1
|
Ishigaki S, Suzuki K, Takeshita M, Kaneko Y. Identification of BHLHE40-Expressing CD4 + T Cells Producing GM-CSF in Rheumatoid Arthritis. Int J Rheum Dis 2025; 28:e70219. [PMID: 40223427 DOI: 10.1111/1756-185x.70219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF: CSF2) plays a crucial role in the pathogenesis of autoimmune diseases. The basic helix-loop-helix family member e40 (BHLHE40) gene is important for GM-CSF production in CD4+ T cells. However, the relationship between the expression of these genes and rheumatoid arthritis (RA) remains unclear, particularly in interleukin-1 (IL-1)-enriched inflammatory sites. Therefore, we investigated the expression of BHLHE40 and CSF2 in CD4+ T cells in RA. METHODS We analyzed gene expression using previously deposited and publicly available databases containing peripheral blood (PB) and synovial fluid (SF) from patients with RA and healthy controls (HC). Comprehensive datasets, including single-cell RNA-sequencing (scRNA-seq), RNA-seq, and microarray data, were used for this analysis. RESULTS BHLHE40 expression in PB CD4+ T cells from HC was higher in central memory, effector memory, Th17, and Th1/17 cells than in naive CD4+ T cells. Furthermore, BHLHE40 and CSF2 expression in the CD45RA-CCR7+ /-CD4+ T cell subset was significantly higher in the SF of patients with RA than in those with PB. scRNA-seq revealed that BHLHE40-expressing cells showed higher CSF2 expression than those that did not. Additionally, scRNA-seq showed higher BHLHE40 expression in PB CD4+ T cells from RA patients than in those from HC. CONCLUSION We analyzed the gene expressions of BHLHE40, which is crucial for GM-CSF production, IL1R1, which regulates BHLHE40 induction, and CSF2, its resulting product, in CD4+ T cells. Their expression levels were compared across RA SF, PB, and HC. Notably, increased expression of these genes was identified in SF.
Collapse
Affiliation(s)
- Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Arneth B. Genes, Gene Loci, and Their Impacts on the Immune System in the Development of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2024; 25:12906. [PMID: 39684620 DOI: 10.3390/ijms252312906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a condition that is characterized by damage to the central nervous system (CNS) that causes patients to experience cognitive and physical difficulties. Although the disease has a complex etiology that involves genetic and environmental factors, little is known about the role of genes and gene loci in its development. Aims: This study aimed to investigate the effects of genes and gene loci on the immune system during the development of MS. We aimed to identify the main genes and gene loci that play roles in MS pathogenesis and the implications for the future development of clinical treatment approaches. A systematic review of articles published over the last decade was conducted. This review focused on studies about the genetic and epigenetic mechanisms underlying MS onset and progression. Genome-wide association studies (GWASs) as well as papers describing the role of the immune system in disease development were prioritized. Key genetic loci and immune system-related genes, such as HLA class II genes, are associated with MS susceptibility. Studies have also shown that epigenetic modifications, such as DNA methylation, influence disease progression via the immune system.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
3
|
de Weerd HA, Guala D, Gustafsson M, Synnergren J, Tegnér J, Lubovac-Pilav Z, Magnusson R. Latent space arithmetic on data embeddings from healthy multi-tissue human RNA-seq decodes disease modules. PATTERNS (NEW YORK, N.Y.) 2024; 5:101093. [PMID: 39568475 PMCID: PMC11573900 DOI: 10.1016/j.patter.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Computational analyses of transcriptomic data have dramatically improved our understanding of complex diseases. However, such approaches are limited by small sample sets of disease-affected material. We asked if a variational autoencoder trained on large groups of healthy human RNA sequencing (RNA-seq) data can capture the fundamental gene regulation system and generalize to unseen disease changes. Importantly, we found this model to successfully compress unseen transcriptomic changes from 25 independent disease datasets. We decoded disease-specific signals from the latent space and found them to contain more disease-specific genes than the corresponding differential expression analysis in 20 of 25 cases. Finally, we matched these disease signals with known drug targets and extracted sets of known and potential pharmaceutical candidates. In summary, our study demonstrates how data-driven representation learning enables the arithmetic deconstruction of the latent space, facilitating the dissection of disease mechanisms and drug targets.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
| | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
- Merck AB, 169 70 Solna, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Jane Synnergren
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jesper Tegnér
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, 171 76, Stockholm, Sweden
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Science for Life Laboratory, Tomtebodavägen 23A, 171 65, Solna, Sweden
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
| | - Rasmus Magnusson
- School of Bioscience, Systems Biology Research Center, University of Skövde, 541 45 Skövde, Sweden
- Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
4
|
Sumida TS, Lincoln MR, He L, Park Y, Ota M, Oguchi A, Son R, Yi A, Stillwell HA, Leissa GA, Fujio K, Murakawa Y, Kulminski AM, Epstein CB, Bernstein BE, Kellis M, Hafler DA. An autoimmune transcriptional circuit drives FOXP3 + regulatory T cell dysfunction. Sci Transl Med 2024; 16:eadp1720. [PMID: 39196959 PMCID: PMC12051482 DOI: 10.1126/scitranslmed.adp1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/30/2024]
Abstract
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.
Collapse
Affiliation(s)
- Tomokazu S. Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew R. Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M6R 1B5, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M6R 1B5, Canada
| | - Liang He
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alice Yi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Helen A. Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Greta A. Leissa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | | - Bradley E. Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Henningsson AJ, Hellberg S, Lerm M, Sayyab S. Genome-wide DNA Methylation Profiling in Lyme Neuroborreliosis Reveals Altered Methylation Patterns of HLA Genes. J Infect Dis 2024; 229:1209-1214. [PMID: 37824827 PMCID: PMC11011177 DOI: 10.1093/infdis/jiad451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Lyme neuroborreliosis (LNB) is a complex neuroinflammatory disorder caused by Borrelia burgdorferi, which is transmitted through tick bites. Epigenetic alterations, specifically DNA methylation (DNAm), could play a role in the host immune response during infection. In this study, we present the first genome-wide analysis of DNAm in peripheral blood mononuclear cells from patients with LNB and those without LNB. Using a network-based approach, we highlighted HLA genes at the core of these DNAm changes, which were found to be enriched in immune-related pathways. These findings shed light on the role of epigenetic modifications in the LNB pathogenesis that should be confirmed and further expanded upon in future studies.
Collapse
Affiliation(s)
- Anna J Henningsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, County Hospital Ryhov, Jönköping
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shumaila Sayyab
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Tang C, Yang J, Zhu C, Ding Y, Yang S, Xu B, He D. Iron metabolism disorder and multiple sclerosis: a comprehensive analysis. Front Immunol 2024; 15:1376838. [PMID: 38590521 PMCID: PMC11000231 DOI: 10.3389/fimmu.2024.1376838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Background Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system. Currently, the pathological mechanisms of MS are not fully understood, but research has suggested that iron metabolism disorder may be associated with the onset and clinical manifestations of MS. Methods and materials The study utilized publicly available databases and bioinformatics techniques for gene expression data analysis, including differential expression analysis, weighted correlation network analysis, gene enrichment analysis, and construction of logistic regression models. Subsequently, Mendelian randomization was used to assess the causal relationship between different iron metabolism markers and MS. Results This study identified IREB2, LAMP2, ISCU, ATP6V1G1, ATP13A2, and SKP1 as genes associated with multiple sclerosis (MS) and iron metabolism, establishing their multi-gene diagnostic value for MS with an AUC of 0.83. Additionally, Mendelian randomization analysis revealed a potential causal relationship between transferrin saturation and MS (p=2.22E-02; OR 95%CI=0.86 (0.75, 0.98)), as well as serum transferrin and MS (p=2.18E-04; OR 95%CI=1.22 (1.10, 1.36)). Conclusion This study comprehensively explored the relationship between iron metabolism and MS through integrated bioinformatics analysis and Mendelian randomization methods. The findings provide important insights for further research into the role of iron metabolism disorder in the pathogenesis of MS and offer crucial theoretical support for the treatment of MS.
Collapse
Affiliation(s)
- Chao Tang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiaxin Yang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaomin Zhu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaqi Ding
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Sushuang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bingyang Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Zenere A, Hellberg S, Papapavlou Lingehed G, Svenvik M, Mellergård J, Dahle C, Vrethem M, Raffetseder J, Khademi M, Olsson T, Blomberg M, Jenmalm MC, Altafini C, Gustafsson M, Ernerudh J. Prominent epigenetic and transcriptomic changes in CD4 + and CD8 + T cells during and after pregnancy in women with multiple sclerosis and controls. J Neuroinflammation 2023; 20:98. [PMID: 37106402 PMCID: PMC10134602 DOI: 10.1186/s12974-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory disease in which pregnancy leads to a temporary amelioration in disease activity as indicated by the profound decrease in relapses rate during the 3rd trimester of pregnancy. CD4+ and CD8+ T cells are implicated in MS pathogenesis as being key regulators of inflammation and brain lesion formation. Although Tcells are prime candidates for the pregnancy-associated improvement of MS, the precise mechanisms are yet unclear, and in particular, a deep characterization of the epigenetic and transcriptomic events that occur in peripheral T cells during pregnancy in MS is lacking. METHODS Women with MS and healthy controls were longitudinally sampled before, during (1st, 2nd and 3rd trimesters) and after pregnancy. DNA methylation array and RNA sequencing were performed on paired CD4+ and CD8+ T cells samples. Differential analysis and network-based approaches were used to analyze the global dynamics of epigenetic and transcriptomic changes. RESULTS Both DNA methylation and RNA sequencing revealed a prominent regulation, mostly peaking in the 3rd trimester and reversing post-partum, thus mirroring the clinical course with improvement followed by a worsening in disease activity. This rebound pattern was found to represent a general adaptation of the maternal immune system, with only minor differences between MS and controls. By using a network-based approach, we highlighted several genes at the core of this pregnancy-induced regulation, which were found to be enriched for genes and pathways previously reported to be involved in MS. Moreover, these pathways were enriched for in vitro stimulated genes and pregnancy hormones targets. CONCLUSION This study represents, to our knowledge, the first in-depth investigation of the methylation and expression changes in peripheral CD4+ and CD8+ T cells during pregnancy in MS. Our findings indicate that pregnancy induces profound changes in peripheral T cells, in both MS and healthy controls, which are associated with the modulation of inflammation and MS activity.
Collapse
Affiliation(s)
- Alberto Zenere
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Georgia Papapavlou Lingehed
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Svenvik
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden
| | - Johan Mellergård
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Blomberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Obstetrics and Gynecology, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Altafini
- Division of Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Cappelletti C, Eriksson A, Brorson IS, Leikfoss IS, Kråbøl O, Høgestøl EA, Vitelli V, Mjaavatten O, Harbo HF, Berven F, Bos SD, Berge T. Quantitative proteomics reveals protein dysregulation during T cell activation in multiple sclerosis patients compared to healthy controls. Clin Proteomics 2022; 19:23. [PMID: 35790914 PMCID: PMC9254507 DOI: 10.1186/s12014-022-09361-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune, neurodegenerative disorder with a strong genetic component that acts in a complex interaction with environmental factors for disease development. CD4+ T cells are pivotal players in MS pathogenesis, where peripherally activated T cells migrate to the central nervous system leading to demyelination and axonal degeneration. Through a proteomic approach, we aim at identifying dysregulated pathways in activated T cells from MS patients as compared to healthy controls. Methods CD4+ T cells were purified from peripheral blood from MS patients and healthy controls by magnetic separation. Cells were left unstimulated or stimulated in vitro through the TCR and costimulatory CD28 receptor for 24 h prior to sampling. Electrospray liquid chromatography-tandem mass spectrometry was used to measure protein abundances. Results Upon T cell activation the abundance of 1801 proteins was changed. Among these proteins, we observed an enrichment of proteins expressed by MS-susceptibility genes. When comparing protein abundances in T cell samples from healthy controls and MS patients, 18 and 33 proteins were differentially expressed in unstimulated and stimulated CD4+ T cells, respectively. Moreover, 353 and 304 proteins were identified as proteins exclusively induced upon T cell activation in healthy controls and MS patients, respectively and dysregulation of the Nur77 pathway was observed only in samples from MS patients. Conclusions Our study highlights the importance of CD4+ T cell activation for MS, as proteins that change in abundance upon T cell activation are enriched for proteins encoded by MS susceptibility genes. The results provide evidence for proteomic disturbances in T cell activation in MS, and pinpoint to dysregulation of the Nur77 pathway, a biological pathway known to limit aberrant effector T cell responses.
Collapse
|
9
|
de Weerd HA, Åkesson J, Guala D, Gustafsson M, Lubovac-Pilav Z. MODalyseR-a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data. BIOINFORMATICS ADVANCES 2022; 2:vbac006. [PMID: 36699378 PMCID: PMC9710626 DOI: 10.1093/bioadv/vbac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Motivation Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators. Results We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data. Availability and implementation MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Julia Åkesson
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, Solna 17121, Sweden,Merck AB, Solna 16970, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden,To whom correspondence should be addressed. or
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,To whom correspondence should be addressed. or
| |
Collapse
|
10
|
Badam TV, Hellberg S, Mehta RB, Lechner-Scott J, Lea RA, Tost J, Mariette X, Svensson-Arvelund J, Nestor CE, Benson M, Berg G, Jenmalm MC, Gustafsson M, Ernerudh J. CD4 + T-cell DNA methylation changes during pregnancy significantly correlate with disease-associated methylation changes in autoimmune diseases. Epigenetics 2021; 17:1040-1055. [PMID: 34605719 PMCID: PMC9487751 DOI: 10.1080/15592294.2021.1982510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epigenetics may play a central, yet unexplored, role in the profound changes that the maternal immune system undergoes during pregnancy and could be involved in the pregnancy-induced modulation of several autoimmune diseases. We investigated changes in the methylome in isolated circulating CD4+ T-cells in non-pregnant and pregnant women, during the 1st and 2nd trimester, using the Illumina Infinium Human Methylation 450K array, and explored how these changes were related to autoimmune diseases that are known to be affected during pregnancy. Pregnancy was associated with several hundreds of methylation differences, particularly during the 2nd trimester. A network-based modular approach identified several genes, e.g., CD28, FYN, VAV1 and pathways related to T-cell signalling and activation, highlighting T-cell regulation as a central component of the observed methylation alterations. The identified pregnancy module was significantly enriched for disease-associated methylation changes related to multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. A negative correlation between pregnancy-associated methylation changes and disease-associated changes was found for multiple sclerosis and rheumatoid arthritis, diseases that are known to improve during pregnancy whereas a positive correlation was found for systemic lupus erythematosus, a disease that instead worsens during pregnancy. Thus, the directionality of the observed changes is in line with the previously observed effect of pregnancy on disease activity. Our systems medicine approach supports the importance of the methylome in immune regulation of T-cells during pregnancy. Our findings highlight the relevance of using pregnancy as a model for understanding and identifying disease-related mechanisms involved in the modulation of autoimmune diseases.Abbreviations: BMIQ: beta-mixture quantile dilation; DMGs: differentially methylated genes; DMPs: differentially methylated probes; FE: fold enrichment; FDR: false discovery rate; GO: gene ontology; GWAS: genome-wide association studies; MDS: multidimensional scaling; MS: multiple sclerosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PPI; protein-protein interaction; RA: rheumatoid arthritis; SD: standard deviation; SLE: systemic lupus erythematosus; SNP: single nucleotide polymorphism; TH: CD4+ T helper cell; VIStA: diVIsive Shuffling Approach.
Collapse
Affiliation(s)
- Tejaswi V Badam
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,School of Bioscience, Skövde University, Skövde, Sweden
| | - Sandra Hellberg
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ratnesh B Mehta
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
| | - Rodney A Lea
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton Heights, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, Australia
| | - Jorg Tost
- Laboratory of Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA-Institut De Biologie Francois Jacob, Evry, France
| | - Xavier Mariette
- Université Paris-Saclay, AP-HP-Université Paris-Saclay, Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (Inserm) U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, France
| | - Judit Svensson-Arvelund
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Göran Berg
- Department of Obstetrics and Gynaecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Badam TVS, de Weerd HA, Martínez-Enguita D, Olsson T, Alfredsson L, Kockum I, Jagodic M, Lubovac-Pilav Z, Gustafsson M. A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis. BMC Genomics 2021; 22:631. [PMID: 34461822 PMCID: PMC8404328 DOI: 10.1186/s12864-021-07935-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There exist few, if any, practical guidelines for predictive and falsifiable multi-omic data integration that systematically integrate existing knowledge. Disease modules are popular concepts for interpreting genome-wide studies in medicine but have so far not been systematically evaluated and may lead to corroborating multi-omic modules. RESULT We assessed eight module identification methods in 57 previously published expression and methylation studies of 19 diseases using GWAS enrichment analysis. Next, we applied the same strategy for multi-omic integration of 20 datasets of multiple sclerosis (MS), and further validated the resulting module using both GWAS and risk-factor-associated genes from several independent cohorts. Our benchmark of modules showed that in immune-associated diseases modules inferred from clique-based methods were the most enriched for GWAS genes. The multi-omic case study using MS data revealed the robust identification of a module of 220 genes. Strikingly, most genes of the module were differentially methylated upon the action of one or several environmental risk factors in MS (n = 217, P = 10- 47) and were also independently validated for association with five different risk factors of MS, which further stressed the high genetic and epigenetic relevance of the module for MS. CONCLUSIONS We believe our analysis provides a workflow for selecting modules and our benchmark study may help further improvement of disease module methods. Moreover, we also stress that our methodology is generally applicable for combining and assessing the performance of multi-omic approaches for complex diseases.
Collapse
Affiliation(s)
- Tejaswi V S Badam
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping university, Linköping, Sweden
| | - Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping university, Linköping, Sweden
| | - David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping university, Linköping, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping university, Linköping, Sweden.
| |
Collapse
|
12
|
Hrastelj J, Andrews R, Loveless S, Morgan J, Bishop SM, Bray NJ, Williams NM, Robertson NP. CSF-resident CD4 + T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun 2021; 3:fcab155. [PMID: 34761221 PMCID: PMC8574295 DOI: 10.1093/braincomms/fcab155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The CNS has traditionally been considered an immune privileged site, but is now understood to have a system of immune surveillance, predominantly involving CD4+ T-cells. Identifying functional differences between CNS and blood CD4+ T-cells, therefore, have relevance to CNS immune surveillance as well as to neurological conditions, such as multiple sclerosis, in which CD4+ T-cells play a central role. Here, CD4+ T-cells were purified from CSF and blood from 21 patients with newly diagnosed treatment-naïve multiple sclerosis and 20 individuals with non-inflammatory disorders using fluorescence-activated cell sorting, and their transcriptomes were profiled by RNA sequencing. Paired comparisons between CD4+ T-cells from CSF and blood identified 5156 differentially expressed genes in controls and 4263 differentially expressed in multiple sclerosis patients at false discovery rate <5%. Differential expression analysis of CD4+ T-cells collected from the CSF highlighted genes involved in migration, activation, cholesterol biosynthesis and signalling, including those with known relevance to multiple sclerosis pathogenesis and treatment. Expression of markers of CD4+ T-cell subtypes suggested an increased proportion of Th1 and Th17 cells in CSF. Gene ontology terms significant only in multiple sclerosis were predominantly those involved in cellular proliferation. A two-way comparison of CSF versus blood CD4+ T-cells in multiple sclerosis compared with non-inflammatory disorder controls identified four significant genes at false discovery rate <5% (CYP51A1, LRRD1, YES1 and PASK), further implicating cholesterol biosynthesis and migration mechanisms. Analysis of CSF CD4+ T-cells in an extended cohort of multiple sclerosis cases (total N = 41) compared with non-inflammatory disorder controls (total N = 38) identified 140 differentially expressed genes at false discovery rate < 5%, many of which have known relevance to multiple sclerosis, including XBP1, BHLHE40, CD40LG, DPP4 and ITGB1. This study provides the largest transcriptomic analysis of purified cell subpopulations in CSF to date and has relevance for the understanding of CNS immune surveillance, as well as multiple sclerosis pathogenesis and treatment discovery.
Collapse
Affiliation(s)
- James Hrastelj
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Robert Andrews
- School of Medicine, Cardiff
University, Cardiff CF14 4XW, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Joanne Morgan
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Stefan Mark Bishop
- European Cancer Stem Cell Research Institute,
Cardiff University, Cardiff CF24 4HQ, UK
| | - Nicholas J Bray
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Nigel M Williams
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| |
Collapse
|
13
|
Papapavlou G, Hellberg S, Raffetseder J, Brynhildsen J, Gustafsson M, Jenmalm MC, Ernerudh J. Differential effects of estradiol and progesterone on human T cell activation in vitro. Eur J Immunol 2021; 51:2430-2440. [PMID: 34223649 DOI: 10.1002/eji.202049144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Estradiol (E2) and progesterone (P4) are steroid hormones important for the regulation of immune responses during pregnancy. Their increasing levels coincide with an improvement of T cell-mediated diseases such as multiple sclerosis (MS). Although immune-endocrine interactions are involved in this phenomenon, the relative contribution of hormones is not known. We here report a direct comparison of E2- and P4-mediated effects on human CD4+ T cells, key cells in immune regulation. T cells were stimulated to obtain different activation levels and exposed to a broad range of hormone concentrations. Activation level was assessed by CD69/CD25 expression by flow cytometry, and secreted proteins (n = 196) were measured in culture supernatants using proximity extension assay and electrochemiluminescence immunoassay. We found that in low activated cells, pregnancy-relevant E2 concentrations increased activation and the secretion of several immune- and inflammation-related proteins. P4, on the other hand, showed a biphasic pattern, where serum-related concentrations upregulated activation and protein secretion while placenta-relevant concentrations induced a prominent dampening irrespective of the initial activation level. Our results demonstrate the importance of P4 as a major hormone in the immune modulation of T cells during pregnancy and emphasize the need to further evaluate its potency in the treatment of diseases like MS.
Collapse
Affiliation(s)
- Georgia Papapavlou
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Brynhildsen
- Department of Obstetrics and Gynecology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Obstetrics and Gynecology, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Mika Gustafsson
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Manian M, Sohrabi E, Eskandari N, Assarehzadegan MA, Ferns GA, Nourbakhsh M, Jazayeri MH, Nedaeinia R. An Integrated Bioinformatics Analysis of the Potential Regulatory Effects of miR-21 on T-cell Related Target Genes in Multiple Sclerosis. Avicenna J Med Biotechnol 2021; 13:149-165. [PMID: 34484645 PMCID: PMC8377402 DOI: 10.18502/ajmb.v13i3.6364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Overexpression of miR-21 is a characteristic feature of patients with Multiple Sclerosis (MS) and is involved in gene regulation and the expression enhancement of pro-inflammatory factors including IFNγ and TNF-α following stimulation of T-cells via the T Cell Receptor (TCR). In this study, a novel integrated bioinformatics analysis was used to obtain a better understanding of the involvement of miR-21 in the development of MS, its protein biomarker signatures, RNA levels, and drug interactions through existing microarray and RNA-seq datasets of MS. METHODS In order to obtain data on the Differentially Expressed Genes (DEGs) in patients with MS and normal controls, the GEO2R web tool was used to analyze the Gene Expression Omnibus (GEO) datasets, and then Protein-Protein Interaction (PPI) networks of co-expressed DEGs were designed using STRING. A molecular network of miRNA-genes and drugs based on differentially expressed genes was created for T-cells of MS patients to identify the targets of miR-21, that may act as important regulators and potential biomarkers for early diagnosis, prognosis and, potential therapeutic targets for MS. RESULTS It found that seven genes (NRIP1, ARNT, KDM7A, S100A10, AK2, TGFβR2, and IL-6R) are regulated by drugs used in MS and miR-21. Finally, three overlapping genes (S100A10, NRIP1, KDM7A) were identified between miRNA-gene-drug network and nineteen genes as hub genes which can reflect the pathophysiology of MS. CONCLUSION Our findings suggest that miR-21 and MS-related drugs can act synergistically to regulate several genes in the existing datasets, and miR-21 inhibitors have the potential to be used in MS treatment.
Collapse
Affiliation(s)
- Mostafa Manian
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Ali Assarehzadegan
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon A. Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Mitra Nourbakhsh
- Department of Biochemistry and Nutrition, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Derada Troletti C, Enzmann G, Chiurchiù V, Kamermans A, Tietz SM, Norris PC, Jahromi NH, Leuti A, van der Pol SMA, Schouten M, Serhan CN, de Vries HE, Engelhardt B, Kooij G. Pro-resolving lipid mediator lipoxin A 4 attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell Rep 2021; 35:109201. [PMID: 34077725 PMCID: PMC8491454 DOI: 10.1016/j.celrep.2021.109201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/30/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The chronic neuro-inflammatory character of multiple sclerosis (MS) suggests that the natural process to resolve inflammation is impaired. This protective process is orchestrated by specialized pro-resolving lipid mediators (SPMs), but to date, the role of SPMs in MS remains largely unknown. Here, we provide in vivo evidence that treatment with the SPM lipoxin A4 (LXA4) ameliorates clinical symptoms of experimental autoimmune encephalomyelitis (EAE) and inhibits CD4+ and CD8+ T cell infiltration into the central nervous system (CNS). Moreover, we show that LXA4 potently reduces encephalitogenic Th1 and Th17 effector functions, both in vivo and in isolated human T cells from healthy donors and patients with relapsing-remitting MS. Finally, we demonstrate that LXA4 affects the spinal cord lipidome by significantly reducing the levels of pro-inflammatory lipid mediators during EAE. Collectively, our findings provide mechanistic insight into LXA4-mediated amelioration of neuro-inflammation and highlight the potential clinical application of LXA4 for MS.
Collapse
Affiliation(s)
- Claudio Derada Troletti
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands; Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Alwin Kamermans
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | | | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Susanne M A van der Pol
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Marijn Schouten
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Helga E de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Gijs Kooij
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Hellberg S, Raffetseder J, Rundquist O, Magnusson R, Papapavlou G, Jenmalm MC, Ernerudh J, Gustafsson M. Progesterone Dampens Immune Responses in In Vitro Activated CD4 + T Cells and Affects Genes Associated With Autoimmune Diseases That Improve During Pregnancy. Front Immunol 2021; 12:672168. [PMID: 34054852 PMCID: PMC8149943 DOI: 10.3389/fimmu.2021.672168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The changes in progesterone (P4) levels during and after pregnancy coincide with the temporary improvement and worsening of several autoimmune diseases like multiple sclerosis (MS) and rheumatoid arthritis (RA). Most likely immune-endocrine interactions play a major role in these pregnancy-induced effects. In this study, we used next generation sequencing to investigate the direct effects of P4 on CD4+ T cell activation, key event in pregnancy and disease. We report profound dampening effects of P4 on T cell activation, altering the gene and protein expression profile and reversing many of the changes induced during the activation. The transcriptomic changes induced by P4 were significantly enriched for genes associated with diseases known to be modulated during pregnancy such as MS, RA and psoriasis. STAT1 and STAT3 were significantly downregulated by P4 and their downstream targets were significantly enriched among the disease-associated genes. Several of these genes included well-known and disease-relevant cytokines, such as IL-12β, CXCL10 and OSM, which were further validated also at the protein level using proximity extension assay. Our results extend the previous knowledge of P4 as an immune regulatory hormone and support its importance during pregnancy for regulating potentially detrimental immune responses towards the semi-allogenic fetus. Further, our results also point toward a potential role for P4 in the pregnancy-induced disease immunomodulation and highlight the need for further studies evaluating P4 as a future treatment option.
Collapse
Affiliation(s)
- Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Rasmus Magnusson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Georgia Papapavlou
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
Hylén U, McGlinchey A, Orešič M, Bejerot S, Humble MB, Särndahl E, Hyötyläinen T, Eklund D. Potential Transdiagnostic Lipid Mediators of Inflammatory Activity in Individuals With Serious Mental Illness. Front Psychiatry 2021; 12:778325. [PMID: 34899431 PMCID: PMC8661474 DOI: 10.3389/fpsyt.2021.778325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
Mental disorders are heterogeneous and psychiatric comorbidities are common. Previous studies have suggested a link between inflammation and mental disorders. This link can manifest as increased levels of proinflammatory mediators in circulation and as signs of neuroinflammation. Furthermore, there is strong evidence that individuals suffering from psychiatric disorders have increased risk of developing metabolic comorbidities. Our group has previously shown that, in a cohort of low-functioning individuals with serious mental disorders, there is increased expression of genes associated with the NLRP3 inflammasome, a known sensor of metabolic perturbations, as well as increased levels of IL-1-family cytokines. In the current study, we set out to explore the interplay between disease-specific changes in lipid metabolism and known markers of inflammation. To this end, we performed mass spectrometry-based lipidomic analysis of plasma samples from low-functioning individuals with serious mental disorders (n = 39) and matched healthy controls (n = 39). By identifying non-spurious immune-lipid associations, we derived a partial correlation network of inflammatory markers and molecular lipids. We identified levels of lipids as being altered between individuals with serious mental disorders and controls, showing associations between lipids and inflammatory mediators, e.g., osteopontin and IL-1 receptor antagonist. These results indicate that, in low-functioning individuals with serious mental disorders, changes in specific lipids associate with immune mediators that are known to affect neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ulrika Hylén
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Aidan McGlinchey
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Bejerot
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Mats B Humble
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
de Weerd HA, Badam TVS, Martínez-Enguita D, Åkesson J, Muthas D, Gustafsson M, Lubovac-Pilav Z. MODifieR: an Ensemble R Package for Inference of Disease Modules from Transcriptomics Networks. Bioinformatics 2020; 36:3918-3919. [PMID: 32271876 DOI: 10.1093/bioinformatics/btaa235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form the so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best-performing method. Hence, there is a need for combining these methods to generate robust disease modules. RESULTS We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases. AVAILABILITY AND IMPLEMENTATION MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Tejaswi V S Badam
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - David Martínez-Enguita
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Julia Åkesson
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Daniel Muthas
- Translational Science and Experimental Medicine, Early Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Mölndal 43183, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | | |
Collapse
|
19
|
Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients. NPJ Syst Biol Appl 2020; 6:25. [PMID: 32839457 PMCID: PMC7445166 DOI: 10.1038/s41540-020-00146-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.
Collapse
|
20
|
Bulk and single cell transcriptomic data indicate that a dichotomy between inflammatory pathways in peripheral blood and arthritic joints complicates biomarker discovery. Cytokine 2020; 127:154960. [DOI: 10.1016/j.cyto.2019.154960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
|
21
|
Dwivedi SK, Tjärnberg A, Tegnér J, Gustafsson M. Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder. Nat Commun 2020; 11:856. [PMID: 32051402 PMCID: PMC7016183 DOI: 10.1038/s41467-020-14666-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Disease modules in molecular interaction maps have been useful for characterizing diseases. Yet biological networks, that commonly define such modules are incomplete and biased toward some well-studied disease genes. Here we ask whether disease-relevant modules of genes can be discovered without prior knowledge of a biological network, instead training a deep autoencoder from large transcriptional data. We hypothesize that modules could be discovered within the autoencoder representations. We find a statistically significant enrichment of genome-wide association studies (GWAS) relevant genes in the last layer, and to a successively lesser degree in the middle and first layers respectively. In contrast, we find an opposite gradient where a modular protein-protein interaction signal is strongest in the first layer, but then vanishing smoothly deeper in the network. We conclude that a data-driven discovery approach is sufficient to discover groups of disease-related genes.
Collapse
Affiliation(s)
- Sanjiv K Dwivedi
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Andreas Tjärnberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Department of Biology, Center For Genomics and Systems Biology, New York University, New York, NY, 10008, USA
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Jesper Tegnér
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
22
|
Li X, Lee EJ, Gawel DR, Lilja S, Schäfer S, Zhang H, Benson M. Meta-Analysis of Expression Profiling Data Indicates Need for Combinatorial Biomarkers in Pediatric Ulcerative Colitis. J Immunol Res 2020; 2020:8279619. [PMID: 32411805 PMCID: PMC7204128 DOI: 10.1155/2020/8279619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Unbiased studies using different genome-wide methods have identified a great number of candidate biomarkers for diagnosis and treatment response in pediatric ulcerative colitis (UC). However, clinical translation has been proven difficult. Here, we hypothesized that one reason could be differences between inflammatory responses in an inflamed gut and in peripheral blood cells. METHODS We performed meta-analysis of gene expression microarray data from intestinal biopsies and whole blood cells (WBC) from pediatric patients with UC and healthy controls in order to identify overlapping pathways, predicted upstream regulators, and potential biomarkers. RESULTS Analyses of profiling datasets from colonic biopsies showed good agreement between different studies regarding pathways and predicted upstream regulators. The most activated predicted upstream regulators included TNF, which is known to have a key pathogenic and therapeutic role in pediatric UC. Despite this, the expression levels of TNF were increased in neither colonic biopsies nor WBC. A potential explanation was increased expression of TNFR2, one of the membrane-bound receptors of TNF in the inflamed colon. Further analyses showed a similar pattern of complex relations between the expression levels of the regulators and their receptors. We also found limited overlap between pathways and predicted upstream regulators in colonic biopsies and WBC. An extended search including all differentially expressed genes that overlapped between colonic biopsies and WBC only resulted in identification of three potential biomarkers involved in the regulation of intestinal inflammation. However, two had been previously proposed in adult inflammatory bowel diseases (IBD), namely, MMP9 and PROK2. CONCLUSIONS Our findings indicate that biomarker identification in pediatric UC is complicated by the involvement of multiple pathways, each of which includes many different types of genes in the blood or inflamed intestine. Therefore, further studies for identification of combinatorial biomarkers are warranted. Our study may provide candidate biomarkers for such studies.
Collapse
Affiliation(s)
- Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Danuta R. Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Sweden
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Sweden
| |
Collapse
|
23
|
Håkansson I, Ernerudh J, Vrethem M, Dahle C, Ekdahl KN. Complement activation in cerebrospinal fluid in clinically isolated syndrome and early stages of relapsing remitting multiple sclerosis. J Neuroimmunol 2020; 340:577147. [PMID: 31951875 DOI: 10.1016/j.jneuroim.2020.577147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
To assess if markers of complement activation are associated with disease activity, C1q, C3, C3a and sC5b-9 levels in plasma and cerebrospinal fluid (CSF) were determined in 41 patients with clinically isolated syndrome (CIS) or remitting multiple sclerosis (RRMS), in a prospective longitudinal four-year cohort study. C1q in CSF (CSF-C1q) was significantly higher in patients than in controls. Baseline CSF-C1q and CSF-C3a correlated with several neuroinflammatory markers and neurofilament light chain levels. Baseline CSF-C3a correlated with the number of T2 lesions at baseline and new T2 lesions during follow-up. Baseline CSF-C3a was also significantly higher in patients with (n = 21) than in patients without (n = 20) signs of disease activity according to the NEDA-3 concept during one year of follow-up (p ≤ .01) Study results support that complement activation is involved in MS pathophysiology and that CSF-C3a carries prognostic information.
Collapse
Affiliation(s)
- Irene Håkansson
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristina N Ekdahl
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Appelgren D, Enocsson H, Skogman BH, Nordberg M, Perander L, Nyman D, Nyberg C, Knopf J, Muñoz LE, Sjöwall C, Sjöwall J. Neutrophil Extracellular Traps (NETs) in the Cerebrospinal Fluid Samples from Children and Adults with Central Nervous System Infections. Cells 2019; 9:cells9010043. [PMID: 31877982 PMCID: PMC7016761 DOI: 10.3390/cells9010043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Neutrophils operate as part of the innate defence in the skin and may eliminate the Borrelia spirochaete via phagocytosis, oxidative bursts, and hydrolytic enzymes. However, their importance in Lyme neuroborreliosis (LNB) is unclear. Neutrophil extracellular trap (NET) formation, which is associated with the production of reactive oxygen species, involves the extrusion of the neutrophil DNA to form traps that incapacitate bacteria and immobilise viruses. Meanwhile, NET formation has recently been studied in pneumococcal meningitis, the role of NETs in other central nervous system (CNS) infections has previously not been studied. Here, cerebrospinal fluid (CSF) samples from clinically well-characterised children (N = 111) and adults (N = 64) with LNB and other CNS infections were analysed for NETs (DNA/myeloperoxidase complexes) and elastase activity. NETs were detected more frequently in the children than the adults (p = 0.01). NET presence was associated with higher CSF levels of CXCL1 (p < 0.001), CXCL6 (p = 0.007), CXCL8 (p = 0.003), CXCL10 (p < 0.001), MMP-9 (p = 0.002), TNF (p = 0.02), IL-6 (p < 0.001), and IL-17A (p = 0.03). NETs were associated with fever (p = 0.002) and correlated with polynuclear pleocytosis (rs = 0.53, p < 0.0001). We show that neutrophil activation and active NET formation occur in the CSF samples of children and adults with CNS infections, mainly caused by Borrelia and neurotropic viruses. The role of NETs in the early phase of viral/bacterial CNS infections warrants further investigation.
Collapse
Affiliation(s)
- Daniel Appelgren
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Helena Enocsson
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; (H.E.); (C.S.)
| | - Barbro H. Skogman
- Center for Clinical Research Dalarna-Uppsala University, Region Dalarna and Faculty of Medicine and Health Sciences, Örebro University, SE-702 81 Örebro, Sweden;
| | - Marika Nordberg
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Linda Perander
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Dag Nyman
- Bimelix AB, AX-22 100 Mariehamn, Åland, Finland;
| | - Clara Nyberg
- Åland Central Hospital, Department of Infectious Diseases, AX-22 100 Mariehamn, Åland, Finland; (M.N.); (L.P.); (C.N.)
| | - Jasmin Knopf
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), DE-91 054 Erlangen, Germany; (J.K.); (L.E.M.)
| | - Luis E. Muñoz
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), DE-91 054 Erlangen, Germany; (J.K.); (L.E.M.)
| | - Christopher Sjöwall
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden; (H.E.); (C.S.)
| | - Johanna Sjöwall
- Clinic of Infectious Diseases, Linköping University Hospital, SE-581 85 Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
- Correspondence:
| |
Collapse
|
25
|
Cavalli E, Mazzon E, Basile MS, Mammana S, Pennisi M, Fagone P, Kalfin R, Martinovic V, Ivanovic J, Andabaka M, Mesaros S, Pekmezovic T, Drulovic J, Nicoletti F, Petralia MC. In Silico and In Vivo Analysis of IL37 in Multiple Sclerosis Reveals Its Probable Homeostatic Role on the Clinical Activity, Disability, and Treatment with Fingolimod. Molecules 2019; 25:molecules25010020. [PMID: 31861585 PMCID: PMC6982851 DOI: 10.3390/molecules25010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We evaluated the in silico expression and circulating levels of interleukin (IL)37 in patients with different forms of multiple sclerosis (MS) and also upon treatment with different disease-modifying drugs. The combined interpretation of the resulting data strengthens and extends the current emerging concept that endogenous IL37 plays an important role in determining onset and progression of MS. The in silico analysis revealed that production of IL37 from cluster of differentiation (CD)4+ T cells from MS patients was reduced in vitro as compared to healthy controls. The analysis of the datasets also demonstrated that “higher” levels of IL37 production from PBMC entailed significant protection from MS relapses. In addition, the in vivo part of the study showed that IL37 was selectively augmented in the sera of MS patients during a relapse and that treatment with the high potency disease-modifying drug fingolimod significantly increased the frequency of patients with circulating blood levels of IL37 (6/9, 66%) as compared to patients receiving no treatment (n = 48) or platform therapy (n = 59) who had levels of IL37 below the limit of the sensitivity of the assay. This finding therefore anticipates that fingolimod may at least partially exert its beneficial effects in MS by upregulating the production of IL37.
Collapse
Affiliation(s)
- Eugenio Cavalli
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 23 1113 Sofia, Bulgaria;
| | - Vanja Martinovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Jovana Ivanovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Marko Andabaka
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Sarlota Mesaros
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Tatjana Pekmezovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Dr Subotica 6, 11000 Belgrade, Serbia; (V.M.); (J.I.); (M.A.); (S.M.); (T.P.); (J.D.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (M.S.B.); (M.P.); (P.F.)
- Correspondence: ; Tel.: +39-095-478-1270
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (E.C.); (E.M.); (S.M.); (M.C.P.)
| |
Collapse
|
26
|
Gawel DR, Lee EJ, Li X, Lilja S, Matussek A, Schäfer S, Olsen RS, Stenmarker M, Zhang H, Benson M. An algorithm-based meta-analysis of genome- and proteome-wide data identifies a combination of potential plasma biomarkers for colorectal cancer. Sci Rep 2019; 9:15575. [PMID: 31666584 PMCID: PMC6821706 DOI: 10.1038/s41598-019-51999-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Screening programs for colorectal cancer (CRC) often rely on detection of blood in stools, which is unspecific and leads to a large number of colonoscopies of healthy subjects. Painstaking research has led to the identification of a large number of different types of biomarkers, few of which are in general clinical use. Here, we searched for highly accurate combinations of biomarkers by meta-analyses of genome- and proteome-wide data from CRC tumors. We focused on secreted proteins identified by the Human Protein Atlas and used our recently described algorithms to find optimal combinations of proteins. We identified nine proteins, three of which had been previously identified as potential biomarkers for CRC, namely CEACAM5, LCN2 and TRIM28. The remaining proteins were PLOD1, MAD1L1, P4HA1, GNS, C12orf10 and P3H1. We analyzed these proteins in plasma from 80 patients with newly diagnosed CRC and 80 healthy controls. A combination of four of these proteins, TRIM28, PLOD1, CEACAM5 and P4HA1, separated a training set consisting of 90% patients and 90% of the controls with high accuracy, which was verified in a test set consisting of the remaining 10%. Further studies are warranted to test our algorithms and proteins for early CRC diagnosis.
Collapse
Affiliation(s)
- Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Division of Psychiatrics & Rehabilitation & Diagnostics, Region Jönköping County, Jönköping, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Renate Slind Olsen
- Pathology Laboratory, Division of Psychiatrics & Rehabilitation & Diagnostics, Region Jönköping County, Jönköping, Sweden.,Center for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Margaretha Stenmarker
- Department of Paediatrics, Jönköping, Region Jönköping County, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Lombardo SD, Mazzon E, Basile MS, Campo G, Corsico F, Presti M, Bramanti P, Mangano K, Petralia MC, Nicoletti F, Fagone P. Modulation of Tetraspanin 32 (TSPAN32) Expression in T Cell-Mediated Immune Responses and in Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20184323. [PMID: 31487788 PMCID: PMC6770290 DOI: 10.3390/ijms20184323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 01/25/2023] Open
Abstract
Tetraspanins are a conserved family of proteins involved in a number of biological processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses, but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28 is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3 is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent minor changes upon activation. The in vitro data were finally translated into the context of multiple sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T helper immune response and may represent a target of future immunoregulatory therapies for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giorgia Campo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Federica Corsico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mario Presti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
28
|
Gawel DR, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B, Bengnér M, Björkander J, Biggs S, Ernerudh J, Hjortswang H, Karlsson JE, Köpsen M, Lee EJ, Lentini A, Li X, Magnusson M, Martínez-Enguita D, Matussek A, Nestor CE, Schäfer S, Seifert O, Sonmez C, Stjernman H, Tjärnberg A, Wu S, Åkesson K, Shalek AK, Stenmarker M, Zhang H, Gustafsson M, Benson M. A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med 2019; 11:47. [PMID: 31358043 PMCID: PMC6664760 DOI: 10.1186/s13073-019-0657-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. Methods The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. Results We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. Conclusions Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease. Electronic supplementary material The online version of this article (10.1186/s13073-019-0657-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Jordi Serra-Musach
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Jesper Aagesen
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Bengt Asking
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
| | - Malin Bengnér
- Office for Control of Communicable Diseases, Region Jönköping County, Jönköping, Sweden
| | - Janne Björkander
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Sophie Biggs
- Division of Rheumatology, Autoimmunity, and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Gastroenterology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan-Erik Karlsson
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mattias Köpsen
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Antonio Lentini
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Mattias Magnusson
- Division of Rheumatology, Autoimmunity, and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Clinical Microbiology, Region Jönköping County, Jönköping, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Oliver Seifert
- Department of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ceylan Sonmez
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Henrik Stjernman
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Andreas Tjärnberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Simon Wu
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Karin Åkesson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Futurum - Academy for Health and Care, Department of Pediatrics, Region Jönköping County, Jönköping, Sweden
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Margaretha Stenmarker
- Futurum - Academy for Health and Care, Department of Pediatrics, Region Jönköping County, Jönköping, Sweden.,Department of Pediatrics, Institution for Clinical Sciences, Göteborg, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
29
|
Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:10488-10493. [PMID: 31068461 PMCID: PMC6535008 DOI: 10.1073/pnas.1816911116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this report, we show that fibrinogen, identified by proteomics to be present in blood plasma extracellular vesicles (EVs), is sufficient and required for autoimmune-mediated spontaneous relapsing disease activity in a murine model of multiple sclerosis (MS). Unique to this model is that plasma EVs induced CD8-mediated disease. Analysis of human plasma EVs identified fibrinogen in MS patient samples, thereby providing a compelling translational association between our experimental findings and the perpetuation of CD8-mediated autoimmunity in human MS. Hence, these findings provide evidence for EVs as means by which to model an important aspect of spontaneous CD8+ T cell development related to autoimmunity in MS. Extracellular vesicles (EVs) are emerging as potent mediators of intercellular communication with roles in inflammation and disease. In this study, we examined the role of EVs from blood plasma (pEVs) in an experimental autoimmune encephalomyelitis mouse model of central nervous system demyelination. We determined that pEVs induced a spontaneous relapsing−remitting disease phenotype in MOG35–55-immunized C57BL/6 mice. This modified disease phenotype was found to be driven by CD8+ T cells and required fibrinogen in pEVs. Analysis of pEVs from relapsing−remitting multiple sclerosis patients also identified fibrinogen as a significant portion of pEV cargo. Together, these data suggest that fibrinogen in pEVs contributes to the perpetuation of neuroinflammation and relapses in disease.
Collapse
|
30
|
Nicoletti F, Mazzon E, Fagone P, Mangano K, Mammana S, Cavalli E, Basile MS, Bramanti P, Scalabrino G, Lange A, Curtin F. Prevention of clinical and histological signs of MOG-induced experimental allergic encephalomyelitis by prolonged treatment with recombinant human EGF. J Neuroimmunol 2019; 332:224-232. [PMID: 31100693 DOI: 10.1016/j.jneuroim.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor (EGF) represents the prototype of the group I EGF family. The pleiotropic effects of the EGF have attracted attention to the possibility that it could be implicated in autoimmune diseases, such as Multiple Sclerosis (MS). We show here that treatment with EGF, as a late prophylactic regime, improved the clinical and histological features of EAE, a preclinical model of MS. In silico analysis further corroborated these findings by demonstrating that EGF receptors are less expressed in CNS from patients with MS as compared to controls. Taken together these data provide clear-cut in vivo proof of concept for a beneficial role of exogenously administered EGF in MS, that may, therefore, represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| | | | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Santa Mammana
- IRCCS Centro Neurolesi 'Bonino-Pulejo', Messina, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | | | - Giuseppe Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, Italy
| | - Alois Lange
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Francois Curtin
- Division of Clinical Pharmacology and Toxicology, University of Geneva, Switzerland
| |
Collapse
|
31
|
Brorson IS, Eriksson A, Leikfoss IS, Celius EG, Berg-Hansen P, Barcellos LF, Berge T, Harbo HF, Bos SD. No differential gene expression for CD4 + T cells of MS patients and healthy controls. Mult Scler J Exp Transl Clin 2019; 5:2055217319856903. [PMID: 31223483 PMCID: PMC6566490 DOI: 10.1177/2055217319856903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiple sclerosis-associated genetic variants indicate that the adaptive immune system plays an important role in the risk of developing multiple sclerosis. It is currently not well understood how these multiple sclerosis-associated genetic variants contribute to multiple sclerosis risk. CD4+ T cells are suggested to be involved in multiple sclerosis disease processes. OBJECTIVE We aim to identify CD4+ T cell differential gene expression between multiple sclerosis patients and healthy controls in order to understand better the role of these cells in multiple sclerosis. METHODS We applied RNA sequencing on CD4+ T cells from multiple sclerosis patients and healthy controls. RESULTS We did not identify significantly differentially expressed genes in CD4+ T cells from multiple sclerosis patients. Furthermore, pathway analyses did not identify enrichment for specific pathways in multiple sclerosis. When we investigated genes near multiple sclerosis-associated genetic variants, we did not observe significant enrichment of differentially expressed genes. CONCLUSION We conclude that CD4+ T cells from multiple sclerosis patients do not show significant differential gene expression. Therefore, gene expression studies of all circulating CD4+ T cells may not result in viable biomarkers. Gene expression studies of more specific subsets of CD4+ T cells remain justified to understand better which CD4+ T cell subsets contribute to multiple sclerosis pathology.
Collapse
Affiliation(s)
- Ina S Brorson
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Anna Eriksson
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Ingvild S Leikfoss
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Elisabeth G Celius
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Pål Berg-Hansen
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Lisa F Barcellos
- Computational Biology Graduate Group, University of California, USA
- Genetic Epidemiology and Genomics Laboratory, University of California, USA
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Norway
- Institute of Mechanical, Electronics and Chemical Engineering, OsloMet - Oslo Metropolitan University, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| | - Steffan D Bos
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Neurology, Oslo University Hospital, Norway
| |
Collapse
|
32
|
Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, Dahle C, Vrethem M, Ernerudh J. Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis. J Neuroinflammation 2018; 15:209. [PMID: 30021640 PMCID: PMC6052680 DOI: 10.1186/s12974-018-1249-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023] Open
Abstract
Background There is a need for clinically useful biomarkers of disease activity in clinically isolated syndrome (CIS) and relapsing remitting MS (RRMS). The aim of this study was to assess the correlation between neurofilament light chain (NFL) in cerebrospinal fluid (CSF) and serum and the relationship between NFL and other biomarkers, subsequent disease activity, and brain volume loss in CIS and RRMS. Methods A panel of neurodegenerative and neuroinflammatory markers were analyzed in repeated CSF samples from 41 patients with CIS or RRMS in a prospective longitudinal cohort study and from 22 healthy controls. NFL in serum was analyzed using a single-molecule array (Simoa) method. “No evidence of disease activity-3” (NEDA-3) status and brain volume (brain parenchymal fraction calculated using SyMRI®) were recorded during 4 years of follow-up. Results NFL levels in CSF and serum correlated significantly (all samples, n = 63, r 0.74, p < 0.001), but CSF-NFL showed an overall stronger association profile with NEDA-3 status, new T2 lesions, and brain volume loss. CSF-NFL was associated with both new T2 lesions and brain volume loss during follow-up, whereas CSF-CHI3L1 was associated mainly with brain volume loss and CXCL1, CXCL10, CXCL13, CCL22, and MMP-9 were associated mainly with new T2 lesions. Conclusions Serum and CSF levels of NFL correlate, but CSF-NFL predicts and reflects disease activity better than S-NFL. CSF-NFL levels are associated with both new T2 lesions and brain volume loss. Our findings further add to the accumulating evidence that CSF-NFL is a clinically useful biomarker in CIS and RRMS and should be considered in the expanding NEDA concept. CSF-CXCL10 and CSF-CSF-CHI3L1 are potential markers of disease activity and brain volume loss, respectively. Electronic supplementary material The online version of this article (10.1186/s12974-018-1249-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Håkansson
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Anders Tisell
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Petra Cassel
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Inst. of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Peter Lundberg
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F. Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: In silico and in vivo evidences. J Neuroimmunol 2018; 322:46-56. [PMID: 29935880 DOI: 10.1016/j.jneuroim.2018.06.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic actions involved in the pathogenesis of autoimmune disorders, including Multiple Sclerosis (MS). We have first evaluated in silico the involvement of MIF, its homologue D-DT, and the receptors CD74, CD44, CXCR2 and CXCR4 in encephalitogenic T cells from a mouse model of MS, the Experimental Allergic Encephalomyelitis (EAE), as well as in circulating T helper cells from MS patients. We show an upregulation of the receptors involved in MIF signaling both in the animal model and in patients. Also, a significant increase in MIF receptors is found in the CNS lesions associated to MS. Finally, the specific inhibitor of MIF, ISO-1, improved both ex vivo and in vivo the features of EAE. Overall, our data indicate that there is a significant involvement of the MIF pathway in MS ethiopathogenesis and that interventions specifically blocking MIF receptors may represent useful therapeutic approaches in the clinical setting.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Formative Processes, University of Catania, Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
34
|
Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux D, De Meulder B, Pellet J, Balaur I, Saqi M, Nogueira MM, He F, Parton A, Lemonnier N, Gawron P, Gebel S, Hainaut P, Ollert M, Dogrusoz U, Barillot E, Zinovyev A, Schneider R, Balling R, Auffray C. Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. NPJ Syst Biol Appl 2018; 4:21. [PMID: 29872544 PMCID: PMC5984630 DOI: 10.1038/s41540-018-0059-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes.
Collapse
Affiliation(s)
- Alexander Mazein
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Marek Ostaszewski
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Steven Watterson
- 7Northern Ireland Centre for Stratified Medicine, Ulster University, C-Tric, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB UK
| | - Nicolas Le Novère
- 8The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Diane Lefaudeux
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Bertrand De Meulder
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Johann Pellet
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Irina Balaur
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Mansoor Saqi
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Maria Manuela Nogueira
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Feng He
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of BioHealth, 29 Rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg
| | - Andrew Parton
- 7Northern Ireland Centre for Stratified Medicine, Ulster University, C-Tric, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB UK
| | - Nathanaël Lemonnier
- 10Institute for Advanced Biosciences, University Grenoble-Alpes-INSERM U1209-CNRS UMR5309, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Piotr Gawron
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Stephan Gebel
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Pierre Hainaut
- 10Institute for Advanced Biosciences, University Grenoble-Alpes-INSERM U1209-CNRS UMR5309, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), House of BioHealth, 29 Rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.,11Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Ugur Dogrusoz
- 12Faculty of Engineering, Computer Engineering Department, Bilkent University, Ankara, 06800 Turkey
| | - Emmanuel Barillot
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Andrei Zinovyev
- 3Institut Curie, Paris, France.,4INSERM, U900 Paris, France.,5Mines ParisTech, Fontainebleau, France.,6PSL Research University, Paris, France
| | - Reinhard Schneider
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- 2Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Charles Auffray
- 1European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
35
|
Jokubaitis VG, Zhou Y, Butzkueven H, Taylor BV. Genotype and Phenotype in Multiple Sclerosis-Potential for Disease Course Prediction? Curr Treat Options Neurol 2018; 20:18. [PMID: 29687310 DOI: 10.1007/s11940-018-0505-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This review will examine the current evidence that genetic and/or epigenetic variation may influence the multiple sclerosis (MS) clinical course, phenotype, and measures of MS severity including disability progression and relapse rate. RECENT FINDINGS There is little evidence that MS clinical phenotype is under significant genetic control. There is increasing evidence that there may be genetic determinants of the rate of disability progression. However, studies that can analyse disability progression and take into account all the confounding variables such as treatment, clinical characteristics, and environmental factors are by necessity longitudinal, relatively small, and generally of short duration, and thus do not lend themselves to the assessment of hundreds of thousands of genetic variables obtained from GWAS. Despite this, there is recent evidence to support the association of genetic loci with relapse rate. Recent progress suggests that genetic variations could be associated with disease severity, but not MS clinical phenotype, but these findings are not definitive and await replication. Pooling of study results, application of other genomic techniques including epigenomics, and analysis of biomarkers of progression could functionally validate putative severity markers.
Collapse
Affiliation(s)
- Vilija G Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine and Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine and Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
- Department of Neurology, Box Hill Hospital, Box Hill, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
- Department of Neurology, Royal Hobart Hospital, Hobart, Australia.
| |
Collapse
|
36
|
Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, Dahle C, Vrethem M, Ernerudh J. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur J Neurol 2017; 24:703-712. [PMID: 28261960 DOI: 10.1111/ene.13274] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Improved biomarkers are needed to facilitate clinical decision-making and as surrogate endpoints in clinical trials in multiple sclerosis (MS). We assessed whether neurodegenerative and neuroinflammatory markers in cerebrospinal fluid (CSF) at initial sampling could predict disease activity during 2 years of follow-up in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS. METHODS Using multiplex bead array and enzyme-linked immunosorbent assay, CXCL1, CXCL8, CXCL10, CXCL13, CCL20, CCL22, neurofilament light chain (NFL), neurofilament heavy chain, glial fibrillary acidic protein, chitinase-3-like-1, matrix metalloproteinase-9 and osteopontin were analysed in CSF from 41 patients with CIS or relapsing-remitting MS and 22 healthy controls. Disease activity (relapses, magnetic resonance imaging activity or disability worsening) in patients was recorded during 2 years of follow-up in this prospective longitudinal cohort study. RESULTS In a logistic regression analysis model, NFL in CSF at baseline emerged as the best predictive marker, correctly classifying 93% of patients who showed evidence of disease activity during 2 years of follow-up and 67% of patients who did not, with an overall proportion of 85% (33 of 39 patients) correctly classified. Combining NFL with either neurofilament heavy chain or osteopontin resulted in 87% overall correctly classified patients, whereas combining NFL with a chemokine did not improve results. CONCLUSIONS This study demonstrates the potential prognostic value of NFL in baseline CSF in CIS and relapsing-remitting MS and supports its use as a predictive biomarker of disease activity.
Collapse
Affiliation(s)
- I Håkansson
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Tisell
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - P Cassel
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - P Lundberg
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - C Dahle
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Vrethem
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|