1
|
Tarin M, Oryani MA, Javid H, Hashemzadeh A, Karimi-Shahri M. Advancements in chitosan-based nanocomposites with ZIF-8 nanoparticles: multifunctional platforms for wound healing applications. Carbohydr Polym 2025; 362:123656. [PMID: 40409814 DOI: 10.1016/j.carbpol.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/25/2025]
Abstract
The integration of chitosan and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles has demonstrated significant potential in enhancing wound healing through their multifunctional capabilities. This review explores recent developments in chitosan-based nanocomposites incorporating ZIF-8 nanoparticles, emphasizing their antibacterial properties, pH-responsive drug release, angiogenesis promotion, and mechanical stability. Applications span hydrogel scaffolds, electrospun nanofibers, and sprayable membranes, all tailored for addressing challenges such as bacterial resistance, delayed tissue regeneration, and chronic wound management. Key findings highlight the synergistic benefits of ZIF-8's bioactivity with chitosan's biocompatibility, yielding innovative therapeutic strategies for complex wound healing scenarios. The discussed advancements not only underline their clinical relevance but also set a foundation for future explorations in regenerative medicine.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of medical sciences, Mashhad. Iran.
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
2
|
Lu J, Dong Q, Zhang R, Wu W, Yang H. CXCL1 and CXCL2: Key Regulators of Host Defense Against Phialophora verrucosa. J Inflamm Res 2025; 18:6319-6329. [PMID: 40391231 PMCID: PMC12087586 DOI: 10.2147/jir.s518653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
Purpose Dematiaceous fungi, such as Phialophora verrucosa (P. verrucosa), cause persistent infections that are difficult to treat. The purpose of this study was to investigate the roles of chemokines CXCL1 and CXCL2 in the innate immune defense against P. verrucosa infections. Methods A subcutaneous infection model was employed, in which live P. verrucosa conidia were administered into the footpads of wild-type C57BL/6 mice and their Cxcl1 and Cxcl2 knockout (KO) counterparts (equal numbers of male and female mice). The natural course of infection, pathological changes, and immune responses were monitored continuously over four weeks. Results The current results show that both CXCL1 and CXCL2 deficiencies impair fungal clearance, leading to prolonged infection as evidenced by higher fungal loads and histopathology in Cxcl1/Cxcl2 KO mice at week 4. In Cxcl1 KO mice, increased levels of inflammatory cytokines IFN-γ, G-CSF, and IL-4 were observed, likely compensating for the immunological deficiencies caused by the lack of CXCL1. Conversely, Cxcl2 KO mice exhibited impaired neutrophil infiltration early in infection, accompanied by a significant increase in macrophage infiltration. Conclusion These findings highlight the critical roles of CXCL1 and CXCL2 in mounting an effective immune response against dematiaceous fungi and suggest their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jiejie Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, Hainan, People’s Republic of China
- General Hospital of Southern Theater Command, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Dong
- Department of Dermatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Ruijun Zhang
- Department of Dermatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Weiwei Wu
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, Hainan, People’s Republic of China
- Department of Dermatology, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, People’s Republic of China
| | - Huilan Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- General Hospital of Southern Theater Command, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Kovacs T, Cs. Szabo B, Kothalawala RC, Szekelyhidi V, Nagy P, Varga Z, Panyi G, Zakany F. Inhibition of the H V1 voltage-gated proton channel compromises the viability of human polarized macrophages in a polarization- and ceramide-dependent manner. Front Immunol 2024; 15:1487578. [PMID: 39742270 PMCID: PMC11685079 DOI: 10.3389/fimmu.2024.1487578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The human voltage-gated proton channel (HV1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit HV1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied HV1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound. ClGBI may exert this effect principally by blocking HV1 since the sensitivity of polarized macrophages correlates well with their HV1 expression levels; inhibitors of other macrophage ion channels that may be susceptible for off-target ClGBI effects cause no viability reductions; and Zn2+, another non-specific HV1 blocker, exerts similar effects. As a potential mechanism behind the ClGBI-induced cell death, we identify a complex pH dysregulation involving acidification of the cytoplasm and alkalinization of the lysosomes, which eventually result in membrane ceramide accumulation. Furthermore, ClGBI effects are alleviated by ARC39, a selective acid sphingomyelinase inhibitor supporting the unequivocal significance of ceramide accumulation in the process. Altogether, our results suggest that HV1 inhibition leads to cellular toxicity in polarized macrophages in a polarization-dependent manner, which occurs due to a pH dysregulation and concomitant ceramide overproduction mainly depending on the activity of acid sphingomyelinase. The reduced macrophage viability and plausible concomitant changes in homeostatic M1-M2 balance could contribute to both the therapeutic and potential side effects of HV1 inhibitors that show great promise in the treatment of neuroinflammation and malignant diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Palmer LD, Traina KA, Juttukonda LJ, Lonergan ZR, Bansah DA, Ren X, Geary JH, Pinelli C, Boyd KL, Yang TS, Skaar EP. Dietary zinc deficiency promotes Acinetobacter baumannii lung infection via IL-13 in mice. Nat Microbiol 2024; 9:3196-3209. [PMID: 39548344 PMCID: PMC11800279 DOI: 10.1038/s41564-024-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Dietary zinc deficiency is a major risk factor for pneumonia. Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical public health threat due to increasing rates of multidrug resistance. Patient populations at increased risk for A. baumannii pneumonia are also at increased risk of zinc deficiency. Here we established a mouse model of dietary zinc deficiency and acute A. baumannii pneumonia to test the hypothesis that host zinc deficiency contributes to A. baumannii pathogenesis. We showed that zinc-deficient mice have significantly increased A. baumannii burdens in the lungs, dissemination to the spleen and higher mortality. During infection, zinc-deficient mice produce more pro-inflammatory cytokines, including IL-13. Administration of IL-13 promotes A. baumannii dissemination in zinc-sufficient mice, while antibody neutralization of IL-13 protects zinc-deficient mice from A. baumannii dissemination and mortality during infection. These data highlight the therapeutic potential of anti-IL-13 antibody treatments, which are well tolerated in humans, for the treatment of pneumonia.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| | - Kacie A Traina
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Dziedzom A Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- American University of the Caribbean, Cupecoy, Sint Maarten
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- NAMSA, Minneapolis, MN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Sosnik A, Zlotver I, Peled E. Galactomannan- graft-poly(methyl methacrylate) nanoparticles induce an anti-inflammatory phenotype in human macrophages. J Mater Chem B 2023; 11:8471-8483. [PMID: 37587844 DOI: 10.1039/d3tb01397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
6
|
Secli V, Di Biagio C, Martini A, Michetti E, Pacello F, Ammendola S, Battistoni A. Localized Infections with P. aeruginosa Strains Defective in Zinc Uptake Reveal That Zebrafish Embryos Recapitulate Nutritional Immunity Responses of Higher Eukaryotes. Int J Mol Sci 2023; 24:ijms24020944. [PMID: 36674459 PMCID: PMC9862628 DOI: 10.3390/ijms24020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The innate immune responses of mammals to microbial infections include strategies based on manipulating the local concentration of metals such as iron (Fe) and zinc (Zn), commonly described as nutritional immunity. To evaluate whether these strategies are also present in zebrafish embryos, we have conducted a series of heart cavity-localized infection experiments with Pseudomonas aeruginosa strains characterized by a different ability to acquire Zn. We have found that, 48 h after infection, the bacterial strains lacking critical components of the Zn importers ZnuABC and ZrmABCD have a reduced colonization capacity compared to the wild-type strain. This observation, together with the finding of a high level of expression of Zur-regulated genes, suggests the existence of antimicrobial mechanisms based on Zn sequestration. However, we have observed that strains lacking such Zn importers have a selective advantage over the wild-type strain in the early stages of infection. Analysis of the expression of the gene that encodes for a Zn efflux pump has revealed that at short times after infection, P. aeruginosa is exposed to high concentrations of Zn. At the same time, zebrafish respond to the infection by activating the expression of the Zn transporters Slc30a1 and Slc30a4, whose mammalian homologs mediate a redistribution of Zn in phagocytes aimed at intoxicating bacteria with a metal excess. These observations indicate that teleosts share similar nutritional immunity mechanisms with higher vertebrates, and confirm the usefulness of the zebrafish model for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Valerio Secli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudia Di Biagio
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Council for Agricultural Research and Economics, Research, Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Monterotondo, Italy
| | - Emma Michetti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesca Pacello
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Huang S, Deepe GS. Notch regulates Histoplasma capsulatum clearance in mouse lungs during innate and adaptive immune response phases in primary infection. J Leukoc Biol 2022; 112:1137-1154. [PMID: 35603470 PMCID: PMC9613517 DOI: 10.1002/jlb.4a1221-743r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
The clearance of the pathogenic fungus, Histoplasma capsulatum, requires cooperation between innate and adaptive immunity. Since this organism is inhaled, lung macrophages and dendritic cells (DCs) are the first lines of defense. Moreover, DCs act as APCs to drive the education of type 1 Th cells to produce IFNγ, which contributes to the final elimination of H. capsulatum. In this study, we explored the importance of Notch signaling in host defenses using a mouse model of pulmonary histoplasmosis. We found up-regulation of Notch ligands (NLs) and Notch receptors (NRs) on phagocytes and IFNγ+ CD4+ T cells upon infection in lungs and lymph nodes. To ascertain the influence of Notch on the course of infection, we used a gamma-secretase inhibitor (GSI), LY-411,575, which inhibits NR downstream signaling. This compound impaired fungal clearance when given at the time of infection or 7 days after infection. However, GSI did not impact fungal clearance in mice with preexisting immunity. The dampened host defenses were associated with reduced differentiation and maturation of monocyte-derived DCs and elevatmonocyte-derived macrophage and alveolar macrophage polarization to M2. Our study reveals the critical nature of Notch signaling in maintaining control of this infectious agent.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Internal Medicine and Department of Pathology, Pathobiology and Molecular Medicine ProgramUniversity of Cincinnati College of Medicine, Cincinnati, USA,Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA234 Albert Sabin WayCincinnatiOH45267United States
| | - George S. Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA234 Albert Sabin WayCincinnatiOH45267United States
| |
Collapse
|
8
|
Kalyan G, Slusser-Nore A, Dunlevy JR, Bathula CS, Shabb JB, Muhonen W, Somji S, Sens DA, Garrett SH. Protein interactions with metallothionein-3 promote vectorial active transport in human proximal tubular cells. PLoS One 2022; 17:e0267599. [PMID: 35503771 PMCID: PMC9064079 DOI: 10.1371/journal.pone.0267599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Metallothionein 3 (MT-3) is a small, cysteine-rich protein that binds to essential metals required for homeostasis, as well as to heavy metals that have the potential to exert toxic effects on cells. MT-3 is expressed by epithelial cells of the human kidney, including the cells of the proximal tubule. Our laboratory has previously shown that mortal cultures of human proximal tubular (HPT) cells express MT-3 and form domes in the cell monolayer, a morphological feature indicative of vectorial active transport, an essential function of the proximal tubule. However, an immortalized proximal tubular cell line HK-2 lacks the expression of MT-3 and fails to form domes in the monolayer. Transfection of HK-2 cells with the MT-3 gene restores dome formation in these cells suggesting that MT-3 is required for vectorial active transport. In order to determine how MT-3 imparts this essential feature to the proximal tubule, we sought to identify proteins that interact either directly or indirectly with MT-3. Using a combination of pulldowns, co-immunoprecipitations, and mass spectrometry analysis, putative protein interactants were identified and subsequently confirmed by Western analysis and confocal microscopy, following which proteins with direct physical interactions were investigated through molecular docking. Our data shows that MT-3 interacts with myosin-9, aldolase A, enolase 1, β-actin, and tropomyosin 3 and that these interactions are maximized at the periphery of the apical membrane of doming proximal tubule cells. Together these observations reveal that MT-3 interacts with proteins involved in cytoskeletal organization and energy metabolism, and these interactions at the apical membrane support vectorial active transport and cell differentiation in proximal tubule cultures.
Collapse
Affiliation(s)
- Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Jane R. Dunlevy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - John B. Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Wallace Muhonen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kim B, Kim HY, Yoon BR, Yeo J, In Jung J, Yu KS, Kim HC, Yoo SJ, Park JK, Kang SW, Lee WW. Cytoplasmic zinc promotes IL-1β production by monocytes and macrophages through mTORC1-induced glycolysis in rheumatoid arthritis. Sci Signal 2022; 15:eabi7400. [PMID: 35015571 DOI: 10.1126/scisignal.abi7400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jina Yeo
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji In Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su-Jin Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Cancer Research Institute, Ischemic/Hypoxic Disease Institute, and Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
11
|
Chowdhury D, Gardner JC, Satpati A, Nookala S, Mukundan S, Porollo A, Landero Figueroa JA, Subramanian Vignesh K. Metallothionein 3-Zinc Axis Suppresses Caspase-11 Inflammasome Activation and Impairs Antibacterial Immunity. Front Immunol 2021; 12:755961. [PMID: 34867993 PMCID: PMC8633875 DOI: 10.3389/fimmu.2021.755961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Non-canonical inflammasome activation by mouse caspase-11 (or human CASPASE-4/5) is crucial for the clearance of certain gram-negative bacterial infections, but can lead to severe inflammatory damage. Factors that promote non-canonical inflammasome activation are well recognized, but less is known about the mechanisms underlying its negative regulation. Herein, we identify that the caspase-11 inflammasome in mouse and human macrophages (Mϕ) is negatively controlled by the zinc (Zn2+) regulating protein, metallothionein 3 (MT3). Upon challenge with intracellular lipopolysaccharide (iLPS), Mϕ increased MT3 expression that curtailed the activation of caspase-11 and its downstream targets caspase-1 and interleukin (IL)-1β. Mechanistically, MT3 increased intramacrophage Zn2+ to downmodulate the TRIF-IRF3-STAT1 axis that is prerequisite for caspase-11 effector function. In vivo, MT3 suppressed activation of the caspase-11 inflammasome, while caspase-11 and MT3 synergized in impairing antibacterial immunity. The present study identifies an important yin-yang relationship between the non-canonical inflammasome and MT3 in controlling inflammation and immunity to gram-negative bacteria.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jason C. Gardner
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Abhijit Satpati
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Suba Nookala
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Santhosh Mukundan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Julio A. Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Kavitha Subramanian Vignesh
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
12
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Rossi DC, Figueroa JAL, Buesing WR, Candor K, Blancett LT, Evans HM, Lenchitz R, Crowther BL, Elsegeiny W, Williamson PR, Rupp J, Deepe GS. A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. J Clin Invest 2021; 131:e147268. [PMID: 34237029 DOI: 10.1172/jci147268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
Macrophages deploy numerous strategies to combat invasion by microbes. One tactic is to restrict acquisition of diverse nutrients, including trace metals, a process termed nutritional immunity. Intracellular pathogens adapt to a resource-poor environment by marshaling mechanisms to harvest nutrients. Carbon acquisition is crucial for pathogen survival; compounds that reduce availability are a potential strategy to control intracellular replication. Treatment of macrophages with the glucose analog 2-deoxy-D-glucose (2-DG) armed phagocytes to eliminate the intracellular fungal pathogen Histoplasma capsulatum in vitro and in vivo. Killing did not rely on altering access to carbon-containing molecules or changes in ATP, ER stress, or autophagy. Unexpectedly, 2-DG undermined import of exogenous zinc into macrophages, decreasing the quantity of cytosolic and phagosomal zinc. The fungus perished as a result of zinc starvation. This change in metal ingress was not ascribed to a defect in a single importer; rather, there was a collective impairment in transporter activity. This effect promoted the antifungal machinery of macrophages and expanded the complexity of 2-DG activities far beyond manipulating glycolysis. Mechanistic metabolic studies employing 2-DG will have to consider its effect on zinc transport. Our preclinical data support consideration of this agent as a possible adjunctive therapy for histoplasmosis.
Collapse
Affiliation(s)
- Diego Cp Rossi
- Division of Infectious Diseases, College of Medicine and
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Kathleen Candor
- Division of Infectious Diseases, College of Medicine and.,University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA.,Immunology Graduate Program and
| | | | | | - Rena Lenchitz
- Division of Infectious Diseases, College of Medicine and
| | - Bradford L Crowther
- Division of Infectious Diseases, College of Medicine and.,Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine and
| |
Collapse
|
14
|
Kim B, Kim HY, Lee WW. Zap70 Regulates TCR-Mediated Zip6 Activation at the Immunological Synapse. Front Immunol 2021; 12:687367. [PMID: 34394081 PMCID: PMC8358678 DOI: 10.3389/fimmu.2021.687367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023] Open
Abstract
The essential microelement zinc plays immunoregulatory roles via its ability to influence signaling pathways. Zinc deficiency impairs overall immune function and resultantly increases susceptibility to infection. Thus, zinc is considered as an immune-boosting supplement for populations with hypozincemia at high-risk for infection. Besides its role as a structural cofactor of many proteins, zinc also acts as an intracellular messenger in immune cell signaling. T-cell activation instructs zinc influx from extracellular and subcellular sources through the Zip6 and Zip8 zinc transporters, respectively. Increased cytoplasmic zinc participates in the regulation of T-cell responses by modifying activation signaling. However, the mechanism underlying the activation-dependent movement of zinc ions by Zip transporters in T cells remains elusive. Here, we demonstrate that Zip6, one of the most abundantly expressed Zip transporters in T cells, is mainly localized to lipid rafts in human T cells and is recruited into the immunological synapse in response to TCR stimulation. This was demonstrated through confocal imaging of the interaction between CD4+ T cells and antigen-presenting cells. Further, immunoprecipitation assays show that TCR triggering induces tyrosine phosphorylation of Zip6, which has at least three putative tyrosine motifs in its long cytoplasmic region, and this phosphorylation is coupled with its physical interaction with Zap70. Silencing Zip6 reduces zinc influx from extracellular sources and suppresses T-cell responses, suggesting an interaction between Zip6-mediated zinc influx and TCR activation. These results provide new insights into the mechanism through which Zip6-mediated zinc influx occurs in a TCR activation-dependent manner in human CD4+ T cells.
Collapse
Affiliation(s)
- Bonah Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee Young Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
15
|
Hetzel M, Ackermann M, Lachmann N. Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease. Int J Mol Sci 2021; 22:3308. [PMID: 33804918 PMCID: PMC8036607 DOI: 10.3390/ijms22073308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.H.); (M.A.)
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
16
|
Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Vet Res 2021; 52:39. [PMID: 33663613 PMCID: PMC7931793 DOI: 10.1186/s13567-021-00913-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc (Zn) is an essential trace element in living organisms and plays a vital role in the regulation of both microbial virulence and host immune responses. A growing number of studies have shown that zinc deficiency or the internal Zn concentration does not meet the needs of animals and microbes, leading to an imbalance in zinc homeostasis and intracellular signalling pathway dysregulation. Competition for zinc ions (Zn2+) between microbes and the host exists in the use of Zn2+ to maintain cell structure and physiological functions. It also affects the interplay between microbial virulence factors and their specific receptors in the host. This review will focus on the role of Zn in the crosstalk between the host and microbe, especially for changes in microbial pathogenesis and nociceptive neuron-immune interactions, as it may lead to new ways to prevent or treat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Bantle CM, French CT, Cummings JE, Sadasivan S, Tran K, Slayden RA, Smeyne RJ, Tjalkens RB. Manganese exposure in juvenile C57BL/6 mice increases glial inflammatory responses in the substantia nigra following infection with H1N1 influenza virus. PLoS One 2021; 16:e0245171. [PMID: 33493177 PMCID: PMC7833173 DOI: 10.1371/journal.pone.0245171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Infection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells. In the current study, we used a two-hit model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile development would induce a more severe neuropathological response following infection with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl2 in drinking water (50 mg/kg/day) for 30 days from days 21–51 postnatal, then infected intranasally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astrocytes in basal ganglia indicated that although there was no significant loss of dopaminergic neurons within the substantia nigra pars compacta, there was more pronounced activation of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing (RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of gene expression in the dual-exposed group, including genes involved in antioxidant activation, mitophagy and neurodegeneration. Taken together, these results suggest that exposure to elevated levels of Mn during juvenile development could sensitize glial cells to more severe neuro-immune responses to influenza infection later in life through persistent epigenetic changes.
Collapse
Affiliation(s)
- Collin M. Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - C. Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shankar Sadasivan
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard J. Smeyne
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mao S, Ou X, Wang M, Sun D, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X, Cheng A. Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transbound Emerg Dis 2020; 68:3588-3600. [PMID: 33369177 DOI: 10.1111/tbed.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is a highly prevalent pathogen within adult ducks causing acute as well as chronic hepatitis which closely emulates the progression of human hepatitis. However, the underlying mechanisms of DHAV-1 persistence and the pathogenesis of chronic liver disease are not well defined. The association between hematopoietic reservoirs of virus and persistent infection is increasingly concerning. Here, we explored the ability of lymphoid replication of DHAV-1 and the effect on immunity. We found that DHAV-1 was able to infect and replicate productively in the lymphoid organs of model ducks, persisting over 6 months. Moreover, a significant correlation of viral loads between these organs and blood was found, documenting a major contribution of lymphoid replication to DHAV-1 viraemia. Along with viral replication, the mRNA of PRRs and immune-related cytokines was up-regulated in these organs during the early phase of infection, showing tissue-dependent expression patterns but all inclining towards Th2 responses due to the consistently higher level of IL-4 than IL-2 and IFN-γ. Additionally, the expression of CCL19, CCL21, MHC-I and MHC-II, which are involved in T cell homing to the periphery and priming, was dysmodulated. Our data indicate that DHAV-1 possesses lymphoid tissue tropism, contributing to persistent infection and chronic hepatitis via altering the early endogenous transcription of immune-related genes and thereby perturbing organic immunity. These results may be useful to develop novel strategies to treat chronic viral hepatitis based on stimulation of the early innate system and regulation of T-cell trafficking.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
19
|
von Pein JB, Stocks CJ, Schembri MA, Kapetanovic R, Sweet MJ. An alloy of zinc and innate immunity: Galvanising host defence against infection. Cell Microbiol 2020; 23:e13268. [PMID: 32975847 DOI: 10.1111/cmi.13268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Innate immune cells such as macrophages and neutrophils initiate protective inflammatory responses and engage antimicrobial responses to provide frontline defence against invading pathogens. These cells can both restrict the availability of certain transition metals that are essential for microbial growth and direct toxic concentrations of metals towards pathogens as antimicrobial responses. Zinc is important for the structure and function of many proteins, however excess zinc can be cytotoxic. In recent years, several studies have revealed that innate immune cells can deliver toxic concentrations of zinc to intracellular pathogens. In this review, we discuss the importance of zinc status during infectious disease and the evidence for zinc intoxication as an innate immune antimicrobial response. Evidence for pathogen subversion of this response is also examined. The likely mechanisms, including the involvement of specific zinc transporters that facilitate delivery of zinc by innate immune cells for metal ion poisoning of pathogens are also considered. Precise mechanisms by which excess levels of zinc can be toxic to microorganisms are then discussed, particularly in the context of synergy with other antimicrobial responses. Finally, we highlight key unanswered questions in this emerging field, which may offer new opportunities for exploiting innate immune responses for anti-infective development.
Collapse
Affiliation(s)
- Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
20
|
Chowdhury D, Alrefai H, Landero Figueroa JA, Candor K, Porollo A, Fecher R, Divanovic S, Deepe GS, Subramanian Vignesh K. Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages. Cell Rep 2020; 27:3873-3886.e7. [PMID: 31242420 DOI: 10.1016/j.celrep.2019.05.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Alternatively activated (M2) macrophages promote wound healing but weaken antimicrobial defenses. The mechanisms that enforce macrophage divergence and dictate the phenotypic and metabolic characteristics of M2 macrophages remain elusive. We show that alternative activation with interleukin (IL)-4 induces expression of metallothionein 3 (MT3) that regulates macrophage polarization and function. MT3 was requisite for metabolic reprograming in IL-4-stimulated macrophages or M(IL-4) macrophages to promote mitochondrial respiration and suppress glycolysis. MT3 fostered an M(IL-4) phenotype, suppressed hypoxia inducible factor (HIF)1α activation, and thwarted the emergence of a proinflammatory M1 program in macrophages. MT3 deficiency augmented macrophage plasticity, resulting in enhanced interferon γ (IFNγ) responsiveness and a dampened M(IL-4) phenotype. Thus, MT3 programs the phenotype and metabolic fate of M(IL-4) macrophages.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hani Alrefai
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kathleen Candor
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger Fecher
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10467, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
21
|
Stocks CJ, von Pein JB, Curson JEB, Rae J, Phan MD, Foo D, Bokil NJ, Kambe T, Peters KM, Parton RG, Schembri MA, Kapetanovic R, Sweet MJ. Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli. J Leukoc Biol 2020; 109:287-297. [PMID: 32441444 PMCID: PMC7891337 DOI: 10.1002/jlb.2hi0420-160r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments. Since SLC30A zinc exporters can deliver zinc into the lumen of vesicles, we examined LPS-regulated mRNA expression of Slc30a/SLC30A family members in primary mouse and human macrophages. A number of these transporters were dynamically regulated in both cell populations. In human monocyte-derived macrophages, LPS strongly up-regulated SLC30A1 mRNA and protein expression. In contrast, SLC30A1 was not LPS-inducible in macrophage-like PMA-differentiated THP-1 cells. We therefore ectopically expressed SLC30A1 in these cells, finding that this was sufficient to promote zinc-containing vesicle formation. The response was similar to that observed following LPS stimulation. Ectopically expressed SLC30A1 localized to both the plasma membrane and intracellular zinc-containing vesicles within LPS-stimulated THP-1 cells. Inducible overexpression of SLC30A1 in THP-1 cells infected with the Escherichia coli K-12 strain MG1655 augmented the zinc stress response of intracellular bacteria and promoted clearance. Furthermore, in THP-1 cells infected with an MG1655 zinc stress reporter strain, all bacteria contained within SLC30A1-positive compartments were subjected to zinc stress. Thus, SLC30A1 marks zinc-containing compartments associated with TLR-inducible zinc toxicity in human macrophages, and its ectopic over-expression is sufficient to initiate this antimicrobial pathway in these cells. Finally, SLC30A1 silencing did not compromise E. coli clearance by primary human macrophages, suggesting that other zinc exporters may also contribute to the zinc toxicity response.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Darren Foo
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nilesh J Bokil
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Queensland, Australia.,IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
22
|
Riedelberger M, Penninger P, Tscherner M, Hadriga B, Brunnhofer C, Jenull S, Stoiber A, Bourgeois C, Petryshyn A, Glaser W, Limbeck A, Lynes MA, Schabbauer G, Weiss G, Kuchler K. Type I Interferons Ameliorate Zinc Intoxication of Candida glabrata by Macrophages and Promote Fungal Immune Evasion. iScience 2020; 23:101121. [PMID: 32428860 PMCID: PMC7232100 DOI: 10.1016/j.isci.2020.101121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Host and fungal pathogens compete for metal ion acquisition during infectious processes, but molecular mechanisms remain largely unknown. Here, we show that type I interferons (IFNs-I) dysregulate zinc homeostasis in macrophages, which employ metallothionein-mediated zinc intoxication of pathogens as fungicidal response. However, Candida glabrata can escape immune surveillance by sequestering zinc into vacuoles. Interestingly, zinc-loading is inhibited by IFNs-I, because a Janus kinase 1 (JAK1)-dependent suppression of zinc homeostasis affects zinc distribution in macrophages as well as generation of reactive oxygen species (ROS). In addition, systemic fungal infections elicit IFN-I responses that suppress splenic zinc homeostasis, thereby altering macrophage zinc pools that otherwise exert fungicidal actions. Thus, IFN-I signaling inadvertently increases fungal fitness both in vitro and in vivo during fungal infections. Our data reveal an as yet unrecognized role for zinc intoxication in antifungal immunity and suggest that interfering with host zinc homeostasis may offer therapeutic options to treat invasive fungal infections.
Collapse
Affiliation(s)
- Michael Riedelberger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Bernhard Hadriga
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Carina Brunnhofer
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Sabrina Jenull
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Christelle Bourgeois
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Walter Glaser
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, and Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
23
|
Serra M, Columbano A, Ammarah U, Mazzone M, Menga A. Understanding Metal Dynamics Between Cancer Cells and Macrophages: Competition or Synergism? Front Oncol 2020; 10:646. [PMID: 32426284 PMCID: PMC7203474 DOI: 10.3389/fonc.2020.00646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Metal ions, such as selenium, copper, zinc, and iron are naturally present in the environment (air, drinking water, and food) and are vital for cellular functions at chemical, molecular, and biological levels. These trace elements are involved in various biochemical reactions by acting as cofactors for many enzymes and control important biological processes by binding to the receptors and transcription factors. Moreover, they are essential for the stabilization of the cellular structures and for the maintenance of genome stability. A body of preclinical and clinical evidence indicates that dysregulation of metal homeostasis, both at intracellular and tissue level, contributes to the pathogenesis of many different types of cancer. These trace minerals play a crucial role in preventing or accelerating neoplastic cell transformation and in modulating the inflammatory and pro-tumorigenic response in immune cells, such as macrophages, by controlling a plethora of metabolic reactions. In this context, macrophages and cancer cells interact in different manners and some of these interactions are modulated by availability of metals. The current review discusses the new findings and focuses on the involvement of these micronutrients in metabolic and cellular signaling mechanisms that influence macrophage functions, onset of cancer and its progression. An improved understanding of "metallic" cross-talk between macrophages and cancer cells may pave the way for innovative pharmaceutical or dietary interventions in order to restore the balance of these trace elements and also strengthen the chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marina Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| |
Collapse
|
24
|
Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig Dis Sci 2019; 64:2404-2415. [PMID: 30830525 DOI: 10.1007/s10620-019-05561-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential micronutrient for normal organ function, and dysregulation of zinc metabolism has been implicated in a wide range of diseases. Emerging evidence has revealed that zinc transporters play diverse roles in cellular homeostasis and function by regulating zinc trafficking via organelles or the plasma membrane. In the gastrointestinal tract, zinc deficiency leads to diarrhea and dysfunction of intestinal epithelial cells. Studies also showed that zinc transporters are very important in intestinal epithelial homeostasis. In this review, we describe the physiological roles of zinc transporters in intestinal epithelial functions and relevance of zinc transporters in gastrointestinal diseases.
Collapse
Affiliation(s)
- Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Teruhisa Takagishi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro, Tokushima, 770-8055, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0042, Japan.
| |
Collapse
|
25
|
Histoplasma Responses to Nutritional Immunity Imposed by Macrophage Activation. J Fungi (Basel) 2019; 5:jof5020045. [PMID: 31195617 PMCID: PMC6616858 DOI: 10.3390/jof5020045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023] Open
Abstract
The fungal pathogen Histoplasma capsulatum resides within the phagosome of host phagocytic cells. Within this intracellular compartment, Histoplasma yeast replication requires the acquisition of several essential nutrients, including metal ions. Recent work has shown that while iron, zinc, and copper are sufficiently abundant in resting macrophages, cytokine activation of these host cells causes restriction of these metals from intracellular yeasts as a form of nutritional immunity. Faced with limited iron availability in the phagosome following macrophage activation by IFN-γ, Histoplasma yeasts secrete iron-scavenging siderophores and employ multiple strategies for reduction of ferric iron to the more physiologically useful ferrous form. IFN-γ activation of macrophages also limits availability of copper in the phagosome, forcing Histoplasma reliance on the high affinity Ctr3 copper importer for copper acquisition. GM-CSF activation stimulates macrophage production of zinc-chelating metallothioneins and zinc transporters to sequester zinc from Histoplasma yeasts. In response, Histoplasma yeasts express the Zrt2 zinc importer. These findings highlight the dynamics of phagosomal metal ion concentrations in host-pathogen interactions and explain one mechanism by which macrophages become a less permissive environment for Histoplasma replication with the onset of adaptive immunity.
Collapse
|
26
|
Wilson D, Deepe GS. The intersection of host and fungus through the zinc lens. Curr Opin Microbiol 2019; 52:35-40. [PMID: 31132743 DOI: 10.1016/j.mib.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
In this review, we summarize data regarding the influence of zinc on host defenses to human pathogenic fungi and how the fungus acquires zinc to sustain biological functions. Mammals have evolved several extracellular and intracellular mechanisms to withhold zinc from the fungus. Specific immune cells release zinc binding proteins such as calprotectin to capture the metal and deny it to the fungus. Intracellularly, several zinc binding proteins such as metallothioneins starve the fungus of zinc. The net result in both situations is depriving the fungus of a crucial micronutrient. To combat this struggle, fungi have developed means to capture zinc and store it. The mechanisms of transport for various fungi are discussed herein.
Collapse
Affiliation(s)
- Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Hu X, Kim KH, Lee Y, Fernandes J, Smith MR, Jung YJ, Orr M, Kang SM, Jones DP, Go YM. Environmental Cadmium Enhances Lung Injury by Respiratory Syncytial Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1513-1525. [PMID: 31108100 DOI: 10.1016/j.ajpath.2019.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd) is a naturally occurring environmental toxicant that disrupts mitochondrial function at occupational exposure levels. The impacts of Cd exposure at low levels through dietary intake remain largely uncharacterized. Human respiratory syncytial virus (RSV) causes severe morbidity, which can require hospitalization and result in death in young children and elderly populations. The impacts of environmental Cd exposure on the severity of RSV disease are unknown. Herein, we used a mouse model to examine whether Cd pre-exposure at a level of dietary intake potentiates pulmonary inflammation on subsequent infection with RSV. Mice were given Cd or saline in drinking water for 28 days. Subsets of these mice were infected with RSV at 5 days before the end of the study. Cd pre-exposure caused relatively subtle changes in lung; however, it elevated the IL-4 level and altered metabolites associated with fatty acid metabolism. After RSV infection, mice pre-exposed to Cd had elevated lung RSV titer and increased inflammation, as measured by histopathology, immune cell infiltration, cytokines, and chemokines. RSV infection after Cd pre-exposure also caused widespread perturbation in metabolism of glycerophospholipids and amino acids (Trp, Met, and Cys, branched-chain amino acids), as well as carnitine shuttle associated with mitochondrial energy metabolism. The results show that Cd burden by dietary intake potentiates RSV infection and severe disease with associated mitochondrial metabolic disruption.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Ki-Hye Kim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Youri Lee
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jolyn Fernandes
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - M Ryan Smith
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Michael Orr
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia.
| | - Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
28
|
Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc Natl Acad Sci U S A 2019; 116:6341-6350. [PMID: 30846555 PMCID: PMC6442554 DOI: 10.1073/pnas.1820870116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for most urinary tract infections and is also a frequent cause of sepsis, thus necessitating an understanding of UPEC-mediated subversion of innate immunity. The role of zinc in the innate immune response against UPEC infection, and whether this pathogen counters this response, has not been examined. Here we demonstrate, both in vitro and in vivo, that UPEC both evades and resists innate immune-mediated zinc toxicity to persist and disseminate within the host. Moreover, we have defined the set of UPEC genes conferring zinc resistance and have developed highly selective E. coli reporter systems to track zinc toxicity. These innovative approaches substantially enhance our understanding of immune-mediated metal ion toxicity and bacterial pathogenesis. Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.
Collapse
|
29
|
van der Putten C, Veth J, Sukurova L, Zuiderwijk-Sick EA, Simonetti E, Koenen HJPM, Burm SM, van Noort JM, IJzerman AP, van Hijum SAFT, Diavatopoulos D, Bajramovic JJ. TLR-Induced IL-12 and CCL2 Production by Myeloid Cells Is Dependent on Adenosine A 3 Receptor-Mediated Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 202:2421-2430. [PMID: 30804043 DOI: 10.4049/jimmunol.1800618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
TLR-induced signaling potently activates cells of the innate immune system and is subject to regulation at different levels. Inflammatory conditions are associated with increased levels of extracellular adenosine, which can modulate TLR-induced production of cytokines through adenosine receptor-mediated signaling. There are four adenosine receptor subtypes that induce different signaling cascades. In this study, we demonstrate a pivotal contribution of adenosine A3 receptor (A3R)-mediated signaling to the TLR4-induced expression of IL-12 in different types of human myeloid APC. In dendritic cells, IL-12 and CCL2 responses as evoked by TLR2, 3, 4, 5, and 8, as well as IL-12 responses evoked by whole pathogens, were all reduced when A3R-mediated signaling was blocked. As a result, concomitant production of IFN-γ and IL-17 by T cells was significantly inhibited. We further show that selective inhibition of A3R-mediated signaling reduced TLR-induced phosphorylation of the transcription factor STAT1 at tyrosine 701. Next-generation sequencing revealed that A3R-mediated signaling controls the expression of metallothioneins, known inhibitors of STAT1 phosphorylation. Together our results reveal a novel regulatory layer of innate immune responses, with a central role for metallothioneins and autocrine/paracrine signaling via A3Rs.
Collapse
Affiliation(s)
- Céline van der Putten
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Lejla Sukurova
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Ella A Zuiderwijk-Sick
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | | | - Ad P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, 2333 CC Leiden, the Netherlands
| | - Sacha A F T van Hijum
- Bacterial (Meta)genomics, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; and.,NIZO, 6718 ZB Ede, the Netherlands
| | - Dimitri Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| |
Collapse
|
30
|
The Role of Zinc and Zinc Homeostasis in Macrophage Function. J Immunol Res 2018; 2018:6872621. [PMID: 30622979 PMCID: PMC6304900 DOI: 10.1155/2018/6872621] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023] Open
Abstract
Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles that zinc and zinc transporters play in regulating macrophage function.
Collapse
|
31
|
Allard B, Panariti A, Martin JG. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Front Immunol 2018; 9:1777. [PMID: 30108592 PMCID: PMC6079255 DOI: 10.3389/fimmu.2018.01777] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogen persistence in the respiratory tract is an important preoccupation, and of particular relevance to infectious diseases such as tuberculosis. The equilibrium between elimination of pathogens and the magnitude of the host response is a sword of Damocles for susceptible patients. The alveolar macrophage is the first sentinel of the respiratory tree and constitutes the dominant immune cell in the steady state. This immune cell is a key player in the balance between defense against pathogens and tolerance toward innocuous stimuli. This review focuses on the role of alveolar macrophages in limiting lung tissue damage from potentially innocuous stimuli and from infections, processes that are relevant to appropriate tolerance of potential causes of lung disease. Notably, the different anti-inflammatory strategies employed by alveolar macrophages and lung tissue damage control are explored. These two properties, in addition to macrophage manipulation by pathogens, are discussed to explain how alveolar macrophages may drive pathogen persistence in the airways.
Collapse
Affiliation(s)
- Benoit Allard
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 2018; 103:35-51. [PMID: 29345056 DOI: 10.1002/jlb.4ri0917-358r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are linchpins of innate immunity, responding to invading microorganisms by initiating coordinated inflammatory and antimicrobial programs. Immediate antimicrobial responses, such as NADPH-dependent reactive oxygen species (ROS), are triggered upon phagocytic receptor engagement. Macrophages also detect and respond to microbial products through pattern recognition receptors (PRRs), such as TLRs. TLR signaling influences multiple biological processes including antigen presentation, cell survival, inflammation, and direct antimicrobial responses. The latter enables macrophages to combat infectious agents that persist within the intracellular environment. In this review, we summarize our current understanding of TLR-inducible direct antimicrobial responses that macrophages employ against bacterial pathogens, with a focus on emerging evidence linking TLR signaling to reprogramming of mitochondrial functions to enable the production of direct antimicrobial agents such as ROS and itaconic acid. In addition, we describe other TLR-inducible antimicrobial pathways, including autophagy/mitophagy, modulation of nutrient availability, metal ion toxicity, reactive nitrogen species, immune GTPases (immunity-related GTPases and guanylate-binding proteins), and antimicrobial peptides. We also describe examples of mechanisms of evasion of such pathways by professional intramacrophage pathogens, with a focus on Salmonella, Mycobacteria, and Listeria. An understanding of how TLR-inducible direct antimicrobial responses are regulated, as well as how bacterial pathogens subvert such pathways, may provide new opportunities for manipulating host defence to combat infectious diseases.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Reiber C, Brieger A, Engelhardt G, Hebel S, Rink L, Haase H. Zinc chelation decreases IFN-β-induced STAT1 upregulation and iNOS expression in RAW 264.7 macrophages. J Trace Elem Med Biol 2017; 44:76-82. [PMID: 28965604 DOI: 10.1016/j.jtemb.2017.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
One consequence of lipopolysaccharide (LPS)-induced stimulation of macrophages is the release of Interferon (IFN)-β, and subsequently the activation of the JAK-STAT1 pathway, resulting in the expression of inducible nitric oxide synthase (iNOS). Free intracellular zinc ions (Zn2+) have a profound impact as a second messenger in LPS-dependent gene expression. Previous work had indicated a Zn2+-dependent upregulation of STAT1 mRNA in response to LPS and IFN-β, potentially affecting STAT1-dependent downstream signaling upon pre-incubation with these agents. The aim of the present study was to investigate the long-term influence of Zn2+ chelation on cellular STAT1 levels and their effect on protein levels and activity of iNOS. The LPS- and IFN-β-mediated increase of STAT1 mRNA and protein levels was abrogated by chelation of Zn2+ with the membrane permeable chelator N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) in RAW 264.7 macrophages. After 48h pre-incubation together with IFN-β, TPEN also led to reduced nitric monoxide formation in response to a second stimulation with LPS. Nonetheless, the latter was observed regardless of any pre-incubation with IFN-β, suggesting that the effect of treatment with TPEN negatively affects iNOS induction independently from cellular STAT1 levels. In conclusion, long term Zn2+ chelation does affect STAT1 protein expression, but interferes with NO production by a different, yet unknown pathway not involving STAT1. However, as there are many additional STAT1-dependent genes, there might still be effects on targets other than iNOS.
Collapse
Affiliation(s)
- Cathleen Reiber
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Anne Brieger
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gabriela Engelhardt
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Silke Hebel
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
34
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
35
|
Metallothioneins: Emerging Modulators in Immunity and Infection. Int J Mol Sci 2017; 18:ijms18102197. [PMID: 29065550 PMCID: PMC5666878 DOI: 10.3390/ijms18102197] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Metallothioneins (MTs) are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn) and copper (Cu), mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.
Collapse
|
36
|
Bousleiman J, Pinsky A, Ki S, Su A, Morozova I, Kalachikov S, Wiqas A, Silver R, Sever M, Austin RN. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3? Int J Mol Sci 2017; 18:ijms18061133. [PMID: 28587098 PMCID: PMC5485957 DOI: 10.3390/ijms18061133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.
Collapse
Affiliation(s)
- Jamie Bousleiman
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Alexa Pinsky
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Sohee Ki
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Angela Su
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amen Wiqas
- Department of Biology, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rae Silver
- Department of Psychology and Program in Neuroscience, Barnard College of Columbia University, New York, NY 10027, USA.
- Department of Psychology, Columbia University, New York, NY 10027, USA.
- Department of Pathology and Cell Biology Columbia Health Sciences, New York, NY 10027, USA.
| | - Mary Sever
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|