, we investigated the oncogenic role of KHSRP. We demonstrated KHSRP expression in the epithelial and stromal compartments of both primary and metastatic tumors. Elevated expression was found in tumor versus matched normal tissue, and these findings were validated in larger independent cohorts in silico. KHSRP expression was a prognostic indicator of worse overall survival (hazard ratio, 3.74; 95% CI, 1.43-22.97; P = 0.0138). Mechanistic data in CRC cell line models supported a role of KHSRP in driving epithelial cell proliferation in both a primary and metastatic setting, through control of the G1/S transition. In addition, KHSRP promoted a proangiogenic extracellular environment by regulating the secretion of oncogenic proteins involved in diverse cellular processes, such as migration and response to cellular stress. Our study provides novel mechanistic insight into the tumor-promoting effects of KHSRP in CRC.
Collapse
Affiliation(s)
- Francesco Caiazza
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | - Katarzyna Oficjalska
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - James J Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Noonan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Petra Martin
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Kate Killick
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Power
- School of Medicine, University College Dublin, Dublin, Ireland
| | - David Fennelly
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Pan R, Cai W, Sun J, Yu C, Li P, Zheng M. Inhibition of KHSRP sensitizes colorectal cancer to 5-fluoruracil through miR-501-5p-mediated ERRFI1 mRNA degradation. J Cell Physiol 2019; 235:1576-1587. [PMID: 31313286 DOI: 10.1002/jcp.29076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3'-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.
Collapse
Affiliation(s)
- Ruijun Pan
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Cai
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chaoran Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Minhua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
38
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
39
|
Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, Flinois A, Spadaro D, Citi S, Emionite L, Cilli M, Nicassio F, Inga A, Briata P, Gherzi R. LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-β. Nat Commun 2019; 10:1969. [PMID: 31036808 PMCID: PMC6488594 DOI: 10.1038/s41467-019-09754-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as regulators of fundamental biological processes. Here we report on the characterization of an intergenic lncRNA expressed in epithelial tissues which we termed EPR (Epithelial cell Program Regulator). EPR is rapidly downregulated by TGF-β and its sustained expression largely reshapes the transcriptome, favors the acquisition of epithelial traits, and reduces cell proliferation in cultured mammary gland cells as well as in an animal model of orthotopic transplantation. EPR generates a small peptide that localizes at epithelial cell junctions but the RNA molecule per se accounts for the vast majority of EPR-induced gene expression changes. Mechanistically, EPR interacts with chromatin and regulates Cdkn1a gene expression by affecting both its transcription and mRNA decay through its association with SMAD3 and the mRNA decay-promoting factor KHSRP, respectively. We propose that EPR enables epithelial cells to control proliferation by modulating waves of gene expression in response to TGF-β. Several lncRNAs are regulated by TGF-β. Here the authors report that an intergenic lncRNA —EPR— is a component of the TGF-β signaling pathway and controls epithelial cell proliferation by altering transcription and mRNA decay of Cdkn1a. EPR overexpression restrains tumor growth of orthotopically transplanted mice.
Collapse
Affiliation(s)
- Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Gabriele Bucci
- Center of Translational Genomics and Bioinformatics, IRCCS Ospedale San Raffaele, 20132, Milano, Italy
| | - Dario Rizzotto
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Margherita Puppo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.,DIMES Sezione Biochimica-Università di Genova, 16132, Genova, Italy
| | - Arielle Flinois
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Sandra Citi
- Department of Cell Biology, University of Geneve, 1211, Geneve, Switzerland
| | - Laura Emionite
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16132, Genova, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Center for Integrative Biology, CIBIO, University of Trento, 38123, Trento, Italy.
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
40
|
Zhao W, Jia L, kuai X, Tang Q, Huang X, Yang T, Qiu Z, Zhu J, Huang J, Huang W, Feng Z. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated β-catenin in gastric cancer. Cancer Med 2019; 8:1135-1147. [PMID: 30632714 PMCID: PMC6434498 DOI: 10.1002/cam4.1934] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/30/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
The present study elucidates the potential role of Trop2 in tumor invasion and the promotion of epithelial-mesenchymal transition (EMT) when binding β-catenin in GC. The role of Trop2 in promoting EMT in GC cells was examined by a variety of experimental assays. Moreover, the underlying molecular mechanism of Trop2 in promoting EMT was studied by in vivo and in vitro assays. The Trop2 expression in relation to tumor metastasis status was detected by IHC in 248 cases of GC tissues and 86 cases of matched adjacent tissues. Trop2 promoted the metastasis and induces EMT in GC. Meanwhile, the elevated protein levels of Trop2 and mesenchymal markers were also found in the TGF-β1-induced EMT model in GC cells. Importantly, Trop2 physically bound and activated β-catenin to promote EMT; moreover, Trop2 increased the accumulation of β-catenin in the nucleus to accelerate metastasis in GC cells. Inhibition of Trop2 expression in GC cells prevented the migration and invasion of GC cells in vivo. Trop2+/vimentin+ expression was higher in GC tissues than that in matched adjacent tissues, and Trop2+/vimentin+ expression in GC was associated with the differentiation, TNM stage, and distant metastases. These sets of data reveal a novel regulatory network of Trop2 in EMT and GC metastasis, suggesting Trop2 as a useful marker for inducing EMT and metastasis of GC, which may help to lead a better understanding of the pathogenesis of the GC.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pathology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Lizhou Jia
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Xingwang kuai
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Xiaochen Huang
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Tingting Yang
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Huadong Medical Institute of BiotechniquesNanjingChina
| | - Jianfei Huang
- Department of PathologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Wenbin Huang
- Department of Pathology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhenqing Feng
- Department of PathologyNanjing Medical UniversityNanjingChina
- Key Laboratory of Antibody Technique of Ministry of HealthNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab. of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
41
|
Saitoh M. Involvement of partial EMT in cancer progression. J Biochem 2018; 164:257-264. [PMID: 29726955 DOI: 10.1093/jb/mvy047] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 12/30/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) provides an outstanding example of cellular plasticity during embryonic development and cancer progression. During EMT in embryonic development, epithelial cells lose all vestiges of their epithelial origin and acquire a fully mesenchymal phenotype, known as complete EMT, which is typically characterized by a so-called cadherin switch. Conversely, during EMT in cancer progression, cancer cells that originate from epithelial cells exhibit both mesenchymal and epithelial characteristics, that is the hybrid E/M phenotype in a process known as partial EMT. Partial EMT in cancer cells is thought to enhance their invasive properties, generate circulating tumour cells and cancer stem cells, and promote resistance to anti-cancer drugs. These phenotypic changes are regulated by extracellular matrix components, exosomes and soluble factors, which regulate several transcription factors known as EMT transcription factors. In this review, I summarize our current understanding of the EMT program during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Department of Biological Chemistry, Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
42
|
hnRNPDL extensively regulates transcription and alternative splicing. Gene 2018; 687:125-134. [PMID: 30447347 DOI: 10.1016/j.gene.2018.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 01/31/2023]
Abstract
RNA binding proteins (RBPs) are key players of genome regulation. Here we report the transcriptome study of HnRNP D-Like protein, which belongs to the hnRNP family. We used RNA-seq to analyze the global transcript level and alternative splicing on hnRNPDL shRNA-treated cells and control. Sh-hnRNPDL extensively increased in the expression of genes involved in female pregnancy, cell apoptosis, cell proliferation and cell migration. HnRNPDL regulated alternative splicing of hundreds of genes enriched in transcription regulation and signaling pathways including NOD-like receptor signaling, Notch signaling, and TNF signaling. This study provides the first transcriptome-wide analysis of hnRNPDL regulation of gene expression, which adds to the understanding of critical hnRNPDL functions.
Collapse
|
43
|
Tu Z, Xiong J, Xiao R, Shao L, Yang X, Zhou L, Yuan W, Wang M, Yin Q, Wu Y, Pan S, Leng J, Jiang D, He C, Zhang Q. Loss of miR-146b-5p promotes T cell acute lymphoblastic leukemia migration and invasion via the IL-17A pathway. J Cell Biochem 2018; 120:5936-5948. [PMID: 30362152 DOI: 10.1002/jcb.27882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Metastatic disease remains the primary cause of death for individuals with T cell acute lymphoblastic leukemia (T-ALL). microRNAs (miRNAs) play important roles in the pathogenesis of T-ALL by inhibiting gene expression at posttranscriptional levels. The goal of the current project is to identify any significant miRNAs in T-ALL metastasis. We observed miR-146b-5p to be downregulated in T-ALL patients and cell lines, and bioinformatics analysis implicated miR-146b-5p in the hematopoietic system. miR-146b-5p inhibited the migration and invasion in T-ALL cells. Interleukin-17A (IL-17A) was predicted to be a target of miR-146b-5p; this was confirmed by luciferase assays. Interestingly, T-ALL patients and cell lines secreted IL-17A and expressed the IL-17A receptor (IL-17RA). IL-17A/IL-17RA interactions promoted strong T-ALL cell migration and invasion responses. Gene set enrichment analysis (GSEA) and quantitative polymerase chain reaction (qPCR) analysis indicated that matrix metallopeptidase-9 (MMP9), was a potential downstream effector of IL-17A activation, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was also implicated in this process. Moreover, IL-17A activation promoted T-ALL cell metastasis to the liver in IL17A -/- mouse models. These results indicate that reduced miR-146b-5p expression in T-ALL may lead to the upregulation of IL-17A, which then promotes T-ALL cell migration and invasion by upregulating MMP9 via NF-κB signaling.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyong Yang
- Department of Bioengineering, Hubei University of Technology Engineering and Technology College, Wuhan, China
| | - Lu Zhou
- Department of Hematology, Taihe Hospital, Shiyan, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng Wang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Daozi Jiang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunjiang He
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Shen J, Zhou W, Bi N, Song YM, Zhang FQ, Zhan QM, Wang LH. MicroRNA-886-3P functions as a tumor suppressor in small cell lung cancer. Cancer Biol Ther 2018; 19:1185-1192. [PMID: 30230945 DOI: 10.1080/15384047.2018.1491505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive disease and miRNAs may play an important role in modulating SCLC progression. We have previously screened 924 miRNAs and found that miR-886-3P was negatively associated with SCLC survival. In the current study, we further investigated the role of miR-886-3P mimic in regulating SCLC cell phenotypic alteration in vitro and xenograft tumor formation in vivo. We found that transfection of miR-886-3P mimic significantly inhibited SCLC cell proliferation, migration, and colony formation, and induced mesenchymal-epithelial transition (MET) by suppressing TGF-ß1 synthesis in vitro. Furthermore, intra-tumor injection of miR-886-3P mimic lead to necrosis and suppression of tumor invasion to the surrounding tissue in the subcutaneous xenograft tumor, and intra-vein injection of miR-886-3P mimic suppressed xenograft lung cancer growth in vivo. These findings suggested that miR-886-3P functions as a tumor suppressor in SCLC and thus, it might be a potential therapeutic molecule in the treatment of lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- a Department of Radiation Oncology , Peking Union Medical College Hospital , Beijing , China
| | - Wei Zhou
- b State Key Laboratory of Molecular Oncology , Peking Union medical College Hospital Cancer Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Nan Bi
- c Department of Radiation Oncology , Peking Union medical College Hospital Cancer Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Yong-Mei Song
- b State Key Laboratory of Molecular Oncology , Peking Union medical College Hospital Cancer Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Fu-Quan Zhang
- a Department of Radiation Oncology , Peking Union Medical College Hospital , Beijing , China
| | - Qi-Min Zhan
- b State Key Laboratory of Molecular Oncology , Peking Union medical College Hospital Cancer Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Lv-Hua Wang
- c Department of Radiation Oncology , Peking Union medical College Hospital Cancer Hospital, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
45
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
46
|
Identification and validation a TGF-β-associated long non-coding RNA of head and neck squamous cell carcinoma by bioinformatics method. J Transl Med 2018; 16:46. [PMID: 29490660 PMCID: PMC5831574 DOI: 10.1186/s12967-018-1418-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of transforming growth factorβ (TGF-β)-induced tumor progression in advanced malignancy is well established, but the involvement of long non-coding RNAs (lncRNAs) in TGF-β signaling remains unclear. This study aimed to identify TGF-β-associated lncRNAs in head and neck squamous cell carcinoma (HNSCC). METHODS Expression profiling of lncRNAs was obtained using Gene Expression Omnibus and The Cancer Genome Atlas. Real-time quantitative PCR was used to analyze the expression of EPB41L4A-AS2 in HNSCC cell line. We used bioinformatics resources (DAvID) to conduct Gene Ontology biological processes and KEGG pathways at the significant level. Wound healing assay, cell migration and invasion assays, were used to examine the effects of EPB41L4A-AS2 on tumor cell metastasis in vivo. Protein levels of EPB41L4A-AS2 targets were determined by western blot. RESULTS A novel TGF-β-associated lncRNA, EPB41L4A-AS2, was found downregulated by TGF-β and associated with invasion and metastasis. The relationship of EPB41L4A-AS2 with the clinicopathological features and prognosis of HNSCC patients was evaluated. Bioinformatic analyses revealed that EPB41L4A-AS2 may be involved in processes associated with the tumor-associated signaling pathway, especially the TGF-β signaling pathway. Furthermore, a TGF-β-induced epithelial-to-mesenchymal transition (EMT) model was established. Low EPB41L4A-AS2 expression was determined, and overexpression of this gene inhibited cell migration and invasion in the EMT model. Moreover, EPB41L4A-AS2 suppressed TGFBR1 expression. CONCLUSIONS EPB41L4A-AS2 might serve as a negative regulator of TGF-β signaling and as an effective prognostic biomarker and important target in anti-metastasis therapies of HNSCC patients.
Collapse
|
47
|
Howley BV, Howe PH. TGF-beta signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 2018; 118:19-26. [PMID: 29396052 DOI: 10.1016/j.cyto.2017.12.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
The TGFβ signaling pathway is a critical regulator of cancer progression in part through induction of the epithelial to mesenchymal transition (EMT). This process is aberrantly activated in cancer cells, facilitating invasion of the basement membrane, survival in the circulatory system, and dissemination to distant organs. The mechanisms through which epithelial cells transition to a mesenchymal state involve coordinated transcriptional and post-transcriptional control of gene expression. One such mechanism of control is through the RNA binding protein hnRNP E1, which regulates splicing and translation of a cohort of EMT and stemness-associated transcripts. A growing body of evidence indicates a major role for hnRNP E1 in the control of epithelial cell plasticity, especially in the context of carcinoma progression. Here, we review the multiple mechanisms through which hnRNP E1 functions to control EMT and metastatic progression.
Collapse
Affiliation(s)
- Breege V Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
48
|
Fujita Y, Masuda K, Hamada J, Shoda K, Naruto T, Hamada S, Miyakami Y, Kohmoto T, Watanabe M, Takahashi R, Tange S, Saito M, Kudo Y, Fujiwara H, Ichikawa D, Tangoku A, Otsuji E, Imoto I. KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression. Oncotarget 2017; 8:101130-101145. [PMID: 29254151 PMCID: PMC5731861 DOI: 10.18632/oncotarget.20926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/25/2017] [Indexed: 11/25/2022] Open
Abstract
KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuji Fujita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junichi Hamada
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsutoshi Shoda
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Naruto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Satoshi Hamada
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuko Miyakami
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Miki Watanabe
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Rizu Takahashi
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shoichiro Tange
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masako Saito
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Issei Imoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
49
|
KSRP suppresses cell invasion and metastasis through miR-23a-mediated EGR3 mRNA degradation in non-small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1013-1024. [PMID: 28847731 DOI: 10.1016/j.bbagrm.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023]
Abstract
KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3'UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.
Collapse
|
50
|
Neumann DP, Goodall GJ, Gregory PA. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol 2017; 75:50-60. [PMID: 28789987 DOI: 10.1016/j.semcdb.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Interconversions between epithelial and mesenchymal states, often referred to as epithelial mesenchymal transition (EMT) and its reverse MET, play important roles in embryonic development and are recapitulated in various adult pathologies including cancer progression. These conversions are regulated by complex transcriptional and post-transcriptional mechanisms including programs of alternative splicing which are orchestrated by specific splicing factors. This review will focus on the latest developments in our understanding of the splicing factors regulating epithelial mesenchymal plasticity associated with cancer progression and the induction of pluripotency, including potential roles for circular RNAs (circRNAs) which have been recently implicated in these processes.
Collapse
Affiliation(s)
- Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia; Discipline of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|