1
|
Pal P, Gao S, Gao H, Cella M, Wang Q, Shan L. Establishment of a Reverse Genetics System for the Study of Human Immune Functions in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645295. [PMID: 40236189 PMCID: PMC11996444 DOI: 10.1101/2025.03.26.645295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Reverse genetics approaches in mice are widely utilized to understand gene functions and their aberrations in diseases. However, limitations exist in translating findings from animal models to human physiology. Humanized mice provide a powerful bridge to understanding human physiology and mechanisms of diseases pathogenesis while maintaining the feasibility of working with small animals. Methods for generating humanized mouse models that allow scientists to probe contributions of particular genes have been rudimentary. Here, we established an efficient method for generating genetically modified human cord blood derived CD34 + cells for transplantation, resulting in humanized mice with near-complete loss of specific gene expression by the human immune system. Mice transplanted with Cas9-edited human CD34 + cells recapitulate functional consequences of specific gene losses in the human immune system. This advancement enables the development of humanized mouse models with targeted gene knockouts, offering a valuable research tool for human gene function studies in vivo .
Collapse
|
2
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
3
|
Qi S, Wang Y, Liu Z, Wu S, Zhao Y, Li Y, Deng S, Yu K, Lian Z. Construction of a TAT-Cas9-EGFP Site-Specific Integration Eukaryotic Cell Line Using Efficient PEG10 Modification. Int J Mol Sci 2025; 26:1331. [PMID: 39941098 PMCID: PMC11818622 DOI: 10.3390/ijms26031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR/Cas9 system enables precise and efficient modification of eukaryotic genomes. Among its various applications, homology-directed repair (HDR) mediated knock-in (KI) is crucial for creating human disease models, gene therapy, and agricultural genetic enhancements. Despite its potential, HDR-mediated knock-in efficiency remains relatively low. This study investigated the impact of 5' end PEG10 modification on site-specific integration of the target gene. The HEK293 cell line is considered a highly attractive expression system for the production of recombinant proteins, with the construction of site-specific integration cell lines at the AAVS1 locus enabling stable protein expression. This study investigated the impact of the 5' end PEG10 modification on the site-specific integration of the target gene at the AAVS1 locus in the 293T cell line. Utilizing this 5' end PEG10 modification resulted in a 1.9-fold increase in knock-in efficiency for a 1.8 kb target fragment, improving efficiency from 26% to 49%. An optimized system was utilized to successfully establish a high-expression, site-specific integration 293T cell line for TAT-Cas9-EGFP, providing a reliable resource of seed cells for subsequent protein production.
Collapse
Affiliation(s)
- Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yibo Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Yan Li
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing 100071, China;
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC), Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (Y.W.); (Z.L.); (S.W.); (Y.Z.)
| |
Collapse
|
4
|
Bulnes-Ramos A, Schott K, Rabinowitz J, Luchsinger C, Bertelli C, Miyagi E, Yu CH, Persaud M, Shepard C, König R, Kim B, Ivanov DN, Strebel K, Diaz-Griffero F. Acetylation of SAMHD1 at lysine 580 is crucial for blocking HIV-1 infection. mBio 2024; 15:e0195824. [PMID: 39162568 PMCID: PMC11389391 DOI: 10.1128/mbio.01958-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
In humans, sterile alpha motif (SAM) domain- and histidine-aspartic acid (HD) domain-containing protein 1 (SAMHD1) is a dNTPase enzyme that prevents HIV-1 infection in non-cycling cells, such as differentiated THP-1 cells and human primary macrophages. Although phosphorylation of threonine 592 (T592) in SAMHD1 is recognized as the primary regulator of the ability to prevent HIV-1 infection, the contributions of SAMHD1 acetylation to this ability remain unknown. Mass spectrometry analysis of SAMHD1 proteins derived from cycling and non-cycling THP-1 cells, primary cycling B cells, and primary macrophages revealed that SAMHD1 is preferentially acetylated at lysine residues 354, 494, and 580 (K354, K494, and K580). In non-cycling cells, SAMHD1 is preferentially acetylated at K580, suggesting that this post-translational modification may contribute to the ability of SAMHD1 to block HIV-1 infection. Consistent with this finding, we found that mutations in K580 disrupted the ability of SAMHD1 to block HIV-1 infection without affecting the ability of SAMHD1 to deplete cellular dNTP levels. Gene editing of SAMHD1 in macrophage-like cells revealed that an intact K580 is required for HIV-1 restriction. This finding suggests that K580 acetylation in SAMHD1 is essential for blocking HIV-1 infection. More importantly, we found that a larger proportion of SAMHD1 featuring K580 acetylation could be detected in human primary macrophages when compared to human primary monocytes. In agreement, we found that SAMHD1 is acetylated during the monocyte-to-macrophage differentiation process. This finding agrees with the idea that the blockade of HIV-1 infection in macrophages requires SAMHD1 acetylation.IMPORTANCEThe natural inhibitor of HIV-1, sterile alpha motif (SAM) domain- and histidine-aspartic acid (HD) domain-containing protein 1 (SAMHD1), plays a pivotal role in preventing HIV-1 infection of macrophages and dendritic cells, which are vital components of the immune system. This study unveils that SAMHD1 undergoes post-translational modifications, specifically acetylation at lysines 354, 494, and 580. Our research underscores the significance of these modifications, demonstrating that acetylation at residue K580 is indispensable for SAMHD1's efficacy in blocking HIV-1 infection. Notably, K580 is found in a critical regulatory domain of SAMHD1, highlighting acetylation as a novel layer of SAMHD1 regulation for HIV-1 restriction in humans. A comprehensive understanding of the regulation mechanisms governing this anti-HIV-1 protein is crucial for leveraging nature's defense mechanisms against HIV-1 and could pave the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Angel Bulnes-Ramos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Jesse Rabinowitz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Charlotte Luchsinger
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cinzia Bertelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eri Miyagi
- Viral Biochemistry Section NIAID, NIH, Bethesda, Maryland, USA
| | - Corey H. Yu
- Department of Biochemistry, UTHSA, San Antonio, Texas, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Caitlin Shepard
- Department of Pediatrics, Center for ViroScience and Cure, School of Medicine, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Center for ViroScience and Cure, School of Medicine, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Klaus Strebel
- Viral Biochemistry Section NIAID, NIH, Bethesda, Maryland, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Cisneros WJ, Soliman SHA, Walter M, Simons LM, Cornish D, De Fabritiis S, Halle AW, Kim EY, Wolinsky SM, Lorenzo-Redondo R, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. PLoS Pathog 2024; 20:e1012083. [PMID: 39259751 PMCID: PMC11419360 DOI: 10.1371/journal.ppat.1012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shimaa H. A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Simone De Fabritiis
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Guizar P, Abdalla AL, Monette A, Davis K, Caballero RE, Niu M, Liu X, Ajibola O, Murooka TT, Liang C, Mouland AJ. An HIV-1 CRISPR-Cas9 membrane trafficking screen reveals a role for PICALM intersecting endolysosomes and immunity. iScience 2024; 27:110131. [PMID: 38957789 PMCID: PMC11217618 DOI: 10.1016/j.isci.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/12/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication. To further elucidate roles in HIV-1 replication, we performed a CRISPR-Cas9 screen on 140 membrane trafficking proteins. We identified phosphatidylinositol-binding clathrin assembly protein (PICALM) that influences not only infection dynamics but also CD4+ SupT1 biology. The knockout (KO) of PICALM inhibited viral entry. In CD4+ SupT1 T cells, KO cells exhibited defects in intracellular trafficking and increased abundance of intracellular Gag and significant alterations in autophagy, immune checkpoint PD-1 levels, and differentiation markers. Thus, PICALM modulates a variety of pathways that ultimately affect HIV-1 replication, underscoring the potential of PICALM as a future target to control HIV-1.
Collapse
Affiliation(s)
- Paola Guizar
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ana Luiza Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Kristin Davis
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ramon Edwin Caballero
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Xinyun Liu
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Oluwaseun Ajibola
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Science, Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Rady Faculty of Health Science, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chen Liang
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
7
|
Fagan RR, Lee DF, Geron M, Scherrer G, von Zastrow M, Ehrlich AT. Selective targeting of mu opioid receptors to primary cilia. Cell Rep 2024; 43:114164. [PMID: 38678559 PMCID: PMC11257377 DOI: 10.1016/j.celrep.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Opioid receptors are therapeutically important G protein-coupled receptors (GPCRs) with diverse neuromodulatory effects. The functional consequences of opioid receptor activation are known to depend on receptor location in the plasma membrane, but mechanisms mediating selective localization of receptors to any particular membrane domain remain elusive. Here, we demonstrate the targeting of the mu opioid receptor (MOR) to the primary cilium, a discrete microdomain of the somatic plasma membrane, both in vivo and in cultured cells. We further show that ciliary targeting is specific to MORs, requires a 17-residue sequence unique to the MOR cytoplasmic tail, and additionally requires the Tubby-like protein 3 (TULP3) ciliary adaptor protein. Our results reveal the potential for opioid receptors to undergo selective localization to the primary cilium. We propose that ciliary targeting is mediated through an elaboration of the recycling pathway, directed by a specific C-terminal recycling sequence in cis and requiring TULP3 in trans.
Collapse
Affiliation(s)
- Rita R Fagan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David F Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; New York Stem Cell Foundation, Chapel Hill, NC 27599, USA
| | - Mark von Zastrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Wong CH, Wingett SW, Qian C, Hunter MR, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based transport revealed by a high-content arrayed CRISPR screen. J Cell Biol 2024; 223:e202306048. [PMID: 38448164 PMCID: PMC10916854 DOI: 10.1083/jcb.202306048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Steven W. Wingett
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Morag Rose Hunter
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
9
|
Twentyman J, Emerman M, Ohainle M. Capsid-dependent lentiviral restrictions. J Virol 2024; 98:e0030824. [PMID: 38497663 PMCID: PMC11019884 DOI: 10.1128/jvi.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Host antiviral proteins inhibit primate lentiviruses and other retroviruses by targeting many features of the viral life cycle. The lentiviral capsid protein and the assembled viral core are known to be inhibited through multiple, directly acting antiviral proteins. Several phenotypes, including those known as Lv1 through Lv5, have been described as cell type-specific blocks to infection against some but not all primate lentiviruses. Here we review important features of known capsid-targeting blocks to infection together with several blocks to infection for which the genes responsible for the inhibition still remain to be identified. We outline the features of these blocks as well as how current methodologies are now well suited to find these antiviral genes and solve these long-standing mysteries in the HIV and retrovirology fields.
Collapse
Affiliation(s)
- Joy Twentyman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Molly Ohainle
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
10
|
Sheridan SD, Horng JE, Yeh H, McCrea L, Wang J, Fu T, Perlis RH. Loss of Function in the Neurodevelopmental Disease and Schizophrenia-Associated Gene CYFIP1 in Human Microglia-like Cells Supports a Functional Role in Synaptic Engulfment. Biol Psychiatry 2024; 95:676-686. [PMID: 37573007 PMCID: PMC10874584 DOI: 10.1016/j.biopsych.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The CYFIP1 gene, located in the neurodevelopmental risk locus 15q11.2, is highly expressed in microglia, but its role in human microglial function as it relates to neurodevelopment is not well understood. METHODS We generated multiple CRISPR (clustered regularly interspaced short palindromic repeat) knockouts of CYFIP1 in patient-derived models of microglia to characterize function and phenotype. Using microglia-like cells reprogrammed from peripheral blood mononuclear cells, we quantified phagocytosis of synaptosomes (isolated and purified synaptic vesicles) from human induced pluripotent stem cell (iPSC)-derived neuronal cultures as an in vitro model of synaptic pruning. We repeated these analyses in human iPSC-derived microglia-like cells derived from 3 isogenic wild-type/knockout line pairs derived from 2 donors and further characterized microglial development and function through morphology and motility. RESULTS CYFIP1 knockout using orthogonal CRISPR constructs in multiple patient-derived cell lines was associated with a statistically significant decrease in synaptic vesicle phagocytosis in microglia-like cell models derived from both peripheral blood mononuclear cells and iPSCs. Morphology was also shifted toward a more ramified profile, and motility was significantly reduced. However, iPSC-CYFIP1 knockout lines retained the ability to differentiate to functional microglia. CONCLUSIONS The changes in microglial phenotype and function due to the loss of function of CYFIP1 observed in this study implicate a potential impact on processes such as synaptic pruning that may contribute to CYFIP1-related neurodevelopmental disorders. Investigating risk genes in a range of central nervous system cell types, not solely neurons, may be required to fully understand the way in which common and rare variants intersect to yield neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hana Yeh
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Liam McCrea
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Wang
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ting Fu
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, Lucks JB, Hultquist JF, Leonard JN. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat Biomed Eng 2024; 8:397-414. [PMID: 38012307 PMCID: PMC11088532 DOI: 10.1038/s41551-023-01142-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
The genetic modification of T cells has advanced cellular immunotherapies, yet the delivery of biologics specifically to T cells remains challenging. Here we report a suite of methods for the genetic engineering of cells to produce extracellular vesicles (EVs)-which naturally encapsulate and transfer proteins and nucleic acids between cells-for the targeted delivery of biologics to T cells without the need for chemical modifications. Specifically, the engineered cells secreted EVs that actively loaded protein cargo via a protein tag and that displayed high-affinity T-cell-targeting domains and fusogenic glycoproteins. We validated the methods by engineering EVs that delivered Cas9-single-guide-RNA complexes to ablate the gene encoding the C-X-C chemokine co-receptor type 4 in primary human CD4+ T cells. The strategy is amenable to the targeted delivery of biologics to other cell types.
Collapse
Affiliation(s)
- Devin M Stranford
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Katherine E Berman
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Luyi Cheng
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Beth N DiBiase
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Michelle E Hung
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Volkmar K, Jaedtka M, Baars I, Walber B, Philipp MS, Bagola K, Müller AJ, Heine H, van Zandbergen G. Investigating pyroptosis as a mechanism of L. major cell-to-cell spread in the human BLaER1 infection model. Mol Microbiol 2024; 121:453-469. [PMID: 37612878 DOI: 10.1111/mmi.15142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Leishmania is the causative agent of the tropical neglected disease leishmaniasis and infects macrophages as its definitive host cell. In order to sustain and propagate infections, Leishmania parasites have to complete cycles of exit and re-infection. Yet, the mechanism driving the parasite spread to other cells remains unclear. Recent studies reported pro-inflammatory monocytes as replicative niche of Leishmania major and showed prolonged expression of IL-1β at the site of infection, indicating an activation of the NLRP3 inflammasome and pointing toward pyroptosis as a possible mechanism of parasite spread. To address the species-specific inflammasome activation of human cells, we characterized the BLaER1 monocytes as a model for L. major infection. We found that BLaER1 monocytes support infection and activation by Leishmania parasites to the same extent as primary human macrophages. Harnessing the possibilities of this infection model, we first showed that BLaER1 GSDMD-/- cells, which carry a deletion of the pore-forming protein gasdermin D, are more resistant to pyroptotic cell death and, concomitantly, display a strongly delayed release of intracellular parasite. Using that knockout in a co-incubation assay in comparison with wild-type BLaER1 cells, we demonstrate that impairment of the pyroptosis pathway leads to lower rates of parasite spread to new host cells, thus, implicating pyroptotic cell death as a possible exit mechanism of L. major in pro-inflammatory microenvironments.
Collapse
Affiliation(s)
- Kerren Volkmar
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Bianca Walber
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
| | | | - Katrin Bagola
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
| | - Andreas J Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut Langen, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Cisneros WJ, Walter M, Soliman SH, Simons LM, Cornish D, Halle AW, Kim EY, Wolinsky SM, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582881. [PMID: 38464055 PMCID: PMC10925308 DOI: 10.1101/2024.03.01.582881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H.A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Sun H, Chen J, Wang R, Liu D, Zhang N, Zhang T, Jia L, Ma S, Xia Q. Genome-wide CRISPR screening reveals key genes and pathways associated with 20-hydroxyecdysone signal transduction in the silkworm (Bombyx mori). INSECT SCIENCE 2024; 31:47-58. [PMID: 37368860 DOI: 10.1111/1744-7917.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023]
Abstract
Metamorphosis is a complex developmental process involving multiple pathways and a large number of genes that are regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Despite important progress in understanding various aspects of silkworm biology, the hormone signaling pathway in the silkworm remains poorly understood. Genome-wide screening using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-based libraries has recently emerged as a novel method for analyzing genome function, enabling further research into essential genes, drug targets, and virus-host interaction. Previously, we constructed a genome-wide CRISPR/Cas9-based library of the silkworm (Bombyx mori) and successfully revealed the genes involved in biotic or abiotic stress factor responses. In this study, we used our silkworm CRISPR library and large-scale genome-wide screening to analyze the key genes in the silkworm 20E signaling pathway and their mechanisms of action. Functional annotation showed that 20E regulates key proteins in processes that mainly occur in the cytoplasm and nucleus. Pathway enrichment analysis showed that 20E can activate phosphorylation and may affect innate immunity, interfere with intracellular nutrition and energy metabolism, and eventually cause cell apoptosis. The screening results were experimentally validated by generating cells with knockout alleles of the relevant genes, which had increased tolerance to 20E. Our findings provide a panoramic overview of signaling in response to 20E in the silkworm, underscoring the utility of genome-wide CRISPR mutant libraries in deciphering hormone signaling pathways and the mechanisms that regulate metamorphosis in insects.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Jingya Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Dan Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Na Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tong Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Morath K, Sadhu L, Dyckhoff G, Gapp M, Keppler OT, Fackler OT. Activation-neutral gene editing of tonsillar CD4 T cells for functional studies in human ex vivo tonsil cultures. CELL REPORTS METHODS 2024; 4:100685. [PMID: 38211593 PMCID: PMC10831948 DOI: 10.1016/j.crmeth.2023.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The molecular and immunological properties of tissue-resident resting CD4 T cells are understudied due to the lack of suitable gene editing methods. Here, we describe the ex vivo culture and gene editing methodology ediTONSIL for CD4 T cells from human tonsils. Optimized CRISPR-Cas9 RNP nucleofection results in knockout efficacies of over 90% without requiring exogenous activation. Editing can be performed on multiple cell types in bulk cultures or on isolated CD4 T cells that can be labeled and reintroduced into their tissue environment. Importantly, CD4 T cells maintain their tissue-specific properties such as viability, activation state, or immunocompetence following reassembly into lymphoid aggregates. This highly efficient and versatile gene editing workflow for tonsillar CD4 T cells enables the dissection of molecular mechanisms in ex vivo cultures of human lymphoid tissue and can be adapted to other tonsil-resident cell types.
Collapse
Affiliation(s)
- Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Lopamudra Sadhu
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, Pettenkoferstraße 9a, 80336 Munich, Germany; German Centre for Infection Research (DZIF), Partner Site München, Munich, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. iScience 2024; 27:108693. [PMID: 38205242 PMCID: PMC10777115 DOI: 10.1016/j.isci.2023.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying β cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR-Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR-Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for Insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired β cell PCSK1 regulation and Insulin secretion. Multiplex CRISPR-Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.
Collapse
Affiliation(s)
- Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emilio Merheb
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seung Hyun Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology and Northern California JDRF Center of Excellence, University of California at San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna L. Gloyn
- Department of Pediatrics (Endocrinology) and of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Kim TH, Lee SW. Generation of hepatitis C virus-resistant liver cells by genome editing-mediated stable expression of RNA aptamer. Mol Ther Methods Clin Dev 2023; 31:101151. [PMID: 38027068 PMCID: PMC10667763 DOI: 10.1016/j.omtm.2023.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Hepatitis C virus (HCV) infections frequently recur after liver transplantation in patients with HCV-related liver diseases. Approximately 30% of these patients progress to cirrhosis within 5 years after surgery. In this study, we proposed an effective therapeutic strategy to overcome the recurrence of HCV. CRISPR-Cas9 was used to insert an expression cassette encoding an RNA aptamer targeting HCV NS5B replicase as an anti-HCV agent into adeno-associated virus integration site 1 (AAVS1), known as a "safe harbor," in a hepatocellular carcinoma cell line to confer resistance to HCV. The RNA aptamer expression system based on a dihydrofolate reductase minigene was precisely knocked in into AAVS1, leading to the stable expression of aptamer RNA in the developed cell line. HCV replication was effectively inhibited at both the RNA and protein levels in cells transfected with HCV RNA or infected with HCV. RNA immunoprecipitation and competition experiments strongly suggested that this HCV inhibition was due to the RNA aptamer-mediated sequestration of HCV NS5B. No off-target insertion of the RNA aptamer expression construct was observed. The findings suggest that HCV-resistant liver cells produced by genome editing technology could be used as a new alternative in the development of a treatment for HCV-induced liver diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
| |
Collapse
|
18
|
Lin C, Kuffour EO, Fuchs NV, Gertzen CGW, Kaiser J, Hirschenberger M, Tang X, Xu HC, Michel O, Tao R, Haase A, Martin U, Kurz T, Drexler I, Görg B, Lang PA, Luedde T, Sparrer KMJ, Gohlke H, König R, Münk C. Regulation of STING activity in DNA sensing by ISG15 modification. Cell Rep 2023; 42:113277. [PMID: 37864791 DOI: 10.1016/j.celrep.2023.113277] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
Sensing of human immunodeficiency virus type 1 (HIV-1) DNA is mediated by the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling axis. Signal transduction and regulation of this cascade is achieved by post-translational modifications. Here we show that cGAS-STING-dependent HIV-1 sensing requires interferon-stimulated gene 15 (ISG15). ISG15 deficiency inhibits STING-dependent sensing of HIV-1 and STING agonist-induced antiviral response. Upon external stimuli, STING undergoes ISGylation at residues K224, K236, K289, K347, K338, and K370. Inhibition of STING ISGylation at K289 suppresses STING-mediated type Ⅰ interferon induction by inhibiting its oligomerization. Of note, removal of STING ISGylation alleviates gain-of-function phenotype in STING-associated vasculopathy with onset in infancy (SAVI). Molecular modeling suggests that ISGylation of K289 is an important regulator of oligomerization. Taken together, our data demonstrate that ISGylation at K289 is crucial for STING activation and represents an important regulatory step in DNA sensing of viruses and autoimmune responses.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Xiao Tang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Michel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Maven BEJ, Gifford CA, Weilert M, Gonzalez-Teran B, Hüttenhain R, Pelonero A, Ivey KN, Samse-Knapp K, Kwong W, Gordon D, McGregor M, Nishino T, Okorie E, Rossman S, Costa MW, Krogan NJ, Zeitlinger J, Srivastava D. The multi-lineage transcription factor ISL1 controls cardiomyocyte cell fate through interaction with NKX2.5. Stem Cell Reports 2023; 18:2138-2153. [PMID: 37863045 PMCID: PMC10679653 DOI: 10.1016/j.stemcr.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.
Collapse
Affiliation(s)
- Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kathryn N Ivey
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Wesley Kwong
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - David Gordon
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Eyuche Okorie
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Sage Rossman
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
20
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Marquez M, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, autophagy, and YB-1 independent manner. PLoS One 2023; 18:e0287829. [PMID: 37910521 PMCID: PMC10619827 DOI: 10.1371/journal.pone.0287829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3% without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
21
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction, and cellular dNTP levels. mBio 2023; 14:e0225223. [PMID: 37800914 PMCID: PMC10653793 DOI: 10.1128/mbio.02252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
22
|
Wang Y, De Labastida Rivera F, Edwards CL, Frame TC, Engel JA, Bukali L, Na J, Ng SS, Corvino D, Montes de Oca M, Bunn PT, Soon MS, Andrew D, Loughland JR, Zhang J, Amante FH, Barber BE, McCarthy JS, Lopez JA, Boyle MJ, Engwerda CR. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J Clin Invest 2023; 133:e169417. [PMID: 37781920 PMCID: PMC10541195 DOI: 10.1172/jci169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.
Collapse
Affiliation(s)
- Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | | | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcela Montes de Oca
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jia Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S. McCarthy
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | - Michelle J. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Life Sciences Division, Burnet Institute, Melbourne, Australia
| | | |
Collapse
|
23
|
Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clin Immunol 2023; 255:109741. [PMID: 37611838 PMCID: PMC10631514 DOI: 10.1016/j.clim.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The evolution of drug-resistant viral strains and anatomical and cellular reservoirs of HIV pose significant clinical challenges to antiretroviral therapy. CCR5 is a coreceptor critical for HIV host cell fusion, and a homozygous 32-bp gene deletion (∆32) leads to its loss of function. Interestingly, an allogeneic HSCT from an HIV-negative ∆32 donor to an HIV-1-infected recipient demonstrated a curative approach by rendering the recipient's blood cells resistant to viral entry. Ex vivo gene editing tools, such as CRISPR/Cas9, hold tremendous promise in generating allogeneic HSC grafts that can potentially replace allogeneic ∆32 HSCTs. Here, we review antiretroviral therapeutic challenges, clinical successes, and failures of allogeneic and allogeneic ∆32 HSCTs, and newer exciting developments within CCR5 editing using CRISPR/Cas9 in the search to cure HIV.
Collapse
Affiliation(s)
- Amber Khan
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA.
| |
Collapse
|
24
|
Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558090. [PMID: 37745551 PMCID: PMC10516051 DOI: 10.1101/2023.09.16.558090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying β cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR/Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR/Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired β cell PCSK1 regulation and insulin secretion. Multiplex CRISPR/Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.
Collapse
Affiliation(s)
- Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Regenerative Biology and Stem Cell Institute, New York, NY, United States
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emilio Merheb
- Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seung Hyun Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology and Northern California JDRF Center of Excellence, University of California at San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna L. Gloyn
- Department of Pediatrics (Endocrinology) and of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Northern California JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Schüssler M, Schott K, Fuchs NV, Oo A, Zahadi M, Rauch P, Kim B, König R. Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction and cellular dNTP levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554731. [PMID: 37662193 PMCID: PMC10473771 DOI: 10.1101/2023.08.24.554731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphate triphosphohydrolase (dNTPase) and a potent restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting CD4+ T cells. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of the residue T592. However, the impact of T592 phosphorylation on dNTPase activity is still under debate. Whether additional cellular functions of SAMHD1 impact anti-viral restriction is not completely understood. We report BLaER1 cells as a novel human macrophage HIV-1 infection model combined with CRISPR/Cas9 knock-in (KI) introducing specific mutations into the SAMHD1 locus to study mutations in a physiological context. Transdifferentiated BLaER1 cells harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter virus infection. As expected, homozygous T592E mutation, but not T592A, relieved a block to HIV-1 reverse transcription. Co-delivery of VLP-Vpx to SAMHD1 T592E KI mutant cells did not further enhance HIV-1 infection indicating the absence of an additional SAMHD1-mediated antiviral activity independent of T592 de-phosphorylation. T592E KI cells retained dNTP levels similar to WT cells indicating uncoupling of anti-viral and dNTPase activity of SAMHD1. The integrity of the catalytic site in SAMHD1 was critical for anti-viral activity, yet poor correlation of HIV-1 restriction and global cellular dNTP levels was observed in cells harboring catalytic core mutations. Together, we emphasize the complexity of the relationship between HIV-1 restriction, SAMHD1 enzymatic function and T592 phospho-regulation and provide novel tools for investigation in an endogenous and physiological context.
Collapse
Affiliation(s)
- Moritz Schüssler
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Adrian Oo
- Department of Pediatrics, Emory University, Atlanta, USA
| | - Morssal Zahadi
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Paula Rauch
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, USA
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
26
|
Schou MD, Søgaard OS, Rasmussen TA. Clinical trials aimed at HIV cure or remission: new pathways and lessons learned. Expert Rev Anti Infect Ther 2023; 21:1227-1243. [PMID: 37856845 DOI: 10.1080/14787210.2023.2273919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.
Collapse
Affiliation(s)
- Maya Dyveke Schou
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Chatterjee D, Zhang Y, Ngassaki-Yoka CD, Dutilleul A, Khalfi S, Hernalsteens O, Wiche Salinas TR, Dias J, Chen H, Smail Y, Goulet JP, Bell B, Routy JP, Van Lint C, Ancuta P. Identification of aryl hydrocarbon receptor as a barrier to HIV-1 infection and outgrowth in CD4 + T cells. Cell Rep 2023; 42:112634. [PMID: 37310858 PMCID: PMC10592455 DOI: 10.1016/j.celrep.2023.112634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) regulates Th17-polarized CD4+ T cell functions, but its role in HIV-1 replication/outgrowth remains unknown. Genetic (CRISPR-Cas9) and pharmacological inhibition reveal AhR as a barrier to HIV-1 replication in T cell receptor (TCR)-activated CD4+ T cells in vitro. In single-round vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection, AhR blockade increases the efficacy of early/late reverse transcription and subsequently facilitated integration/translation. Moreover, AhR blockade boosts viral outgrowth in CD4+ T cells of people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Finally, RNA sequencing reveals genes/pathways downregulated by AhR blockade in CD4+ T cells of ART-treated PLWH, including HIV-1 interactors and gut-homing molecules with AhR-responsive elements in their promoters. Among them, HIC1, a repressor of Tat-mediated HIV-1 transcription and a tissue-residency master regulator, is identified by chromatin immunoprecipitation as a direct AhR target. Thus, AhR governs a T cell transcriptional program controlling viral replication/outgrowth and tissue residency/recirculation, supporting the use of AhR inhibitors in "shock and kill" HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yuwei Zhang
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christ-Dominique Ngassaki-Yoka
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Antoine Dutilleul
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Soumia Khalfi
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Olivier Hernalsteens
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Tomas Raul Wiche Salinas
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jonathan Dias
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Yasmine Smail
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Brendan Bell
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé and Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H3H 2R9, Canada; Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l'université de Montréal, Montréal, QC H2X 0A9, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest & The Research Institute of the University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
28
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, Autophagy, and YB-1 independent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544550. [PMID: 37546823 PMCID: PMC10402176 DOI: 10.1101/2023.06.12.544550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3 % without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| |
Collapse
|
30
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
31
|
Wong CH, Wingett SW, Qian C, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based trafficking revealed by a high-content arrayed CRISPR screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530592. [PMID: 36909483 PMCID: PMC10002790 DOI: 10.1101/2023.03.01.530592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Discovery Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
- Current address: Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven W. Wingett
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
32
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527545. [PMID: 36798236 PMCID: PMC9934674 DOI: 10.1101/2023.02.07.527545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4 + T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4 + T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4 + T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
34
|
Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204484. [PMID: 36504444 PMCID: PMC9896079 DOI: 10.1002/advs.202204484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Collapse
Affiliation(s)
- Junyun Cheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Gaole Lin
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Tianhao Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yunzhu Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Wenbo Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Liao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Chen
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Shao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
| | - Ling Zhu
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
| | - Yi Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310024China
| |
Collapse
|
35
|
Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4 + T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. J Virol 2022; 96:e0087622. [PMID: 36354340 PMCID: PMC9749476 DOI: 10.1128/jvi.00876-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Hannah Carter
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lwar Naing
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay D. Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - David A. Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
36
|
Mills C, Riching A, Keller A, Stombaugh J, Haupt A, Maksimova E, Dickerson SM, Anderson E, Hemphill K, Ebmeier C, Schiel JA, Levenga J, Perkett M, Smith AVB, Strezoska Z. A Novel CRISPR Interference Effector Enabling Functional Gene Characterization with Synthetic Guide RNAs. CRISPR J 2022; 5:769-786. [PMID: 36257604 PMCID: PMC9805873 DOI: 10.1089/crispr.2022.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/15/2022] [Indexed: 01/31/2023] Open
Abstract
While CRISPR interference (CRISPRi) systems have been widely implemented in pooled lentiviral screening, there has been limited use with synthetic guide RNAs for the complex phenotypic readouts enabled by experiments in arrayed format. Here we describe a novel deactivated Cas9 fusion protein, dCas9-SALL1-SDS3, which produces greater target gene repression than first or second generation CRISPRi systems when used with chemically modified synthetic single guide RNAs (sgRNAs), while exhibiting high target specificity. We show that dCas9-SALL1-SDS3 interacts with key members of the histone deacetylase and Swi-independent three complexes, which are the endogenous functional effectors of SALL1 and SDS3. Synthetic sgRNAs can also be used with in vitro-transcribed dCas9-SALL1-SDS3 mRNA for short-term delivery into primary cells, including human induced pluripotent stem cells and primary T cells. Finally, we used dCas9-SALL1-SDS3 for functional gene characterization of DNA damage host factors, orthogonally to small interfering RNA, demonstrating the ability of the system to be used in arrayed-format screening.
Collapse
Affiliation(s)
- Clarence Mills
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Andrew Riching
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Ashleigh Keller
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Jesse Stombaugh
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Amanda Haupt
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Elena Maksimova
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Sarah M. Dickerson
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Emily Anderson
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Kevin Hemphill
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Chris Ebmeier
- Mass Spectrometry Core Facility, University of Colorado-Boulder, Boulder, Colorado, USA
| | - John A. Schiel
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Josien Levenga
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Matthew Perkett
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Anja van Brabant Smith
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| | - Zaklina Strezoska
- Horizon Discovery, a PerkinElmer Company, Lafayette, Colorado, USA and University of Colorado-Boulder, Boulder, Colorado, USA
| |
Collapse
|
37
|
Bäckström A, Yudovich D, Žemaitis K, Nilsén Falck L, Subramaniam A, Larsson J. Combinatorial gene targeting in primary human hematopoietic stem and progenitor cells. Sci Rep 2022; 12:18169. [PMID: 36307542 PMCID: PMC9616885 DOI: 10.1038/s41598-022-23118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The CRISPR/Cas9 system offers enormous versatility for functional genomics but many applications have proven to be challenging in primary human cells compared to cell lines or mouse cells. Here, to establish a paradigm for multiplexed gene editing in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs), we used co-delivery of lentiviral sgRNA vectors expressing either Enhanced Green Fluorescent Protein (EGFP) or Kusabira Orange (KuO), together with Cas9 mRNA, to simultaneously edit two genetic loci. The fluorescent markers allow for tracking of either single- or double-edited cells, and we could achieve robust double knockout of the cell surface molecules CD45 and CD44 with an efficiency of ~ 70%. As a functional proof of concept, we demonstrate that this system can be used to model gene dependencies for cell survival, by simultaneously targeting the cohesin genes STAG1 and STAG2. Moreover, we show combinatorial effects with potential synergy for HSPC expansion by targeting the Aryl Hydrocarbon Receptor (AHR) in conjunction with members of the CoREST complex. Taken together, our traceable multiplexed CRISPR/Cas9 system enables studies of genetic dependencies and cooperation in primary HSPCs, and has important implications for modelling polygenic diseases, as well as investigation of the underlying mechanisms of gene interactions.
Collapse
Affiliation(s)
- Alexandra Bäckström
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - David Yudovich
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Kristijonas Žemaitis
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Ludvig Nilsén Falck
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Agatheeswaran Subramaniam
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Jonas Larsson
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| |
Collapse
|
38
|
Packard TA, Schwarzer R, Herzig E, Rao D, Luo X, Egedal JH, Hsiao F, Widera M, Hultquist JF, Grimmett ZW, Messer RJ, Krogan NJ, Deeks SG, Roan NR, Dittmer U, Hasenkrug KJ, Greene WC. CCL2: a Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022; 13:e0189122. [PMID: 36073812 PMCID: PMC9600577 DOI: 10.1128/mbio.01891-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.
Collapse
Affiliation(s)
| | - Roland Schwarzer
- J. David Gladstone Institutes, San Francisco, California, USA
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eytan Herzig
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Deepashri Rao
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Xiaoyu Luo
- J. David Gladstone Institutes, San Francisco, California, USA
| | | | - Feng Hsiao
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Judd F. Hultquist
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nevan J. Krogan
- J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nadia R. Roan
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Ulf Dittmer
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Warner C. Greene
- J. David Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
40
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
41
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
42
|
Scheller SH, Rashad Y, Saleh FM, Willingham KA, Reilich A, Lin D, Izadpanah R, Alt EU, Braun SE. Biallelic, Selectable, Knock-in Targeting of CCR5 via CRISPR-Cas9 Mediated Homology Directed Repair Inhibits HIV-1 Replication. Front Immunol 2022; 13:821190. [PMID: 35386712 PMCID: PMC8978527 DOI: 10.3389/fimmu.2022.821190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 01/17/2023] Open
Abstract
Transplanting HIV-1 positive patients with hematopoietic stem cells homozygous for a 32 bp deletion in the chemokine receptor type 5 (CCR5) gene resulted in a loss of detectable HIV-1, suggesting genetically disrupting CCR5 is a promising approach for HIV-1 cure. Targeting the CCR5-locus with CRISPR-Cas9 was shown to decrease the amount of CCR5 expression and HIV-1 susceptibility in vitro as well as in vivo. Still, only the individuals homozygous for the CCR5-Δ32 frameshift mutation confer complete resistance to HIV-1 infection. In this study we introduce a mechanism to target CCR5 and efficiently select for cells with biallelic frameshift insertion, using CRISPR-Cas9 mediated homology directed repair (HDR). We hypothesized that cells harboring two different selectable markers (double positive), each in one allele of the CCR5 locus, would carry a frameshift mutation in both alleles, lack CCR5 expression and resist HIV-1 infection. Inducing double-stranded breaks (DSB) via CRISPR-Cas9 leads to HDR and integration of a donor plasmid. Double-positive cells were selected via fluorescence-activated cell sorting (FACS), and CCR5 was analyzed genetically, phenotypically, and functionally. Targeted and selected populations showed a very high frequency of mutations and a drastic reduction in CCR5 surface expression. Most importantly, double-positive cells displayed potent inhibition to HIV-1 infection. Taken together, we show that targeting cells via CRISPR-Cas9 mediated HDR enables efficient selection of mutant cells that are deficient for CCR5 and highly resistant to HIV-1 infection.
Collapse
Affiliation(s)
- Stefan H Scheller
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Cardiology and Angiology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Yasmine Rashad
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Fayez M Saleh
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States.,Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Kurtis A Willingham
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Antonia Reilich
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Dong Lin
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Surgery, Tulane University Health Science Center, New Orleans, LA, United States
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Surgery, Tulane University Health Science Center, New Orleans, LA, United States
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Isar Klinikum Munich, Munich, Germany
| | - Stephen E Braun
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States.,Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
43
|
A functional map of HIV-host interactions in primary human T cells. Nat Commun 2022; 13:1752. [PMID: 35365639 PMCID: PMC8976027 DOI: 10.1038/s41467-022-29346-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Collapse
|
44
|
Jurczyszak D, Manganaro L, Buta S, Gruber C, Martin-Fernandez M, Taft J, Patel RS, Cipolla M, Alshammary H, Mulder LCF, Sachidanandam R, Bogunovic D, Simon V. ISG15 deficiency restricts HIV-1 infection. PLoS Pathog 2022; 18:e1010405. [PMID: 35333911 PMCID: PMC8986114 DOI: 10.1371/journal.ppat.1010405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/06/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype, restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients. Taken together, we document that the increased broad-spectrum viral resistance in ISG15-deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with both known and unknown functions, predicted to target HIV-1 replication at multiple steps. Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral agents. They induce IFN stimulated genes (ISGs), which perform downstream functions to resolve viral infection, mediate the inflammatory response, as well as negatively regulate the IFN-I signaling cascade to prevent hyperinflammation. One such negative regulator is interferon stimulated gene 15 (ISG15). Humans that lack ISG15 have chronic, low levels of antiviral ISGs, and ensuing broad-spectrum resistance to viral infection. We demonstrate that IFN-I priming of ISG15-deficient cells leads to superior resistance to human immunodeficiency virus 1 (HIV-1) infection compared to IFN-I primed healthy control cells. This is true for fibroblast cell lines, as well as primary CD4+ T cells, the main target of HIV-1. Analysis of the gene expression profiles show that ISG15-knockout CD4+ T cells express similar inflammatory markers as ISG15-deficient patients. Overall, we show that the broad-spectrum viral resistance in ISG15-deficiency extends to HIV-1.
Collapse
Affiliation(s)
- Denise Jurczyszak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lara Manganaro
- INGM-Istituto Nazionale di Genetica Molecolare, Virology, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of MIlan, Milan, Italy
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Justin Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Melissa Cipolla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| |
Collapse
|
45
|
Bernard BE, Landmann E, Jeker LT, Schumann K. CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunol Lett 2022; 245:18-28. [DOI: 10.1016/j.imlet.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
|
46
|
van der Donk LEH, van der Spek J, van Duivenvoorde T, Ten Brink MS, Geijtenbeek TBH, Kuijl CP, van Heijst JWJ, Ates LS. An optimized retroviral toolbox for overexpression and genetic perturbation of primary lymphocytes. Biol Open 2022; 11:274579. [PMID: 35229875 PMCID: PMC8905627 DOI: 10.1242/bio.059032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors. These vectors can be used for the knockdown or overexpression of genes of interest in primary human and murine lymphocytes, in combination with a wide choice of selection and reporter strategies. By streamlining the vector backbone and insert design, these publicly available vectors allow easy interchangeability of the independent building blocks, such as different promoters, fluorescent proteins, surface markers and antibiotic resistance cassettes. We validated these vectors and tested the optimal promoters for in vitro and in vivo overexpression and knockdown of the murine T cell antigen receptor. By publicly sharing these vectors and the data on their optimization, we aim to facilitate genetic modification of primary lymphocytes for researchers entering this field. Summary: Viral transduction is generally the method of choice for genetic manipulation of primary lymphocytes. Here, the authors systematically compared different genetic components and created and shared an optimized set of vectors that can be used in all aspects of research on T cells.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Tom van Duivenvoorde
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Marieke S Ten Brink
- Division of Infectious Diseases and Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Coenraad P Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.,Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
47
|
TRIM5α Restriction of HIV-1-N74D Viruses in Lymphocytes Is Caused by a Loss of Cyclophilin A Protection. Viruses 2022; 14:v14020363. [PMID: 35215956 PMCID: PMC8879423 DOI: 10.3390/v14020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
The core of HIV-1 viruses bearing the capsid change N74D (HIV-1-N74D) do not bind the human protein CPSF6. In primary human CD4+ T cells, HIV-1-N74D viruses exhibit an infectivity defect when compared to wild-type. We first investigated whether loss of CPSF6 binding accounts for the loss of infectivity. Depletion of CPSF6 in human CD4+ T cells did not affect the early stages of wild-type HIV-1 replication, suggesting that defective infectivity in the case of HIV-1-N74D viruses is not due to the loss of CPSF6 binding. Based on our previous result that cyclophilin A (Cyp A) protected HIV-1 from human tripartite motif-containing protein 5α (TRIM5αhu) restriction in CD4+ T cells, we found that depletion of TRIM5αhu in CD4+ T cells rescued the infectivity of HIV-1-N74D, suggesting that HIV-1-N74D cores interacted with TRIM5αhu. Accordingly, TRIM5αhu binding to HIV-1-N74D cores was increased compared with that of wild-type cores, and consistently, HIV-1-N74D cores lost their ability to bind Cyp A. In agreement with the notion that N74D capsids are defective in their ability to bind Cyp A, we found that HIV-1-N74D viruses were 20-fold less sensitive to TRIMCyp restriction when compared to wild-type viruses in OMK cells. Structural analysis revealed that N74D hexameric capsid protein in complex with PF74 is different from wild-type hexameric capsid protein in complex with PF74, which explains the defect of N74D capsids to interact with Cyp A. In conclusion, we showed that the decreased infectivity of HIV-1-N74D in CD4+ T cells is due to a loss of Cyp A protection from TRIM5αhu restriction activity.
Collapse
|
48
|
Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022; 181:114087. [PMID: 34942274 PMCID: PMC8844242 DOI: 10.1016/j.addr.2021.114087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, US
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| |
Collapse
|
49
|
Selyutina A, Hu P, Miller S, Simons LM, Yu HJ, Hultquist JF, Lee K, KewalRamani VN, Diaz-Griffero F. GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with cellular factors. iScience 2022; 25:103593. [PMID: 35005542 PMCID: PMC8718827 DOI: 10.1016/j.isci.2021.103593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 capsid is the target for the antiviral drugs GS-CA1 and Lenacapavir (GS-6207). We investigated the mechanism by which GS-CA1 and GS-6207 inhibit HIV-1 infection. HIV-1 inhibition by GS-CA1 did not require CPSF6 in CD4+ T cells. Contrary to PF74 that accelerates uncoating of HIV-1, GS-CA1 and GS-6207 stabilized the core. GS-CA1, unlike PF74, allowed the core to enter the nucleus, which agrees with the fact that GS-CA1 inhibits infection after reverse transcription. Unlike PF74, GS-CA1 did not disaggregate preformed CPSF6 complexes in nuclear speckles, suggesting that PF74 and GS-CA1 have different mechanisms of action. GS-CA1 stabilized the HIV-1 core, possibly by inducing a conformational shift in the core; in agreement, HIV-1 cores bearing N74D regained their ability to bind CPSF6 in the presence of GS-CA1. We showed that GS-CA1 binds to the HIV-1 core, changes its conformation, stabilizes the core, and thereby prevents viral uncoating and infection. GS-CA1 and Lenacapavir (GS-6207) stabilizes the HIV-1 core during infection GS-CA1/GS-6207 inhibit the interaction of the HIV-1 core with host factors GS-CA1/GS-6207 do not disaggregate preformed CPSF6 complexes in nuclear speckles GS-CA1/GS-6207 affects the dynamic surface of the HIV-1 core
Collapse
Affiliation(s)
- Anastasia Selyutina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Sorin Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - KyeongEun Lee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| |
Collapse
|
50
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|