1
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
2
|
Lee GH, Lee SH, Li XH, Lu QY, Zhan CL, Kim JD, Sim JM, Song HJ, Sun MH, Cui XS. ERK5 is essential for early porcine embryonic development by maintaining Endoplasmic Reticulum homeostasis. Gene 2025; 936:149104. [PMID: 39557370 DOI: 10.1016/j.gene.2024.149104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a mitogen-activated protein kinase (MAPK) family member, plays an important role in various biological processes, such as proliferation, apoptosis, differentiation, survival, and cell regulation. However, studies on the effects of ERK5 on porcine preimplantation embryos are limited. In this study, to determine the function of ERK5 during porcine embryo development, ERK5 function was inhibited by adding the ERK5 inhibitor JWG-071. The ERK5 mRNA and protein expression levels tended to decrease from the 4-cell stage compared to the 1-cell and 2-cell stages, suggesting that ERK5 is the maternal gene. During embryonic development in pigs, adding 5 μM of JWG-071 significantly reduced the phosphorylation of ERK5 and the blastocyst development rate (control: 53.44 ± 8.38 %; treatment: 26.65 ± 3.40 %). Additionally, ERK5 inhibition increased the expression of UPR-related proteins, glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP) by inducing ER stress. Compared to the control group, the expression of the autophagy-related proteins LC3 and ATG7 was significantly increased in the ERK5 inhibition group, indicating that the inhibition of ERK5 induced autophagy. In addition, ERK5 inhibition increased the expression of BAX, a pro-apoptotic gene, resulting in apoptosis. In conclusion, the results show that ERK5 inhibition during porcine embryonic development induces autophagy and apoptosis by increasing ER stress, resulting in a negative effect on embryonic development in pigs.
Collapse
Affiliation(s)
- Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Qin-Yue Lu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyeon-Ji Song
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
Filippelli A, Ciccone V, Del Gaudio C, Simonis V, Frosini M, Tusa I, Menconi A, Rovida E, Donnini S. ERK5 mediates pro-tumorigenic phenotype in non-small lung cancer cells induced by PGE2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119810. [PMID: 39128596 DOI: 10.1016/j.bbamcr.2024.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) constituting approximately 84 % of all lung cancer cases. The role of inflammation in the initiation and progression of NSCLC tumors has been the focus of extensive research. Among the various inflammatory mediators, prostaglandin E2 (PGE2) plays a pivotal role in promoting the aggressiveness of epithelial tumors through multiple mechanisms, including the stimulation of growth, evasion of apoptosis, invasion, and induction of angiogenesis. The Extracellular signal-Regulated Kinase 5 (ERK5), the last discovered member among conventional mitogen-activated protein kinases (MAPK), is implicated in cancer-associated inflammation. In this study, we explored whether ERK5 is involved in the process of tumorigenesis induced by PGE2. Using A549 and PC9 NSCLC cell lines, we found that PGE2 triggers the activation of ERK5 via the EP1 receptor. Moreover, both genetic and pharmacological inhibition of ERK5 reduced PGE2-induced proliferation, migration, invasion and stemness of A549 and PC9 cells, indicating that ERK5 plays a critical role in PGE2-induced tumorigenesis. In summary, our study underscores the pivotal role of the PGE2/EP1/ERK5 axis in driving the malignancy of NSCLC cells in vitro. Targeting this axis holds promise as a potential avenue for developing novel therapeutic strategies aimed at controlling the advancement of NSCLC.
Collapse
Affiliation(s)
| | - Valerio Ciccone
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cinzia Del Gaudio
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Vittoria Simonis
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy.
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
4
|
Song C, Zhang Z, Leng D, He Z, Wang X, Liu W, Zhang W, Wu Q, Zhao Q, Chen G. ERK5 promotes autocrine expression to sustain mitogenic balance for cell fate specification in human pluripotent stem cells. Stem Cell Reports 2024; 19:1320-1335. [PMID: 39151429 PMCID: PMC11411316 DOI: 10.1016/j.stemcr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor β (TGF-β), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-β. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.
Collapse
Affiliation(s)
- Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhaoying Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dongliang Leng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ziqing He
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wensheng Zhang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| |
Collapse
|
5
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
6
|
Seidita I, Tusa I, Prisinzano M, Menconi A, Cencetti F, Vannuccini S, Castiglione F, Bruni P, Petraglia F, Bernacchioni C, Rovida E, Donati C. Sphingosine 1-phosphate elicits a ROS-mediated proinflammatory response in human endometrial stromal cells via ERK5 activation. FASEB J 2023; 37:e23061. [PMID: 37389926 DOI: 10.1096/fj.202300323r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
7
|
Ippolito F, Consalvi V, Noce V, Battistelli C, Cicchini C, Tripodi M, Amicone L, Marchetti A. Extracellular signal-Regulated Kinase 5 (ERK5) is required for the Yes-associated protein (YAP) co-transcriptional activity. Cell Death Dis 2023; 14:32. [PMID: 36650140 PMCID: PMC9845357 DOI: 10.1038/s41419-023-05569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
YES-associated protein (YAP) is a transcriptional cofactor with a key role in the regulation of several physio-pathological cellular processes, by integrating multiple cell autonomous and microenvironmental cues. YAP is the main downstream effector of the Hippo pathway, a tumor-suppressive signaling able to transduce several extracellular signals. The Hippo pathway acts restraining YAP activity, since its activation induces YAP phosphorylation and cytoplasmic sequestration. However, recent observations indicate that YAP activity can be also modulated by Hippo independent/integrating pathways, still largely unexplored. In this study, we demonstrated the role of the extracellular signal-regulated kinase 5 (ERK5)/mitogen-activated protein kinase in the regulation of YAP activity. By means of ERK5 inhibition/silencing and overexpression experiments, and by using as model liver stem cells, hepatocytes, and hepatocellular carcinoma (HCC) cell lines, we provided evidence that ERK5 is required for YAP-dependent gene expression. Mechanistically, ERK5 controls the recruitment of YAP on promoters of target genes and its physical interaction with the transcriptional partner TEAD; moreover, it mediates the YAP activation occurring in cell adhesion, migration, and TGFβ-induced EMT of liver cells. Furthermore, we demonstrated that ERK5 signaling modulates YAP activity in a LATS1/2-independent manner. Therefore, our observations identify ERK5 as a novel upstream Hippo-independent regulator of YAP activity, thus unveiling a new target for therapeutic approaches aimed at interfering with its function.
Collapse
Affiliation(s)
- Francesca Ippolito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Consalvi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Noce
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Carla Cicchini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Laura Amicone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | | |
Collapse
|
8
|
Zhang J, Pearson AJ, Sabherwal N, Telfer BA, Ali N, Kan K, Xu Q, Zhang W, Chen F, Li S, Wang J, Gray NS, Risa-Ebrí B, Finegan KG, Cross MJ, Giurisato E, Whitmarsh AJ, Tournier C. Inhibiting ERK5 overcomes breast cancer resistance to anti-HER2 therapy by targeting the G1/S cell cycle transition. CANCER RESEARCH COMMUNICATIONS 2022; 2:131-145. [PMID: 36466034 PMCID: PMC7613885 DOI: 10.1158/2767-9764.crc-21-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting the human epidermal growth factor receptor 2 (HER2) became a landmark in the treatment of HER2-driven breast cancer. Nonetheless, the clinical efficacy of anti-HER2 therapies can be short-lived and a significant proportion of patients ultimately develop metastatic disease and die. One striking consequence of oncogenic activation of HER2 in breast cancer cells is the constitutive activation of the extracellular-regulated protein kinase 5 (ERK5) through its hyperphosphorylation. In this study, we sought to decipher the significance of this unique molecular signature in promoting therapeutic resistance to anti-HER2 agents. We found that a small-molecule inhibitor of ERK5 suppressed the phosphorylation of the retinoblastoma protein (RB) in HER2 positive breast cancer cells. As a result, ERK5 inhibition enhanced the anti-proliferative activity of single-agent anti-HER2 therapy in resistant breast cancer cell lines by causing a G1 cell cycle arrest. Moreover, ERK5 knockdown restored the anti-tumor activity of the anti-HER2 agent lapatinib in human breast cancer xenografts. Taken together, these findings support the therapeutic potential of ERK5 inhibitors to improve the clinical benefit that patients receive from targeted HER2 therapies.
Collapse
Affiliation(s)
- Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Nitin Sabherwal
- Division of Developmental Biology and Medicine, School of Medical Sciences, FBMH, University of Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, UK
| | - Karmern Kan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Shiyang Li
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Blanca Risa-Ebrí
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Italy
| | - Alan J Whitmarsh
- Division of Molecular and Cellular Function, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Corresponding author: Cathy Tournier, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK, Tel: +44 161 275 5417,
| |
Collapse
|
9
|
Cao H, Wang L, Geng C, Yang M, Mao W, Yang L, Ma Y, He M, Zhou Y, Liu L, Hu X, Yu J, Shen X, Gu X, Yin L, Shen Z. In leukemia, knock-down of the death inducer-obliterator gene would inhibit the proliferation of endothelial cells by inhibiting the expression of CDK6 and CCND1. PeerJ 2022; 10:e12832. [PMID: 35178295 PMCID: PMC8815367 DOI: 10.7717/peerj.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Endothelial cells (ECs) are a critical component of the hematopoietic niche, and the cross-talk between ECs and leukemia was reported recently. This study aimed to determine the genes involved in the proliferation inhibition of endothelial cells in leukemia. METHODS Human umbilical vein endothelial cells (HUVEC) were cultured alone or co-cultured with K562 cell lines. GeneChip assays were performed to identify the differentially expressed genes. The Celigo, MTT assay, and flow cytometric analysis were used to determine the effect of RNAi DIDO on cell growth and apoptosis. The differently expressed genes were verified by qRT-PCR (quantitative real-time PCR) and western-blot. RESULTS In K562-HUVEC co-cultured cell lines, 323 down-regulated probes were identified and the extracellular signal-regulated kinase 5 (ERK5) signaling pathway was significantly inhibited. Among the down-regulated genes, the death inducer-obliterator gene (DIDO) is a part of the centrosome protein and may be involved in cell mitosis. As shown in the public data, leukemia patients with lower expression of DIDO showed a better overall survival (OS). The HUVEC cells were infected with shDIDO lentivirus, and reduced expression, inhibited proliferation, and increased apoptosis was observed in shDIDO cells. In addition, the expression of Cyclin-Dependent Kinase 6 (CDK6) and Cyclin D1 (CCND1) genes was inhibited in shDIDO cells. Finally, the public ChIP-seq data were used to analyze the regulators that bind with DIDO, and the H3K4me3 and PolII (RNA polymerase II) signals were found near the Exon1 and exon2 sites of DIDO. CONCLUSION The knock-down of DIDO will inhibit the proliferation of endothelial cells in the leukemia environment. The expression of DIDO may be regulated by H3K4me3 and the inhibition of DIDO may lead to the down-regulation of CDK6 and CCND1. However, how DIDO interacts with CDK6 and CCND1 requires further study.
Collapse
Affiliation(s)
- Honghua Cao
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lilan Wang
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengkui Geng
- Department of Orthopedics, Yan’an Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Man Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming Yunnan, Kunming, Yunnan, China
| | - Wenwen Mao
- Department of Geriatics, The Second Hospital of Kunming, Kunming, China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yin Ma
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming He
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yeying Zhou
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lianqing Liu
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuejiao Hu
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufen Shen
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuezhong Gu
- Department of Hematology, The First People Hospital in Yunnan Province, Kunming, China
| | - Liefen Yin
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenglei Shen
- Department of Hematology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Tubita A, Lombardi Z, Tusa I, Lazzeretti A, Sgrignani G, Papini D, Menconi A, Gagliardi S, Lulli M, Dello Sbarba P, Esparís-Ogando A, Pandiella A, Stecca B, Rovida E. Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Res 2022; 82:447-457. [PMID: 34799355 PMCID: PMC9397638 DOI: 10.1158/0008-5472.can-21-0993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
Melanoma is the deadliest skin cancer with a very poor prognosis in advanced stages. Although targeted and immune therapies have improved survival, not all patients benefit from these treatments. The mitogen-activated protein kinase ERK5 supports the growth of melanoma cells in vitro and in vivo. However, ERK5 inhibition results in cell-cycle arrest rather than appreciable apoptosis. To clarify the role of ERK5 in melanoma growth, we performed transcriptomic analyses following ERK5 knockdown in melanoma cells expressing BRAFV600E and found that cellular senescence was among the most affected processes. In melanoma cells expressing either wild-type or mutant (V600E) BRAF, both genetic and pharmacologic inhibition of ERK5 elicited cellular senescence, as observed by a marked increase in senescence-associated β-galactosidase activity and p21 expression. In addition, depletion of ERK5 from melanoma cells resulted in increased levels of CXCL1, CXCL8, and CCL20, proteins typically involved in the senescence-associated secretory phenotype. Knockdown of p21 suppressed the induction of cellular senescence by ERK5 blockade, pointing to p21 as a key mediator of this process. In vivo, ERK5 knockdown or inhibition with XMD8-92 in melanoma xenografts promoted cellular senescence. Based on these results, small-molecule compounds targeting ERK5 constitute a rational series of prosenescence drugs that may be exploited for melanoma treatment. SIGNIFICANCE: This study shows that targeting ERK5 induces p21-mediated cellular senescence in melanoma, identifying a prosenescence effect of ERK5 inhibitors that may be exploited for melanoma treatment.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azzurra Lazzeretti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Sgrignani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Dimitri Papini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sinforosa Gagliardi
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Instituto de Investigación Biomédica de Salamanca (IBSAL), CIBERONC, Salamanca, Spain
- CSIC, Salamanca, Spain
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
12
|
An ERK5-KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells. Biochem J 2021; 478:4119-4136. [PMID: 34780645 PMCID: PMC8718266 DOI: 10.1042/bcj20210646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.
Collapse
|
13
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
14
|
Zeng H, Peng F, Wang J, Meng R, Zhang J. Effects of Fruquintinib on the Pluripotency Maintenance and Differentiation Potential of Mouse Embryonic Stem Cells. Cell Reprogram 2021; 23:180-190. [PMID: 34077681 DOI: 10.1089/cell.2020.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can maintain self-renewal and differentiate into any cell type of the three primary germ layers. The vascular endothelial growth factor (VEGF) is involved in the regulation of mESC differentiation and induces the activation of a series of kinase responses and several cell signaling pathways by binding to its respective transmembrane receptors, vascular endothelial growth factor receptor VEGFR1, and VEGFR2. Fruquintinib is a selective inhibitor of VEGFRs, and we used it to investigate the effects on the maintenance of pluripotency and differentiation potential of mESCs in this study. Our results showed that fruquintinib-treated cells expressed higher levels of pluripotent markers, including Oct4, Nanog, Sox2, and Esrrb under serum and leukemia inhibitory factor (LIF) condition, whereas the expression of phosphorylated Erk1/2 was restricted. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK) signaling inhibitor (PD0325901) and glycogen synthase kinase 3 (GSK3) signaling inhibitor (CHIR99021) (also known as 2i) enable cells to maintain naive pluripotency with LIF, and fruquintinib can also promote cells to maintain naive pluripotent state even under serum/LIF condition, whereas VEGF addition limits the pluripotency characteristics in serum/LIF mESCs. Furthermore, fruquintinib could inhibit the three-germ layer establishment in embryoid body formation and maintain the undifferentiated characteristics of mESCs, indicating that fruquintinib could promote the maintenance of naive pluripotency and inhibit early differentiation programs.
Collapse
Affiliation(s)
- Hanyi Zeng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fanke Peng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiachen Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ru Meng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Xu Q, Zhang J, Telfer BA, Zhang H, Ali N, Chen F, Risa B, Pearson AJ, Zhang W, Finegan KG, Ucar A, Giurisato E, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene 2021; 40:3929-3941. [PMID: 33981002 PMCID: PMC8195737 DOI: 10.1038/s41388-021-01798-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
There is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.
Collapse
Affiliation(s)
- Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Blanca Risa
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Kim K, Min S, Kim D, Kim H, Roh S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021; 26:molecules26092658. [PMID: 34062818 PMCID: PMC8124333 DOI: 10.3390/molecules26092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland stem cells (SGSCs) are potential cell sources for the treatment of salivary gland diseases. The control of cell survival is an essential factor for applying stem cells to regenerative medicine or stem cell-based research. The purpose of this study was to investigate the effects of the ROCK inhibitor Y-27632 on the survival of SGSCs and its underlying mechanisms. SGSCs were isolated from mouse submandibular glands and cultured in suspension. Treatment with Y-27632 restored the viability of SGSCs that was significantly decreased during isolation and the subsequent culture. Y-27632 upregulated the expression of anti-apoptotic protein BCL-2 in SGSCs and, in the apoptosis assay, significantly reduced apoptotic and necrotic cell populations. Matrigel was used to mimic the extracellular environment of an intact salivary gland. The expression of genes regulating apoptosis and the ROCK signaling pathway was significantly reduced when SGSCs were embedded in Matrigel. SGSCs cultured in Matrigel and treated with Y-27632 showed no difference in the total numbers of spheroids and expression levels of apoptosis-regulating genes. Matrigel-embedded SGSCs treated with Y-27632 increased the number of spheroids with budding structures and the expression of acinar cell-specific marker AQP5. We demonstrate the protective effects of Y-27632 against dissociation-induced apoptosis of SGSCs during their culture in vitro.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA;
| | - Hyewon Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-880-2333
| |
Collapse
|
17
|
Tubita A, Tusa I, Rovida E. Playing the Whack-A-Mole Game: ERK5 Activation Emerges Among the Resistance Mechanisms to RAF-MEK1/2-ERK1/2- Targeted Therapy. Front Cell Dev Biol 2021; 9:647311. [PMID: 33777953 PMCID: PMC7991100 DOI: 10.3389/fcell.2021.647311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Molecularly tailored therapies have opened a new era, chronic myeloid leukemia being the ideal example, in the treatment of cancer. However, available therapeutic options are still unsatisfactory in many types of cancer, and often fail due to the occurrence of resistance mechanisms. With regard to small-molecule compounds targeting the components of the Mitogen-Activated Protein Kinase (MAPK) cascade RAF-MEK1/2-ERK1/2, these drugs may result ineffective as a consequence of the activation of compensatory pro-survival/proliferative signals, including receptor tyrosine kinases, PI3K, as well as other components of the MAPK family such as TPL2/COT. The MAPK ERK5 has been identified as a key signaling molecule in the biology of several types of cancer. In this review, we report pieces of evidence regarding the activation of the MEK5-ERK5 pathway as a resistance mechanism to RAF-MEK1/2-ERK1/2 inhibitors. We also highlight the known and possible mechanisms underlying the cross-talks between the ERK1/2 and the ERK5 pathways, the characterization of which is of great importance to maximize, in the future, the impact of RAF-MEK1/2-ERK1/2 targeting. Finally, we emphasize the need of developing additional therapeutically relevant MEK5-ERK5 inhibitors to be used for combined treatments, thus preventing the onset of resistance to cancer therapies relying on RAF-MEK1/2-ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
18
|
Giurisato E, Lonardi S, Telfer B, Lussoso S, Risa-Ebrí B, Zhang J, Russo I, Wang J, Santucci A, Finegan KG, Gray NS, Vermi W, Tournier C. Extracellular-Regulated Protein Kinase 5-Mediated Control of p21 Expression Promotes Macrophage Proliferation Associated with Tumor Growth and Metastasis. Cancer Res 2020; 80:3319-3330. [PMID: 32561530 DOI: 10.1158/0008-5472.can-19-2416] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/07/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
The presence of immunosuppressive macrophages that become activated in the tumor microenvironment constitutes a major factor responsible for tumor growth and malignancy. In line with this knowledge, we report here that macrophage proliferation is a significant feature of advanced stages of cancer. Moreover, we have found that a high proportion of proliferating macrophages in human tumors express ERK5. ERK5 was required for supporting the proliferation of macrophages in tumor grafts in mice. Furthermore, myeloid ERK5 deficiency negatively impacted the proliferation of both resident and infiltrated macrophages in metastatic lung nodules. ERK5 maintained the capacity of macrophages to proliferate by suppressing p21 expression to halt their differentiation program. Collectively, these data provide insight into the mechanism underpinning macrophage proliferation to support malignant tumor development, thereby strengthening the value of ERK5-targeted therapies to restore antitumor immunity through the blockade of protumorigenic macrophage activation. SIGNIFICANCE: These findings offer a new rationale for anti-ERK5 therapy to improve cancer patient outcomes by blocking the proliferative activity of tumor macrophages.
Collapse
Affiliation(s)
- Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy. .,Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sarah Lussoso
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Blanca Risa-Ebrí
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ilaria Russo
- School of Medicine, Keel University, Keel, United Kingdom.,Department of Medicine-Infectious Diseases, Washington University, Saint Louis, Missouri
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - William Vermi
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
19
|
Yu S, Zhou C, Cao S, He J, Cai B, Wu K, Qin Y, Huang X, Xiao L, Ye J, Xu S, Xie W, Kuang J, Chu S, Guo J, Liu H, Pang W, Guo L, Zeng M, Wang X, Luo R, Li C, Zhao G, Wang B, Wu L, Chen J, Liu J, Pei D. BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nat Cell Biol 2020; 22:651-662. [PMID: 32393886 DOI: 10.1038/s41556-020-0516-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
BMP4 regulates a plethora of developmental processes, including the dorsal-ventral axis and neural patterning. Here, we report that BMP4 reconfigures the nuclear architecture during the primed-to-naive transition (PNT). We first established a BMP4-driven PNT and show that BMP4 orchestrates the chromatin accessibility dynamics during PNT. Among the loci opened early by BMP4, we identified Zbtb7a and Zbtb7b (Zbtb7a/b) as targets that drive PNT. ZBTB7A/B in turn facilitate the opening of naive pluripotent chromatin loci and the activation of nearby genes. Mechanistically, ZBTB7A not only binds to chromatin loci near to the genes that are activated, but also strategically occupies those that are silenced, consistent with a role of BMP4 in both activating and suppressing gene expression during PNT at the chromatin level. Our results reveal a previously unknown function of BMP4 in regulating nuclear architecture and link its targets ZBTB7A/B to chromatin remodelling and pluripotent fate control.
Collapse
Affiliation(s)
- Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shangtao Cao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiangping He
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Baomei Cai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Kaixin Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xingnan Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China
| | - Lizhan Xiao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jing Ye
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shuyang Xu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Wenxiu Xie
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Junqi Kuang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shilong Chu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Wei Pang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Mengying Zeng
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China
| | - Rongping Luo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Guoqing Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Bo Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Linlin Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China.,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China. .,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Center for Cell Fate and Lineage, Division of Basic Research and International Corporation, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Guangzhou Branch of the Supercomputing Center, Chinese Academy of Sciences, Guangzhou, China. .,Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nat Commun 2020; 11:1357. [PMID: 32170114 PMCID: PMC7070061 DOI: 10.1038/s41467-020-15173-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.
Collapse
|
21
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
22
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
23
|
Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet 2019; 237:19-38. [DOI: 10.1016/j.cancergen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
24
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|
25
|
Zhang F, Liu CL, Tong MM, Zhao Z, Chen SQ. Both Wnt/β-catenin and ERK5 signaling pathways are involved in BDNF-induced differentiation of pluripotent stem cells into neural stem cells. Neurosci Lett 2019; 708:134345. [PMID: 31229623 DOI: 10.1016/j.neulet.2019.134345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 01/27/2023]
Abstract
Although brain-derived neurotrophic factor (BDNF) induces the differentiation of induced pluripotent stem cells (iPSCs) into neural stem cells (NSCs), its exact mechanism remains unelucidated. Wnt/β-catenin and ERK5 are two important signalling pathways of the Wnt and MAPK signalling cascades and are speculated to be closely related to the differentiation of cells. In this study, we reported the role of the Wnt/β-catenin and ERK5 signalling pathways on the BDNF-induced differentiation of iPSCs into NSCs. We examined the expression of β-catenin and p-ERK5 using small interfering RNA (siRNA)-induced silencing of β-catenin and ERK genes. We found that BDNF significantly improved the efficiency of iPSC differentiation and that the expression of β-catenin and p-ERK5 in the BDNF culture medium was significantly upregulated. Furthermore, we found that the expression of the β-catenin component was downregulated by siRNA-β-catenin, and the expression of the p-ERK5 component was downregulated by siRNA-ERK5. Flow cytometry showed that the differentiation rate of iPSCs was also significantly decreased by RNA interference. The results suggested that the Wnt/β-catenin and ERK5 signalling pathways are activated in the process of BDNF-induced iPSC differentiation. Interestingly, our study showed that siRNA-ERK5 not only inhibits the activity of the ERK5 signalling pathway but also partially controls the activity of the Wnt/β-catenin signalling pathway. The results suggested that the Wnt/β-catenin and ERK5 signalling pathways are not independently involved in the process of BDNF-induced iPSC differentiation. Our study showed that BDNF promotes the differentiation of iPSCs into NSCs by activating the Wnt/β-catenin and ERK5 signalling pathways, and an interconnected relationship may exist between the Wnt/β-catenin and ERK5 signalling pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Chen-Lu Liu
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Ming-Min Tong
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Zhong Zhao
- Neurology department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Shuang-Qing Chen
- Stem cells research center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China.
| |
Collapse
|
26
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
27
|
MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discov 2019; 5:68. [PMID: 30774996 PMCID: PMC6370793 DOI: 10.1038/s41420-019-0150-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.
Collapse
|
28
|
Kang C, Kim JS, Kim CY, Kim EY, Chung HM. The Pharmacological Inhibition of ERK5 Enhances Apoptosis in Acute Myeloid Leukemia Cells. Int J Stem Cells 2018; 11:227-234. [PMID: 30343550 PMCID: PMC6285287 DOI: 10.15283/ijsc18053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Extracellular signal-regulated kinase 5 (ERK5) plays a novel role in chemoresistance in some cancer cells and this pathway is a central mediator of cell survival and apoptotic regulation. The aim of this study was to investigate the effect of ERK5 inhibitor, XMD8-92, on proliferation and apoptosis in AML cell lines. Findings showed that XMD8-92 inhibited the activation of ERK5 by G-CSF and decreased the expression of c-Myc and Cyclin D1. The treatment of XMD8-92 reduced the phosphorylation of ERK5 leading to a distinct inhibition of cell proliferation and increased apoptosis in Kasumi-1 and HL-60 cells. Taken together, our study suggests that the inhibition of ERK5 by XMD8-92 can trigger apoptosis and inhibit proliferation in AMLs. Therefore, the inhibition of ERK5 may be an effective adjuvant in AML chemotherapy.
Collapse
Affiliation(s)
- Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jong Soo Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Mirae Cell Bio Co. LTD, Seoul, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
29
|
Tusa I, Cheloni G, Poteti M, Gozzini A, DeSouza NH, Shan Y, Deng X, Gray NS, Li S, Rovida E, Dello Sbarba P. Targeting the Extracellular Signal-Regulated Kinase 5 Pathway to Suppress Human Chronic Myeloid Leukemia Stem Cells. Stem Cell Reports 2018; 11:929-943. [PMID: 30245209 PMCID: PMC6178886 DOI: 10.1016/j.stemcr.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Tyrosine kinase inhibitors (TKi) are effective against chronic myeloid leukemia (CML), but their inefficacy on leukemia stem cells (LSCs) may lead to relapse. To identify new druggable targets alternative to BCR/ABL, we investigated the role of the MEK5/ERK5 pathway in LSC maintenance in low oxygen, a feature of bone marrow stem cell niches. We found that MEK5/ERK5 pathway inhibition reduced the growth of CML patient-derived cells and cell lines in vitro and the number of leukemic cells in vivo. Treatment in vitro of primary CML cells with MEK5/ERK5 inhibitors, but not TKi, strikingly reduced culture repopulation ability (CRA), serial colony formation ability, long-term culture-initiating cells (LTC-ICs), and CD26-expressing cells. Importantly, MEK5/ERK5 inhibition was effective on CML cells regardless of the presence or absence of imatinib, and did not reduce CRA or LTC-ICs of normal CD34+ cells. Thus, targeting MEK/ERK5 may represent an innovative therapeutic approach to suppress CML progenitor/stem cells. ERK5 is constitutively active in chronic myeloid leukemia (CML) cells ERK5 pathway inhibition reduces the growth of CML cells in vitro and in vivo ERK5 pathway inhibition strikingly reduces CML progenitor/stem cell maintenance The combination of ERK5i with imatinib reduces the expression of stem cell proteins
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy
| | - Antonella Gozzini
- Hematology Unit, Careggi University Hospital (AOUC), Firenze 50134, Italy
| | - Ngoc Ho DeSouza
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Yi Shan
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Xianming Deng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaoguang Li
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy.
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale G.B. Morgagni, 50, Firenze 50134, Italy; Istituto Toscano Tumori (ITT), Firenze 50134, Italy.
| |
Collapse
|
30
|
MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis 2018; 9:814. [PMID: 30050105 PMCID: PMC6062564 DOI: 10.1038/s41419-018-0837-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Hematopoiesis, the formation of blood cells from hematopoietic stem cells (HSC), is a highly regulated process. Since the discovery of microRNAs (miRNAs), several studies have shown their significant role in the regulation of the hematopoietic system. Impaired expression of miRNAs leads to disrupted cellular pathways and in particular causes loss of hematopoietic ability. Here, we report a previously unrecognized function of miR-143 in granulopoiesis. Hematopoietic cells undergoing granulocytic differentiation exhibited increased miR-143 expression. Overexpression or ablation of miR-143 expression resulted in accelerated granulocytic differentiation or block of differentiation, respectively. The absence of miR-143 in mice resulted in a reduced number of mature granulocytes in blood and bone marrow. Additionally, we observed an association of high miR-143 expression levels with a higher probability of survival in two different cohorts of patients with acute myeloid leukemia (AML). Overexpression of miR-143 in AML cells impaired cell growth, partially induced differentiation, and caused apoptosis. Argonaute2-RNA-Immunoprecipitation assay revealed ERK5, a member of the MAPK-family, as a target of miR-143 in myeloid cells. Further, we observed an inverse correlation of miR-143 and ERK5 in primary AML patient samples, and in CD34+ HSPCs undergoing granulocytic differentiation and we confirmed functional relevance of ERK5 in myeloid cells. In conclusion, our data describe miR-143 as a relevant factor in granulocyte differentiation, whose expression may be useful as a prognostic and therapeutic factor in AML therapy.
Collapse
|
31
|
Tusa I, Gagliardi S, Tubita A, Pandolfi S, Urso C, Borgognoni L, Wang J, Deng X, Gray NS, Stecca B, Rovida E. ERK5 is activated by oncogenic BRAF and promotes melanoma growth. Oncogene 2018; 37:2601-2614. [PMID: 29483645 PMCID: PMC5945581 DOI: 10.1038/s41388-018-0164-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Malignant melanoma is among the most aggressive cancers and its incidence is increasing worldwide. Targeted therapies and immunotherapy have improved the survival of patients with metastatic melanoma in the last few years; however, available treatments are still unsatisfactory. While the role of the BRAF-MEK1/2-ERK1/2 pathway in melanoma is well established, the involvement of mitogen-activated protein kinases MEK5-ERK5 remains poorly explored. Here we investigated the function of ERK5 signaling in melanoma. We show that ERK5 is consistently expressed in human melanoma tissues and is active in melanoma cells. Genetic silencing and pharmacological inhibition of ERK5 pathway drastically reduce the growth of melanoma cells and xenografts harboring wild-type (wt) or mutated BRAF (V600E). We also found that oncogenic BRAF positively regulates expression, phosphorylation, and nuclear localization of ERK5. Importantly, ERK5 kinase and transcriptional transactivator activities are enhanced by BRAF. Nevertheless, combined pharmacological inhibition of BRAFV600E and MEK5 is required to decrease nuclear ERK5, that is critical for the regulation of cell proliferation. Accordingly, combination of MEK5 or ERK5 inhibitors with BRAFV600E inhibitor vemurafenib is more effective than single treatments in reducing colony formation and growth of BRAFV600E melanoma cells and xenografts. Overall, these data support a key role of the ERK5 pathway for melanoma growth in vitro and in vivo and suggest that targeting ERK5, alone or in combination with BRAF-MEK1/2 inhibitors, might represent a novel approach for melanoma treatment.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Silvia Pandolfi
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Carmelo Urso
- Anatomic Pathology Unit, Dermatopathology Section, S.M. Annunziata Hospital, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, S.M. Annunziata Hospital, Florence, Italy
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Barbara Stecca
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy.
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
32
|
Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A 2018; 115:E2801-E2810. [PMID: 29507229 PMCID: PMC5866536 DOI: 10.1073/pnas.1707929115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macrophages can be functionally reprogrammed by the tumor microenvironment to further tumor growth and malignancy. In this study, we have discovered that this pathological process is dependent on the ERK5 MAPK. Accordingly, we demonstrated that inactivation of ERK5 in macrophages blocked the phosphorylation of STAT3, a transcription factor crucial for determining macrophage polarity, and impaired the growth of melanoma and carcinoma grafts. These results raise the possibility that targeting protumor macrophages via anti-ERK5 therapy constitutes a very attractive strategy for cancer treatment. This is important given that the detection of large numbers of macrophages in human tumors often correlates with poor prognosis, but also with a poor response of the tumor to anticancer agents. Owing to the prevalence of tumor-associated macrophages (TAMs) in cancer and their unique influence upon disease progression and malignancy, macrophage-targeted interventions have attracted notable attention in cancer immunotherapy. However, tractable targets to reduce TAM activities remain very few and far between because the signaling mechanisms underpinning protumor macrophage phenotypes are largely unknown. Here, we have investigated the role of the extracellular-regulated protein kinase 5 (ERK5) as a determinant of macrophage polarity. We report that the growth of carcinoma grafts was halted in myeloid ERK5-deficient mice. Coincidentally, targeting ERK5 in macrophages induced a transcriptional switch in favor of proinflammatory mediators. Further molecular analyses demonstrated that activation of the signal transducer and activator of transcription 3 (STAT3) via Tyr705 phosphorylation was impaired in erk5-deleted TAMs. Our study thus suggests that blocking ERK5 constitutes a treatment strategy to reprogram macrophages toward an antitumor state by inhibiting STAT3-induced gene expression.
Collapse
|
33
|
Poole CJ, Zheng W, Lodh A, Yevtodiyenko A, Liefwalker D, Li H, Felsher DW, van Riggelen J. DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt's lymphoma. Oncotarget 2017; 8:76898-76920. [PMID: 29100357 PMCID: PMC5652751 DOI: 10.18632/oncotarget.20176] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the MYC oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance. By utilizing a tetracycline-regulated MYC transgene in a mouse T-ALL (EμSRα-tTA;tet-o-MYC) and human Burkitt's lymphoma (P493-6) model, we demonstrated that DNMT1 and DNMT3B expression depend on high MYC levels, and that their transcription decreased upon MYC-inactivation. Chromatin immunoprecipitation indicated that MYC binds to the DNMT1 and DNMT3B promoters, implicating a direct transcriptional regulation. Hence, shRNA-mediated knock-down of endogenous MYC in human T-ALL and Burkitt's lymphoma cell lines downregulated DNMT3B expression. Knock-down and pharmacologic inhibition of DNMT3B in T-ALL reduced cell proliferation associated with genome-wide changes in DNA methylation, indicating a tumor promoter function during tumor maintenance. We provide novel evidence that MYC directly deregulates the expression of both de novo and maintenance DNMTs, showing that MYC controls DNA methylation in a genome-wide fashion. Our finding that a coordinated interplay between the components of the DNA methylating machinery contributes to MYC-driven tumor maintenance highlights the potential of specific DNMTs for targeted therapies.
Collapse
Affiliation(s)
- Candace J. Poole
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Wenli Zheng
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Atul Lodh
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Aleksey Yevtodiyenko
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Daniel Liefwalker
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Honglin Li
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| | - Dean W. Felsher
- Stanford University School of Medicine, Division of Oncology, Departments of Medicine and Pathology, Stanford, CA 94305, USA
| | - Jan van Riggelen
- Augusta University, Department of Biochemistry and Molecular Biology, Augusta, GA 30912, USA
| |
Collapse
|
34
|
Williams CAC, Gray NS, Findlay GM. A Simple Method to Identify Kinases That Regulate Embryonic Stem Cell Pluripotency by High-throughput Inhibitor Screening. J Vis Exp 2017. [PMID: 28570543 PMCID: PMC5607952 DOI: 10.3791/55515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Embryonic stem cells (ESCs) can self-renew or differentiate into all cell types, a phenomenon known as pluripotency. Distinct pluripotent states have been described, termed "naïve" and "primed" pluripotency. The mechanisms that control naïve-primed transition are poorly understood. In particular, we remain poorly informed about protein kinases that specify naïve and primed pluripotent states, despite increasing availability of high-quality tool compounds to probe kinase function. Here, we describe a scalable platform to perform targeted small molecule screens for kinase regulators of the naïve-primed pluripotent transition in mouse ESCs. This approach utilizes simple cell culture conditions and standard reagents, materials and equipment to uncover and validate kinase inhibitors with hitherto unappreciated effects on pluripotency. We discuss potential applications for this technology, including screening of other small molecule collections such as increasingly sophisticated kinase inhibitors and emerging libraries of epigenetic tool compounds.
Collapse
Affiliation(s)
- Charles A C Williams
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee;
| |
Collapse
|
35
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
36
|
Betschinger J. Charting Developmental Dissolution of Pluripotency. J Mol Biol 2016; 429:1441-1458. [PMID: 28013029 DOI: 10.1016/j.jmb.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
The formation of tissues and organs during metazoan development begs fundamental questions of cellular plasticity: How can the very same genome program have diverse cell types? How do cell identity programs unfold during development in space and time? How can defects in these mechanisms cause disease and also provide opportunities for therapeutic intervention? And ultimately, can developmental programs be exploited for bioengineering tissues and organs? Understanding principle designs of cellular identity and developmental progression is crucial for providing answers. Here, I will discuss how the capture of embryonic pluripotency in murine embryonic stem cells (ESCs) in vitro has allowed fundamental insights into the molecular underpinnings of a developmental cell state and how its ordered disassembly during differentiation prepares for lineage specification.
Collapse
Affiliation(s)
- Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|